Search Results

Search found 1100 results on 44 pages for 'bitwise operators'.

Page 20/44 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • Easy QueryBuilder - A User-Friendly Ad-Hoc Advanced Search Solution

    Constructing an easy and powerful QueryBuilder interface becomes more important for complex data grid filtering and accurate reporting services. In this article, I'll discuss how to build a query search engine using ASP.NET AJAX and dynamic SQL. The main goal is to provide an interactive interface to allow users select query attributes, operators, attribute values, and T-SQL operators so that the data context query list can be easily composed and a search engine is invoked.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Library Organization in .NET

    - by Greg Ros
    I've written a .NET bitwise operations library as part of my projects (stuff ranging from get MSB set to some more complicated bitwise transformations) and I mean to release it as free software. I'm a bit confused about a design aspect of the library, though. Many of the methods/transformations in the library come with different endianness. A simple example is a getBitAt method that regards index 0 as the least significant bit, or the most significant bit, depending on the version used. In practice, I've found that using separate functions for different endianness results in much more comprehensible and reusable code than assuming all operations are little-endian or something. I'm really stumped regarding how best to package the library. Should I have methods that have LE and BE versions take an enum parameter in their signature, e.g. Endianness.Little, Endianness.Big? Should I have different static classes with identically named methods? such as MSB.GetBit and LSB.GetBit On a much wider note, is there a standard I could use in cases like this? Some guide? Is my design issue trivial? I have a perfectionist bent, and I sometimes get stuck on tricky design issues like this... Note: I've sort of realized I'm using endianness somewhat colloquially to refer to the order/place value of digital component parts (be they bits, bytes, or words) in a larger whole, in any setting. I'm not talking about machine-level endianness or serial transmission endianness. Just about place-value semantics in general. So there isn't a context of targeting different machines/transmission techniques or something.

    Read the article

  • Building a regexp to split a string

    - by Kivin
    I'm seeking a solution to splitting a string which contains text in the following format: "abcd efgh 'ijklm no pqrs' tuv" which will produce the following results: ['abcd', 'efgh', 'ijklm no pqrs', 'tuv'] In otherwords, it splits by whitespace unless inside of a single quoted string. I think it could be done with .NET regexps using "Lookaround" operators, particularly balancing operators. I'm not so sure about perl.

    Read the article

  • How can I split a string by whitespace unless inside of a single quoted string?

    - by Kivin
    I'm seeking a solution to splitting a string which contains text in the following format: "abcd efgh 'ijklm no pqrs' tuv" which will produce the following results: ['abcd', 'efgh', 'ijklm no pqrs', 'tuv'] In other words, it splits by whitespace unless inside of a single quoted string. I think it could be done with .NET regexps using "Lookaround" operators, particularly balancing operators. I'm not so sure about Perl.

    Read the article

  • Database model for saving random boolean expressions

    - by zarko.susnjar
    I have expressions like this: (cat OR cats OR kitten OR kitty) AND (dog OR dogs) NOT (pigeon OR firefly) Anyone having idea how to make tables to save those? Before I got request for usage of brackets, I limited usage of operators to avoid ambiguous situations. So only ANDs and NOTs or only ORs and saved those in this manner: operators id | name 1 | AND 2 | OR 3 | NOT keywords id | keyword 1 | cat 2 | dog 3 | firefly expressions id | operator | keywordId 1 | 0 | 1 1 | 1 | 2 1 | 3 | 3 which was: cat AND dog NOT firefly But now, I'm really puzzled...

    Read the article

  • simplify expression k/m%n

    - by aaa
    hello. Simple question, is it possible to simplify (or replace division or modulo by less-expensive operation) (k/m)%n where variables are integers and operators are C style division and modulo operators. what about the case where m and n are constants (both or just one), not based 2? Thank you

    Read the article

  • Prefix and Postfix operator's necessity

    - by Karthi prime
    What is the necessity of both prefix and postfix increment operators? Is not one enough? To the point, there exists like a similar while/do-while necessity problem, yet, there in no so much confusion (in understanding and usage) in having them, but with having both prefix and postfix (like priority of these operators, their association, usage, working). And do anyone been through a situation where you saidd "Hey, I am going to use postfix increment. Its useful here"

    Read the article

  • Doubt in Conditional inclusion

    - by Philando Gullible
    This is actually extracted from my module (Pre-processor in C) The conditional expression could contain any C operator except for the assignment operators,increment, and decrement operators. I am not sure if I am getting this statement or not since I tried using this and it worked.Also for other manipulation a probable work around would be to simply declare macro or function inside the conditional expression,something like this to be precise. Also I don't understand what is the rationale behind this rule. Could somebody explain? Thanks

    Read the article

  • Where namespace does operator<< (stream) go to?

    - by aaa
    If I have have some overloaded ostream operators, defined for library local objects, is its okay for them to go to std namespace? If I do not declare them in std namespace, then I must use using ns:: operator <<. As a possible follow-up question, are there any operators which should go to standard or global namespace?

    Read the article

  • How to add new filters to CAML queries in SharePoint 2007

    - by uruit
      Normal 0 21 false false false ES-UY X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} One flexibility SharePoint has is CAML (Collaborative Application Markup Language). CAML it’s a markup language like html that allows developers to do queries against SharePoint lists, it’s syntax is very easy to understand and it allows to add logical conditions like Where, Contains, And, Or, etc, just like a SQL Query. For one of our projects we have the need to do a filter on SharePoint views, the problem here is that the view it’s a list containing a CAML Query with the filters the view may have, so in order to filter the view that’s already been filtered before, we need to append our filters to the existing CAML Query. That’s not a trivial task because the where statement in a CAML Query it’s like this: <Where>   <And>     <Filter1 />     <Filter2 />   </And> </Where> If we want to add a new logical operator, like an OR it’s not just as simple as to append the OR expression like the following example: <Where>   <And>     <Filter1 />     <Filter2 />   </And>   <Or>     <Filter3 />   </Or> </Where> But instead the correct query would be: <Where>   <Or>     <And>       <Filter1 />       <Filter2 />     </And>     <Filter3 />   </Or> </Where> Notice that the <Filter# /> tags are for explanation purpose only. In order to solve this problem we created a simple component, it has a method that receives the current query (could be an empty query also) and appends the expression you want to that query. Example: string currentQuery = @“ <Where>    <And>     <Contains><FieldRef Name='Title' /><Value Type='Text'>A</Value></Contains>     <Contains><FieldRef Name='Title' /><Value Type='Text'>B</Value></Contains>   </And> </Where>”; currentQuery = CAMLQueryBuilder.AppendQuery(     currentQuery,     “<Contains><FieldRef Name='Title' /><Value Type='Text'>C</Value></Contains>”,     CAMLQueryBuilder.Operators.Or); The fist parameter this function receives it’s the actual query, the second it’s the filter you want to add, and the third it’s the logical operator, so basically in this query we want all the items that the title contains: the character A and B or the ones that contains the character C. The result query is: <Where>   <Or>      <And>       <Contains><FieldRef Name='Title' /><Value Type='Text'>A</Value></Contains>       <Contains><FieldRef Name='Title' /><Value Type='Text'>B</Value></Contains>     </And>     <Contains><FieldRef Name='Title' /><Value Type='Text'>C</Value></Contains>   </Or> </Where>             The code:   First of all we have an enumerator inside the CAMLQueryBuilder class that has the two possible Options And, Or. public enum Operators { And, Or }   Then we have the main method that’s the one that performs the append of the filters. public static string AppendQuery(string containerQuery, string logicalExpression, Operators logicalOperator){   In this method the first we do is create a new XmlDocument and wrap the current query (that may be empty) with a “<Query></Query>” tag, because the query that comes with the view doesn’t have a root element and the XmlDocument must be a well formatted xml.   XmlDocument queryDoc = new XmlDocument(); queryDoc.LoadXml("<Query>" + containerQuery + "</Query>");   The next step is to create a new XmlDocument containing the logical expression that has the filter needed.   XmlDocument logicalExpressionDoc = new XmlDocument(); logicalExpressionDoc.LoadXml("<root>" + logicalExpression + "</root>"); In these next four lines we extract the expression from the recently created XmlDocument and create an XmlElement.                  XmlElement expressionElTemp = (XmlElement)logicalExpressionDoc.SelectSingleNode("/root/*"); XmlElement expressionEl = queryDoc.CreateElement(expressionElTemp.Name); expressionEl.InnerXml = expressionElTemp.InnerXml;   Below are the main steps in the component logic. The first “if” checks if the actual query doesn’t contains a “Where” clause. In case there’s no “Where” we add it and append the expression.   In case that there’s already a “Where” clause, we get the entire statement that’s inside the “Where” and reorder the query removing and appending elements to form the correct query, that will finally filter the list.   XmlElement whereEl; if (!containerQuery.Contains("Where")) { queryDoc.FirstChild.AppendChild(queryDoc.CreateElement("Where")); queryDoc.SelectSingleNode("/Query/Where").AppendChild(expressionEl); } else { whereEl = (XmlElement)queryDoc.SelectSingleNode("/Query/Where"); if (!containerQuery.Contains("<And>") &&                 !containerQuery.Contains("<Or>"))        {              XmlElement operatorEl = queryDoc.CreateElement(GetName(logicalOperator)); XmlElement existingExpression = (XmlElement)whereEl.SelectSingleNode("/Query/Where/*"); whereEl.RemoveChild(existingExpression);                 operatorEl.AppendChild(existingExpression);               operatorEl.AppendChild(expressionEl);                 whereEl.AppendChild(operatorEl);        }        else        {              XmlElement operatorEl = queryDoc.CreateElement(GetName(logicalOperator)); XmlElement existingOperator = (XmlElement)whereEl.SelectSingleNode("/Query/Where/*");                 whereEl.RemoveChild(existingOperator);               operatorEl.AppendChild(existingOperator);               operatorEl.AppendChild(expressionEl);                 whereEl.AppendChild(operatorEl);         }  }  return queryDoc.FirstChild.InnerXml }     Finally the GetName method converts the Enum option to his string equivalent.   private static string GetName(Operators logicalOperator) {       return Enum.GetName(typeof(Operators), logicalOperator); }        This component helped our team a lot using SharePoint 2007 and modifying the queries, but now in SharePoint 2010; that wouldn’t be needed because of the incorporation of LINQ to SharePoint. This new feature enables the developers to do typed queries against SharePoint lists without the need of writing any CAML code.   Normal 0 21 false false false ES-UY X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;} Post written by Sebastian Rodriguez - Portals and Collaboration Solutions @ UruIT  

    Read the article

  • How to add new filters to CAML queries in SharePoint 2007

    - by uruit
    Normal 0 21 false false false ES-UY X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} One flexibility SharePoint has is CAML (Collaborative Application Markup Language). CAML it’s a markup language like html that allows developers to do queries against SharePoint lists, it’s syntax is very easy to understand and it allows to add logical conditions like Where, Contains, And, Or, etc, just like a SQL Query. For one of our projects we have the need to do a filter on SharePoint views, the problem here is that the view it’s a list containing a CAML Query with the filters the view may have, so in order to filter the view that’s already been filtered before, we need to append our filters to the existing CAML Query. That’s not a trivial task because the where statement in a CAML Query it’s like this: <Where>   <And>     <Filter1 />     <Filter2 />   </And> </Where> If we want to add a new logical operator, like an OR it’s not just as simple as to append the OR expression like the following example: <Where>   <And>     <Filter1 />     <Filter2 />   </And>   <Or>     <Filter3 />   </Or> </Where> But instead the correct query would be: <Where>   <Or>     <And>       <Filter1 />       <Filter2 />     </And>     <Filter3 />   </Or> </Where> Notice that the <Filter# /> tags are for explanation purpose only. In order to solve this problem we created a simple component, it has a method that receives the current query (could be an empty query also) and appends the expression you want to that query. Example: string currentQuery = @“ <Where>    <And>     <Contains><FieldRef Name='Title' /><Value Type='Text'>A</Value></Contains>     <Contains><FieldRef Name='Title' /><Value Type='Text'>B</Value></Contains>   </And> </Where>”; currentQuery = CAMLQueryBuilder.AppendQuery(     currentQuery,     “<Contains><FieldRef Name='Title' /><Value Type='Text'>C</Value></Contains>”,     CAMLQueryBuilder.Operators.Or); The fist parameter this function receives it’s the actual query, the second it’s the filter you want to add, and the third it’s the logical operator, so basically in this query we want all the items that the title contains: the character A and B or the ones that contains the character C. The result query is: <Where>   <Or>      <And>       <Contains><FieldRef Name='Title' /><Value Type='Text'>A</Value></Contains>       <Contains><FieldRef Name='Title' /><Value Type='Text'>B</Value></Contains>     </And>     <Contains><FieldRef Name='Title' /><Value Type='Text'>C</Value></Contains>   </Or> </Where>     The code:   First of all we have an enumerator inside the CAMLQueryBuilder class that has the two possible Options And, Or. public enum Operators { And, Or }   Then we have the main method that’s the one that performs the append of the filters. public static string AppendQuery(string containerQuery, string logicalExpression, Operators logicalOperator){   In this method the first we do is create a new XmlDocument and wrap the current query (that may be empty) with a “<Query></Query>” tag, because the query that comes with the view doesn’t have a root element and the XmlDocument must be a well formatted xml.   XmlDocument queryDoc = new XmlDocument(); queryDoc.LoadXml("<Query>" + containerQuery + "</Query>");   The next step is to create a new XmlDocument containing the logical expression that has the filter needed.   XmlDocument logicalExpressionDoc = new XmlDocument(); logicalExpressionDoc.LoadXml("<root>" + logicalExpression + "</root>"); In these next four lines we extract the expression from the recently created XmlDocument and create an XmlElement.                  XmlElement expressionElTemp = (XmlElement)logicalExpressionDoc.SelectSingleNode("/root/*"); XmlElement expressionEl = queryDoc.CreateElement(expressionElTemp.Name); expressionEl.InnerXml = expressionElTemp.InnerXml;   Below are the main steps in the component logic. The first “if” checks if the actual query doesn’t contains a “Where” clause. In case there’s no “Where” we add it and append the expression.   In case that there’s already a “Where” clause, we get the entire statement that’s inside the “Where” and reorder the query removing and appending elements to form the correct query, that will finally filter the list.   XmlElement whereEl; if (!containerQuery.Contains("Where")) { queryDoc.FirstChild.AppendChild(queryDoc.CreateElement("Where")); queryDoc.SelectSingleNode("/Query/Where").AppendChild(expressionEl); } else { whereEl = (XmlElement)queryDoc.SelectSingleNode("/Query/Where"); if (!containerQuery.Contains("<And>") &&                 !containerQuery.Contains("<Or>"))        {              XmlElement operatorEl = queryDoc.CreateElement(GetName(logicalOperator)); XmlElement existingExpression = (XmlElement)whereEl.SelectSingleNode("/Query/Where/*"); whereEl.RemoveChild(existingExpression);                 operatorEl.AppendChild(existingExpression);               operatorEl.AppendChild(expressionEl);                 whereEl.AppendChild(operatorEl);        }        else        {              XmlElement operatorEl = queryDoc.CreateElement(GetName(logicalOperator)); XmlElement existingOperator = (XmlElement)whereEl.SelectSingleNode("/Query/Where/*");                 whereEl.RemoveChild(existingOperator);               operatorEl.AppendChild(existingOperator);               operatorEl.AppendChild(expressionEl);                 whereEl.AppendChild(operatorEl);         }  }  return queryDoc.FirstChild.InnerXml }     Finally the GetName method converts the Enum option to his string equivalent.   private static string GetName(Operators logicalOperator) {       return Enum.GetName(typeof(Operators), logicalOperator); }        Normal 0 21 false false false ES-UY X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 21 false false false ES-UY X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} This component helped our team a lot using SharePoint 2007 and modifying the queries, but now in SharePoint 2010; that wouldn’t be needed because of the incorporation of LINQ to SharePoint. This new feature enables the developers to do typed queries against SharePoint lists without the need of writing any CAML code.  But there is still much development to the 2007 version, so I hope this information is useful for other members.  Post Normal 0 21 false false false ES-UY X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;} written by Sebastian Rodriguez - Portals and Collaboration Solutions @ UruIT

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #032

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Complete Series of Database Coding Standards and Guidelines SQL SERVER Database Coding Standards and Guidelines – Introduction SQL SERVER – Database Coding Standards and Guidelines – Part 1 SQL SERVER – Database Coding Standards and Guidelines – Part 2 SQL SERVER Database Coding Standards and Guidelines Complete List Download Explanation and Example – SELF JOIN When all of the data you require is contained within a single table, but data needed to extract is related to each other in the table itself. Examples of this type of data relate to Employee information, where the table may have both an Employee’s ID number for each record and also a field that displays the ID number of an Employee’s supervisor or manager. To retrieve the data tables are required to relate/join to itself. Insert Multiple Records Using One Insert Statement – Use of UNION ALL This is very interesting question I have received from new developer. How can I insert multiple values in table using only one insert? Now this is interesting question. When there are multiple records are to be inserted in the table following is the common way using T-SQL. Function to Display Current Week Date and Day – Weekly Calendar Straight blog post with script to find current week date and day based on the parameters passed in the function.  2008 In my beginning years, I have almost same confusion as many of the developer had in their earlier years. Here are two of the interesting question which I have attempted to answer in my early year. Even if you are experienced developer may be you will still like to read following two questions: Order Of Column In Index Order of Conditions in WHERE Clauses Example of DISTINCT in Aggregate Functions Have you ever used DISTINCT with the Aggregation Function? Here is a simple example about how users can do it. Create a Comma Delimited List Using SELECT Clause From Table Column Straight to script example where I explained how to do something easy and quickly. Compound Assignment Operators SQL SERVER 2008 has introduced new concept of Compound Assignment Operators. Compound Assignment Operators are available in many other programming languages for quite some time. Compound Assignment Operators is operator where variables are operated upon and assigned on the same line. PIVOT and UNPIVOT Table Examples Here is a very interesting question – the answer to the question can be YES or NO both. “If we PIVOT any table and UNPIVOT that table do we get our original table?” Read the blog post to get the explanation of the question above. 2009 What is Interim Table – Simple Definition of Interim Table The interim table is a table that is generated by joining two tables and not the final result table. In other words, when two tables are joined they create an interim table as resultset but the resultset is not final yet. It may be possible that more tables are about to join on the interim table, and more operations are still to be applied on that table (e.g. Order By, Having etc). Besides, it may be possible that there is no interim table; sometimes final table is what is generated when the query is run. 2010 Stored Procedure and Transactions If Stored Procedure is transactional then, it should roll back complete transactions when it encounters any errors. Well, that does not happen in this case, which proves that Stored Procedure does not only provide just the transactional feature to a batch of T-SQL. Generate Database Script for SQL Azure When talking about SQL Azure the most common complaint I hear is that the script generated from stand-along SQL Server database is not compatible with SQL Azure. This was true for some time for sure but not any more. If you have SQL Server 2008 R2 installed you can follow the guideline below to generate a script which is compatible with SQL Azure. Convert IN to EXISTS – Performance Talk It is NOT necessary that every time when IN is replaced by EXISTS it gives better performance. However, in our case listed above it does for sure give better performance. You can read about this subject in the associated blog post. Subquery or Join – Various Options – SQL Server Engine Knows the Best Every single time whenever there is a performance tuning exercise, I hear the conversation from developer where some prefer subquery and some prefer join. In this two part blog post, I explain the same in the detail with examples. Part 1 | Part 2 Merge Operations – Insert, Update, Delete in Single Execution MERGE is a new feature that provides an efficient way to do multiple DML operations. In earlier versions of SQL Server, we had to write separate statements to INSERT, UPDATE, or DELETE data based on certain conditions; however, at present, by using the MERGE statement, we can include the logic of such data changes in one statement that even checks when the data is matched and then just update it, and similarly, when the data is unmatched, it is inserted. 2011 Puzzle – Statistics are not updated but are Created Once Here is the quick scenario about my setup. Create Table Insert 1000 Records Check the Statistics Now insert 10 times more 10,000 indexes Check the Statistics – it will be NOT updated – WHY? Question to You – When to use Function and When to use Stored Procedure Personally, I believe that they are both different things - they cannot be compared. I can say, it will be like comparing apples and oranges. Each has its own unique use. However, they can be used interchangeably at many times and in real life (i.e., production environment). I have personally seen both of these being used interchangeably many times. This is the precise reason for asking this question. 2012 In year 2012 I had two interesting series ran on the blog. If there is no fun in learning, the learning becomes a burden. For the same reason, I had decided to build a three part quiz around SEQUENCE. The quiz was to identify the next value of the sequence. I encourage all of you to take part in this fun quiz. Guess the Next Value – Puzzle 1 Guess the Next Value – Puzzle 2 Guess the Next Value – Puzzle 3 Guess the Next Value – Puzzle 4 Simple Example to Configure Resource Governor – Introduction to Resource Governor Resource Governor is a feature which can manage SQL Server Workload and System Resource Consumption. We can limit the amount of CPU and memory consumption by limiting /governing /throttling on the SQL Server. If there are different workloads running on SQL Server and each of the workload needs different resources or when workloads are competing for resources with each other and affecting the performance of the whole server resource governor is a very important task. Tricks to Replace SELECT * with Column Names – SQL in Sixty Seconds #017 – Video  Retrieves unnecessary columns and increases network traffic When a new columns are added views needs to be refreshed manually Leads to usage of sub-optimal execution plan Uses clustered index in most of the cases instead of using optimal index It is difficult to debug SQL SERVER – Load Generator – Free Tool From CodePlex The best part of this SQL Server Load Generator is that users can run multiple simultaneous queries again SQL Server using different login account and different application name. The interface of the tool is extremely easy to use and very intuitive as well. A Puzzle – Swap Value of Column Without Case Statement Let us assume there is a single column in the table called Gender. The challenge is to write a single update statement which will flip or swap the value in the column. For example if the value in the gender column is ‘male’ swap it with ‘female’ and if the value is ‘female’ swap it with ‘male’. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Take,Skip and Reverse Operator in Linq

    - by Jalpesh P. Vadgama
    I have found three more new operators in Linq which is use full in day to day programming stuff. Take,Skip and Reverse. Here are explanation of operators how it works. Take Operator: Take operator will return first N number of element from entities. Skip Operator: Skip operator will skip N number of element from entities and then return remaining elements as a result. Reverse Operator: As name suggest it will reverse order of elements of entities. Here is the examples of operators where i have taken simple string array to demonstrate that. C#, using GeSHi 1.0.8.6 using System; using System.Collections.Generic; using System.Linq; using System.Text;     namespace ConsoleApplication1 {     class Program     {         static void Main(string[] args)         {             string[] a = { "a", "b", "c", "d" };                           Console.WriteLine("Take Example");             var TkResult = a.Take(2);             foreach (string s in TkResult)             {                 Console.WriteLine(s);             }               Console.WriteLine("Skip Example");             var SkResult = a.Skip(2);             foreach (string s in SkResult)             {                 Console.WriteLine(s);             }               Console.WriteLine("Reverse Example");             var RvResult = a.Reverse();             foreach (string s in RvResult)             {                 Console.WriteLine(s);             }                       }     } } Parsed in 0.020 seconds at 44.65 KB/s Here is the output as expected. hope this will help you.. Technorati Tags: Linq,Linq-To-Sql,ASP.NET,C#.NET

    Read the article

  • Oracle Fusion Supply Chain Management (SCM) Designs May Improve End User Productivity

    - by Applications User Experience
    By Applications User Experience on March 10, 2011 Michele Molnar, Senior Usability Engineer, Applications User Experience The Challenge: The SCM User Experience team, in close collaboration with product management and strategy, completely redesigned the user experience for Oracle Fusion applications. One of the goals of this redesign was to increase end user productivity by applying design patterns and guidelines and incorporating findings from extensive usability research. But a question remained: How do we know that the Oracle Fusion designs will actually increase end user productivity? The Test: To answer this question, the SCM Usability Engineers compared Oracle Fusion designs to their corresponding existing Oracle applications using the workflow time analysis method. The workflow time analysis method breaks tasks into a sequence of operators. By applying standard time estimates for all of the operators in the task, an estimate of the overall task time can be calculated. The workflow time analysis method has been recently adopted by the Applications User Experience group for use in predicting end user productivity. Using this method, a design can be tested and refined as needed to improve productivity even before the design is coded. For the study, we selected some of our recent designs for Oracle Fusion Product Information Management (PIM). The designs encompassed tasks performed by Product Managers to create, manage, and define products for their organization. (See Figure 1 for an example.) In applying this method, the SCM Usability Engineers collaborated with Product Management to compare the new Oracle Fusion Applications designs against Oracle’s existing applications. Together, we performed the following activities: Identified the five most frequently performed tasks Created detailed task scenarios that provided the context for each task Conducted task walkthroughs Analyzed and documented the steps and flow required to complete each task Applied standard time estimates to the operators in each task to estimate the overall task completion time Figure 1. The interactions on each Oracle Fusion Product Information Management screen were documented, as indicated by the red highlighting. The task scenario and script provided the context for each task.  The Results: The workflow time analysis method predicted that the Oracle Fusion Applications designs would result in productivity gains in each task, ranging from 8% to 62%, with an overall productivity gain of 43%. All other factors being equal, the new designs should enable these tasks to be completed in about half the time it takes with existing Oracle Applications. Further analysis revealed that these performance gains would be achieved by reducing the number of clicks and screens needed to complete the tasks. Conclusions: Using the workflow time analysis method, we can expect the Oracle Fusion Applications redesign to succeed in improving end user productivity. The workflow time analysis method appears to be an effective and efficient tool for testing, refining, and retesting designs to optimize productivity. The workflow time analysis method does not replace usability testing with end users, but it can be used as an early predictor of design productivity even before designs are coded. We are planning to conduct usability tests later in the development cycle to compare actual end user data with the workflow time analysis results. Such results can potentially be used to validate the productivity improvement predictions. Used together, the workflow time analysis method and usability testing will enable us to continue creating, evaluating, and delivering Oracle Fusion designs that exceed the expectations of our end users, both in the quality of the user experience and in productivity. (For more information about studying productivity, refer to the Measuring User Productivity blog.)

    Read the article

  • Should I expose IObservable<T> on my interfaces?

    - by Alex
    My colleague and I have dispute. We are writing a .NET application that processes massive amounts of data. It receives data elements, groups subsets of them into blocks according to some criterion and processes those blocks. Let's say we have data items of type Foo arriving some source (from the network, for example) one by one. We wish to gather subsets of related objects of type Foo, construct an object of type Bar from each such subset and process objects of type Bar. One of us suggested the following design. Its main theme is exposing IObservable objects directly from the interfaces of our components. // ********* Interfaces ********** interface IFooSource { // this is the event-stream of objects of type Foo IObservable<Foo> FooArrivals { get; } } interface IBarSource { // this is the event-stream of objects of type Bar IObservable<Bar> BarArrivals { get; } } / ********* Implementations ********* class FooSource : IFooSource { // Here we put logic that receives Foo objects from the network and publishes them to the FooArrivals event stream. } class FooSubsetsToBarConverter : IBarSource { IFooSource fooSource; IObservable<Bar> BarArrivals { get { // Do some fancy Rx operators on fooSource.FooArrivals, like Buffer, Window, Join and others and return IObservable<Bar> } } } // this class will subscribe to the bar source and do processing class BarsProcessor { BarsProcessor(IBarSource barSource); void Subscribe(); } // ******************* Main ************************ class Program { public static void Main(string[] args) { var fooSource = FooSourceFactory.Create(); var barsProcessor = BarsProcessorFactory.Create(fooSource) // this will create FooSubsetToBarConverter and BarsProcessor barsProcessor.Subscribe(); fooSource.Run(); // this enters a loop of listening for Foo objects from the network and notifying about their arrival. } } The other suggested another design that its main theme is using our own publisher/subscriber interfaces and using Rx inside the implementations only when needed. //********** interfaces ********* interface IPublisher<T> { void Subscribe(ISubscriber<T> subscriber); } interface ISubscriber<T> { Action<T> Callback { get; } } //********** implementations ********* class FooSource : IPublisher<Foo> { public void Subscribe(ISubscriber<Foo> subscriber) { /* ... */ } // here we put logic that receives Foo objects from some source (the network?) publishes them to the registered subscribers } class FooSubsetsToBarConverter : ISubscriber<Foo>, IPublisher<Bar> { void Callback(Foo foo) { // here we put logic that aggregates Foo objects and publishes Bars when we have received a subset of Foos that match our criteria // maybe we use Rx here internally. } public void Subscribe(ISubscriber<Bar> subscriber) { /* ... */ } } class BarsProcessor : ISubscriber<Bar> { void Callback(Bar bar) { // here we put code that processes Bar objects } } //********** program ********* class Program { public static void Main(string[] args) { var fooSource = fooSourceFactory.Create(); var barsProcessor = barsProcessorFactory.Create(fooSource) // this will create BarsProcessor and perform all the necessary subscriptions fooSource.Run(); // this enters a loop of listening for Foo objects from the network and notifying about their arrival. } } Which one do you think is better? Exposing IObservable and making our components create new event streams from Rx operators, or defining our own publisher/subscriber interfaces and using Rx internally if needed? Here are some things to consider about the designs: In the first design the consumer of our interfaces has the whole power of Rx at his/her fingertips and can perform any Rx operators. One of us claims this is an advantage and the other claims that this is a drawback. The second design allows us to use any publisher/subscriber architecture under the hood. The first design ties us to Rx. If we wish to use the power of Rx, it requires more work in the second design because we need to translate the custom publisher/subscriber implementation to Rx and back. It requires writing glue code for every class that wishes to do some event processing.

    Read the article

  • Simple Java calculator

    - by Kevin Duke
    Firstly this is not a homework question. I am practicing my knowledge on java. I figured a good way to do this is to write a simple program without help. Unfortunately, my compiler is telling me errors I don't know how to fix. Without changing much logic and code, could someone kindly point out where some of my errors are? Thanks import java.lang.*; import java.util.*; public class Calculator { private int solution; private int x; private int y; private char operators; public Calculator() { solution = 0; Scanner operators = new Scanner(System.in); Scanner operands = new Scanner(System.in); } public int addition(int x, int y) { return x + y; } public int subtraction(int x, int y) { return x - y; } public int multiplication(int x, int y) { return x * y; } public int division(int x, int y) { solution = x / y; return solution; } public void main (String[] args) { System.out.println("What operation? ('+', '-', '*', '/')"); System.out.println("Insert 2 numbers to be subtracted"); System.out.println("operand 1: "); x = operands; System.out.println("operand 2: "); y = operands.next(); switch(operators) { case('+'): addition(operands); operands.next(); break; case('-'): subtraction(operands); operands.next(); break; case('*'): multiplication(operands); operands.next(); break; case('/'): division(operands); operands.next(); break; } } }

    Read the article

  • PDF search on the iPhone

    - by pt2ph8
    After two days trying to read annotations from a PDF using Quartz, I've managed to do it and posted my code. Now I'd like to do the same for another frequently asked question: searching PDF documents with Quartz. Same situation as before, this question has been asked many times with almost no practical answers. So I need some pointers first, as I still haven't implemented this myself. What I tried: I tried using CGPDFScannerScan handling the TJ and Tj operators - returns the right text on some PDF, whereas on other documents it returns mostly random letters. Maybe it's related to text encoding? Someone pointed out that text blocks (marked by BT/ET operators) should be handled instead, but I still haven't managed to do so. Anyone managed to extract text from any PDF? After that, searching should be easy by storing all the text in a NSMutableString and using rangeOfString (if there's a better way please let me know). But then how to highlight the result? I know there are a few operators to find the glyph sizes, so I could calculate the resulting rect based on those values, but I've been reading the spec for hours... it's a bloated mess and I'm going insane. Anyone with a practical explanation? Thanks.

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Fixing Robocopy for SQL Server Jobs

    - by Most Valuable Yak (Rob Volk)
    Robocopy is one of, if not the, best life-saving/greatest-thing-since-sliced-bread command line utilities ever to come from Microsoft.  If you're not using it already, what are you waiting for? Of course, being a Microsoft product, it's not exactly perfect. ;)  Specifically, it sets the ERRORLEVEL to a non-zero value even if the copy is successful.  This causes a problem in SQL Server job steps, since non-zero ERRORLEVELs report as failed. You can work around this by having your SQL job go to the next step on failure, but then you can't determine if there was a genuine error.  Plus you still see annoying red X's in your job history.  One way I've found to avoid this is to use a batch file that runs Robocopy, and I add some commands after it (in red): robocopy d:\backups \\BackupServer\BackupFolder *.bak rem suppress successful robocopy exit statuses, only report genuine errors (bitmask 16 and 8 settings)set/A errlev="%ERRORLEVEL% & 24" rem exit batch file with errorlevel so SQL job can succeed or fail appropriatelyexit/B %errlev% (The REM statements are simply comments and don't need to be included in the batch file) The SET command lets you use expressions when you use the /A switch.  So I set an environment variable "errlev" to a bitwise AND with the ERRORLEVEL value. Robocopy's exit codes use a bitmap/bitmask to specify its exit status.  The bits for 1, 2, and 4 do not indicate any kind of failure, but 8 and 16 do.  So by adding 16 + 8 to get 24, and doing a bitwise AND, I suppress any of the other bits that might be set, and allow either or both of the error bits to pass. The next step is to use the EXIT command with the /B switch to set a new ERRORLEVEL value, using the "errlev" variable.  This will now return zero (unless Robocopy had real errors) and allow your SQL job step to report success. This technique should also work for other command-line utilities.  The only issues I've found is that it requires the commands to be part of a batch file, so if you use Robocopy directly in your SQL job step you'd need to place it in a batch.  If you also have multiple Robocopy calls, you'll need to place the SET/A command ONLY after the last one.  You'd therefore lose any errors from previous calls, unless you use multiple "errlev" variables and AND them together. (I'll leave this as an exercise for the reader) The SET/A syntax also permits other kinds of expressions to be calculated.  You can get a full list by running "SET /?" on a command prompt.

    Read the article

  • Hello Operator, My Switch Is Bored

    - by Paul White
    This is a post for T-SQL Tuesday #43 hosted by my good friend Rob Farley. The topic this month is Plan Operators. I haven’t taken part in T-SQL Tuesday before, but I do like to write about execution plans, so this seemed like a good time to start. This post is in two parts. The first part is primarily an excuse to use a pretty bad play on words in the title of this blog post (if you’re too young to know what a telephone operator or a switchboard is, I hate you). The second part of the post looks at an invisible query plan operator (so to speak). 1. My Switch Is Bored Allow me to present the rare and interesting execution plan operator, Switch: Books Online has this to say about Switch: Following that description, I had a go at producing a Fast Forward Cursor plan that used the TOP operator, but had no luck. That may be due to my lack of skill with cursors, I’m not too sure. The only application of Switch in SQL Server 2012 that I am familiar with requires a local partitioned view: CREATE TABLE dbo.T1 (c1 int NOT NULL CHECK (c1 BETWEEN 00 AND 24)); CREATE TABLE dbo.T2 (c1 int NOT NULL CHECK (c1 BETWEEN 25 AND 49)); CREATE TABLE dbo.T3 (c1 int NOT NULL CHECK (c1 BETWEEN 50 AND 74)); CREATE TABLE dbo.T4 (c1 int NOT NULL CHECK (c1 BETWEEN 75 AND 99)); GO CREATE VIEW V1 AS SELECT c1 FROM dbo.T1 UNION ALL SELECT c1 FROM dbo.T2 UNION ALL SELECT c1 FROM dbo.T3 UNION ALL SELECT c1 FROM dbo.T4; Not only that, but it needs an updatable local partitioned view. We’ll need some primary keys to meet that requirement: ALTER TABLE dbo.T1 ADD CONSTRAINT PK_T1 PRIMARY KEY (c1);   ALTER TABLE dbo.T2 ADD CONSTRAINT PK_T2 PRIMARY KEY (c1);   ALTER TABLE dbo.T3 ADD CONSTRAINT PK_T3 PRIMARY KEY (c1);   ALTER TABLE dbo.T4 ADD CONSTRAINT PK_T4 PRIMARY KEY (c1); We also need an INSERT statement that references the view. Even more specifically, to see a Switch operator, we need to perform a single-row insert (multi-row inserts use a different plan shape): INSERT dbo.V1 (c1) VALUES (1); And now…the execution plan: The Constant Scan manufactures a single row with no columns. The Compute Scalar works out which partition of the view the new value should go in. The Assert checks that the computed partition number is not null (if it is, an error is returned). The Nested Loops Join executes exactly once, with the partition id as an outer reference (correlated parameter). The Switch operator checks the value of the parameter and executes the corresponding input only. If the partition id is 0, the uppermost Clustered Index Insert is executed, adding a row to table T1. If the partition id is 1, the next lower Clustered Index Insert is executed, adding a row to table T2…and so on. In case you were wondering, here’s a query and execution plan for a multi-row insert to the view: INSERT dbo.V1 (c1) VALUES (1), (2); Yuck! An Eager Table Spool and four Filters! I prefer the Switch plan. My guess is that almost all the old strategies that used a Switch operator have been replaced over time, using things like a regular Concatenation Union All combined with Start-Up Filters on its inputs. Other new (relative to the Switch operator) features like table partitioning have specific execution plan support that doesn’t need the Switch operator either. This feels like a bit of a shame, but perhaps it is just nostalgia on my part, it’s hard to know. Please do let me know if you encounter a query that can still use the Switch operator in 2012 – it must be very bored if this is the only possible modern usage! 2. Invisible Plan Operators The second part of this post uses an example based on a question Dave Ballantyne asked using the SQL Sentry Plan Explorer plan upload facility. If you haven’t tried that yet, make sure you’re on the latest version of the (free) Plan Explorer software, and then click the Post to SQLPerformance.com button. That will create a site question with the query plan attached (which can be anonymized if the plan contains sensitive information). Aaron Bertrand and I keep a close eye on questions there, so if you have ever wanted to ask a query plan question of either of us, that’s a good way to do it. The problem The issue I want to talk about revolves around a query issued against a calendar table. The script below creates a simplified version and adds 100 years of per-day information to it: USE tempdb; GO CREATE TABLE dbo.Calendar ( dt date NOT NULL, isWeekday bit NOT NULL, theYear smallint NOT NULL,   CONSTRAINT PK__dbo_Calendar_dt PRIMARY KEY CLUSTERED (dt) ); GO -- Monday is the first day of the week for me SET DATEFIRST 1;   -- Add 100 years of data INSERT dbo.Calendar WITH (TABLOCKX) (dt, isWeekday, theYear) SELECT CA.dt, isWeekday = CASE WHEN DATEPART(WEEKDAY, CA.dt) IN (6, 7) THEN 0 ELSE 1 END, theYear = YEAR(CA.dt) FROM Sandpit.dbo.Numbers AS N CROSS APPLY ( VALUES (DATEADD(DAY, N.n - 1, CONVERT(date, '01 Jan 2000', 113))) ) AS CA (dt) WHERE N.n BETWEEN 1 AND 36525; The following query counts the number of weekend days in 2013: SELECT Days = COUNT_BIG(*) FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; It returns the correct result (104) using the following execution plan: The query optimizer has managed to estimate the number of rows returned from the table exactly, based purely on the default statistics created separately on the two columns referenced in the query’s WHERE clause. (Well, almost exactly, the unrounded estimate is 104.289 rows.) There is already an invisible operator in this query plan – a Filter operator used to apply the WHERE clause predicates. We can see it by re-running the query with the enormously useful (but undocumented) trace flag 9130 enabled: Now we can see the full picture. The whole table is scanned, returning all 36,525 rows, before the Filter narrows that down to just the 104 we want. Without the trace flag, the Filter is incorporated in the Clustered Index Scan as a residual predicate. It is a little bit more efficient than using a separate operator, but residual predicates are still something you will want to avoid where possible. The estimates are still spot on though: Anyway, looking to improve the performance of this query, Dave added the following filtered index to the Calendar table: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear) WHERE isWeekday = 0; The original query now produces a much more efficient plan: Unfortunately, the estimated number of rows produced by the seek is now wrong (365 instead of 104): What’s going on? The estimate was spot on before we added the index! Explanation You might want to grab a coffee for this bit. Using another trace flag or two (8606 and 8612) we can see that the cardinality estimates were exactly right initially: The highlighted information shows the initial cardinality estimates for the base table (36,525 rows), the result of applying the two relational selects in our WHERE clause (104 rows), and after performing the COUNT_BIG(*) group by aggregate (1 row). All of these are correct, but that was before cost-based optimization got involved :) Cost-based optimization When cost-based optimization starts up, the logical tree above is copied into a structure (the ‘memo’) that has one group per logical operation (roughly speaking). The logical read of the base table (LogOp_Get) ends up in group 7; the two predicates (LogOp_Select) end up in group 8 (with the details of the selections in subgroups 0-6). These two groups still have the correct cardinalities as trace flag 8608 output (initial memo contents) shows: During cost-based optimization, a rule called SelToIdxStrategy runs on group 8. It’s job is to match logical selections to indexable expressions (SARGs). It successfully matches the selections (theYear = 2013, is Weekday = 0) to the filtered index, and writes a new alternative into the memo structure. The new alternative is entered into group 8 as option 1 (option 0 was the original LogOp_Select): The new alternative is to do nothing (PhyOp_NOP = no operation), but to instead follow the new logical instructions listed below the NOP. The LogOp_GetIdx (full read of an index) goes into group 21, and the LogOp_SelectIdx (selection on an index) is placed in group 22, operating on the result of group 21. The definition of the comparison ‘the Year = 2013’ (ScaOp_Comp downwards) was already present in the memo starting at group 2, so no new memo groups are created for that. New Cardinality Estimates The new memo groups require two new cardinality estimates to be derived. First, LogOp_Idx (full read of the index) gets a predicted cardinality of 10,436. This number comes from the filtered index statistics: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH STAT_HEADER; The second new cardinality derivation is for the LogOp_SelectIdx applying the predicate (theYear = 2013). To get a number for this, the cardinality estimator uses statistics for the column ‘theYear’, producing an estimate of 365 rows (there are 365 days in 2013!): DBCC SHOW_STATISTICS (Calendar, theYear) WITH HISTOGRAM; This is where the mistake happens. Cardinality estimation should have used the filtered index statistics here, to get an estimate of 104 rows: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH HISTOGRAM; Unfortunately, the logic has lost sight of the link between the read of the filtered index (LogOp_GetIdx) in group 22, and the selection on that index (LogOp_SelectIdx) that it is deriving a cardinality estimate for, in group 21. The correct cardinality estimate (104 rows) is still present in the memo, attached to group 8, but that group now has a PhyOp_NOP implementation. Skipping over the rest of cost-based optimization (in a belated attempt at brevity) we can see the optimizer’s final output using trace flag 8607: This output shows the (incorrect, but understandable) 365 row estimate for the index range operation, and the correct 104 estimate still attached to its PhyOp_NOP. This tree still has to go through a few post-optimizer rewrites and ‘copy out’ from the memo structure into a tree suitable for the execution engine. One step in this process removes PhyOp_NOP, discarding its 104-row cardinality estimate as it does so. To finish this section on a more positive note, consider what happens if we add an OVER clause to the query aggregate. This isn’t intended to be a ‘fix’ of any sort, I just want to show you that the 104 estimate can survive and be used if later cardinality estimation needs it: SELECT Days = COUNT_BIG(*) OVER () FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; The estimated execution plan is: Note the 365 estimate at the Index Seek, but the 104 lives again at the Segment! We can imagine the lost predicate ‘isWeekday = 0’ as sitting between the seek and the segment in an invisible Filter operator that drops the estimate from 365 to 104. Even though the NOP group is removed after optimization (so we don’t see it in the execution plan) bear in mind that all cost-based choices were made with the 104-row memo group present, so although things look a bit odd, it shouldn’t affect the optimizer’s plan selection. I should also mention that we can work around the estimation issue by including the index’s filtering columns in the index key: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear, isWeekday) WHERE isWeekday = 0 WITH (DROP_EXISTING = ON); There are some downsides to doing this, including that changes to the isWeekday column may now require Halloween Protection, but that is unlikely to be a big problem for a static calendar table ;)  With the updated index in place, the original query produces an execution plan with the correct cardinality estimation showing at the Index Seek: That’s all for today, remember to let me know about any Switch plans you come across on a modern instance of SQL Server! Finally, here are some other posts of mine that cover other plan operators: Segment and Sequence Project Common Subexpression Spools Why Plan Operators Run Backwards Row Goals and the Top Operator Hash Match Flow Distinct Top N Sort Index Spools and Page Splits Singleton and Range Seeks Bitmaps Hash Join Performance Compute Scalar © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • 1.5 million Windows 7 phone’s sold…

    - by Boonei
    Microsoft announced that it has sold over 1.5 million windows 7 phone devices. Windows 7 is a new generation of OS. Mobile operators/users/device programmers need to adopt the same. Its not going to be a easy transition because it’s not an advanced/next version of win 6.x for mobile. We have heard that development from Microsoft side for Win 6.x devices will not continue after sometime. Don’t know how long will get the support! Everything in it s quite new, like OS, User interface, XBox sync, and also requires mobile phone companies to run the OS on high end chips, meaning atleast 1GHz. So the user segment occupied by phones like HTC Wild Fire are not the ones targeted.   Hey ! There an is a catch with this magic number 1.5 million…. It depicts only the number of units sold to mobile operators and retailers. It’s not the number of actual units held in consumers hands and activated. The number could improve significantly in 2011 where Sprint and Verizon join the party in United States. Atleast dozen phone models are in line up now in the rest of the world running Win 7 OS. One good things that customers can rejoice is that Microsoft will direly push software updates to all its consumers. Operator will not interfere. We can expect strong sales going forward with just this important point where Google’s Android lacks the same. [Img Credit: Microsoft] This article titled,1.5 million Windows 7 phone’s sold…, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • Would you refactor this and if so, would you charge your client?

    - by Julius
    I am working on a freelance job at home. The client wants me to write some new functionality for his CMS, but it is taking me a lot of time to figure out what the code is doing, because it is written in a very unreadable style. Below is just an example of what I mean. The previous programmer made extensive use of anonymous functions, of eval(), he uses deeply nested ternary operators, he didn't indent code, didn't use comments, and he uses funny constructions like misusing the behaviour of logical operators || and && for creating if/else conditions (the second condition of && only gets tested if the first one is true, opening the possibility to use && as an if/else construction). All in all it's insane code and it's costing me a lot of time to find out how the current code works. return ($this->main->context != "ajax" || in_array($this->type, $this->definition->ajax)) ? eval('return method_exists($this,"Show'.ucfirst($this->type).'") ? $this->Show'.ucfirst($this->type).'('.(count($args) ? join(",",array_map(create_function('$a','return (is_numeric($a) || preg_match("/^array/",$a)) ? $a : "\"".$a."\"";'),$args)) : "").') : null;') : ''; Would you refactor this code and how would you handle this sort of thing with your client, I mean financially?

    Read the article

  • Dynamic filter expressions in an OpenAccess LINQ query

    We had some support questions recently where our customers had the need to combine multiple smaller predicate expressions with either an OR or an AND  logical operators (these will be the || and && operators if you are using C#). And because the code from the answer that we sent to these customers is very interesting, and can easily be refactorred into something reusable, we decided to write this blog post. The key thing that one must know is that if you want your predicate to be translated by OpenAccess ORM to SQL and executed on the server you must have a LINQ Expression that is not compiled. So, let’s say that you have these smaller predicate expressions: Expression<Func<Customer, bool>> filter1 = c => c.City.StartsWith("S");Expression<Func<Customer, bool>> filter2 = c => c.City.StartsWith("M");Expression<Func<Customer, bool>> filter3 = c => c.ContactTitle == "Owner"; And ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >