Search Results

Search found 24382 results on 976 pages for 'tutor process procedure f'.

Page 2/976 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Node.js MMO - process and/or map division

    - by Gipsy King
    I am in the phase of designing a mmo browser based game (certainly not massive, but all connected players are in the same universe), and I am struggling with finding a good solution to the problem of distributing players across processes. I'm using node.js with socket.io. I have read this helpful article, but I would like some advice since I am also concerned with different processes. Solution 1: Tie a process to a map location (like a map-cell), connect players to the process corresponding to their location. When a player performs an action, transmit it to all other players in this process. When a player moves away, he will eventually have to connect to another process (automatically). Pros: Easier to implement Cons: Must divide map into zones Player reconnection when moving into a different zone is probably annoying If one zone/process is always busy (has players in it), it doesn't really load-balance, unless I split the zone which may not be always viable There shouldn't be any visible borders Solution 1b: Same as 1, but connect processes of bordering cells, so that players on the other side of the border are visible and such. Maybe even let them interact. Solution 2: Spawn processes on demand, unrelated to a location. Have one special process to keep track of all connected player handles, their location, and the process they're connected to. Then when a player performs an action, the process finds all other nearby players (from the special player-process-location tracking node), and instructs their matching processes to relay the action. Pros: Easy load balancing: spawn more processes Avoids player reconnecting / borders between zones Cons: Harder to implement and test Additional steps of finding players, and relaying event/action to another process If the player-location-process tracking process fails, all other fail too I would like to hear if I'm missing something, or completely off track.

    Read the article

  • Good SQL error handling in Strored Procedure

    - by developerit
    When writing SQL procedures, it is really important to handle errors cautiously. Having that in mind will probably save your efforts, time and money. I have been working with MS-SQL 2000 and MS-SQL 2005 (I have not got the opportunity to work with MS-SQL 2008 yet) for many years now and I want to share with you how I handle errors in T-SQL Stored Procedure. This code has been working for many years now without a hitch. N.B.: As antoher "best pratice", I suggest using only ONE level of TRY … CATCH and only ONE level of TRANSACTION encapsulation, as doing otherwise may not be 100% sure. BEGIN TRANSACTION; BEGIN TRY -- Code in transaction go here COMMIT TRANSACTION; END TRY BEGIN CATCH -- Rollback on error ROLLBACK TRANSACTION; -- Raise the error with the appropriate message and error severity DECLARE @ErrMsg nvarchar(4000), @ErrSeverity int; SELECT @ErrMsg = ERROR_MESSAGE(), @ErrSeverity = ERROR_SEVERITY(); RAISERROR(@ErrMsg, @ErrSeverity, 1); END CATCH; In conclusion, I will just mention that I have been using this code with .NET 2.0 and .NET 3.5 and it works like a charm. The .NET TDS parser throws back a SQLException which is ideal to work with.

    Read the article

  • SQL SERVER – Recompile Stored Procedure at Run Time

    - by pinaldave
    I recently received an email from reader after reading my previous article on SQL SERVER – Plan Recompilation and Reduce Recompilation – Performance Tuning regarding how to recompile any stored procedure at run time. There are multiple ways to do this. If you want your stored procedure to always recompile at run time, you can add [...]

    Read the article

  • SOA 10g Developing a Simple Hello World Process

    - by [email protected]
    Softwares & Hardware Needed Intel Pentium D CPU 3 GHz, 2 GB RAM, Windows XP System ( Thats what i am using ) You could as well use Linux , but please choose High End RAM 10G SOA Suite from Oracle(TM) , Read Installation documents at www.Oracle.com J Developer 10.1.3.3 Official Documents at http://www.oracle.com/technology/products/ias/bpel/index.html java -version Java HotSpot(TM) Client VM (build 1.5.0_06-b05, mixed mode)BPEL Introduction - Developing a Simple Hello World Process  Synchronous BPEL Process      This Exercise focuses on developing a Synchronous Process, which mean you give input to the BPEL Process you get output immediately no waiting at all. The Objective of this exercise is to give input as name and it greets with Hello Appended by that name example, if I give input as "James" the BPEL process returns "Hello James". 1. Open the Oracle JDeveloper click on File -> New Application give the name "JamesApp" you can give your own name if it pleases you. Select the folder where you want to place the application. Click "OK" 2. Right Click on the "JamesApp" in the Application Navigator, Select New Menu. 3. Select "Projects" under "General" and "BPEL Process Project", click "OK" these steps remain same for all BPEL Projects 4. Project Setting Wizard Appears, Give the "Process Name" as "MyBPELProc" and Namespace as http://xmlns.james.com/ MyBPELProc, Select Template as "Synchronous BPEL Process click "Next" 5. Accept the input and output schema names as it is, click "Finish" 6. You would see the BPEL Process Designer, some of the folders such as Integration content and Resources are created and few more files 7. Assign Activity : Allows Assigning values to variables or copying values of one variable to another and also do some string manipulation or mathematical operations In the component palette at extreme right, select Process Activities from the drop down, and drag and drop "Assign" between "receive Input" and "replyOutput" 8. You can right click and edit the Assign activity and give any suitable name "AssignHello", 9. Select "Copy Operation" Tab create "Copy Operation" 10. In the From variables click on expression builder, select input under "input variable", Click on insert into expression bar, complete the concat syntax, Note to use "Ctrl+space bar" inside expression window to Auto Populate the expression as shown in the figure below. What we are actually doing here is concatenating the String "Hello ", with the variable value received through the variable named "input" 11. Observe that once an expression is completed the "To Variable" is assigned to a variable by name "result" 12. Finally the copy variable looks as below 13. It's the time to deploy, start the SOA Suite 14. Establish connection to the Server from JDeveloper, this can be done adding a New Application Server under Connection, give the server name, username and password and test connection. 15. Deploy the "MyBPELProc" to the "default domain" 16. http://localhost:8080/ allows connecting to SOA Suite web portal, click on "BPEL Control" , login with the username "oc4jadmin" password what ever you gave during installation 17. "MyBPELProc" is visisble under "Deployed BPEL Processes" in the "Dashboard" Tab, click on the it 18. Initiate tab open to accept input, enter data such as input is "James" click on "Post XML Button" 19. Click on Visual Flow 20. Click on receive Input , it shows "James" as input received 21. Click on reply Output, it shows "Hello James" so the BPEL process is successfully executed. 22. It may be worth seeing all the instance created everytime a BPEL process is executed by giving some inputs. Purge All button allows to delete all the unwanted previous instances of BPEL process, dont worry it wont delete the BPEL process itself :-) 23. It may also be some importance to understand the XSD File which holds input & output variable names & data types. 24. You could drag n drop variables as elements over sequence at the designer or directly edit the XML Source file. 

    Read the article

  • Start a Mapping or Process Flow from OWB Browser

    - by Dong Ruirong
    Basically, we start a Mapping or Process Flow from Oracle Warehouse Builder (OWB) Design Client. But actually we can also start a Mapping or Process Flow from OWB Browser. This paper will introduce the Start Report first and then introduce how to start/rerun a Mapping or Process Flow from OWB Browser. Start Report Start Report is used to start an execution of a Mapping or Process Flow. So there are two kinds of Start Report: Mapping Start Report (See Figure 1) and Process Flow Start Report (See Figure 2). Start Report shows the Mapping or Process Flow identification properties, including latest deployment and latest execution, lists all execution parameters for the Mapping or Process Flow, which were specified by the latest deployment, and assigns parameter default values from the latest deployment specification. You can do a couple of things from Start Report: Sort execution parameters on name, category. Table 1 lists all parameters of a Mapping. Table 2 lists all parameters of a Process Flow. Change values of any input parameter where permitted. For some parameters, selection lists are provided. For example, Mapping’s parameter Audit Level has a selection list. Reset all parameter settings to their default values. Apply basic validation to parameter values before starting an execution. Start the Mapping or Process Flow, which means it is executed immediately. Navigate to Deployment Report for latest deployment details of the Mapping or Process Flow. Navigate to Execution Job Report for latest execution of current Mapping or Process Flow Link to on-link help Warehouse Report Page, Deployment Report, Execution Report, Execution Schedule Report and Execution Summary Report. Figure 1 Mapping Start Report Table 1 Execution Parameters and default values for a Mapping Category Name Mode Input Value System Audit Level In Error Details System Bulk Size In 1000 System Commit Frequency In 1000 System EXECUTE_RESUME_TASK In FALSE System FORCE_RESUME_OPTION In FALSE System Max No of Errors In 50 System NUMBER_OF_TIMES_TO_RETRY In 2 System Operating Mode In Set Based Fail Over to Row Based System PARALLEL_LEVEL In 0 System Procedure Name In main System Purge Group In WB Figure 2 Process Flow Start Report Table 2 Execution Parameters and default values for a Process Flow Category Name Mode Input Value System EVAL_LOCATION In   System Item Key In-Out   System Item Type In PFPKG_1 Start a Mapping or Process Flow To navigate to Start Report, it’s better to login OWB Browser with Control Center option; if not, after logging in OWB Browser, go to Control Center first. Then you can follow the ways introduced in this section to navigate to Start Report. One more thing you need to pay attention to is that you are not allowed to deploy any Mappings and Process Flows from OWB Browser as it’s not supported. So it’s necessary to deploy the Mappings and Process Flows first before starting them from OWB Browser. If you have deployed a Mapping or Process Flow but have not started it, please navigate from Object Summary Report or Deployment Schedule Report to Start Report. 1. Navigating from Object Summary Report to Start Report Open the Object Summary Report to see all deployed Mappings and Process Flows. Click the Mapping Name or Process Flow Name link to see its Deployment Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. 2. Navigating from Deployment Schedule Report to Start Report Open the Deployment Schedule Report to see deployment details of Mapping and Process Flow. Expand the project trees to find the deployed Mappings and Process Flows. Click the Mapping Name or Process Flow Name link to see its Deployment Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. Re-run a Mapping or Process Flow If you have executed a Mapping or Process Flow, you can navigate from Object Summary Report, Deployment Schedule Report, Execution Summary Report or Execution Schedule Report to Start Report. 1. Navigating from the Execution Summary Report to Start Report Open the Execution Summary Report to see all execution jobs including Mapping jobs and Process Flow jobs. Click on the Mapping Name or Process Flow Name to see its Execution Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. 2. Navigating from the Execution Schedule Report to Start Report Open the Execution Schedule Report to see list of all executions of Mapping and Process Flow. Click on the Mapping Name or Process Flow Name to see its Execution Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. If the execution of a Mapping or Process Flow is successful, you will see this message from the Start Report: Start Execution request successful. (See Figure 3) Figure 3 Execution Result You can also confirm the execution of the Mapping or Process Flow by referring to Execution Report of the current Mapping or Process Flow by clicking the link in the Available Reports tab for the given Mapping or Process Flow. One new record of execution job details is added to Execution Report of the Mapping or Process Flow which shows the details of the execution such as Start Time, Elapsed Time, Status, the number of records selected, inserted, updated, deleted etc.

    Read the article

  • Interview questions for programming tutor?

    - by Emmett Gear
    My family is looking for a programming/computer science tutor. Personally, I want to learn Java or some other brand of web programming. I am best described as a PC "power user." I have never programmed in the past and would like a good jump start. I am a very quick learner and do not expect the tutor to have to teach me the ultra basic stuff that I can learn myself. My son also needs a programming tutor. He just got into Carnegie Mellon as a computer science major. Having done only robotics and mathematics in the past he is very nervous that he does not have the same level of knowledge as his future classmates. I need some help coming up with a list of questions to ask potential tutors and some criteria to judge them by. Thanks! Edit: So far I have come up with just the obvious... Where did you receive your education? What languages are you familiar with? How long have you been tutoring? What made you decide to become a tutor? What software projects have you worked on? What work references can you give me? How much do you charge?

    Read the article

  • How To Get the Name of the Current Procedure/Function in Delphi (As a String)

    - by Andreas Rejbrand
    Is it possible to obtain the name of the current procedure/function as a string, within a procedure/function? I suppose there would be some "macro" that is expanded at compile-time. My scenario is this: I have a lot of procedures that are given a record and they all need to start by checking the validity of the record, and so they pass the record to a "validator procedure". The validator procedure raises an exception if the record is invalid, and I want the message of the exception to include not the name of the validator procedure, but the name of the function/procedure that called the validator procedure (naturally). That is, I have procedure ValidateStruct(const Struct: TMyStruct; const Sender: string); begin if <StructIsInvalid> then raise Exception.Create(Sender + ': Structure is invalid.'); end; and then procedure SomeProc1(const Struct: TMyStruct); begin ValidateStruct(Struct, 'SomeProc1'); ... end; ... procedure SomeProcN(const Struct: TMyStruct); begin ValidateStruct(Struct, 'SomeProcN'); ... end; It would be somewhat less error-prone if I instead could write something like procedure SomeProc1(const Struct: TMyStruct); begin ValidateStruct(Struct, {$PROCNAME}); ... end; ... procedure SomeProcN(const Struct: TMyStruct); begin ValidateStruct(Struct, {$PROCNAME}); ... end; and then each time the compiler encounters a {$PROCNAME}, it simply replaces the "macro" with the name of the current function/procedure as a string literal.

    Read the article

  • java Process stop entire process tree

    - by ages04
    I am using Java Runtime to run commands, including certain CVS commands. I use: process = runtime.exec ("cmd /C cvs..."); format for running the Process in Java I need to have the option of stopping it. For this I use the Java Process destroy method process.destroy(); However only the cmd is stopped not the cvs process. It continues to run as a separate process without the cmd process as the parent. There are many references to this on the internet, but I haven't found any satisfactory solution. Thanks

    Read the article

  • Is calling Process.Refresh() required for Process.HasFinished

    - by Rekreativc
    Hello I am interested if calling Process.Refresh() is mandatory when waiting for the process to terminate by checking Process.HasFinished property? I have a piece of code that works fine without the Process.Refresh() call, however I am curious weather this is a coincidence? I can see that a msdn example has the Process.Refresh() call... If its not necessary, and Process.HasExited is the only property I need, are there any advantages to making the call to Process.Refresh() ? If not, is there a reason it is in the msdn example? Thank you for your answers.

    Read the article

  • Obtain stored procedure metadata for a procedure within an Oracle package using ADO.NET

    - by alwayslearning
    Hi, I am trying to obtain the stored procedure metadata (procedure name,parameter types,parameter names etc) for a procedure declared within an Oracle package, using the standard ADO.NET API - DbConnection.GetSchema call. I am using the ODP driver. I see that the Package is listed in the 'Packages' and 'PackageBodies' metadata collections. The procedure parameter appears in the 'Arguments' and 'ProcedureParameters' collections. I do not see a way to get to the procedure information via the package metadata. Even if the procedure does not have any parameters there is a row in the 'ProcedureParameters' collection for this procedure. My question: To obtain the procedure metadata do I have to query the 'ProcedureParameters' collection and search for an entry with the required package name? I can then construct the procedure metadata based on the parameter information. Is there a shorter or quicker way to obtain the same information?

    Read the article

  • Exit code of a process terminated with Process.Kill() , in C#

    - by Emil D
    If in my C# application, I am creating a child process that can either terminate normally, or start misbehaving, in which case I terminate it with a call to Process.Kill().However, I would like to know if the process has exited normally.I know I can get the error code of a terminated process, but what would be a normal exit code and what would signify that the process was killed?

    Read the article

  • Documenting Business Processes and Capturing Organizational Knowledge with Oracle Tutor 12.2

    Organizations can master the challenges of documenting business processes and capturing organizational knowledge with Oracle Tutor. They can also solve the documentation challenges they face during an implementation/upgrade and satisfy business process regulatory compliance initiatives. Oracle Tutor can help project teams lay the foundation for a successful application rollout or compliance audit by quickly and consistently creating and sustaining employee process documentation throughout the business lifecycle.

    Read the article

  • Is there a way to make sure a background process spawned by my program is killed when my process ter

    - by Davy8
    Basically the child process runs indefinitely until killed in the background, and I want to clean it up when my program terminates for any reason, i.e. via the Taskmanager. Currently I have a while (Process.GetProcessesByName("ParentProcess").Count() 0) loop and exit if the parent process isn't running, but it seems pretty brittle, and if I wanted it to work under debugger in Visual Studio I'd have to add "ParentProcess.vshost" or something. Is there any way to make sure that the child process end without requiring the child process to know about the parent process? I'd prefer a solution in managed code, but if there isn't one I can PInvoke. Edit: Passing the PID seems like a more robust solution, but for curiosity's sake, what if the child process was not my code but some exe that I have no control over? Is there a way to safeguard against possibly creating orphaned child processes?

    Read the article

  • Dynamically call a stored procedure from another stored procedure

    - by Greg
    I want to be able to pass in the name of a stored procedure as a string into another stored procedure and have it called with dynamic parameters. I'm getting an error though. Specifically I've tried: create procedure test @var1 varchar(255), @var2 varchar(255) as select 1 create procedure call_it @proc_name varchar(255) as declare @sp_str varchar(255) set @sp_str = @proc_name + ' ''a'',''b''' print @sp_str exec @sp_str exec call_it 'test' So procedure call_it should call procedure test with arguments 'a', and 'b'. When I run the above code I get: Msg 2812, Level 16, State 62, Procedure call_it, Line 6 Could not find stored procedure 'test 'a','b''. However, running test 'a','b' works fine.

    Read the article

  • Issues with signal handling [closed]

    - by user34790
    I am trying to actually study the signal handling behavior in multiprocess system. I have a system where there are three signal generating processes generating signals of type SIGUSR1 and SIGUSR1. I have two handler processes that handle a particular type of signal. I have another monitoring process that also receives the signals and then does its work. I have a certain issue. Whenever my signal handling processes generate a signal of a particular type, it is sent to the process group so it is received by the signal handling processes as well as the monitoring processes. Whenever the signal handlers of monitoring and signal handling processes are called, I have printed to indicate the signal handling. I was expecting a uniform series of calls for the signal handlers of the monitoring and handling processes. However, looking at the output I could see like at the beginning the monitoring and signal handling processes's signal handlers are called uniformly. However, after I could see like signal handler processes handlers being called in a burst followed by the signal handler of monitoring process being called in a burst. Here is my code and output #include <iostream> #include <sys/types.h> #include <sys/wait.h> #include <sys/time.h> #include <signal.h> #include <cstdio> #include <stdlib.h> #include <sys/ipc.h> #include <sys/shm.h> #define NUM_SENDER_PROCESSES 3 #define NUM_HANDLER_PROCESSES 4 #define NUM_SIGNAL_REPORT 10 #define MAX_SIGNAL_COUNT 100000 using namespace std; volatile int *usrsig1_handler_count; volatile int *usrsig2_handler_count; volatile int *usrsig1_sender_count; volatile int *usrsig2_sender_count; volatile int *lock_1; volatile int *lock_2; volatile int *lock_3; volatile int *lock_4; volatile int *lock_5; volatile int *lock_6; //Used only by the monitoring process volatile int monitor_count; volatile int usrsig1_monitor_count; volatile int usrsig2_monitor_count; double time_1[NUM_SIGNAL_REPORT]; double time_2[NUM_SIGNAL_REPORT]; //Used only by the main process int total_signal_count; //For shared memory int shmid; const int shareSize = sizeof(int) * (10); double timestamp() { struct timeval tp; gettimeofday(&tp, NULL); return (double)tp.tv_sec + tp.tv_usec / 1000000.; } pid_t senders[NUM_SENDER_PROCESSES]; pid_t handlers[NUM_HANDLER_PROCESSES]; pid_t reporter; void signal_catcher_1(int); void signal_catcher_2(int); void signal_catcher_int(int); void signal_catcher_monitor(int); void signal_catcher_main(int); void terminate_processes() { //Kill the child processes int status; cout << "Time up terminating the child processes" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); //Wait for the child processes to finish for(int i=0; i<NUM_SENDER_PROCESSES; i++) { waitpid(senders[i], &status, 0); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { waitpid(handlers[i], &status, 0); } waitpid(reporter, &status, 0); } int main(int argc, char *argv[]) { if(argc != 2) { cout << "Required parameters missing. " << endl; cout << "Option 1 = 1 which means run for 30 seconds" << endl; cout << "Option 2 = 2 which means run until 100000 signals" << endl; exit(0); } int option = atoi(argv[1]); pid_t pid; if(option == 2) { if(signal(SIGUSR1, signal_catcher_main) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, signal_catcher_main) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } if(signal(SIGINT, signal_catcher_int) == SIG_ERR) { perror("3"); exit(1); } /////////////////////////////////////////////////////////////////////////////////////// ////////////////////// Initializing the shared memory ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// cout << "Initializing the shared memory" << endl; if ((shmid=shmget(IPC_PRIVATE,shareSize,IPC_CREAT|0660))< 0) { perror("shmget fail"); exit(1); } usrsig1_handler_count = (int *) shmat(shmid, NULL, 0); usrsig2_handler_count = usrsig1_handler_count + 1; usrsig1_sender_count = usrsig2_handler_count + 1; usrsig2_sender_count = usrsig1_sender_count + 1; lock_1 = usrsig2_sender_count + 1; lock_2 = lock_1 + 1; lock_3 = lock_2 + 1; lock_4 = lock_3 + 1; lock_5 = lock_4 + 1; lock_6 = lock_5 + 1; //Initialize them to be zero *usrsig1_handler_count = 0; *usrsig2_handler_count = 0; *usrsig1_sender_count = 0; *usrsig2_sender_count = 0; *lock_1 = 0; *lock_2 = 0; *lock_3 = 0; *lock_4 = 0; *lock_5 = 0; *lock_6 = 0; cout << "End of initializing the shared memory" << endl; ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////// End of initializing the shared memory /////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////Registering the signal handlers/////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal handlers" << endl; for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { if((pid = fork()) == 0) { if(i%2 == 0) { struct sigaction action; action.sa_handler = signal_catcher_1; sigset_t block_mask; action.sa_flags = 0; sigaction(SIGUSR1,&action,NULL); if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1 ,SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } struct sigaction action; action.sa_handler = signal_catcher_2; action.sa_flags = 0; sigaction(SIGUSR2,&action,NULL); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { //cout << "Registerd the handler " << pid << endl; handlers[i] = pid; } } cout << "End of registering the signal handlers" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////End of registering the signal handlers ////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////Registering the monitoring process ////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the monitoring process" << endl; if((pid = fork()) == 0) { struct sigaction action; action.sa_handler = signal_catcher_monitor; sigemptyset(&action.sa_mask); sigset_t block_mask; sigemptyset(&block_mask); sigaddset(&block_mask,SIGUSR1); sigaddset(&block_mask,SIGUSR2); action.sa_flags = 0; action.sa_mask = block_mask; sigaction(SIGUSR1,&action,NULL); sigaction(SIGUSR2,&action,NULL); if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { cout << "Monitor's pid is " << pid << endl; reporter = pid; } cout << "End of registering the monitoring process" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////End of registering the monitoring process//////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Sleep to make sure that the monitor and handler processes are well initialized and ready to handle signals sleep(5); ////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////Registering the signal generators/////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal generators" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { if((pid = fork()) == 0) { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } srand(i); while(true) { int signal_id = rand()%2 + 1; if(signal_id == 1) { killpg(getpgid(getpid()), SIGUSR1); while(__sync_lock_test_and_set(lock_4,1) != 0) { } (*usrsig1_sender_count)++; *lock_4 = 0; } else { killpg(getpgid(getpid()), SIGUSR2); while(__sync_lock_test_and_set(lock_5,1) != 0) { } (*usrsig2_sender_count)++; *lock_5=0; } int r = rand()%10 + 1; double s = (double)r/100; sleep(s); } exit(0); } else { //cout << "Registered the sender " << pid << endl; senders[i] = pid; } } //cout << "End of registering the signal generators" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////End of registering the signal generators/////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Either sleep for 30 seconds and terminate the program or if the number of signals generated reaches 10000, terminate the program if(option = 1) { sleep(90); terminate_processes(); } else { while(true) { if(total_signal_count >= MAX_SIGNAL_COUNT) { terminate_processes(); } else { sleep(0.001); } } } } void signal_catcher_1(int the_sig) { while(__sync_lock_test_and_set(lock_1,1) != 0) { } (*usrsig1_handler_count) = (*usrsig1_handler_count) + 1; cout << "Signal Handler 1 " << *usrsig1_handler_count << endl; __sync_lock_release(lock_1); } void signal_catcher_2(int the_sig) { while(__sync_lock_test_and_set(lock_2,1) != 0) { } (*usrsig2_handler_count) = (*usrsig2_handler_count) + 1; __sync_lock_release(lock_2); } void signal_catcher_main(int the_sig) { while(__sync_lock_test_and_set(lock_6,1) != 0) { } total_signal_count++; *lock_6 = 0; } void signal_catcher_int(int the_sig) { for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); exit(3); } void signal_catcher_monitor(int the_sig) { cout << "Monitoring process " << *usrsig1_handler_count << endl; } Here is the initial segment of output Monitoring process 0 Monitoring process 0 Monitoring process 0 Monitoring process 0 Signal Handler 1 1 Monitoring process 2 Signal Handler 1 2 Signal Handler 1 3 Signal Handler 1 4 Monitoring process 4 Monitoring process Signal Handler 1 6 Signal Handler 1 7 Monitoring process 7 Monitoring process 8 Monitoring process 8 Signal Handler 1 9 Monitoring process 9 Monitoring process 9 Monitoring process 10 Signal Handler 1 11 Monitoring process 11 Monitoring process 12 Signal Handler 1 13 Signal Handler 1 14 Signal Handler 1 15 Signal Handler 1 16 Signal Handler 1 17 Signal Handler 1 18 Monitoring process 19 Signal Handler 1 20 Monitoring process 20 Signal Handler 1 21 Monitoring process 21 Monitoring process 21 Monitoring process 22 Monitoring process 22 Monitoring process 23 Signal Handler 1 24 Signal Handler 1 25 Monitoring process 25 Signal Handler 1 27 Signal Handler 1 28 Signal Handler 1 29 Here is the segment when the signal handler processes signal handlers are called in a burst Signal Handler 1 456 Signal Handler 1 457 Signal Handler 1 458 Signal Handler 1 459 Signal Handler 1 460 Signal Handler 1 461 Signal Handler 1 462 Signal Handler 1 463 Signal Handler 1 464 Signal Handler 1 465 Signal Handler 1 466 Signal Handler 1 467 Signal Handler 1 468 Signal Handler 1 469 Signal Handler 1 470 Signal Handler 1 471 Signal Handler 1 472 Signal Handler 1 473 Signal Handler 1 474 Signal Handler 1 475 Signal Handler 1 476 Signal Handler 1 477 Signal Handler 1 478 Signal Handler 1 479 Signal Handler 1 480 Signal Handler 1 481 Signal Handler 1 482 Signal Handler 1 483 Signal Handler 1 484 Signal Handler 1 485 Signal Handler 1 486 Signal Handler 1 487 Signal Handler 1 488 Signal Handler 1 489 Signal Handler 1 490 Signal Handler 1 491 Signal Handler 1 492 Signal Handler 1 493 Signal Handler 1 494 Signal Handler 1 495 Signal Handler 1 496 Signal Handler 1 497 Signal Handler 1 498 Signal Handler 1 499 Signal Handler 1 500 Signal Handler 1 501 Signal Handler 1 502 Signal Handler 1 503 Signal Handler 1 504 Signal Handler 1 505 Signal Handler 1 506 Here is the segment when the monitoring processes signal handlers are called in a burst Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Why isn't it uniform afterwards. Why are they called in a burst?

    Read the article

  • Plan Caching and Query Memory Part I – When not to use stored procedure or other plan caching mechanisms like sp_executesql or prepared statement

    - by sqlworkshops
      The most common performance mistake SQL Server developers make: SQL Server estimates memory requirement for queries at compilation time. This mechanism is fine for dynamic queries that need memory, but not for queries that cache the plan. With dynamic queries the plan is not reused for different set of parameters values / predicates and hence different amount of memory can be estimated based on different set of parameter values / predicates. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union. This article covers Sort with examples. It is recommended to read Plan Caching and Query Memory Part II after this article which covers Hash Match operations.   When the plan is cached by using stored procedure or other plan caching mechanisms like sp_executesql or prepared statement, SQL Server estimates memory requirement based on first set of execution parameters. Later when the same stored procedure is called with different set of parameter values, the same amount of memory is used to execute the stored procedure. This might lead to underestimation / overestimation of memory on plan reuse, overestimation of memory might not be a noticeable issue for Sort operations, but underestimation of memory will lead to spill over tempdb resulting in poor performance.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   To read additional articles I wrote click here.   In most cases it is cheaper to pay for the compilation cost of dynamic queries than huge cost for spill over tempdb, unless memory requirement for a stored procedure does not change significantly based on predicates.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script. Most of these concepts are also covered in our webcasts: www.sqlworkshops.com/webcasts   Enough theory, let’s see an example where we sort initially 1 month of data and then use the stored procedure to sort 6 months of data.   Let’s create a stored procedure that sorts customers by name within certain date range.   --Example provided by www.sqlworkshops.com create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1)       end go Let’s execute the stored procedure initially with 1 month date range.   set statistics time on go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 48 ms to complete.     The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.       The estimated number of rows, 43199.9 is similar to actual number of rows 43200 and hence the memory estimation should be ok.       There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 679 ms to complete.      The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.      The estimated number of rows, 43199.9 is way different from the actual number of rows 259200 because the estimation is based on the first set of parameter value supplied to the stored procedure which is 1 month in our case. This underestimation will lead to sort spill over tempdb, resulting in poor performance.      There was Sort Warnings in SQL Profiler.    To monitor the amount of data written and read from tempdb, one can execute select num_of_bytes_written, num_of_bytes_read from sys.dm_io_virtual_file_stats(2, NULL) before and after the stored procedure execution, for additional information refer to the webcast: www.sqlworkshops.com/webcasts.     Let’s recompile the stored procedure and then let’s first execute the stored procedure with 6 month date range.  In a production instance it is not advisable to use sp_recompile instead one should use DBCC FREEPROCCACHE (plan_handle). This is due to locking issues involved with sp_recompile, refer to our webcasts for further details.   exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go Now the stored procedure took only 294 ms instead of 679 ms.    The stored procedure was granted 26832 KB of memory.      The estimated number of rows, 259200 is similar to actual number of rows of 259200. Better performance of this stored procedure is due to better estimation of memory and avoiding sort spill over tempdb.      There was no Sort Warnings in SQL Profiler.       Now let’s execute the stored procedure with 1 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 49 ms to complete, similar to our very first stored procedure execution.     This stored procedure was granted more memory (26832 KB) than necessary memory (6656 KB) based on 6 months of data estimation (259200 rows) instead of 1 month of data estimation (43199.9 rows). This is because the estimation is based on the first set of parameter value supplied to the stored procedure which is 6 months in this case. This overestimation did not affect performance, but it might affect performance of other concurrent queries requiring memory and hence overestimation is not recommended. This overestimation might affect performance Hash Match operations, refer to article Plan Caching and Query Memory Part II for further details.    Let’s recompile the stored procedure and then let’s first execute the stored procedure with 2 day date range. exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-02' go The stored procedure took 1 ms.      The stored procedure was granted 1024 KB based on 1440 rows being estimated.      There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go   The stored procedure took 955 ms to complete, way higher than 679 ms or 294ms we noticed before.      The stored procedure was granted 1024 KB based on 1440 rows being estimated. But we noticed in the past this stored procedure with 6 month date range needed 26832 KB of memory to execute optimally without spill over tempdb. This is clear underestimation of memory and the reason for the very poor performance.      There was Sort Warnings in SQL Profiler. Unlike before this was a Multiple pass sort instead of Single pass sort. This occurs when granted memory is too low.      Intermediate Summary: This issue can be avoided by not caching the plan for memory allocating queries. Other possibility is to use recompile hint or optimize for hint to allocate memory for predefined date range.   Let’s recreate the stored procedure with recompile hint. --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, recompile)       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.      The stored procedure with 1 month date range has good estimation like before.      The stored procedure with 6 month date range also has good estimation and memory grant like before because the query was recompiled with current set of parameter values.      The compilation time and compilation CPU of 1 ms is not expensive in this case compared to the performance benefit.     Let’s recreate the stored procedure with optimize for hint of 6 month date range.   --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, optimize for (@CreationDateFrom = '2001-01-01', @CreationDateTo ='2001-06-30'))       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.    The stored procedure with 1 month date range has overestimation of rows and memory. This is because we provided hint to optimize for 6 months of data.      The stored procedure with 6 month date range has good estimation and memory grant because we provided hint to optimize for 6 months of data.       Let’s execute the stored procedure with 12 month date range using the currently cashed plan for 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-12-31' go The stored procedure took 1138 ms to complete.      2592000 rows were estimated based on optimize for hint value for 6 month date range. Actual number of rows is 524160 due to 12 month date range.      The stored procedure was granted enough memory to sort 6 month date range and not 12 month date range, so there will be spill over tempdb.      There was Sort Warnings in SQL Profiler.      As we see above, optimize for hint cannot guarantee enough memory and optimal performance compared to recompile hint.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   Summary: Cached plan might lead to underestimation or overestimation of memory because the memory is estimated based on first set of execution parameters. It is recommended not to cache the plan if the amount of memory required to execute the stored procedure has a wide range of possibilities. One can mitigate this by using recompile hint, but that will lead to compilation overhead. However, in most cases it might be ok to pay for compilation rather than spilling sort over tempdb which could be very expensive compared to compilation cost. The other possibility is to use optimize for hint, but in case one sorts more data than hinted by optimize for hint, this will still lead to spill. On the other side there is also the possibility of overestimation leading to unnecessary memory issues for other concurrently executing queries. In case of Hash Match operations, this overestimation of memory might lead to poor performance. When the values used in optimize for hint are archived from the database, the estimation will be wrong leading to worst performance, so one has to exercise caution before using optimize for hint, recompile hint is better in this case. I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.     Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.     Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan

    Read the article

  • Check out What's New in Oracle UPK 3.6.1 and Tutor 12.2

    - by [email protected]
    Attend our new feature webinar to learn what's new in Oracle UPK 3.6.1 and Oracle Tutor 12.2 and discover how you can reduce costs, mitigate risk and drive ROI in your organization. Hit the Ground Running: Get New Application Users Productive from Day One will feature an overview of Oracle UPK & Tutor as well as provide a good look at the new, cool things you can do with sound and presentation outputs! Register Now! Wednesday, April 28, 2010 | 9 a.m. PT / 12 noon ET/ 6 p.m. CET Duration: 60 minutes

    Read the article

  • Tips/tricks/gotchas for using System.Diagnostics.Process and Process.Start

    - by puffpio
    I've used Process.Start to shell out and call 7zip to archive stuff I've also used it to call ffmpeg to compress video files. That was a while ago..but I rememeber there was some issue about the pcocess stalling if you don't read off the standardoutput/error. I don't remember everything about it. Does anyone have experience using System.Diagnostics.Process for the purposes of initiating a long running process and waiting for it to finish? Thanks

    Read the article

  • SSH main process ended

    - by Khaled
    I have a running ubuntu server 10.04.1. When I tried to login to the server via ssh, I could not. Instead, I got connection refused error. I tried to ping the machine and I got reply! So, the clear reason is that SSH daemon is stopped. After reboot, I was able to login to my server via ssh. After some time, I looked at my logs /var/log/syslog and found the following records: Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2465) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2469) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2473) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2477) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2481) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2485) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2489) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2493) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2497) terminated with status 255 Jan 16 10:57:09 myserver init: ssh main process ended, respawning Jan 16 10:57:09 myserver init: ssh main process (2501) terminated with status 255 Jan 16 10:57:09 myserver init: ssh respawning too fast, stopped I searched for a similar problem/solution. Some people said that this is caused by the SSH daemon trying to start before networking and they suggest to change ListenAddress in /etc/ssh/sshd_config to be 0.0.0.0. I think this is not the cause in my case, because my problem occurs after system is up and running. Any idea what is causing this? This is ubuntu server and it should be running and accessed remotely using ssh.

    Read the article

  • Leadership does not see value in standard process for machine configuration and new developer orientation

    - by opensourcechris
    About 3 months ago our lead web developer and designer(same person) left the company, greener pastures was the reason for leaving. Good for them I say. My problem is that his department was completely undocumented. Things have been tough since the lead left, there is a lot of knowledge both theoretical knowledge we use to quote new projects and technical/implementation knowledge of our existing products that we have lost as a result of his departure. My normal role is as a product manager (for our products themselves) and as a business analyst for some of our project based consulting work. I've taught myself to code over the past year and in an effort to continue moving forward I've taken on the task of setting my laptop up as a development machine with hopes of implementing some of the easier feature requests and fixing some of the no brainer bugs that get submitted into our ticketing system. But, no one knows how to take a fresh Windows machine and configure it to work seamlessly with our production apps. I have requested my boss, who is still in contact with the developer who left, ask them to document and create a process to onboard a new developer, software installation, required packages, process to deploy to the productions application servers, etc. None of this exists, and I'm spinning my wheels trying to get my computer working as a functional development machine. But she does not seem to understand the need for such a process to exist. Apparently the new developer who replaced the one who left has been using a machine that was pre-configured for our environment, so even the new developer could not set up a new machine if we added another developer. My question is two part: Am I wrong in assuming a process to on-board and configure a new computer to be part of our development eco-system should exist? Am I being a whinny baby and should I figure the process out and create a document on my own?

    Read the article

  • C#: Process.HasExited returns false even though the process has terminated

    - by Jeremy
    Possibly the inverse of this question: http://stackoverflow.com/questions/2519673/ I called Kill() on a process and it seems to have exited. But when I test HasExited, I get false: myProcess.Kill(); while ( !myProcess.HasExited ) { Thread.Sleep(1000); } And this continues indefinitely. Granted, I have to change this code to stop waiting eventually, but I'm curious as to why HasExited still returns false when the process seems to have dropped off the map so to speak.

    Read the article

  • WMI Remote Process Starting

    - by Goober
    Scenario I've written a WMI Wrapper that seems to be quite sufficient, however whenever I run the code to start a remote process on a server, I see the process name appear in the task manager but the process itself does not start like it should (as in, I don't see the command line log window of the process that prints out what it's doing etc.) The process I am trying to start is just a C# application executable that I have written. Below is my WMI Wrapper Code and the code I am using to start running the process. Question Is the process actually running? - Even if it is only displaying the process name in the task manager and not actually launching the application to the users window? Code To Start The Process IPHostEntry hostEntry = Dns.GetHostEntry("InsertServerName"); WMIWrapper wrapper = new WMIWrapper("Insert User Name", "Insert Password", hostEntry.HostName); List<Process> processes = wrapper.GetProcesses(); foreach (Process process in processes) { if (process.Caption.Equals("MyAppName.exe")) { Console.WriteLine(process.Caption); Console.WriteLine(process.CommandLine); int processId; wrapper.StartProcess("E:\\MyData\\Data\\MyAppName.exe", out processId); Console.WriteLine(processId.ToString()); } } Console.ReadLine(); WMI Wrapper Code using System; using System.Collections.Generic; using System.Management; using System.Runtime.InteropServices; using Common.WMI.Objects; using System.Net; namespace Common.WMIWrapper { public class WMIWrapper : IDisposable { #region Constructor /// <summary> /// Creates a new instance of the wrapper /// </summary> /// <param jobName="username"></param> /// <param jobName="password"></param> /// <param jobName="server"></param> public WMIWrapper(string server) { Initialise(server); } /// <summary> /// Creates a new instance of the wrapper /// </summary> /// <param jobName="username"></param> /// <param jobName="password"></param> /// <param jobName="server"></param> public WMIWrapper(string username, string password, string server) { Initialise(username, password, server); } #endregion #region Destructor /// <summary> /// Clean up unmanaged references /// </summary> ~WMIWrapper() { Dispose(false); } #endregion #region Initialise /// <summary> /// Initialise the WMI Connection (local machine) /// </summary> /// <param name="server"></param> private void Initialise(string server) { m_server = server; // set connection options m_connectOptions = new ConnectionOptions(); IPHostEntry host = Dns.GetHostEntry(Environment.MachineName); } /// <summary> /// Initialise the WMI connection /// </summary> /// <param jobName="username">Username to connect to server with</param> /// <param jobName="password">Password to connect to server with</param> /// <param jobName="server">Server to connect to</param> private void Initialise(string username, string password, string server) { m_server = server; // set connection options m_connectOptions = new ConnectionOptions(); IPHostEntry host = Dns.GetHostEntry(Environment.MachineName); if (host.HostName.Equals(server, StringComparison.OrdinalIgnoreCase)) return; m_connectOptions.Username = username; m_connectOptions.Password = password; m_connectOptions.Impersonation = ImpersonationLevel.Impersonate; m_connectOptions.EnablePrivileges = true; } #endregion /// <summary> /// Return a list of available wmi namespaces /// </summary> /// <returns></returns> public List<String> GetWMINamespaces() { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root", this.Server), this.ConnectionOptions); List<String> wmiNamespaceList = new List<String>(); ManagementClass wmiNamespaces = new ManagementClass(wmiScope, new ManagementPath("__namespace"), null); ; foreach (ManagementObject ns in wmiNamespaces.GetInstances()) wmiNamespaceList.Add(ns["Name"].ToString()); return wmiNamespaceList; } /// <summary> /// Return a list of available classes in a namespace /// </summary> /// <param jobName="wmiNameSpace">Namespace to get wmi classes for</param> /// <returns>List of classes in the requested namespace</returns> public List<String> GetWMIClassList(string wmiNameSpace) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); List<String> wmiClasses = new List<String>(); ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery("SELECT * FROM meta_Class"), null); foreach (ManagementClass wmiClass in wmiSearcher.Get()) wmiClasses.Add(wmiClass["__CLASS"].ToString()); return wmiClasses; } /// <summary> /// Get a list of wmi properties for the specified class /// </summary> /// <param jobName="wmiNameSpace">WMI Namespace</param> /// <param jobName="wmiClass">WMI Class</param> /// <returns>List of properties for the class</returns> public List<String> GetWMIClassPropertyList(string wmiNameSpace, string wmiClass) { List<String> wmiClassProperties = new List<string>(); ManagementClass managementClass = GetWMIClass(wmiNameSpace, wmiClass); foreach (PropertyData property in managementClass.Properties) wmiClassProperties.Add(property.Name); return wmiClassProperties; } /// <summary> /// Returns a list of methods for the class /// </summary> /// <param jobName="wmiNameSpace"></param> /// <param jobName="wmiClass"></param> /// <returns></returns> public List<String> GetWMIClassMethodList(string wmiNameSpace, string wmiClass) { List<String> wmiClassMethods = new List<string>(); ManagementClass managementClass = GetWMIClass(wmiNameSpace, wmiClass); foreach (MethodData method in managementClass.Methods) wmiClassMethods.Add(method.Name); return wmiClassMethods; } /// <summary> /// Retrieve the specified management class /// </summary> /// <param jobName="wmiNameSpace">Namespace of the class</param> /// <param jobName="wmiClass">Type of the class</param> /// <returns></returns> public ManagementClass GetWMIClass(string wmiNameSpace, string wmiClass) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); ManagementClass managementClass = null; ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM meta_Class WHERE __CLASS = '{0}'", wmiClass)), null); foreach (ManagementClass wmiObject in wmiSearcher.Get()) managementClass = wmiObject; return managementClass; } /// <summary> /// Get an instance of the specficied class /// </summary> /// <param jobName="wmiNameSpace">Namespace of the classes</param> /// <param jobName="wmiClass">Type of the classes</param> /// <returns>Array of management classes</returns> public ManagementObject[] GetWMIClassObjects(string wmiNameSpace, string wmiClass) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); List<ManagementObject> wmiClasses = new List<ManagementObject>(); ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM {0}", wmiClass)), null); foreach (ManagementObject wmiObject in wmiSearcher.Get()) wmiClasses.Add(wmiObject); return wmiClasses.ToArray(); } /// <summary> /// Get a full list of services /// </summary> /// <returns></returns> public List<Service> GetServices() { return GetService(null); } /// <summary> /// Get a list of services /// </summary> /// <returns></returns> public List<Service> GetService(string name) { ManagementObject[] services = GetWMIClassObjects("CIMV2", "WIN32_Service"); List<Service> serviceList = new List<Service>(); for (int i = 0; i < services.Length; i++) { ManagementObject managementObject = services[i]; Service service = new Service(managementObject); service.Status = (string)managementObject["Status"]; service.Name = (string)managementObject["Name"]; service.DisplayName = (string)managementObject["DisplayName"]; service.PathName = (string)managementObject["PathName"]; service.ProcessId = (uint)managementObject["ProcessId"]; service.Started = (bool)managementObject["Started"]; service.StartMode = (string)managementObject["StartMode"]; service.ServiceType = (string)managementObject["ServiceType"]; service.InstallDate = (string)managementObject["InstallDate"]; service.Description = (string)managementObject["Description"]; service.Caption = (string)managementObject["Caption"]; if (String.IsNullOrEmpty(name) || name.Equals(service.Name, StringComparison.OrdinalIgnoreCase)) serviceList.Add(service); } return serviceList; } /// <summary> /// Get a list of processes /// </summary> /// <returns></returns> public List<Process> GetProcesses() { return GetProcess(null); } /// <summary> /// Get a list of processes /// </summary> /// <returns></returns> public List<Process> GetProcess(uint? processId) { ManagementObject[] processes = GetWMIClassObjects("CIMV2", "WIN32_Process"); List<Process> processList = new List<Process>(); for (int i = 0; i < processes.Length; i++) { ManagementObject managementObject = processes[i]; Process process = new Process(managementObject); process.Priority = (uint)managementObject["Priority"]; process.ProcessId = (uint)managementObject["ProcessId"]; process.Status = (string)managementObject["Status"]; DateTime createDate; if (ConvertFromWmiDate((string)managementObject["CreationDate"], out createDate)) process.CreationDate = createDate.ToString("dd-MMM-yyyy HH:mm:ss"); process.Caption = (string)managementObject["Caption"]; process.CommandLine = (string)managementObject["CommandLine"]; process.Description = (string)managementObject["Description"]; process.ExecutablePath = (string)managementObject["ExecutablePath"]; process.ExecutionState = (string)managementObject["ExecutionState"]; process.MaximumWorkingSetSize = (UInt32?)managementObject ["MaximumWorkingSetSize"]; process.MinimumWorkingSetSize = (UInt32?)managementObject["MinimumWorkingSetSize"]; process.KernelModeTime = (UInt64)managementObject["KernelModeTime"]; process.ThreadCount = (UInt32)managementObject["ThreadCount"]; process.UserModeTime = (UInt64)managementObject["UserModeTime"]; process.VirtualSize = (UInt64)managementObject["VirtualSize"]; process.WorkingSetSize = (UInt64)managementObject["WorkingSetSize"]; if (processId == null || process.ProcessId == processId.Value) processList.Add(process); } return processList; } /// <summary> /// Start the specified process /// </summary> /// <param jobName="commandLine"></param> /// <returns></returns> public bool StartProcess(string command, out int processId) { processId = int.MaxValue; ManagementClass processClass = GetWMIClass("CIMV2", "WIN32_Process"); object[] objectsIn = new object[4]; objectsIn[0] = command; processClass.InvokeMethod("Create", objectsIn); if (objectsIn[3] == null) return false; processId = int.Parse(objectsIn[3].ToString()); return true; } /// <summary> /// Schedule a process on the remote machine /// </summary> /// <param name="command"></param> /// <param name="scheduleTime"></param> /// <param name="jobName"></param> /// <returns></returns> public bool ScheduleProcess(string command, DateTime scheduleTime, out string jobName) { jobName = String.Empty; ManagementClass scheduleClass = GetWMIClass("CIMV2", "Win32_ScheduledJob"); object[] objectsIn = new object[7]; objectsIn[0] = command; objectsIn[1] = String.Format("********{0:00}{1:00}{2:00}.000000+060", scheduleTime.Hour, scheduleTime.Minute, scheduleTime.Second); objectsIn[5] = true; scheduleClass.InvokeMethod("Create", objectsIn); if (objectsIn[6] == null) return false; UInt32 scheduleid = (uint)objectsIn[6]; jobName = scheduleid.ToString(); return true; } /// <summary> /// Returns the current time on the remote server /// </summary> /// <returns></returns> public DateTime Now() { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, "CIMV2"), this.ConnectionOptions); ManagementClass managementClass = null; ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM Win32_LocalTime")), null); DateTime localTime = DateTime.MinValue; foreach (ManagementObject time in wmiSearcher.Get()) { UInt32 day = (UInt32)time["Day"]; UInt32 month = (UInt32)time["Month"]; UInt32 year = (UInt32)time["Year"]; UInt32 hour = (UInt32)time["Hour"]; UInt32 minute = (UInt32)time["Minute"]; UInt32 second = (UInt32)time["Second"]; localTime = new DateTime((int)year, (int)month, (int)day, (int)hour, (int)minute, (int)second); }; return localTime; } /// <summary> /// Converts a wmi date into a proper date /// </summary> /// <param jobName="wmiDate">Wmi formatted date</param> /// <returns>Date time object</returns> private static bool ConvertFromWmiDate(string wmiDate, out DateTime properDate) { properDate = DateTime.MinValue; string properDateString; // check if string is populated if (String.IsNullOrEmpty(wmiDate)) return false; wmiDate = wmiDate.Trim().ToLower().Replace("*", "0"); string[] months = new string[] { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; try { properDateString = String.Format("{0}-{1}-{2} {3}:{4}:{5}.{6}", wmiDate.Substring(6, 2), months[int.Parse(wmiDate.Substring(4, 2)) - 1], wmiDate.Substring(0, 4), wmiDate.Substring(8, 2), wmiDate.Substring(10, 2), wmiDate.Substring(12, 2), wmiDate.Substring(15, 6)); } catch (InvalidCastException) { return false; } catch (ArgumentOutOfRangeException) { return false; } // try and parse the new date if (!DateTime.TryParse(properDateString, out properDate)) return false; // true if conversion successful return true; } private bool m_disposed; #region IDisposable Members /// <summary> /// Managed dispose /// </summary> public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } /// <summary> /// Dispose of managed and unmanaged objects /// </summary> /// <param jobName="disposing"></param> public void Dispose(bool disposing) { if (disposing) { m_connectOptions = null; } } #endregion #region Properties private ConnectionOptions m_connectOptions; /// <summary> /// Gets or sets the management scope /// </summary> private ConnectionOptions ConnectionOptions { get { return m_connectOptions; } set { m_connectOptions = value; } } private String m_server; /// <summary> /// Gets or sets the server to connect to /// </summary> public String Server { get { return m_server; } set { m_server = value; } } #endregion } }

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >