Search Results

Search found 9137 results on 366 pages for 'worker thread'.

Page 2/366 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Invoke a cleanup method for java user thread, when JVM stops the thread

    - by user309281
    Hi All I have J2SE application running in linux. I have stop application script in which i am doing kill of the J2SE pid. This J2SE application has 6 infinitely running user threads,which will be polling for some specific records in backend DB. When this java pid is killed, I need to perform some cleanup operations for each of the long running thread, like connecting to DB and set status of some transactions which are in-progress to empty. Is there a way to write a method in each of the thread, which will be called when the thread is going to be stopped, by JVM.

    Read the article

  • c++0x, std::thread error (thread not member of std)

    - by luis
    Hello I compiled & installed gcc4.4 using macports. When I try to compile using - g++ -g -Wall -ansi -pthread -std=c++0x main.cpp...: #include ... std::thread t(handle); t.join(); .... The compiler returns: cserver.cpp: In member function 'int CServer::run()': cserver.cpp:48: error: 'thread' is not a member of 'std' cserver.cpp:48: error: expected ';' before 't' cserver.cpp:49: error: 't' was not declared in this scope But std::cout <<... compiles fine.. Can anyone help me? Thanks! Luis

    Read the article

  • Recursively adding threads to a Java thread pool

    - by Leith
    I am working on a tutorial for my Java concurrency course. The objective is to use thread pools to compute prime numbers in parallel. The design is based on the Sieve of Eratosthenes. It has an array of n bools, where n is the largest integer you are checking, and each element in the array represents one integer. True is prime, false is non prime, and the array is initially all true. A thread pool is used with a fixed number of threads (we are supposed to experiment with the number of threads in the pool and observe the performance). A thread is given a integer multiple to process. The thread then finds the first true element in the array that is not a multiple of thread's integer. The thread then creates a new thread on the thread pool which is given the found number. After a new thread is formed, the existing thread then continues to set all multiples of it's integer in the array to false. The main program thread starts the first thread with the integer '2', and then waits for all spawned threads to finish. It then spits out the prime numbers and the time taken to compute. The issue I have is that the more threads there are in the thread pool, the slower it takes with 1 thread being the fastest. It should be getting faster not slower! All the stuff on the internet about Java thread pools create n worker threads the main thread then wait for all threads to finish. The method I use is recursive as a worker can spawn more worker threads. I would like to know what is going wrong, and if Java thread pools can be used recursively.

    Read the article

  • Prefork or Worker MPM for amazon xlarge server?

    - by Netismine
    I'm trying to measure would it be better to have prefork or worker mpm apache module for the server I'm working on, which is Amazon X-Large 15 GB memory 8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units each) and that will run a Magento website with about 50 active users at once. Site serves a lot of images and about 45 requests per page. Images sometimes hang, so it seems worker would be a better option? Thanks

    Read the article

  • Reducing memory for worker MPM in Apache

    - by ShyM
    I've moved from the prefork MPM to the worker MPM due to a process limit I was hitting on my VPS. However, memory usage increased after switching over (which is odd since the worker MPM is supposed to have a smaller memory footprint?). Most of them belong to php-cgi processes. Is there something I'm doing wrong? I have around 20 sites on it, each with a different fcgi wrapper script. Could that be a reason?

    Read the article

  • Windows Azure worker roles: One big job or many small jobs?

    - by Ryan Elkins
    Is there any inherent advantage when using multiple workers to process pieces of procedural code versus processing the entire load? In other words, if my workflow looks like this: Get work from queue0 and do A Store result from A in queue1 Get result from queue 1 and do B Store result from B in queue2 Get result from queue2 and do C Is there an inherent advantage to using 3 workers who each do the entire process themselves versus 3 workers that each do a part of the work (Worker 1 does 1 & 2, worker 2 does 3 & 4, worker 3 does 5). If we only care about working being done (finished with step 5) it would seem that it scales the same way (once you're using at least 3 workers). Maybe the big job is better because workers with that setup have less bottleneck issues?

    Read the article

  • Launching a WPF Window in a Separate Thread, Part 1

    - by Reed
    Typically, I strongly recommend keeping the user interface within an application’s main thread, and using multiple threads to move the actual “work” into background threads.  However, there are rare times when creating a separate, dedicated thread for a Window can be beneficial.  This is even acknowledged in the MSDN samples, such as the Multiple Windows, Multiple Threads sample.  However, doing this correctly is difficult.  Even the referenced MSDN sample has major flaws, and will fail horribly in certain scenarios.  To ease this, I wrote a small class that alleviates some of the difficulties involved. The MSDN Multiple Windows, Multiple Threads Sample shows how to launch a new thread with a WPF Window, and will work in most cases.  The sample code (commented and slightly modified) works out to the following: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create and show the Window Window1 tempWindow = new Window1(); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Set the apartment state newWindowThread.SetApartmentState(ApartmentState.STA); // Make the thread a background thread newWindowThread.IsBackground = true; // Start the thread newWindowThread.Start(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This sample creates a thread, marks it as single threaded apartment state, and starts the Dispatcher on that thread. That is the minimum requirements to get a Window displaying and handling messages correctly, but, unfortunately, has some serious flaws. The first issue – the created thread will run continuously until the application shuts down, given the code in the sample.  The problem is that the ThreadStart delegate used ends with running the Dispatcher.  However, nothing ever stops the Dispatcher processing.  The thread was created as a Background thread, which prevents it from keeping the application alive, but the Dispatcher will continue to pump dispatcher frames until the application shuts down. In order to fix this, we need to call Dispatcher.InvokeShutdown after the Window is closed.  This would require modifying the above sample to subscribe to the Window’s Closed event, and, at that point, shutdown the Dispatcher: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This eliminates the first issue.  Now, when the Window is closed, the new thread’s Dispatcher will shut itself down, which in turn will cause the thread to complete. The above code will work correctly for most situations.  However, there is still a potential problem which could arise depending on the content of the Window1 class.  This is particularly nasty, as the code could easily work for most windows, but fail on others. The problem is, at the point where the Window is constructed, there is no active SynchronizationContext.  This is unlikely to be a problem in most cases, but is an absolute requirement if there is code within the constructor of Window1 which relies on a context being in place. While this sounds like an edge case, it’s fairly common.  For example, if a BackgroundWorker is started within the constructor, or a TaskScheduler is built using TaskScheduler.FromCurrentSynchronizationContext() with the expectation of synchronizing work to the UI thread, an exception will be raised at some point.  Both of these classes rely on the existence of a proper context being installed to SynchronizationContext.Current, which happens automatically, but not until Dispatcher.Run is called.  In the above case, SynchronizationContext.Current will return null during the Window’s construction, which can cause exceptions to occur or unexpected behavior. Luckily, this is fairly easy to correct.  We need to do three things, in order, prior to creating our Window: Create and initialize the Dispatcher for the new thread manually Create a synchronization context for the thread which uses the Dispatcher Install the synchronization context Creating the Dispatcher is quite simple – The Dispatcher.CurrentDispatcher property gets the current thread’s Dispatcher and “creates a new Dispatcher if one is not already associated with the thread.”  Once we have the correct Dispatcher, we can create a SynchronizationContext which uses the dispatcher by creating a DispatcherSynchronizationContext.  Finally, this synchronization context can be installed as the current thread’s context via SynchronizationContext.SetSynchronizationContext.  These three steps can easily be added to the above via a single line of code: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create our context, and install it: SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext( Dispatcher.CurrentDispatcher)); Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This now forces the synchronization context to be in place before the Window is created and correctly shuts down the Dispatcher when the window closes. However, there are quite a few steps.  In my next post, I’ll show how to make this operation more reusable by creating a class with a far simpler API…

    Read the article

  • Switching from prefork MPM to worker MPM + php-fpm on ubuntu

    - by Shane
    All tutorials I found were how to fresh install worker MPM + PHP-FPM, since my wordpress blog's already up and running with prefork MPM, correct me if I'm wrong in the simulated installation process: I'm on ubuntu and according to some tutorials, the following lines would do all the tricks: apt-get install apache2-mpm-worker libapache2-mod-fastcgi php5-fpm php5-gd a2enmod actions fastcgi alias Then you setup configuration in /etc/apache2/conf.d/php5-fpm.conf: <IfModule mod_fastcgi.c> AddHandler php5-fcgi .php Action php5-fcgi /php5-fcgi Alias /php5-fcgi /usr/lib/cgi-bin/php5-fcgi FastCgiExternalServer /usr/lib/cgi-bin/php5-fcgi -host 127.0.0.1:9000 -pass-header Authorization </IfModule> After all these, restart: service apache2 restart && service php5-fpm restart Question: 1) Would it cause any down time in the whole process for previously running sites with prefork MPM? 2) Do you have to change any already existent configuration files like php or mysql or apache2(would they take effect immediately after the switch without you doing anything)? 3) I've already have apc up and running, do you have to re-install/re-configure it after the switch? 4) How do you find out if apache2 is working in worker MPM mode as expected? Thanks a lot!

    Read the article

  • Inside the Concurrent Collections: ConcurrentBag

    - by Simon Cooper
    Unlike the other concurrent collections, ConcurrentBag does not really have a non-concurrent analogy. As stated in the MSDN documentation, ConcurrentBag is optimised for the situation where the same thread is both producing and consuming items from the collection. We'll see how this is the case as we take a closer look. Again, I recommend you have ConcurrentBag open in a decompiler for reference. Thread Statics ConcurrentBag makes heavy use of thread statics - static variables marked with ThreadStaticAttribute. This is a special attribute that instructs the CLR to scope any values assigned to or read from the variable to the executing thread, not globally within the AppDomain. This means that if two different threads assign two different values to the same thread static variable, one value will not overwrite the other, and each thread will see the value they assigned to the variable, separately to any other thread. This is a very useful function that allows for ConcurrentBag's concurrency properties. You can think of a thread static variable: [ThreadStatic] private static int m_Value; as doing the same as: private static Dictionary<Thread, int> m_Values; where the executing thread's identity is used to automatically set and retrieve the corresponding value in the dictionary. In .NET 4, this usage of ThreadStaticAttribute is encapsulated in the ThreadLocal class. Lists of lists ConcurrentBag, at its core, operates as a linked list of linked lists: Each outer list node is an instance of ThreadLocalList, and each inner list node is an instance of Node. Each outer ThreadLocalList is owned by a particular thread, accessible through the thread local m_locals variable: private ThreadLocal<ThreadLocalList<T>> m_locals It is important to note that, although the m_locals variable is thread-local, that only applies to accesses through that variable. The objects referenced by the thread (each instance of the ThreadLocalList object) are normal heap objects that are not specific to any thread. Thinking back to the Dictionary analogy above, if each value stored in the dictionary could be accessed by other means, then any thread could access the value belonging to other threads using that mechanism. Only reads and writes to the variable defined as thread-local are re-routed by the CLR according to the executing thread's identity. So, although m_locals is defined as thread-local, the m_headList, m_nextList and m_tailList variables aren't. This means that any thread can access all the thread local lists in the collection by doing a linear search through the outer linked list defined by these variables. Adding items So, onto the collection operations. First, adding items. This one's pretty simple. If the current thread doesn't already own an instance of ThreadLocalList, then one is created (or, if there are lists owned by threads that have stopped, it takes control of one of those). Then the item is added to the head of that thread's list. That's it. Don't worry, it'll get more complicated when we account for the other operations on the list! Taking & Peeking items This is where it gets tricky. If the current thread's list has items in it, then it peeks or removes the head item (not the tail item) from the local list and returns that. However, if the local list is empty, it has to go and steal another item from another list, belonging to a different thread. It iterates through all the thread local lists in the collection using the m_headList and m_nextList variables until it finds one that has items in it, and it steals one item from that list. Up to this point, the two threads had been operating completely independently. To steal an item from another thread's list, the stealing thread has to do it in such a way as to not step on the owning thread's toes. Recall how adding and removing items both operate on the head of the thread's linked list? That gives us an easy way out - a thread trying to steal items from another thread can pop in round the back of another thread's list using the m_tail variable, and steal an item from the back without the owning thread knowing anything about it. The owning thread can carry on completely independently, unaware that one of its items has been nicked. However, this only works when there are at least 3 items in the list, as that guarantees there will be at least one node between the owning thread performing operations on the list head and the thread stealing items from the tail - there's no chance of the two threads operating on the same node at the same time and causing a race condition. If there's less than three items in the list, then there does need to be some synchronization between the two threads. In this case, the lock on the ThreadLocalList object is used to mediate access to a thread's list when there's the possibility of contention. Thread synchronization In ConcurrentBag, this is done using several mechanisms: Operations performed by the owner thread only take out the lock when there are less than three items in the collection. With three or greater items, there won't be any conflict with a stealing thread operating on the tail of the list. If a lock isn't taken out, the owning thread sets the list's m_currentOp variable to a non-zero value for the duration of the operation. This indicates to all other threads that there is a non-locked operation currently occuring on that list. The stealing thread always takes out the lock, to prevent two threads trying to steal from the same list at the same time. After taking out the lock, the stealing thread spinwaits until m_currentOp has been set to zero before actually performing the steal. This ensures there won't be a conflict with the owning thread when the number of items in the list is on the 2-3 item borderline. If any add or remove operations are started in the meantime, and the list is below 3 items, those operations try to take out the list's lock and are blocked until the stealing thread has finished. This allows a thread to steal an item from another thread's list without corrupting it. What about synchronization in the collection as a whole? Collection synchronization Any thread that operates on the collection's global structure (accessing anything outside the thread local lists) has to take out the collection's global lock - m_globalListsLock. This single lock is sufficient when adding a new thread local list, as the items inside each thread's list are unaffected. However, what about operations (such as Count or ToArray) that need to access every item in the collection? In order to ensure a consistent view, all operations on the collection are stopped while the count or ToArray is performed. This is done by freezing the bag at the start, performing the global operation, and unfreezing at the end: The global lock is taken out, to prevent structural alterations to the collection. m_needSync is set to true. This notifies all the threads that they need to take out their list's lock irregardless of what operation they're doing. All the list locks are taken out in order. This blocks all locking operations on the lists. The freezing thread waits for all current lockless operations to finish by spinwaiting on each m_currentOp field. The global operation can then be performed while the bag is frozen, but no other operations can take place at the same time, as all other threads are blocked on a list's lock. Then, once the global operation has finished, the locks are released, m_needSync is unset, and normal concurrent operation resumes. Concurrent principles That's the essence of how ConcurrentBag operates. Each thread operates independently on its own local list, except when they have to steal items from another list. When stealing, only the stealing thread is forced to take out the lock; the owning thread only has to when there is the possibility of contention. And a global lock controls accesses to the structure of the collection outside the thread lists. Operations affecting the entire collection take out all locks in the collection to freeze the contents at a single point in time. So, what principles can we extract here? Threads operate independently Thread-static variables and ThreadLocal makes this easy. Threads operate entirely concurrently on their own structures; only when they need to grab data from another thread is there any thread contention. Minimised lock-taking Even when two threads need to operate on the same data structures (one thread stealing from another), they do so in such a way such that the probability of actually blocking on a lock is minimised; the owning thread always operates on the head of the list, and the stealing thread always operates on the tail. Management of lockless operations Any operations that don't take out a lock still have a 'hook' to force them to lock when necessary. This allows all operations on the collection to be stopped temporarily while a global snapshot is taken. Hopefully, such operations will be short-lived and infrequent. That's all the concurrent collections covered. I hope you've found it as informative and interesting as I have. Next, I'll be taking a closer look at ThreadLocal, which I came across while analyzing ConcurrentBag. As you'll see, the operation of this class deserves a much closer look.

    Read the article

  • A Method for Reducing Contention and Overhead in Worker Queues for Multithreaded Java Applications

    - by Janice J. Heiss
    A java.net article, rich in practical resources, by IBM India Labs’ Sathiskumar Palaniappan, Kavitha Varadarajan, and Jayashree Viswanathan, explores the challenge of writing code in a way that that effectively makes use of the resources of modern multicore processors and multiprocessor servers.As the article states: “Many server applications, such as Web servers, application servers, database servers, file servers, and mail servers, maintain worker queues and thread pools to handle large numbers of short tasks that arrive from remote sources. In general, a ‘worker queue’ holds all the short tasks that need to be executed, and the threads in the thread pool retrieve the tasks from the worker queue and complete the tasks. Since multiple threads act on the worker queue, adding tasks to and deleting tasks from the worker queue needs to be synchronized, which introduces contention in the worker queue.” The article goes on to explain ways that developers can reduce contention by maintaining one queue per thread. It also demonstrates a work-stealing technique that helps in effectively utilizing the CPU in multicore systems. Read the rest of the article here.

    Read the article

  • automatic IIS worker process recycle fails

    - by Sander Rijken
    The server is set to its default configuration to recycle the app pool every 1740 minutes. When this happens the following message is logged: A worker process with process id of '1234' serving application pool 'XX' has requested a recycle because the worker process reached its allowed processing time limit. Directly after logging this message, the web site is unresponsive. The only way to get it back online is by running iisreset manually. Does anyone know a fix for this behavior, other than turning the recycle feature off? Is it a known problem?

    Read the article

  • Apache worker is crashing after 3.000 users

    - by user1618606
    I activated Apache Worker on my VPS and I'm having problems, 'cause the website is crashing when 3000 users are accessing the website. I'm using http://whos.amung.us/stats/2jzwlvbhvpft/ as counter. My Apache Worker configuration: KeepAlive On MaxKeepAliveRequests 0 KeepAliveTimeout 1 <IfModule mpm_worker_module> ServerLimit 20000 StartServer 8000 MinSpareThreads 10400 MaxSpareThreads 14200 ThreadLimit 5 ThreadsPerChild 5 MaxClients 20000 MaxRequestsPerChild 0 </IfModule> The VPS have the SO: Debian 64 LAMP, memory: 14gb and CPU: 24ghz What I could to do to give a best performance?

    Read the article

  • Apache 2.2, worker mpm, mod_fcgid and PHP: Can't apply process slot

    - by mopoke
    We're having an issue on an apache server where every 15 to 20 minutes it stops serving PHP requests entirely. On occasions it will return a 503 error, other times it will recover enough to serve the page but only after a delay of a minute or more. Static content is still served during that time. In the log file, there's errors reported along the lines of: [Wed Sep 28 10:45:39 2011] [warn] mod_fcgid: can't apply process slot for /xxx/ajaxfolder/ajax_features.php [Wed Sep 28 10:45:41 2011] [warn] mod_fcgid: can't apply process slot for /xxx/statics/poll/index.php [Wed Sep 28 10:45:45 2011] [warn] mod_fcgid: can't apply process slot for /xxx/index.php [Wed Sep 28 10:45:45 2011] [warn] mod_fcgid: can't apply process slot for /xxx/index.php There is RAM free and, indeed, it seems that more php processes get spawned. /server-status shows lots of threads in the "W" state as well as some FastCGI processes in "Exiting(communication error)" state. I rebuilt mod_fcgid from source as the packaged version was quite old. It's using current stable version (2.3.6) of mod_fcgid. FCGI config: FcgidBusyScanInterval 30 FcgidBusyTimeout 60 FcgidIdleScanInterval 30 FcgidIdleTimeout 45 FcgidIOTimeout 60 FcgidConnectTimeout 20 FcgidMaxProcesses 100 FcgidMaxRequestsPerProcess 500 FcgidOutputBufferSize 1048576 System info: Linux xxx.com 2.6.28-11-server #42-Ubuntu SMP Fri Apr 17 02:45:36 UTC 2009 x86_64 GNU/Linux DISTRIB_ID=Ubuntu DISTRIB_RELEASE=9.04 DISTRIB_CODENAME=jaunty DISTRIB_DESCRIPTION="Ubuntu 9.04" Apache info: Server version: Apache/2.2.11 (Ubuntu) Server built: Aug 16 2010 17:45:55 Server's Module Magic Number: 20051115:21 Server loaded: APR 1.2.12, APR-Util 1.2.12 Compiled using: APR 1.2.12, APR-Util 1.2.12 Architecture: 64-bit Server MPM: Worker threaded: yes (fixed thread count) forked: yes (variable process count) Server compiled with.... -D APACHE_MPM_DIR="server/mpm/worker" -D APR_HAS_SENDFILE -D APR_HAS_MMAP -D APR_HAVE_IPV6 (IPv4-mapped addresses enabled) -D APR_USE_SYSVSEM_SERIALIZE -D APR_USE_PTHREAD_SERIALIZE -D SINGLE_LISTEN_UNSERIALIZED_ACCEPT -D APR_HAS_OTHER_CHILD -D AP_HAVE_RELIABLE_PIPED_LOGS -D DYNAMIC_MODULE_LIMIT=128 -D HTTPD_ROOT="" -D SUEXEC_BIN="/usr/lib/apache2/suexec" -D DEFAULT_PIDLOG="/var/run/apache2.pid" -D DEFAULT_SCOREBOARD="logs/apache_runtime_status" -D DEFAULT_ERRORLOG="logs/error_log" -D AP_TYPES_CONFIG_FILE="/etc/apache2/mime.types" -D SERVER_CONFIG_FILE="/etc/apache2/apache2.conf" Apache modules loaded: alias.load auth_basic.load authn_file.load authz_default.load authz_groupfile.load authz_host.load authz_user.load autoindex.load cgi.load deflate.load dir.load env.load expires.load fcgid.load headers.load include.load mime.load negotiation.load rewrite.load setenvif.load ssl.load status.load suexec.load PHP info: PHP 5.2.6-3ubuntu4.6 with Suhosin-Patch 0.9.6.2 (cli) (built: Sep 16 2010 19:51:25) Copyright (c) 1997-2008 The PHP Group Zend Engine v2.2.0, Copyright (c) 1998-2008 Zend Technologies

    Read the article

  • Java thread dump where main thread has no call stack? (jsvc)

    - by dwhsix
    We have a java process running as a daemon (under jsvc). Every several days it just stops doing any work; output to the logfile stops (it is pretty verbose, on 5-minute intervals) and it consumes no CPU or IO. There are no exceptions logged in the logfile nor in syserr or sysout. The last log statement is just prior to a db commit being done, but there is no open connection on the db server (MySQL) and reviewing the code, there should always be additional log output after that, even if it had encountered an exception that was going to bubble up. The most curious thing I find is that in the thread dump (included below), there's no thread in our code at all, and the main thread seems to have no context whatsoever: "main" prio=10 tid=0x0000000000614000 nid=0x445d runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE As noted earlier, this is a daemon process running using jsvc, but I don't know if that has anything to do with it (I can restructure the code to also allow running it directly, to test). Any suggestions on what might be happening here? Thanks... dwh Full thread dump: Full thread dump Java HotSpot(TM) 64-Bit Server VM (14.2-b01 mixed mode): "MySQL Statement Cancellation Timer" daemon prio=10 tid=0x00002aaaf81b8800 nid=0x447b in Object.wait() [0x00002aaaf6a22000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x00002aaab5556d50> (a java.util.TaskQueue) at java.lang.Object.wait(Object.java:485) at java.util.TimerThread.mainLoop(Timer.java:483) - locked <0x00002aaab5556d50> (a java.util.TaskQueue) at java.util.TimerThread.run(Timer.java:462) "Low Memory Detector" daemon prio=10 tid=0x00000000006a4000 nid=0x4479 runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE "CompilerThread1" daemon prio=10 tid=0x00000000006a1000 nid=0x4477 waiting on condition [0x0000000000000000] java.lang.Thread.State: RUNNABLE "CompilerThread0" daemon prio=10 tid=0x000000000069d000 nid=0x4476 waiting on condition [0x0000000000000000] java.lang.Thread.State: RUNNABLE "Signal Dispatcher" daemon prio=10 tid=0x000000000069b000 nid=0x4465 waiting on condition [0x0000000000000000] java.lang.Thread.State: RUNNABLE "Finalizer" daemon prio=10 tid=0x0000000000678800 nid=0x4464 in Object.wait() [0x00002aaaf61d6000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x00002aaab54a1cb8> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:118) - locked <0x00002aaab54a1cb8> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:134) at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159) "Reference Handler" daemon prio=10 tid=0x0000000000676800 nid=0x4463 in Object.wait() [0x00002aaaf60d5000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x00002aaab54a1cf0> (a java.lang.ref.Reference$Lock) at java.lang.Object.wait(Object.java:485) at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116) - locked <0x00002aaab54a1cf0> (a java.lang.ref.Reference$Lock) "main" prio=10 tid=0x0000000000614000 nid=0x445d runnable [0x0000000000000000] java.lang.Thread.State: RUNNABLE "VM Thread" prio=10 tid=0x0000000000670000 nid=0x4462 runnable "GC task thread#0 (ParallelGC)" prio=10 tid=0x000000000061e000 nid=0x445e runnable "GC task thread#1 (ParallelGC)" prio=10 tid=0x0000000000620000 nid=0x445f runnable "GC task thread#2 (ParallelGC)" prio=10 tid=0x0000000000622000 nid=0x4460 runnable "GC task thread#3 (ParallelGC)" prio=10 tid=0x0000000000623800 nid=0x4461 runnable "VM Periodic Task Thread" prio=10 tid=0x00000000006a6800 nid=0x447a waiting on condition JNI global references: 797 Heap PSYoungGen total 162944K, used 48388K [0x00002aaadff40000, 0x00002aaaf2ab0000, 0x00002aaaf5490000) eden space 102784K, 47% used [0x00002aaadff40000,0x00002aaae2e81170,0x00002aaae63a0000) from space 60160K, 0% used [0x00002aaaeb850000,0x00002aaaeb850000,0x00002aaaef310000) to space 86720K, 0% used [0x00002aaae63a0000,0x00002aaae63a0000,0x00002aaaeb850000) PSOldGen total 699072K, used 699072K [0x00002aaab5490000, 0x00002aaadff40000, 0x00002aaadff40000) object space 699072K, 100% used [0x00002aaab5490000,0x00002aaadff40000,0x00002aaadff40000) PSPermGen total 21248K, used 9252K [0x00002aaab0090000, 0x00002aaab1550000, 0x00002aaab5490000) object space 21248K, 43% used [0x00002aaab0090000,0x00002aaab09993e8,0x00002aaab1550000)

    Read the article

  • Apache2 Worker Starting Tons of Processes

    - by karmic
    I am installed apache2-mpm-worker and left all config files default (I've never touched them much). Is it normal that when I restart apache there is at least 20 apache processes starting? Shouldn't it be just 2 like it says in the configuration? Also, my memory seems to grow very quickly until my machine crashes. I don't have any mods installed.

    Read the article

  • SIlverlight 4RC threading - can a new Thread return the UI Thread

    - by Darko Z
    Hi all, Let's say I have a situation in Silverlight where there is a background thread (guaranteed to NOT be the UI thread) doing some work and it needs to create a new thread. Something like this: //running in a background thread Thread t = new Thread(new ThreadStart(delegate{}); t.Start(); Lets also say that the UI thread at this particular time is just hanging around doing nothing. Keeping in mind that I am not that knowledgeable about the Silverlight threading model, is there any danger of the new Thread() call giving me the UI thread? The motivation or what I am trying to achieve is not important - I do not want modification to the existing code. I just want to know if there is a possibility of getting the UI thread back unexpectedly. Cheers

    Read the article

  • Weblogic / EjbGen: worker manager configuration.

    - by Guillaume
    I want to declare a worker manager to perform some work in managed thread. Weblogic documentation tells that we can declare a global worker manager using the admin console or declare it in an ejb-jar.xml config file. I want to use the second option. But my ejb-jar.xml is generated by the ejbgen tool. There is no tag in ejbgen that would allow me to declare a worker manager. So how should I create a local worker manager declaration ?

    Read the article

  • Proper way to have an endless worker thread?

    - by Neil N
    I have an object that requires a lot of initialization (1-2 seconds on a beefy machine). Though once it is initialized it only takes about 20 miliseconds to do a typical "job" In order to prevent it from being re-initialized every time an app wants to use it (which could be 50 times a second or not at all for minutes in typical usage), I decided to give it a job que, and have it run on its own thread, checking to see if there is any work for it in the que. However I'm not entirely sure how to make a thread that runs indefinetly with or without work. Here's what I have so far, any critique is welcomed private void DoWork() { while (true) { if (JobQue.Count > 0) { // do work on JobQue.Pop() } else { System.Threading.Thread.Sleep(50); } } } After thought: I was thinking I may need to kill this thread gracefully insead of letting it run forever, so I think I will add a Job type that tells the thread to end. Any thoughts on how to end a thread like this also appreciated.

    Read the article

  • Thread sleep and thread join.

    - by Dhruv Gairola
    hi guys, if i put a thread to sleep in a loop, netbeans gives me a caution saying Invoking Thread.sleep in loop can cause performance problems. However, if i were to replace the sleep with join, no such caution is given. Both versions compile and work fine tho. My code is below (check the last few lines for "Thread.sleep() vs t.join()"). public class Test{ //Display a message, preceded by the name of the current thread static void threadMessage(String message) { String threadName = Thread.currentThread().getName(); System.out.format("%s: %s%n", threadName, message); } private static class MessageLoop implements Runnable { public void run() { String importantInfo[] = { "Mares eat oats", "Does eat oats", "Little lambs eat ivy", "A kid will eat ivy too" }; try { for (int i = 0; i < importantInfo.length; i++) { //Pause for 4 seconds Thread.sleep(4000); //Print a message threadMessage(importantInfo[i]); } } catch (InterruptedException e) { threadMessage("I wasn't done!"); } } } public static void main(String args[]) throws InterruptedException { //Delay, in milliseconds before we interrupt MessageLoop //thread (default one hour). long patience = 1000 * 60 * 60; //If command line argument present, gives patience in seconds. if (args.length > 0) { try { patience = Long.parseLong(args[0]) * 1000; } catch (NumberFormatException e) { System.err.println("Argument must be an integer."); System.exit(1); } } threadMessage("Starting MessageLoop thread"); long startTime = System.currentTimeMillis(); Thread t = new Thread(new MessageLoop()); t.start(); threadMessage("Waiting for MessageLoop thread to finish"); //loop until MessageLoop thread exits while (t.isAlive()) { threadMessage("Still waiting..."); //Wait maximum of 1 second for MessageLoop thread to //finish. /*******LOOK HERE**********************/ Thread.sleep(1000);//issues caution unlike t.join(1000) /**************************************/ if (((System.currentTimeMillis() - startTime) > patience) && t.isAlive()) { threadMessage("Tired of waiting!"); t.interrupt(); //Shouldn't be long now -- wait indefinitely t.join(); } } threadMessage("Finally!"); } } As i understand it, join waits for the other thread to complete, but in this case, arent both sleep and join doing the same thing? Then why does netbeans throw the caution?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >