Search Results

Search found 4838 results on 194 pages for 'binary heap'.

Page 20/194 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • Tournament bracket method to put distance between teammates

    - by Fred Thomsen
    I am using a proper binary tree to simulate a tournament bracket. It's preferred any competitors in the bracket that are teammates don't meet each other until the later rounds. What is an efficient method in which I can ensure that teammates in the bracket have as much distance as possible from each other? Are there any other data structures besides a tree that would be better for this purpose? EDIT: There can be more than 2 teams represented in a bracket.

    Read the article

  • How portable are Binaries compiled in Ubuntu?

    - by hiobs
    The title says it all, actually. But allow me to specify the question: Assuming I were to compile an application that uses libffi, libGL, dlfcn, and SDL, would said binary run on other Linux distributions with same architecture, etc? The reason I ask is because of the directory /usr/lib/i386-linux-gnu - I might be wrong, but I assume this directory is something rather Ubuntu-specific, no? So, how portable are binaries compiled on Ubuntu really?

    Read the article

  • How to find the insertion point in an array using binary search?

    - by ????
    The basic idea of binary search in an array is simple, but it might return an "approximate" index if the search fails to find the exact item. (we might sometimes get back an index for which the value is larger or smaller than the searched value). For looking for the exact insertion point, it seems that after we got the approximate location, we might need to "scan" to left or right for the exact insertion location, so that, say, in Ruby, we can do arr.insert(exact_index, value) I have the following solution, but the handling for the part when begin_index >= end_index is a bit messy. I wonder if a more elegant solution can be used? (this solution doesn't care to scan for multiple matches if an exact match is found, so the index returned for an exact match may point to any index that correspond to the value... but I think if they are all integers, we can always search for a - 1 after we know an exact match is found, to find the left boundary, or search for a + 1 for the right boundary.) My solution: DEBUGGING = true def binary_search_helper(arr, a, begin_index, end_index) middle_index = (begin_index + end_index) / 2 puts "a = #{a}, arr[middle_index] = #{arr[middle_index]}, " + "begin_index = #{begin_index}, end_index = #{end_index}, " + "middle_index = #{middle_index}" if DEBUGGING if arr[middle_index] == a return middle_index elsif begin_index >= end_index index = [begin_index, end_index].min return index if a < arr[index] && index >= 0 #careful because -1 means end of array index = [begin_index, end_index].max return index if a < arr[index] && index >= 0 return index + 1 elsif a > arr[middle_index] return binary_search_helper(arr, a, middle_index + 1, end_index) else return binary_search_helper(arr, a, begin_index, middle_index - 1) end end # for [1,3,5,7,9], searching for 6 will return index for 7 for insertion # if exact match is found, then return that index def binary_search(arr, a) puts "\nSearching for #{a} in #{arr}" if DEBUGGING return 0 if arr.empty? result = binary_search_helper(arr, a, 0, arr.length - 1) puts "the result is #{result}, the index for value #{arr[result].inspect}" if DEBUGGING return result end arr = [1,3,5,7,9] b = 6 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9,11] b = 6 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9] b = 60 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9,11] b = 60 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9] b = -60 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9,11] b = -60 arr.insert(binary_search(arr, b), b) p arr arr = [1] b = -60 arr.insert(binary_search(arr, b), b) p arr arr = [1] b = 60 arr.insert(binary_search(arr, b), b) p arr arr = [] b = 60 arr.insert(binary_search(arr, b), b) p arr and result: Searching for 6 in [1, 3, 5, 7, 9] a = 6, arr[middle_index] = 5, begin_index = 0, end_index = 4, middle_index = 2 a = 6, arr[middle_index] = 7, begin_index = 3, end_index = 4, middle_index = 3 a = 6, arr[middle_index] = 5, begin_index = 3, end_index = 2, middle_index = 2 the result is 3, the index for value 7 [1, 3, 5, 6, 7, 9] Searching for 6 in [1, 3, 5, 7, 9, 11] a = 6, arr[middle_index] = 5, begin_index = 0, end_index = 5, middle_index = 2 a = 6, arr[middle_index] = 9, begin_index = 3, end_index = 5, middle_index = 4 a = 6, arr[middle_index] = 7, begin_index = 3, end_index = 3, middle_index = 3 the result is 3, the index for value 7 [1, 3, 5, 6, 7, 9, 11] Searching for 60 in [1, 3, 5, 7, 9] a = 60, arr[middle_index] = 5, begin_index = 0, end_index = 4, middle_index = 2 a = 60, arr[middle_index] = 7, begin_index = 3, end_index = 4, middle_index = 3 a = 60, arr[middle_index] = 9, begin_index = 4, end_index = 4, middle_index = 4 the result is 5, the index for value nil [1, 3, 5, 7, 9, 60] Searching for 60 in [1, 3, 5, 7, 9, 11] a = 60, arr[middle_index] = 5, begin_index = 0, end_index = 5, middle_index = 2 a = 60, arr[middle_index] = 9, begin_index = 3, end_index = 5, middle_index = 4 a = 60, arr[middle_index] = 11, begin_index = 5, end_index = 5, middle_index = 5 the result is 6, the index for value nil [1, 3, 5, 7, 9, 11, 60] Searching for -60 in [1, 3, 5, 7, 9] a = -60, arr[middle_index] = 5, begin_index = 0, end_index = 4, middle_index = 2 a = -60, arr[middle_index] = 1, begin_index = 0, end_index = 1, middle_index = 0 a = -60, arr[middle_index] = 9, begin_index = 0, end_index = -1, middle_index = -1 the result is 0, the index for value 1 [-60, 1, 3, 5, 7, 9] Searching for -60 in [1, 3, 5, 7, 9, 11] a = -60, arr[middle_index] = 5, begin_index = 0, end_index = 5, middle_index = 2 a = -60, arr[middle_index] = 1, begin_index = 0, end_index = 1, middle_index = 0 a = -60, arr[middle_index] = 11, begin_index = 0, end_index = -1, middle_index = -1 the result is 0, the index for value 1 [-60, 1, 3, 5, 7, 9, 11] Searching for -60 in [1] a = -60, arr[middle_index] = 1, begin_index = 0, end_index = 0, middle_index = 0 the result is 0, the index for value 1 [-60, 1] Searching for 60 in [1] a = 60, arr[middle_index] = 1, begin_index = 0, end_index = 0, middle_index = 0 the result is 1, the index for value nil [1, 60] Searching for 60 in [] [60]

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Construct an array from an existing array

    - by Luv
    Given an array of integers A[1...n-1] where 'N' is the length of array A[ ]. Construct an array B such that B[i] = min(A[i], A[i+1], ..., A[i+K-1]), where K will be given. Array B will have N-K+1 elements. We can solve the problem using min-heaps Construct min-heap for k elements - O(k) For every next element delete the first element and insert the new element and heapify Hence Worst Case Time - O( (n-k+1)*k ) + O(k) Space - O(k) Can we do it better?

    Read the article

  • How to compile scheme into native binary files ?

    - by Joe
    I am very new to scheme. And now I am trying to compile some scheme code into binary file which will be loaded faster into interpreter. (The interpreter is a hybrid interpreter)Some one told me that I can compile the code into native binary file and then load it into interperter. And my question is: 1. What is the native binary file? 2. How can I compile the scheme code into a native binary file? 3. How can I load native bianry file into scheme interpreter? Thanks in advance. Joe Suggested that I want to compile below code into native binary file: (define test (lambda() (display "this is a test")) And then load the bianry file into interpreter and call the function "test".

    Read the article

  • C++ : Lack of Standardization at the Binary Level

    - by Nawaz
    Why ISO/ANSI didn't standardize C++ at the binary level? There are many portability issues with C++, which is only because of lack of it's standardization at the binary level. Don Box writes, (quoting from his book Essential COM, chapter COM As A Better C++) C++ and Portability Once the decision is made to distribute a C++ class as a DLL, one is faced with one of the fundamental weaknesses of C++, that is, lack of standardization at the binary level. Although the ISO/ANSI C++ Draft Working Paper attempts to codify which programs will compile and what the semantic effects of running them will be, it makes no attempt to standardize the binary runtime model of C++. The first time this problem will become evident is when a client tries to link against the FastString DLL's import library from a C++ developement environment other than the one used to build the FastString DLL. Are there more benefits Or loss of this lack of binary standardization?

    Read the article

  • String or binary data would be truncated.

    - by Derek Dieter
    This error message is relatively straight forward. The way it normally happens is when you are trying to insert data from a table that contains values that have larger data lengths than the table you are trying to insert into. An example of this would be trying to insert data from a permanent table, into [...]

    Read the article

  • Building package from binary files - what's wrong with my control file

    - by Hannes de Jager
    I'm busy trying to build a .deb package from the binaries of my application (non open source) and I'm having trouble getting the correct info to display in the Ubuntu Software Centre (when you click on the .deb file). Please see screenshot below of control file and Software Centre View. It seems like the package name and the package description is swapped. I'm expecting the part in bold to read "attix5pro" and not "Cloud backup agent". Can someone show my my mistake or guide me?

    Read the article

  • Packaging MATLAB (or, more generally, a large binary, proprietary piece of software)

    - by nfirvine
    I'm trying to package MATLAB for internal distribution, but this could apply to any piece of software with the same architecture. In fact, I'm packaging multiple releases of MATLAB to be installed concurrently. Key things Very large installation size (~4 GB) Composed of a core, and several plugins (toolboxes) Initially, I created a single "source" package (matlab2011b) that builds several .debs (mainly matlab2011b-core and matlab2011b-toolbox-* for each toolbox). The control file is just the standard all: dh $@ There is no Makefile; only copying files. I use a number of debian/*.install files to specify files to copy from a copy of an installation to /usr/lib/. The problem is, every time I build the thing (say, to make a correction to the core package), it recopies every file listed in the *.install file to e.g debian/$packagename/usr/ (the build phase), and then has to bundle that into a .deb file. It takes a long time, on the order of hours, and is doing a lot of extra work. So my questions are: Can you make dh_install do a hardlink copy (like cp -l) to save time? (AFAICT from the man page, no.) Maybe I should just get it to do this in the Makefile? (That's gonna b e big Makefile.) Can you make debuild only rebuild .debs that need rebuilding? Or specify which .debs to rebuild? Is my approach completely stupid? Should I break each of the toolboxes into its own source package too? (I'll have to do some silly templating or something, because there's hundreds of them. :/)

    Read the article

  • Getting java.lang.OutOfMemoryError: Java heap space

    - by user1371176
    I am getting an Exception in thread "HSQLDB Connection @3c50507" java.lang.OutOfMemoryError: Java heap space, when running a JSP. what is the thing that is out of memory? eclipse, HSQLDB or Tomcat?? i am using all that in a Mac OS X 10.7.4 When i start HSQLDB, then i get by console this exception: [Server@122ce908]: From command line, use [Ctrl]+[C] to abort abruptly Exception in thread "HSQLDB Connection @2e716cb7" java.lang.OutOfMemoryError: Java heap space at org.hsqldb.lib.HsqlByteArrayOutputStream.ensureRoom(Unknown Source) at org.hsqldb.rowio.RowOutputBinary.ensureRoom(Unknown Source) at org.hsqldb.lib.HsqlByteArrayOutputStream.write(Unknown Source) at org.hsqldb.rowio.RowOutputBinary.writeByteArray(Unknown Source) at org.hsqldb.rowio.RowOutputBinary.writeBinary(Unknown Source) at org.hsqldb.rowio.RowOutputBase.writeData(Unknown Source) at org.hsqldb.Result.write(Unknown Source) at org.hsqldb.Result.write(Unknown Source) at org.hsqldb.ServerConnection.run(Unknown Source) at java.lang.Thread.run(Thread.java:680) What does this all mean?

    Read the article

  • Allocation Target of std::aligned_storage (stack or heap?)

    - by Zenikoder
    I've been trying to get my head around the TR1 addition known as aligned_storage. Whilst reading the following documents N2165, N3190 and N2140 I can't for the life of me see a statement where it clearly describes stack or heap nature of the memory being used. I've had a look at the implementation provided by msvc2010, boost and gcc they all provide a stack based solution centered around the use of a union. In short: Is the memory type (stack or heap) used by aligned_storage implementation defined or is it always meant to be stack based? and, What the is the specific document that defines/determines that?

    Read the article

  • Websphere/Oracle 11 - much more Heap Usage than with Oracle 10

    - by swalkner
    Hi all, while testing our application with Oracle 11 (previously, we had Oracle 10), we saw that our server uses much more heap space. It seems as it has something to do with T4CConnection; there are 500 objects of T4CConnection allocated. Someone told me, that Oracle 11 is using SoftReferences to keep the connection pool; but we don't need that. Is that correct? Could that be the problem for the increased heap space? If yes - how can we avoid connection pooling? Thanks a lot!!

    Read the article

  • Which numeral systems are useful in computer science?

    - by authchir
    I am wondering which numeral system different programmers are using, or would use if their language has support for them. As an example, in C++ we can use: Octal by prefixing with 0 (e.g. 0377) Decimal by default (e.g. 255) Hexadecimal by prefixing with 0x (e.g. 0xff) When working with bitmask, I am using hexadecimal but would sometimes want to be able to express binary numbers directly. I know some programming language support it with 0b syntax (e.g. 0b11111111). Is there any other numeric system useful in some computer science domain (e.g. cryptography, codecs, 3D graphics, etc)?

    Read the article

  • xor of sequence of numbers

    - by ArG0NaUt
    You are given with a sequence of natural numbers, you can add any natural number to any number in the sequence such that their xor becomes zero. Your goal is to minimize the sum of added numbers. e.g. Consider the following examples : sequence : 1, 3 answer : 2, adding 2 to 1 we get 3^3=0. sequence : 10, 4, 5, 1 answer: 6, adding 3 to 10 & 3 to 8 we get 13^4^8^1 = 0. sequence : 4, 4 answer : 0, since 4^4 = 0. I tried working on binary representations of sequence number but it got so complex. I want to know if there is any simple and efficient way to solve this problem.

    Read the article

  • Large Object Heap Fragmentation

    - by Paul Ruane
    The C#/.NET application I am working on is suffering from a slow memory leak. I have used CDB with SOS to try to determine what is happening but the data does not seem to make any sense so I was hoping one of you may have experienced this before. The application is running on the 64 bit framework. It is continuously calculating and serialising data to a remote host and is hitting the Large Object Heap (LOH) a fair bit. However, most of the LOH objects I expect to be transient: once the calculation is complete and has been sent to the remote host, the memory should be freed. What I am seeing, however, is a large number of (live) object arrays interleaved with free blocks of memory, e.g., taking a random segment from the LOH: 0:000> !DumpHeap 000000005b5b1000 000000006351da10 Address MT Size ... 000000005d4f92e0 0000064280c7c970 16147872 000000005e45f880 00000000001661d0 1901752 Free 000000005e62fd38 00000642788d8ba8 1056 <-- 000000005e630158 00000000001661d0 5988848 Free 000000005ebe6348 00000642788d8ba8 1056 000000005ebe6768 00000000001661d0 6481336 Free 000000005f214d20 00000642788d8ba8 1056 000000005f215140 00000000001661d0 7346016 Free 000000005f9168a0 00000642788d8ba8 1056 000000005f916cc0 00000000001661d0 7611648 Free 00000000600591c0 00000642788d8ba8 1056 00000000600595e0 00000000001661d0 264808 Free ... Obviously I would expect this to be the case if my application were creating long-lived, large objects during each calculation. (It does do this and I accept there will be a degree of LOH fragmentation but that is not the problem here.) The problem is the very small (1056 byte) object arrays you can see in the above dump which I cannot see in code being created and which are remaining rooted somehow. Also note that CDB is not reporting the type when the heap segment is dumped: I am not sure if this is related or not. If I dump the marked (<--) object, CDB/SOS reports it fine: 0:015> !DumpObj 000000005e62fd38 Name: System.Object[] MethodTable: 00000642788d8ba8 EEClass: 00000642789d7660 Size: 1056(0x420) bytes Array: Rank 1, Number of elements 128, Type CLASS Element Type: System.Object Fields: None The elements of the object array are all strings and the strings are recognisable as from our application code. Also, I am unable to find their GC roots as the !GCRoot command hangs and never comes back (I have even tried leaving it overnight). So, I would very much appreciate it if anyone could shed any light as to why these small (<85k) object arrays are ending up on the LOH: what situations will .NET put a small object array in there? Also, does anyone happen to know of an alternative way of ascertaining the roots of these objects? Thanks in advance. Update 1 Another theory I came up with late yesterday is that these object arrays started out large but have been shrunk leaving the blocks of free memory that are evident in the memory dumps. What makes me suspicious is that the object arrays always appear to be 1056 bytes long (128 elements), 128 * 8 for the references and 32 bytes of overhead. The idea is that perhaps some unsafe code in a library or in the CLR is corrupting the number of elements field in the array header. Bit of a long shot I know... Update 2 Thanks to Brian Rasmussen (see accepted answer) the problem has been identified as fragmentation of the LOH caused by the string intern table! I wrote a quick test application to confirm this: static void Main() { const int ITERATIONS = 100000; for (int index = 0; index < ITERATIONS; ++index) { string str = "NonInterned" + index; Console.Out.WriteLine(str); } Console.Out.WriteLine("Continue."); Console.In.ReadLine(); for (int index = 0; index < ITERATIONS; ++index) { string str = string.Intern("Interned" + index); Console.Out.WriteLine(str); } Console.Out.WriteLine("Continue?"); Console.In.ReadLine(); } The application first creates and dereferences unique strings in a loop. This is just to prove that the memory does not leak in this scenario. Obviously it should not and it does not. In the second loop, unique strings are created and interned. This action roots them in the intern table. What I did not realise is how the intern table is represented. It appears it consists of a set of pages -- object arrays of 128 string elements -- that are created in the LOH. This is more evident in CDB/SOS: 0:000> .loadby sos mscorwks 0:000> !EEHeap -gc Number of GC Heaps: 1 generation 0 starts at 0x00f7a9b0 generation 1 starts at 0x00e79c3c generation 2 starts at 0x00b21000 ephemeral segment allocation context: none segment begin allocated size 00b20000 00b21000 010029bc 0x004e19bc(5118396) Large object heap starts at 0x01b21000 segment begin allocated size 01b20000 01b21000 01b8ade0 0x00069de0(433632) Total Size 0x54b79c(5552028) ------------------------------ GC Heap Size 0x54b79c(5552028) Taking a dump of the LOH segment reveals the pattern I saw in the leaking application: 0:000> !DumpHeap 01b21000 01b8ade0 ... 01b8a120 793040bc 528 01b8a330 00175e88 16 Free 01b8a340 793040bc 528 01b8a550 00175e88 16 Free 01b8a560 793040bc 528 01b8a770 00175e88 16 Free 01b8a780 793040bc 528 01b8a990 00175e88 16 Free 01b8a9a0 793040bc 528 01b8abb0 00175e88 16 Free 01b8abc0 793040bc 528 01b8add0 00175e88 16 Free total 1568 objects Statistics: MT Count TotalSize Class Name 00175e88 784 12544 Free 793040bc 784 421088 System.Object[] Total 1568 objects Note that the object array size is 528 (rather than 1056) because my workstation is 32 bit and the application server is 64 bit. The object arrays are still 128 elements long. So the moral to this story is to be very careful interning. If the string you are interning is not known to be a member of a finite set then your application will leak due to fragmentation of the LOH, at least in version 2 of the CLR. In our application's case, there is general code in the deserialisation code path that interns entity identifiers during unmarshalling: I now strongly suspect this is the culprit. However, the developer's intentions were obviously good as they wanted to make sure that if the same entity is deserialised multiple times then only one instance of the identifier string will be maintained in memory.

    Read the article

  • How to create an Universal Binary for iTunes Connect Distribution?

    - by balexandre
    I created an app that was rejected because Apple say that my App was not showing the correct iPad window and it was showing the same iPhone screen but top left aligned. Running on simulator, I get my App to show exactly what it should, a big iPad View. my app as Apple referees that is showing on device: my app running the simulator (50% zoom only): my code in the Application Delegate is the one I published before - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { // The default have the line below, let us comment it //MainViewController *aController = [[MainViewController alloc] initWithNibName:@"MainView" bundle:nil]; // Our main controller MainViewController *aController = nil; // Is this OS 3.2.0+ ? #if __IPHONE_OS_VERSION_MAX_ALLOWED >= 30200 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) // It's an iPad, let's set the MainView to our MainView-iPad aController = [[MainViewController alloc] initWithNibName:@"MainView-iPad" bundle:nil]; else // This is a 3.2.0+ but not an iPad (for future, when iPhone/iPod Touch runs with same OS than iPad) aController = [[MainViewController alloc] initWithNibName:@"MainView" bundle:nil]; #else // It's an iPhone/iPod Touch (OS < 3.2.0) aController = [[MainViewController alloc] initWithNibName:@"MainView" bundle:nil]; #endif // Let's continue our default code self.mainViewController = aController; [aController release]; mainViewController.view.frame = [UIScreen mainScreen].applicationFrame; [window addSubview:[mainViewController view]]; [window makeKeyAndVisible]; return YES; } on my target info I have iPhone/iPad My question is, how should I build the app? Use Base SDK iPhone Simulator 3.1.3 iPhone Simulator 3.2 my Active Configuration is Distribution and Active Architecture is arm6 Can anyone that already published app into iTunes Connect explain me the settings? P.S. I followed the Developer Guideline on Building and Installing your Development Application that is found on Creating and Downloading Development Provisioning Profiles but does not say anything regarding this, as I did exactly and the app was rejected.

    Read the article

  • How do I remove the leaves of a binary tree?

    - by flopex
    I'm trying to remove all of the leaves. I know that leaves have no children, this is what I have so far. public void removeLeaves(BinaryTree n){ if (n.left == null && n.right == null){ n = null; } if (n.left != null) removeLeaves(n.left); if (n.right != null) removeLeaves(n.right); }

    Read the article

  • problem disposing class in Dictionary it is Still in the heap memory although using GC.Collect

    - by Bahgat Mashaly
    Hello i have a problem disposing class in Dictionary this is my code private Dictionary<string, MyProcessor> Processors = new Dictionary<string, MyProcessor>(); private void button1_Click(object sender, EventArgs e) { if (!Processors.ContainsKey(textBox1.Text)) { Processors.Add(textBox1.Text, new MyProcessor()); } } private void button2_Click(object sender, EventArgs e) { MyProcessor currnt_processor = Processors[textBox1.Text]; Processors.Remove(textBox2.Text); currnt_processor.Dispose(); currnt_processor = null; GC.Collect(); } public class MyProcessor: IDisposable { private bool isDisposed = false; string x = ""; public MyProcessor() { for (int i = 0; i < 20000; i++) { //this line only to increase the memory usage to know if the class is dispose or not x = x + "gggggggggggg"; } this.Dispose(); GC.SuppressFinalize(this); } public void Dispose() { this.Dispose(true); GC.SuppressFinalize(this); } public void Dispose(bool disposing) { if (!this.isDisposed) { isDisposed = true; this.Dispose(); } } ~MyProcessor() { Dispose(false); } } i use "ANTS Memory Profiler" to monitor heap memory the disposing work only when i remove all keys from dictionary how can i destroy the class from heap memory ? thanks in advance

    Read the article

  • Why I am getting a Heap Corruption Error?

    - by vaidya.atul
    I am new to C++. I am getting HEAP CORRUPTION ERROR. Any help will be highly appreciated. Below is my code class CEntity { //some member variables CEntity(string section1,string section2); CEntity(); virtual ~CEntity(); //pure virtual function .. virtual CEntity* create()const =0; }; I derive CLine from CEntity as below class CLine:public CEntity { // Again some variables ... // Constructor and destructor CLine(string section1,string section2); CLine(); ~CLine(); CLine* Create() const; } // CLine Implementation CLine::CLine(string section1,string section2):CEntity(section1,section2){}; CLine::CLine(); CLine* CLine::create()const{return new CLine();} I have another class CReader which uses CLine object and populates it in a multimap as below class CReader { public: CReader(); ~CReader(); multimap<int,CEntity*>m_data_vs_entity; }; //CReader Implementation CReader::CReader() { m_data_vs_entity.clear(); }; CReader::~CReader() { multimap<int,CEntity*>::iterator iter; for(iter = m_data_vs_entity.begin();iter!=m_data_vs_entity.end();iter++) { CEntity* current_entity = iter->second; if(current_entity) delete current_entity; } m_data_vs_entity.clear(); } I am reading the data from a file and then populating the CLine Class.The map gets populated in a function of CReader class. Since CEntity has a virtual destructor, I hope the piece of code in CReader's destructor should work. In fact, it does work for small files but I get HEAP CORRUPTION ERROR while working with bigger files. If there is something fundamentally wrong, then, please help me find it, as I have been scratching my head for quit some time now. Thanks in advance and awaiting reply, Regards, Atul

    Read the article

  • How to fix "OutOfMemoryError: java heap space" while compiling MonoDroid App in MonoDevelop

    - by Rodja
    When I try to compile one of my projects, I recently get the following error: Tool /usr/bin/java execution started with arguments: -jar /Applications/android-sdk-mac_x86/platform-tools/lib/dx.jar --no-strict --dex --output=obj/Debug/android/bin/classes.dex obj/Debug/android/bin/classes /Developer/MonoAndroid/usr/lib/mandroid/platforms/android-8/mono.android.jar FlurryAnalytics/Jars/FlurryAgent.jar Jars/android-support-v4.jar UNEXPECTED TOP-LEVEL ERROR: java.lang.OutOfMemoryError: Java heap space at com.android.dx.rop.code.RegisterSpecSet.<init>(RegisterSpecSet.java:49) at com.android.dx.rop.code.RegisterSpecSet.mutableCopy(RegisterSpecSet.java:383) at com.android.dx.ssa.LocalVariableInfo.mutableCopyOfStarts(LocalVariableInfo.java:169) at com.android.dx.ssa.LocalVariableExtractor.processBlock(LocalVariableExtractor.java:104) at com.android.dx.ssa.LocalVariableExtractor.doit(LocalVariableExtractor.java:90) at com.android.dx.ssa.LocalVariableExtractor.extract(LocalVariableExtractor.java:56) at com.android.dx.ssa.SsaConverter.convertToSsaMethod(SsaConverter.java:50) at com.android.dx.ssa.Optimizer.optimize(Optimizer.java:99) at com.android.dx.ssa.Optimizer.optimize(Optimizer.java:73) at com.android.dx.dex.cf.CfTranslator.processMethods(CfTranslator.java:273) at com.android.dx.dex.cf.CfTranslator.translate0(CfTranslator.java:134) at com.android.dx.dex.cf.CfTranslator.translate(CfTranslator.java:87) at com.android.dx.command.dexer.Main.processClass(Main.java:487) at com.android.dx.command.dexer.Main.processFileBytes(Main.java:459) at com.android.dx.command.dexer.Main.access$400(Main.java:67) at com.android.dx.command.dexer.Main$1.processFileBytes(Main.java:398) at com.android.dx.cf.direct.ClassPathOpener.processArchive(ClassPathOpener.java:245) at com.android.dx.cf.direct.ClassPathOpener.processOne(ClassPathOpener.java:131) at com.android.dx.cf.direct.ClassPathOpener.process(ClassPathOpener.java:109) at com.android.dx.command.dexer.Main.processOne(Main.java:422) at com.android.dx.command.dexer.Main.processAllFiles(Main.java:333) at com.android.dx.command.dexer.Main.run(Main.java:209) at com.android.dx.command.dexer.Main.main(Main.java:174) at com.android.dx.command.Main.main(Main.java:91) Other projects build as expected. I think I need to increase the heap size for this java build step? But how?

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >