Search Results

Search found 483 results on 20 pages for 'dangerous'.

Page 20/20 | < Previous Page | 16 17 18 19 20 

  • How to automatically remove Flash history/privacy trail? Or stop Flash from storing it?

    - by Arjan van Bentem
    Many people have heard about third-party cookies, and some browsers even block those by default. Some people may even be using Private Browsing modes. However, only few seem to realise that Adobe's Flash player also leaves a cross-browser trail on your local hard drive, and allows for sending cookie-like information back to the server, including third-party sites. And because it is a plugin, Flash does not take any of the browser's privacy settings into account. Sorry for the long post, but first some details about why using Flash raises a privacy concern, followed by the results of my tests: The Flash player keeps a cross-browser history of the domain names of the Flash-sites your computer has visited. Unlike your browser's history, this history is not limited to a certain number of days. History is also recorded while using so-called Private Browsing modes. It is stored on your hard drive (though, as described below, without going to Adobe's site you won't know what is stored). I am not sure if any date and time information is kept about each visit, but to see the domain names: right-click on some Flash content, open the settings dialog, and click the Help icon or click the Advanced button within the Privacy tab. This opens a browser to the help pages on Adobe.com, where one can click through to the Website Storage Settings panel. One can clear the existing list, but one cannot stop it from being recorded again. Flash allows for storing data on your local hard drive, using so-called Local Shared Objects (aka "Flash Cookies"). Just like HTTP cookies, this data can be sent back to the server, for tracking purposes. They are cross-browser, have no expiration date, and no user defined maximum lifetime can be set in the Flash preferences either. These not being HTTP cookies, they are (of course) not blocked by a browser's cookies preferences and are not removed when the normal HTTP cookies are deleted. Adobe has announced that version 10.1 will obey Private Browsing in most popular browsers, but unfortunately no word about also removing the data whenever normal cookies are deleted manually. And its implementation might be confusing: [..] if the browser is in normal browsing mode when the Flash Player instance is created, then that particular instance will forever be in normal browsing mode (private browsing is turned off). Accordingly, toggling private browsing on or off without refreshing the page or closing the private browsing window will not impact Flash Player. Local Shared Objects are not limited to the site you visit, and third-party storage is enabled by default. At the Global Storage Settings panel one can deselect the default Allow third-party Flash content to store data on your computer. Because of the cross-browser and expiration-less nature (and the fact that few people know about it), I feel that the cross-browser third-party Flash Cookies are more dangerous for visitor tracking than third-party normal HTTP cookies. They are even used to restore plain HTTP cookies that the user tried to delete: "All advertisers, websites and networks use cookies for targeted advertising, but cookies are under attack. According to current research they are being erased by 40% of users creating serious problems," says Mookie Tenembaum, founder of United Virtualities. "From simple frequency capping to the more sophisticated behavioral targeting, cookies are an essential part of any online ad campaign. PIE ["Persistent Identification Element"] will give publishers and third-party providers a persistent backup to cookies effectively rendering them unassailable", adds Tenembaum. [..] To justify this tracking mechanism, UV's Tenembaum said, "The user is not proficient enough in technology to know if the cookie is good or bad, or how it works." When selecting None (zero KB) for Specify the amount of disk space that website websites that you haven't yet visited can use to store information on your computer, and checking Never ask again then some sites do not work. However, the same site might work when setting it to None but without selecting Never ask again, and then choose Deny whenever prompted. Both options would result in zero KB of data being allowed, but the behaviour differs. The plugin also provides a Flash Player cache for Adobe-signed files. I guess these files are not an issue. So: how to automatically delete that information? On a Mac, one can find a settings.sol file and a folder for each visited Flash-website in: $HOME/Library/Preferences/Macromedia/Flash Player/macromedia.com/support/flashplayer/sys/ Deleting the settings.sol file and all the folders in sys, removes the trail from the settings panels. However, the actual Local Shared Ojects are elsewhere (see Wikipedia for locations on other operating systems), in a randomly named subfolder of: $HOME/Library/Preferences/Macromedia/Flash Player/#SharedObjects But then: how to remove this automatically? Simply removing the folders and the settings.sol file every now and then (like by using launchd or Windows' Task Scheduler) may interfere with active browsers. Or is it safe to assume that, given the cross-browser nature, the plugin would not care if things are removed while it is active? Only clearing during log-off may not work for those who hibernate all the time. Firefox users can install BetterPrivacy or Objection to delete the Local Shared Objects (for all others browsers as well). I don't know if that also deletes the trail of website domain names. Or: how to stop Flash from storing a history trail? Change of plans: I'm currently testing prohibiting Flash to write to its own sys and #SharedObjects folders. So far, Flash has not tried to restore permissions (though, when deleting the folders, Flash will of course recreate them). I've not encountered any problems but this may take some while to validate, using multiple browsers and sites. I've not yet found a log that reports errors. On a Mac: cd "$HOME/Library/Preferences/Macromedia/Flash Player/macromedia.com/support/flashplayer" rm -r sys/* chmod u-w sys cd "$HOME/Library/Preferences/Macromedia/Flash Player" # preserve the randomly named subfolders (only preserving the latest would suffice; see below) rm -r \#SharedObjects/*/* chmod -R u-w \#SharedObjects I guess the above chmods cannot be achieved on an old Windows system (I'm not sure about XP and Vista?). Though maybe on Windows one could replace the folders sys and #SharedObjects with dummy files with the same names? Anyone? Obviously, keeping Flash from storing those Local Shared Objects for all sites may cause problems. Some test results (Flash 10 on Mac OS X): When blocking the sys folder (even when leaving the #SharedObjects folder writable) then YouTube won't remember your volume settings while viewing multiple videos. Temporarily allowing write access to the blocked folders while visiting trusted sites (to only create folders for domains you like, maybe including references in settings.sol) solves that. This way, for YouTube, Flash could be allowed to write to sys/#s.ytimg.com and #SharedObjects/s.ytimg.com, while Flash could not create new folders for other domains. One may also need to make settings.sol read-only afterwards, or delete it again. When blocking both the sys and #SharedObjects folders, YouTube and Vimeo work fine (though they might not remember any settings). However, Bits on the Run refuses to even show the video player. This is solved by temporarily unblocking the #SharedObjects folder, to allow Flash to create a subfolder with some random name. Within this folder, it would create yet another folder for the current Flash website (content.bitsontherun.com). Removing that website-specific folder, and blocking both #SharedObjects and the randomly named subfolder, still seems to allow Bits on the Run to operate, even though it still cannot write anything to disk. So: the existence of the randomly named subfolder (even when write protected) is important for some sites. When I first found the #SharedObjects folder, it held many subfolders with random names, some created on the very same day. I wonder when Flash decides it wants a new folder, and how it determines (and remembers) that random name. For a moment I considered not blocking write access for sys and #SharedObjects, but explicitly creating read-only folders for well-known third-party tracking domains (like based on a list from, for example, AdBlock Plus). That way, any other domain could still create Local Shared Objects. But the list would be long, and the domains from AdBlock Plus are probably all third-party domains anyway, so disabling Allow third-party Flash content to store data on your computer might have the very same result. Any experience anyone? (Final notes: if the above links to the settings panels do not work in the future, then use the URL that is known to Flash player as a starting point: www.adobe.com/go/settingsmanager. See also "You Deleted Your Cookies? Think Again" at Wired.com -- which uses Flash cookies itself as well... For the very suspicious using Time Machine: you may want to exclude both folders, for each user, and remove the trace that is already on your backup.)

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Delphi - Proper way to page though data.

    - by Brad
    I have a string list (TStrings) that has a couple thousand items in it. I need to process them in groups of 100. I basically want to know what the best way to do the loop is in Delphi. I'm hitting a brick wall when I'm trying to figure it out. Thanks unit Unit2; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls; type TForm2 = class(TForm) Memo1: TMemo; Memo2: TMemo; Button1: TButton; procedure Button1Click(Sender: TObject); private { Private declarations } public { Public declarations } end; var Form2: TForm2; implementation Uses math; {$R *.dfm} procedure TForm2.Button1Click(Sender: TObject); var I:Integer; pages:Integer; str:string; begin pages:= ceil(memo1.Lines.Count/100) ; memo2.Lines.add('Total Pages: '+inttostr(pages)); memo2.Lines.add('Total Items: '+inttostr(memo1.Lines.Count)); // Should just do in batches of 100 VS entire list for I := 0 to memo1.lines.Count - 1 do begin if str '' then str:= str+#10+ memo1.Lines.Strings[i] else str:= memo1.Lines.Strings[i]; end; //I need to stop here every 100 items, then process the items. memo2.Lines.Add(str); end; end. Example form object Form2: TForm2 Left = 0 Top = 0 Caption = 'Form2' ClientHeight = 245 ClientWidth = 527 Color = clBtnFace Font.Charset = DEFAULT_CHARSET Font.Color = clWindowText Font.Height = -11 Font.Name = 'Tahoma' Font.Style = [] OldCreateOrder = False PixelsPerInch = 96 TextHeight = 13 object Memo1: TMemo Left = 16 Top = 8 Width = 209 Height = 175 Lines.Strings = ( '4xlt columbia thunder storm jacket' '5 things about thunder storms' 'a thunder storm with a lot of thunder ' 'and lighting sccreensaver' 'a thunder storm with a lot of thunder ' 'and lighting screensaver with no nag ' 'screens' 'all about thunder storms' 'all about thunderstorms for kids' 'amazing tornado videos and ' 'thunderstorm videos' 'are thunder storms louder in ohio?' 'bad thunder storms' 'bathing in thunder storm' 'best thunderstorm pictures' 'cartoon thunder storms' 'celtic thunder storm' 'central valley thunder storm' 'chicago thunderstorm pictures' 'cool thunderstorm pictures' 'current thunderstorm warnings' 'does thunder storms in december mean ' 'snow will be coming' 'facts about thunderstorms for kids' 'facts on thunderstorms for kids' 'fedex thunderstorm video' 'florida thunderstorms facts' 'free relaxing thunderstorm music' 'free soothing thunderstorm sounds ' 'online' 'free thunderstorm mp3' 'free thunderstorm mp3 download' 'free thunderstorm mp3 downloads' 'free thunderstorm mp3s' 'free thunderstorm music' 'free thunderstorm pictures' 'free thunderstorm sound effects' 'free thunderstorm sounds' 'free thunderstorm sounds cd' 'free thunderstorm sounds mp3' 'free thunderstorm sounds online' 'free thunderstorm soundscape' 'free thunderstorm video' 'free thunderstorm video download' 'free thunderstorm videos' 'god of storm and thunder' 'horses storm thunder rain' 'how do thunder storms form' 'how far away is a thunder storm' 'how long do thunder storms last' 'ice cube in a thunder storm' 'indoor thunderstorm safety tips' 'information about thunderstorms for kids' 'interesting thunderstorm facts' 'is it dangerous to shower during thunder ' 'storm' 'is there frequently thunder during snow ' 'storms' 'isolated thunderstorms' 'it'#39's just a thunder storm baby there is ' 'nothing you should fear lyrics' 'lightning & thunder storm safety' 'lightning and thunderstorm facts' 'lightning and thunderstorms facts' 'lightning and thunderstorms for kids' 'listen to thunderstorm sounds online' 'mississauga thunder storm' 'nature sounds free mp3 thunder storm' 'only about thunderstorms facts' 'original storm deep thunderstick' 'phone use during thunder storms' 'pictures of thunderstorms' 'pocono thunder storm' 'posters of thunder storms' 'power rangers ninja storm' 'power rangers thunder storm' 'power rangers thunder storm cast' 'power rangers thunder storm games' 'power rangers thunder storm morphers' 'power rangers thunder storm part 1' 'power rangers thunder storm part 2' 'power rangers thunderstorm' 'power rangers thunderstorm cannon' 'power rangers thunderstorm deluxe ' 'megazord' 'power rangers thunderstorm games' 'power rangers thunderstorm megazord' 'power rangers thunderstorm part 2' 'power rangers thunderstorm pictures' 'power rnager ninja storm thunder staff' 'powerful thunder and lightning storms' 'precambrian thunder storms' 'rain thunderstorm mp3' 'rain thunderstorm pictures' 'relaxing thunderstorm music' 'reminds me of ohio river thunder lighten ' 'storms' 'sacramento thunder storm' 'safety tips for when your caught in a ' 'thunder storm' 'scattered thunderstorms' 'schemer puts his head in the thunder ' 'storm' 'sedative thunder storm' 'server thunder storms' 'severe supercell thunderstorm pictures' 'severe thunder storm pictures' 'severe thunder storms' 'severe thunderstorm facts' 'severe thunderstorm pictures' 'severe thunderstorm pictures hail' 'severe thunderstorm pictures in alberta' 'severe thunderstorm pictures tornado' 'severe thunderstorm safety' 'severe thunderstorm safety tips' 'severe thunderstorm videos' 'severe thunderstorm warning' 'severe thunderstorm warning los ' 'angeles' 'severe thunderstorm warning signs' 'severe thunderstorm warnings' 'severe thunderstorms' 'severe thunderstorms facts' 'shakespeare use thunder storm for ' 'cosmic disorder julius caesar' 'soothing thunderstorm sounds online' 'sound effects of severe thunder storm' 'sound of rain storm finger snapping ' 'thunder chorus' 'split thunder storm' 'storm 3d thunder power' 'storm dark thunder' 'storm dark thunder bowling ball' 'storm dark thunder bowling ball sale' 'storm dark thunder for sale' 'storm dark thunder pearl' 'storm dark thunder pearl bowling ball' 'storm dark thunder review' 'storm dark thunder shirt' 'storm dark thunderball' 'storm deep thunder' 'storm deep thunder 11' 'storm deep thunder 15' 'storm deep thunder 15 lure' 'storm deep thunder 2' 'storm deep thunder lures' 'storm deep thunderstick' 'storm deep thunderstick crankbaits' 'storm deep thunderstick dts09' 'storm deep thunderstick jr' 'storm deep thunderstick lures' 'storm deep thundersticks' 'storm rolling thunder 3 ball roller' 'storm rolling thunder bowling bag' 'storm rolling thunder three ball bowling ' 'bag' 'storm shallow thunder' 'storm shallow thunder 15' 'storm thunder claw' 'storm thunder craw' 'storm watches thunder' 'storms with constant lightning and ' 'thunder non-stop' 'supercell thunder storms' 'supercell thunderstorm pictures' 'supercell thunderstorms' 'swimming pools thunder storms' 'tampa + lightning strikes + thunder ' 'storms' 'texas thunderstorm pictures' 'texas thunderstorm warnings' 'thunder and lightning storm' 'thunder and lighting storms' 'thunder and lightning storms' 'thunder bay snow storm video' 'thunder storm' 'thunder storm and windmill' 'thunder storm cd' 'thunder storm cloud' 'thunder storm clouds' 'thunder storm dog peppermint oil' 'thunder storm in winter' 'thunder storm in winter and weather ' 'prediction' 'thunder storm lx-3 & road blaster psx ' 'download' 'thunder storm occurances' 'thunder storm photos' 'thunder storm poems' 'thunder storm safety' 'thunder storm sign' 'thunder storm sounds' 'thunder storms' 'thunder storms and deaths' 'thunder storms and ilghting' 'thunder storms and lighting' 'thunder storms cd' 'thunder storms in the arctic arctic ' 'weather' 'thunder storms in winter' 'thunder storms on you tub' 'thunder storms pics' 'thunder storms with rain' 'thunderstorm' 'thunderstorm backgrounds' 'thunderstorm capital' 'thunderstorm capital 2008 dorfman' 'thunderstorm capital in boston' 'thunderstorm capital llc' 'thunderstorm capital of canada' 'thunderstorm capital of the us' 'thunderstorm capital of the world' 'thunderstorm facts' 'thunderstorm facts for kids' 'thunderstorm facts hail' 'thunderstorm facts tornadoes' 'thunderstorm mp3' 'thunderstorm mp3 download' 'thunderstorm mp3 download free' 'thunderstorm mp3 downloads' 'thunderstorm mp3 downloads free' 'thunderstorm mp3 files' 'thunderstorm mp3 free' 'thunderstorm mp3 free download' 'thunderstorm mp3 free downloads' 'thunderstorm mp3 torrent' 'thunderstorm mp3s' 'thunderstorm music' 'thunderstorm music cd' 'thunderstorm music downloads' 'thunderstorm music free' 'thunderstorm music playlists' 'thunderstorm music rain' 'thunderstorm pics' 'thunderstorm pictures' 'thunderstorm pictures for kids' 'thunderstorm safety' 'thunderstorm safety for kids' 'thunderstorm safety precautions' 'thunderstorm safety procedures' 'thunderstorm safety rules' 'thunderstorm safety tips' 'thunderstorm safety tips for kids' 'thunderstorm safety tips shelter' 'thunderstorm safety tips trees' 'thunderstorm sound effects' 'thunderstorm sound effects cd' 'thunderstorm sound effects download' 'thunderstorm sound effects free' 'thunderstorm sound effects free ' 'download' 'thunderstorm sound effects free music ' 'feature audio' 'thunderstorm sound effects mp3' 'thunderstorm sound effects rain' 'thunderstorm sounds' 'thunderstorm sounds cd' 'thunderstorm sounds download' 'thunderstorm sounds for sleep' 'thunderstorm sounds for sleeping' 'thunderstorm sounds free' 'thunderstorm sounds free download' 'thunderstorm sounds free downloads' 'thunderstorm sounds mp3' 'thunderstorm sounds mp3 download' 'thunderstorm sounds mp3 free' 'thunderstorm sounds online' 'thunderstorm sounds online for free' 'thunderstorm sounds online free' 'thunderstorm sounds sleep' 'thunderstorm sounds streaming' 'thunderstorm sounds torrent' 'thunderstorm soundscape' 'thunderstorm soundscapes' 'thunderstorm video' 'thunderstorm video clips' 'thunderstorm video download' 'thunderstorm video downloads' 'thunderstorm videos' 'thunderstorm videos for kids' 'thunderstorm videos lightning' 'thunderstorm videos online' 'thunderstorm wallpaper' 'thunderstorm warning' 'thunderstorm warning brisbane' 'thunderstorm warning definition' 'thunderstorm warning los angeles' 'thunderstorm warning san diego' 'thunderstorm warning san mateo county' 'thunderstorm warning santa barbara' 'thunderstorm warning santa clara' 'thunderstorm warning santa clara ' 'county' 'thunderstorm warning signal' 'thunderstorm warning signs' 'thunderstorm warning vs watch' 'thunderstorm warnings' 'thunderstorm warnings and watches' 'thunderstorm warnings for nj' 'thunderstorm warnings qld' 'thunderstorms' 'thunderstorms facts' 'thunderstorms facts for kids' 'thunderstorms for kids' 'tornados and thunder storms animated' 'understanding thunderstorms for kids' 'watch thunderstorm videos' 'weather underground forecast ' 'thunderstorms' 'what causes thunder storms' 'what is a thunder storm' 'where d thunder storms occur') TabOrder = 0 end object Memo2: TMemo Left = 240 Top = 8 Width = 265 Height = 129 Lines.Strings = ( 'Memo2') TabOrder = 1 end object Button1: TButton Left = 384 Top = 184 Width = 75 Height = 25 Caption = 'Button1' TabOrder = 2 OnClick = Button1Click end end

    Read the article

  • How to generate DELETE statements in PL/SQL, based on the tables FK relations?

    - by The chicken in the kitchen
    Is it possible via script/tool to generate authomatically many delete statements based on the tables fk relations, using Oracle PL/SQL? In example: I have the table: CHICKEN (CHICKEN_CODE NUMBER) and there are 30 tables with fk references to its CHICKEN_CODE that I need to delete; there are also other 150 tables foreign-key-linked to that 30 tables that I need to delete first. Is there some tool/script PL/SQL that I can run in order to generate all the necessary delete statements based on the FK relations for me? (by the way, I know about cascade delete on the relations, but please pay attention: I CAN'T USE IT IN MY PRODUCTION DATABASE, because it's dangerous!) I'm using Oracle DataBase 10G R2. This is the result I've written, but it is not recursive: This is a view I have previously written, but of course it is not recursive! CREATE OR REPLACE FORCE VIEW RUN ( OWNER_1, CONSTRAINT_NAME_1, TABLE_NAME_1, TABLE_NAME, VINCOLO ) AS SELECT OWNER_1, CONSTRAINT_NAME_1, TABLE_NAME_1, TABLE_NAME, '(' || LTRIM ( EXTRACT (XMLAGG (XMLELEMENT ("x", ',' || COLUMN_NAME)), '/x/text()'), ',') || ')' VINCOLO FROM ( SELECT CON1.OWNER OWNER_1, CON1.TABLE_NAME TABLE_NAME_1, CON1.CONSTRAINT_NAME CONSTRAINT_NAME_1, CON1.DELETE_RULE, CON1.STATUS, CON.TABLE_NAME, CON.CONSTRAINT_NAME, COL.POSITION, COL.COLUMN_NAME FROM DBA_CONSTRAINTS CON, DBA_CONS_COLUMNS COL, DBA_CONSTRAINTS CON1 WHERE CON.OWNER = 'TABLE_OWNER' AND CON.TABLE_NAME = 'TABLE_OWNED' AND ( (CON.CONSTRAINT_TYPE = 'P') OR (CON.CONSTRAINT_TYPE = 'U')) AND COL.TABLE_NAME = CON1.TABLE_NAME AND COL.CONSTRAINT_NAME = CON1.CONSTRAINT_NAME --AND CON1.OWNER = CON.OWNER AND CON1.R_CONSTRAINT_NAME = CON.CONSTRAINT_NAME AND CON1.CONSTRAINT_TYPE = 'R' GROUP BY CON1.OWNER, CON1.TABLE_NAME, CON1.CONSTRAINT_NAME, CON1.DELETE_RULE, CON1.STATUS, CON.TABLE_NAME, CON.CONSTRAINT_NAME, COL.POSITION, COL.COLUMN_NAME) GROUP BY OWNER_1, CONSTRAINT_NAME_1, TABLE_NAME_1, TABLE_NAME; ... and it contains the error of using DBA_CONSTRAINTS instead of ALL_CONSTRAINTS... Please pay attention to this: http://stackoverflow.com/questions/485581/generate-delete-statement-from-foreign-key-relationships-in-sql-2008/2677145#2677145 Another user has just written it in SQL SERVER 2008, anyone is able to convert to Oracle 10G PL/SQL? I am not able to... :-( This is the code written by another user in SQL SERVER 2008: DECLARE @COLUMN_NAME AS sysname DECLARE @TABLE_NAME AS sysname DECLARE @IDValue AS int SET @COLUMN_NAME = '<Your COLUMN_NAME here>' SET @TABLE_NAME = '<Your TABLE_NAME here>' SET @IDValue = 123456789 DECLARE @sql AS varchar(max) ; WITH RELATED_COLUMNS AS ( SELECT QUOTENAME(c.TABLE_SCHEMA) + '.' + QUOTENAME(c.TABLE_NAME) AS [OBJECT_NAME] ,c.COLUMN_NAME FROM PBANKDW.INFORMATION_SCHEMA.COLUMNS AS c WITH (NOLOCK) INNER JOIN PBANKDW.INFORMATION_SCHEMA.TABLES AS t WITH (NOLOCK) ON c.TABLE_CATALOG = t.TABLE_CATALOG AND c.TABLE_SCHEMA = t.TABLE_SCHEMA AND c.TABLE_NAME = t.TABLE_NAME AND t.TABLE_TYPE = 'BASE TABLE' INNER JOIN ( SELECT rc.CONSTRAINT_CATALOG ,rc.CONSTRAINT_SCHEMA ,lkc.TABLE_NAME ,lkc.COLUMN_NAME FROM PBANKDW.INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS rc WITH (NOLOCK) INNER JOIN PBANKDW.INFORMATION_SCHEMA.KEY_COLUMN_USAGE lkc WITH (NOLOCK) ON lkc.CONSTRAINT_CATALOG = rc.CONSTRAINT_CATALOG AND lkc.CONSTRAINT_SCHEMA = rc.CONSTRAINT_SCHEMA AND lkc.CONSTRAINT_NAME = rc.CONSTRAINT_NAME INNER JOIN PBANKDW.INFORMATION_SCHEMA.TABLE_CONSTRAINTS tc WITH (NOLOCK) ON rc.CONSTRAINT_CATALOG = tc.CONSTRAINT_CATALOG AND rc.CONSTRAINT_SCHEMA = tc.CONSTRAINT_SCHEMA AND rc.UNIQUE_CONSTRAINT_NAME = tc.CONSTRAINT_NAME INNER JOIN PBANKDW.INFORMATION_SCHEMA.KEY_COLUMN_USAGE rkc WITH (NOLOCK) ON rkc.CONSTRAINT_CATALOG = tc.CONSTRAINT_CATALOG AND rkc.CONSTRAINT_SCHEMA = tc.CONSTRAINT_SCHEMA AND rkc.CONSTRAINT_NAME = tc.CONSTRAINT_NAME WHERE rkc.COLUMN_NAME = @COLUMN_NAME AND rkc.TABLE_NAME = @TABLE_NAME ) AS j ON j.CONSTRAINT_CATALOG = c.TABLE_CATALOG AND j.CONSTRAINT_SCHEMA = c.TABLE_SCHEMA AND j.TABLE_NAME = c.TABLE_NAME AND j.COLUMN_NAME = c.COLUMN_NAME ) SELECT @sql = COALESCE(@sql, '') + 'DELETE FROM ' + [OBJECT_NAME] + ' WHERE ' + [COLUMN_NAME] + ' = ' + CONVERT(varchar, @IDValue) + CHAR(13) + CHAR(10) FROM RELATED_COLUMNS PRINT @sql Thank to Charles, this is the latest not working release of the software, I have added a parameter with the OWNER because the referential integrities propagate through about 5 other Oracle users (!!!): CREATE OR REPLACE PROCEDURE delete_cascade ( parent_table VARCHAR2, parent_table_owner VARCHAR2) IS cons_name VARCHAR2 (30); tab_name VARCHAR2 (30); tab_name_owner VARCHAR2 (30); parent_cons VARCHAR2 (30); parent_col VARCHAR2 (30); delete1 VARCHAR (500); delete2 VARCHAR (500); delete_command VARCHAR (4000); CURSOR cons_cursor IS SELECT constraint_name, r_constraint_name, table_name, constraint_type FROM all_constraints WHERE constraint_type = 'R' AND r_constraint_name IN (SELECT constraint_name FROM all_constraints WHERE constraint_type IN ('P', 'U') AND table_name = parent_table AND owner = parent_table_owner) AND delete_rule = 'NO ACTION'; CURSOR tabs_cursor IS SELECT DISTINCT table_name FROM all_cons_columns WHERE constraint_name = cons_name; CURSOR child_cols_cursor IS SELECT column_name, position FROM all_cons_columns WHERE constraint_name = cons_name AND table_name = tab_name; BEGIN FOR cons IN cons_cursor LOOP cons_name := cons.constraint_name; parent_cons := cons.r_constraint_name; SELECT DISTINCT table_name, owner INTO tab_name, tab_name_owner FROM all_cons_columns WHERE constraint_name = cons_name; delete_cascade (tab_name, tab_name_owner); delete_command := ''; delete1 := ''; delete2 := ''; FOR col IN child_cols_cursor LOOP SELECT DISTINCT column_name INTO parent_col FROM all_cons_columns WHERE constraint_name = parent_cons AND position = col.position; IF delete1 IS NULL THEN delete1 := col.column_name; ELSE delete1 := delete1 || ', ' || col.column_name; END IF; IF delete2 IS NULL THEN delete2 := parent_col; ELSE delete2 := delete2 || ', ' || parent_col; END IF; END LOOP; delete_command := 'delete from ' || tab_name_owner || '.' || tab_name || ' where (' || delete1 || ') in (select ' || delete2 || ' from ' || parent_table_owner || '.' || parent_table || ');'; INSERT INTO ris VALUES (SEQUENCE_COMANDI.NEXTVAL, delete_command); COMMIT; END LOOP; END; / In the cursor CONS_CURSOR I have added the condition: AND delete_rule = 'NO ACTION'; in order to avoid deletion in case of referential integrities with DELETE_RULE = 'CASCADE' or DELETE_RULE = 'SET NULL'. Now I have tried to turn from stored procedure to stored function, but the delete statements are not correct: CREATE OR REPLACE FUNCTION deletecascade ( parent_table VARCHAR2, parent_table_owner VARCHAR2) RETURN VARCHAR2 IS cons_name VARCHAR2 (30); tab_name VARCHAR2 (30); tab_name_owner VARCHAR2 (30); parent_cons VARCHAR2 (30); parent_col VARCHAR2 (30); delete1 VARCHAR (500); delete2 VARCHAR (500); delete_command VARCHAR (4000); AT_LEAST_ONE_ITERATION NUMBER DEFAULT 0; CURSOR cons_cursor IS SELECT constraint_name, r_constraint_name, table_name, constraint_type FROM all_constraints WHERE constraint_type = 'R' AND r_constraint_name IN (SELECT constraint_name FROM all_constraints WHERE constraint_type IN ('P', 'U') AND table_name = parent_table AND owner = parent_table_owner) AND delete_rule = 'NO ACTION'; CURSOR tabs_cursor IS SELECT DISTINCT table_name FROM all_cons_columns WHERE constraint_name = cons_name; CURSOR child_cols_cursor IS SELECT column_name, position FROM all_cons_columns WHERE constraint_name = cons_name AND table_name = tab_name; BEGIN FOR cons IN cons_cursor LOOP AT_LEAST_ONE_ITERATION := 1; cons_name := cons.constraint_name; parent_cons := cons.r_constraint_name; SELECT DISTINCT table_name, owner INTO tab_name, tab_name_owner FROM all_cons_columns WHERE constraint_name = cons_name; delete1 := ''; delete2 := ''; FOR col IN child_cols_cursor LOOP SELECT DISTINCT column_name INTO parent_col FROM all_cons_columns WHERE constraint_name = parent_cons AND position = col.position; IF delete1 IS NULL THEN delete1 := col.column_name; ELSE delete1 := delete1 || ', ' || col.column_name; END IF; IF delete2 IS NULL THEN delete2 := parent_col; ELSE delete2 := delete2 || ', ' || parent_col; END IF; END LOOP; delete_command := 'delete from ' || tab_name_owner || '.' || tab_name || ' where (' || delete1 || ') in (select ' || delete2 || ' from ' || parent_table_owner || '.' || parent_table || ');' || deletecascade (tab_name, tab_name_owner); INSERT INTO ris VALUES (SEQUENCE_COMANDI.NEXTVAL, delete_command); COMMIT; END LOOP; IF AT_LEAST_ONE_ITERATION = 1 THEN RETURN ' where COD_CHICKEN = V_CHICKEN AND COD_NATION = V_NATION;'; ELSE RETURN NULL; END IF; END; / Please assume that V_CHICKEN and V_NATION are the criteria to select the CHICKEN to delete from the root table: the condition is: "where COD_CHICKEN = V_CHICKEN AND COD_NATION = V_NATION" on the root table.

    Read the article

  • XNA Xbox 360 Content Manager Thread freezing Draw Thread

    - by Alikar
    I currently have a game that takes in large images, easily bigger than 1MB, to serve as backgrounds. I know exactly when this transition is supposed to take place, so I made a loader class to handle loading these large images in the background, but when I load the images it still freezes the main thread where the drawing takes place. Since this code runs on the 360 I move the thread to the 4th hardware thread, but that doesn't seem to help. Below is the class I am using. Any thoughts as to why my new content manager which should be in its own thread is interrupting the draw in my main thread would be appreciated. namespace FileSystem { /// <summary> /// This is used to reference how many objects reference this texture. /// Everytime someone references a texture we increase the iNumberOfReferences. /// When a class calls remove on a specific texture we check to see if anything /// else is referencing the class, if it is we don't remove it. If there isn't /// anything referencing the texture its safe to dispose of. /// </summary> class TextureContainer { public uint uiNumberOfReferences = 0; public Texture2D texture; } /// <summary> /// This class loads all the files from the Content. /// </summary> static class FileManager { static Microsoft.Xna.Framework.Content.ContentManager Content; static EventWaitHandle wh = new AutoResetEvent(false); static Dictionary<string, TextureContainer> Texture2DResourceDictionary; static List<Texture2D> TexturesToDispose; static List<String> TexturesToLoad; static int iProcessor = 4; private static object threadMutex = new object(); private static object Texture2DMutex = new object(); private static object loadingMutex = new object(); private static bool bLoadingTextures = false; /// <summary> /// Returns if we are loading textures or not. /// </summary> public static bool LoadingTexture { get { lock (loadingMutex) { return bLoadingTextures; } } } /// <summary> /// Since this is an static class. This is the constructor for the file loadeder. This is the version /// for the Xbox 360. /// </summary> /// <param name="_Content"></param> public static void Initalize(IServiceProvider serviceProvider, string rootDirectory, int _iProcessor ) { Content = new Microsoft.Xna.Framework.Content.ContentManager(serviceProvider, rootDirectory); Texture2DResourceDictionary = new Dictionary<string, TextureContainer>(); TexturesToDispose = new List<Texture2D>(); iProcessor = _iProcessor; CreateThread(); } /// <summary> /// Since this is an static class. This is the constructor for the file loadeder. /// </summary> /// <param name="_Content"></param> public static void Initalize(IServiceProvider serviceProvider, string rootDirectory) { Content = new Microsoft.Xna.Framework.Content.ContentManager(serviceProvider, rootDirectory); Texture2DResourceDictionary = new Dictionary<string, TextureContainer>(); TexturesToDispose = new List<Texture2D>(); CreateThread(); } /// <summary> /// Creates the thread incase we wanted to set up some parameters /// Outside of the constructor. /// </summary> static public void CreateThread() { Thread t = new Thread(new ThreadStart(StartThread)); t.Start(); } // This is the function that we thread. static public void StartThread() { //BBSThreadClass BBSTC = (BBSThreadClass)_oData; FileManager.Execute(); } /// <summary> /// This thread shouldn't be called by the outside world. /// It allows the File Manager to loop. /// </summary> static private void Execute() { // Make sure our thread is on the correct processor on the XBox 360. #if WINDOWS #else Thread.CurrentThread.SetProcessorAffinity(new int[] { iProcessor }); Thread.CurrentThread.IsBackground = true; #endif // This loop will load textures into ram for us away from the main thread. while (true) { wh.WaitOne(); // Locking down our data while we process it. lock (threadMutex) { lock (loadingMutex) { bLoadingTextures = true; } bool bContainsKey = false; for (int con = 0; con < TexturesToLoad.Count; con++) { // If we have already loaded the texture into memory reference // the one in the dictionary. lock (Texture2DMutex) { bContainsKey = Texture2DResourceDictionary.ContainsKey(TexturesToLoad[con]); } if (bContainsKey) { // Do nothing } // Otherwise load it into the dictionary and then reference the // copy in the dictionary else { TextureContainer TC = new TextureContainer(); TC.uiNumberOfReferences = 1; // We start out with 1 referece. // Loading the texture into memory. try { TC.texture = Content.Load<Texture2D>(TexturesToLoad[con]); // This is passed into the dictionary, thus there is only one copy of // the texture in memory. // There is an issue with Sprite Batch and disposing textures. // This will have to wait until its figured out. lock (Texture2DMutex) { bContainsKey = Texture2DResourceDictionary.ContainsKey(TexturesToLoad[con]); Texture2DResourceDictionary.Add(TexturesToLoad[con], TC); } // We don't have the find the reference to the container since we // already have it. } // Occasionally our texture will already by loaded by another thread while // this thread is operating. This mainly happens on the first level. catch (Exception e) { // If this happens we don't worry about it since this thread only loads // texture data and if its already there we don't need to load it. } } Thread.Sleep(100); } } lock (loadingMutex) { bLoadingTextures = false; } } } static public void LoadTextureList(List<string> _textureList) { // Ensuring that we can't creating threading problems. lock (threadMutex) { TexturesToLoad = _textureList; } wh.Set(); } /// <summary> /// This loads a 2D texture which represents a 2D grid of Texels. /// </summary> /// <param name="_textureName">The name of the picture you wish to load.</param> /// <returns>Holds the image data.</returns> public static Texture2D LoadTexture2D( string _textureName ) { TextureContainer temp; lock (Texture2DMutex) { bool bContainsKey = false; // If we have already loaded the texture into memory reference // the one in the dictionary. lock (Texture2DMutex) { bContainsKey = Texture2DResourceDictionary.ContainsKey(_textureName); if (bContainsKey) { temp = Texture2DResourceDictionary[_textureName]; temp.uiNumberOfReferences++; // Incrementing the number of references } // Otherwise load it into the dictionary and then reference the // copy in the dictionary else { TextureContainer TC = new TextureContainer(); TC.uiNumberOfReferences = 1; // We start out with 1 referece. // Loading the texture into memory. try { TC.texture = Content.Load<Texture2D>(_textureName); // This is passed into the dictionary, thus there is only one copy of // the texture in memory. } // Occasionally our texture will already by loaded by another thread while // this thread is operating. This mainly happens on the first level. catch(Exception e) { temp = Texture2DResourceDictionary[_textureName]; temp.uiNumberOfReferences++; // Incrementing the number of references } // There is an issue with Sprite Batch and disposing textures. // This will have to wait until its figured out. Texture2DResourceDictionary.Add(_textureName, TC); // We don't have the find the reference to the container since we // already have it. temp = TC; } } } // Return a reference to the texture return temp.texture; } /// <summary> /// Go through our dictionary and remove any references to the /// texture passed in. /// </summary> /// <param name="texture">Texture to remove from texture dictionary.</param> public static void RemoveTexture2D(Texture2D texture) { foreach (KeyValuePair<string, TextureContainer> pair in Texture2DResourceDictionary) { // Do our references match? if (pair.Value.texture == texture) { // Only one object or less holds a reference to the // texture. Logically it should be safe to remove. if (pair.Value.uiNumberOfReferences <= 1) { // Grabing referenc to texture TexturesToDispose.Add(pair.Value.texture); // We are about to release the memory of the texture, // thus we make sure no one else can call this member // in the dictionary. Texture2DResourceDictionary.Remove(pair.Key); // Once we have removed the texture we don't want to create an exception. // So we will stop looking in the list since it has changed. break; } // More than one Object has a reference to this texture. // So we will not be removing it from memory and instead // simply marking down the number of references by 1. else { pair.Value.uiNumberOfReferences--; } } } } /*public static void DisposeTextures() { int Count = TexturesToDispose.Count; // If there are any textures to dispose of. if (Count > 0) { for (int con = 0; con < TexturesToDispose.Count; con++) { // =!THIS REMOVES THE TEXTURE FROM MEMORY!= // This is not like a normal dispose. This will actually // remove the object from memory. Texture2D is inherited // from GraphicsResource which removes it self from // memory on dispose. Very nice for game efficency, // but "dangerous" in managed land. Texture2D Temp = TexturesToDispose[con]; Temp.Dispose(); } // Remove textures we've already disposed of. TexturesToDispose.Clear(); } }*/ /// <summary> /// This loads a 2D texture which represnets a font. /// </summary> /// <param name="_textureName">The name of the font you wish to load.</param> /// <returns>Holds the font data.</returns> public static SpriteFont LoadFont( string _fontName ) { SpriteFont temp = Content.Load<SpriteFont>( _fontName ); return temp; } /// <summary> /// This loads an XML document. /// </summary> /// <param name="_textureName">The name of the XML document you wish to load.</param> /// <returns>Holds the XML data.</returns> public static XmlDocument LoadXML( string _fileName ) { XmlDocument temp = Content.Load<XmlDocument>( _fileName ); return temp; } /// <summary> /// This loads a sound file. /// </summary> /// <param name="_fileName"></param> /// <returns></returns> public static SoundEffect LoadSound( string _fileName ) { SoundEffect temp = Content.Load<SoundEffect>(_fileName); return temp; } } }

    Read the article

  • trouble running smooth animation in thread only when using key listener

    - by heysuse renard
    first time using a forum for coding help so sorry if i post this all wrong. i have more than a few classes i don't think screenManger or core holds the problem but i included them just incase. i got most of this code working through a set of tutorials. but a certain point started trying to do more on my own. i want to play the animation only when i'm moving my sprite. in my KeyTest class i am using threads to run the animation it used to work (poorly) but now not at all pluss it really gunks up my computer. i think it's because of the thread. im new to threads so i'm not to sure if i should even be using one in this situation or if its dangerous for my computer. the animation worked smoothly when i had the sprite bouce around the screen forever. the animation loop played with out stopping. i think the main problem is between the animationThread, Sprite, and keyTest classes, but itcould be more indepth. if someone could point me in the right direction for making the animation run smoothly when i push down a key and stop runing when i let off it would be greatly apriciated. i already looked at this Java a moving animation (sprite) obviously we were doing the same tutorial. but i feel my problem is slightly different. p.s. sorry for the typos. import java.awt.*; import java.awt.event.KeyEvent; import java.awt.event.KeyListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import java.util.ArrayList; import javax.swing.ImageIcon; import javax.swing.JFrame; public class KeyTest extends Core implements KeyListener { public static void main(String[] args) { new KeyTest().run(); } Sprite player1; Image hobo; Image background; animation hoboRun; animationThread t1; //init also calls init form superclass public void init() { super.init(); loadImages(); Window w = s.getFullScreenWindow(); w.setFocusTraversalKeysEnabled(false); w.addKeyListener(this); } //load method will go here. //load all pics need for animation and sprite public void loadImages() { background = new ImageIcon("\\\\STUART-PC\\Users\\Stuart\\workspace\\Gaming\\yellow square.jpg").getImage(); Image face1 = new ImageIcon("\\\\STUART-PC\\Users\\Stuart\\workspace\\Gaming\\circle.png").getImage(); Image face2 = new ImageIcon("\\\\STUART-PC\\Users\\Stuart\\workspace\\Gaming\\one eye.png").getImage(); hoboRun = new animation(); hoboRun.addScene(face1, 250); hoboRun.addScene(face2, 250); player1 = new Sprite(hoboRun); this.t1 = new animationThread(); this.t1.setAnimation(player1); } //key pressed public void keyPressed(KeyEvent e) { int keyCode = e.getKeyCode(); if (keyCode == KeyEvent.VK_ESCAPE) { stop(); } if (keyCode == KeyEvent.VK_RIGHT) { player1.setVelocityX(0.3f); try { this.t1.setRunning(true); Thread th1 = new Thread(this.t1); th1.start(); } catch (Exception ex) { System.out.println("noooo"); } } if (keyCode == KeyEvent.VK_LEFT) { player1.setVelocityX(-0.3f); try { this.t1.setRunning(true); Thread th1 = new Thread(this.t1); th1.start(); } catch (Exception ex) { System.out.println("noooo"); } } if (keyCode == KeyEvent.VK_DOWN) { player1.setVelocityY(0.3f); try { this.t1.setRunning(true); Thread th1 = new Thread(this.t1); th1.start(); } catch (Exception ex) { System.out.println("noooo"); } } if (keyCode == KeyEvent.VK_UP) { player1.setVelocityY(-0.3f); try { this.t1.setRunning(true); Thread th1 = new Thread(this.t1);; th1.start(); } catch (Exception ex) { System.out.println("noooo"); } } else { e.consume(); } } //keyReleased @SuppressWarnings("static-access") public void keyReleased(KeyEvent e) { int keyCode = e.getKeyCode(); if (keyCode == KeyEvent.VK_RIGHT || keyCode == KeyEvent.VK_LEFT) { player1.setVelocityX(0); try { this.t1.setRunning(false); } catch (Exception ex) { } } if (keyCode == KeyEvent.VK_UP || keyCode == KeyEvent.VK_DOWN) { player1.setVelocityY(0); try { this.t1.setRunning(false); } catch (Exception ex) { } } else { e.consume(); } } //last method from interface public void keyTyped(KeyEvent e) { e.consume(); } //draw public void draw(Graphics2D g) { Window w = s.getFullScreenWindow(); g.setColor(w.getBackground()); g.fillRect(0, 0, s.getWidth(), s.getHieght()); g.setColor(w.getForeground()); g.drawImage(player1.getImage(), Math.round(player1.getX()), Math.round(player1.getY()), null); } public void update(long timePassed) { player1.update(timePassed); } } abstract class Core { private static DisplayMode modes[] = { new DisplayMode(1600, 900, 64, 0), new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(800, 480, 32, 0), new DisplayMode(800, 480, 24, 0), new DisplayMode(800, 480, 16, 0),}; private boolean running; protected ScreenManager s; //stop method public void stop() { running = false; } public void run() { try { init(); gameLoop(); } finally { s.restoreScreen(); } } //set to full screen //set current background here public void init() { s = new ScreenManager(); DisplayMode dm = s.findFirstCompatibleMode(modes); s.setFullScreen(dm); Window w = s.getFullScreenWindow(); w.setFont(new Font("Arial", Font.PLAIN, 20)); w.setBackground(Color.GREEN); w.setForeground(Color.WHITE); running = true; } //main gameLoop public void gameLoop() { long startTime = System.currentTimeMillis(); long cumTime = startTime; while (running) { long timePassed = System.currentTimeMillis() - cumTime; cumTime += timePassed; update(timePassed); Graphics2D g = s.getGraphics(); draw(g); g.dispose(); s.update(); try { Thread.sleep(20); } catch (Exception ex) { } } } //update animation public void update(long timePassed) { } //draws to screen abstract void draw(Graphics2D g); } class animationThread implements Runnable { String name; boolean playing; Sprite a; //constructor takes input from keyboard public animationThread() { } //The run method for animation public void run() { long startTime = System.currentTimeMillis(); long cumTime = startTime; boolean test = getRunning(); while (test) { long timePassed = System.currentTimeMillis() - cumTime; cumTime += timePassed; test = getRunning(); } } public String getName() { return name; } public void setAnimation(Sprite a) { this.a = a; } public void setName(String name) { this.name = name; } public void setRunning(boolean running) { this.playing = running; } public boolean getRunning() { return playing; } } class animation { private ArrayList scenes; private int sceneIndex; private long movieTime; private long totalTime; //constructor public animation() { scenes = new ArrayList(); totalTime = 0; start(); } //add scene to ArrayLisy and set time for each scene public synchronized void addScene(Image i, long t) { totalTime += t; scenes.add(new OneScene(i, totalTime)); } public synchronized void start() { movieTime = 0; sceneIndex = 0; } //change scenes public synchronized void update(long timePassed) { if (scenes.size() > 1) { movieTime += timePassed; if (movieTime >= totalTime) { movieTime = 0; sceneIndex = 0; } while (movieTime > getScene(sceneIndex).endTime) { sceneIndex++; } } } //get animations current scene(aka image) public synchronized Image getImage() { if (scenes.size() == 0) { return null; } else { return getScene(sceneIndex).pic; } } //get scene private OneScene getScene(int x) { return (OneScene) scenes.get(x); } //Private Inner CLASS////////////// private class OneScene { Image pic; long endTime; public OneScene(Image pic, long endTime) { this.pic = pic; this.endTime = endTime; } } } class Sprite { private animation a; private float x; private float y; private float vx; private float vy; //Constructor public Sprite(animation a) { this.a = a; } //change position public void update(long timePassed) { x += vx * timePassed; y += vy * timePassed; } public void startAnimation(long timePassed) { a.update(timePassed); } //get x position public float getX() { return x; } //get y position public float getY() { return y; } //set x public void setX(float x) { this.x = x; } //set y public void setY(float y) { this.y = y; } //get sprite width public int getWidth() { return a.getImage().getWidth(null); } //get sprite height public int getHeight() { return a.getImage().getHeight(null); } //get horizontal velocity public float getVelocityX() { return vx; } //get vertical velocity public float getVelocityY() { return vx; } //set horizontal velocity public void setVelocityX(float vx) { this.vx = vx; } //set vertical velocity public void setVelocityY(float vy) { this.vy = vy; } //get sprite / image public Image getImage() { return a.getImage(); } } class ScreenManager { private GraphicsDevice vc; public ScreenManager() { GraphicsEnvironment e = GraphicsEnvironment.getLocalGraphicsEnvironment(); vc = e.getDefaultScreenDevice(); } //get all compatible DM public DisplayMode[] getCompatibleDisplayModes() { return vc.getDisplayModes(); } //compares DM passed into vc DM and see if they match public DisplayMode findFirstCompatibleMode(DisplayMode modes[]) { DisplayMode goodModes[] = vc.getDisplayModes(); for (int x = 0; x < modes.length; x++) { for (int y = 0; y < goodModes.length; y++) { if (displayModesMatch(modes[x], goodModes[y])) { return modes[x]; } } } return null; } //get current DM public DisplayMode getCurrentDisplayMode() { return vc.getDisplayMode(); } //checks if two modes match each other public boolean displayModesMatch(DisplayMode m1, DisplayMode m2) { if (m1.getWidth() != m2.getWidth() || m1.getHeight() != m2.getHeight()) { return false; } if (m1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && m2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && m1.getBitDepth() != m2.getBitDepth()) { return false; } if (m1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && m2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && m1.getRefreshRate() != m2.getRefreshRate()) { return false; } return true; } //make frame full screen public void setFullScreen(DisplayMode dm) { JFrame f = new JFrame(); f.setUndecorated(true); f.setIgnoreRepaint(true); f.setResizable(false); vc.setFullScreenWindow(f); if (dm != null && vc.isDisplayChangeSupported()) { try { vc.setDisplayMode(dm); } catch (Exception ex) { } } f.createBufferStrategy(2); } //sets graphics object = this return public Graphics2D getGraphics() { Window w = vc.getFullScreenWindow(); if (w != null) { BufferStrategy s = w.getBufferStrategy(); return (Graphics2D) s.getDrawGraphics(); } else { return null; } } //updates display public void update() { Window w = vc.getFullScreenWindow(); if (w != null) { BufferStrategy s = w.getBufferStrategy(); if (!s.contentsLost()) { s.show(); } } } //returns full screen window public Window getFullScreenWindow() { return vc.getFullScreenWindow(); } //get width of window public int getWidth() { Window w = vc.getFullScreenWindow(); if (w != null) { return w.getWidth(); } else { return 0; } } //get height of window public int getHieght() { Window w = vc.getFullScreenWindow(); if (w != null) { return w.getHeight(); } else { return 0; } } //get out of full screen public void restoreScreen() { Window w = vc.getFullScreenWindow(); if (w != null) { w.dispose(); } vc.setFullScreenWindow(null); } //create image compatible with monitor public BufferedImage createCopatibleImage(int w, int h, int t) { Window win = vc.getFullScreenWindow(); if (win != null) { GraphicsConfiguration gc = win.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, t); } return null; } }

    Read the article

  • Failed to Install Xdebug

    - by burnt1ce
    've registered xdebug in php.ini (as per http://xdebug.org/docs/install) but it's not showing up when i run "php -m" or when i get a test page to run "phpinfo()". I've just installed the latest version of XAMPP. I've used both "zend_extention" and "zend_extention_ts" to specify the path of the xdebug dll. I ensured that my apache server restarted and used the latest change of my php.ini by executing "httpd -k restart". Can anyone provide any suggestions in getting xdebug to show up? Here are the contents of my php.ini file. [PHP] ;;;;;;;;;;;;;;;;;;; ; About php.ini ; ;;;;;;;;;;;;;;;;;;; ; PHP's initialization file, generally called php.ini, is responsible for ; configuring many of the aspects of PHP's behavior. ; PHP attempts to find and load this configuration from a number of locations. ; The following is a summary of its search order: ; 1. SAPI module specific location. ; 2. The PHPRC environment variable. (As of PHP 5.2.0) ; 3. A number of predefined registry keys on Windows (As of PHP 5.2.0) ; 4. Current working directory (except CLI) ; 5. The web server's directory (for SAPI modules), or directory of PHP ; (otherwise in Windows) ; 6. The directory from the --with-config-file-path compile time option, or the ; Windows directory (C:\windows or C:\winnt) ; See the PHP docs for more specific information. ; http://php.net/configuration.file ; The syntax of the file is extremely simple. Whitespace and Lines ; beginning with a semicolon are silently ignored (as you probably guessed). ; Section headers (e.g. [Foo]) are also silently ignored, even though ; they might mean something in the future. ; Directives following the section heading [PATH=/www/mysite] only ; apply to PHP files in the /www/mysite directory. Directives ; following the section heading [HOST=www.example.com] only apply to ; PHP files served from www.example.com. Directives set in these ; special sections cannot be overridden by user-defined INI files or ; at runtime. Currently, [PATH=] and [HOST=] sections only work under ; CGI/FastCGI. ; http://php.net/ini.sections ; Directives are specified using the following syntax: ; directive = value ; Directive names are *case sensitive* - foo=bar is different from FOO=bar. ; Directives are variables used to configure PHP or PHP extensions. ; There is no name validation. If PHP can't find an expected ; directive because it is not set or is mistyped, a default value will be used. ; The value can be a string, a number, a PHP constant (e.g. E_ALL or M_PI), one ; of the INI constants (On, Off, True, False, Yes, No and None) or an expression ; (e.g. E_ALL & ~E_NOTICE), a quoted string ("bar"), or a reference to a ; previously set variable or directive (e.g. ${foo}) ; Expressions in the INI file are limited to bitwise operators and parentheses: ; | bitwise OR ; ^ bitwise XOR ; & bitwise AND ; ~ bitwise NOT ; ! boolean NOT ; Boolean flags can be turned on using the values 1, On, True or Yes. ; They can be turned off using the values 0, Off, False or No. ; An empty string can be denoted by simply not writing anything after the equal ; sign, or by using the None keyword: ; foo = ; sets foo to an empty string ; foo = None ; sets foo to an empty string ; foo = "None" ; sets foo to the string 'None' ; If you use constants in your value, and these constants belong to a ; dynamically loaded extension (either a PHP extension or a Zend extension), ; you may only use these constants *after* the line that loads the extension. ;;;;;;;;;;;;;;;;;;; ; About this file ; ;;;;;;;;;;;;;;;;;;; ; PHP comes packaged with two INI files. One that is recommended to be used ; in production environments and one that is recommended to be used in ; development environments. ; php.ini-production contains settings which hold security, performance and ; best practices at its core. But please be aware, these settings may break ; compatibility with older or less security conscience applications. We ; recommending using the production ini in production and testing environments. ; php.ini-development is very similar to its production variant, except it's ; much more verbose when it comes to errors. We recommending using the ; development version only in development environments as errors shown to ; application users can inadvertently leak otherwise secure information. ;;;;;;;;;;;;;;;;;;; ; Quick Reference ; ;;;;;;;;;;;;;;;;;;; ; The following are all the settings which are different in either the production ; or development versions of the INIs with respect to PHP's default behavior. ; Please see the actual settings later in the document for more details as to why ; we recommend these changes in PHP's behavior. ; allow_call_time_pass_reference ; Default Value: On ; Development Value: Off ; Production Value: Off ; display_errors ; Default Value: On ; Development Value: On ; Production Value: Off ; display_startup_errors ; Default Value: Off ; Development Value: On ; Production Value: Off ; error_reporting ; Default Value: E_ALL & ~E_NOTICE ; Development Value: E_ALL | E_STRICT ; Production Value: E_ALL & ~E_DEPRECATED ; html_errors ; Default Value: On ; Development Value: On ; Production value: Off ; log_errors ; Default Value: Off ; Development Value: On ; Production Value: On ; magic_quotes_gpc ; Default Value: On ; Development Value: Off ; Production Value: Off ; max_input_time ; Default Value: -1 (Unlimited) ; Development Value: 60 (60 seconds) ; Production Value: 60 (60 seconds) ; output_buffering ; Default Value: Off ; Development Value: 4096 ; Production Value: 4096 ; register_argc_argv ; Default Value: On ; Development Value: Off ; Production Value: Off ; register_long_arrays ; Default Value: On ; Development Value: Off ; Production Value: Off ; request_order ; Default Value: None ; Development Value: "GP" ; Production Value: "GP" ; session.bug_compat_42 ; Default Value: On ; Development Value: On ; Production Value: Off ; session.bug_compat_warn ; Default Value: On ; Development Value: On ; Production Value: Off ; session.gc_divisor ; Default Value: 100 ; Development Value: 1000 ; Production Value: 1000 ; session.hash_bits_per_character ; Default Value: 4 ; Development Value: 5 ; Production Value: 5 ; short_open_tag ; Default Value: On ; Development Value: Off ; Production Value: Off ; track_errors ; Default Value: Off ; Development Value: On ; Production Value: Off ; url_rewriter.tags ; Default Value: "a=href,area=href,frame=src,form=,fieldset=" ; Development Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; Production Value: "a=href,area=href,frame=src,input=src,form=fakeentry" ; variables_order ; Default Value: "EGPCS" ; Development Value: "GPCS" ; Production Value: "GPCS" ;;;;;;;;;;;;;;;;;;;; ; php.ini Options ; ;;;;;;;;;;;;;;;;;;;; ; Name for user-defined php.ini (.htaccess) files. Default is ".user.ini" ;user_ini.filename = ".user.ini" ; To disable this feature set this option to empty value ;user_ini.filename = ; TTL for user-defined php.ini files (time-to-live) in seconds. Default is 300 seconds (5 minutes) ;user_ini.cache_ttl = 300 ;;;;;;;;;;;;;;;;;;;; ; Language Options ; ;;;;;;;;;;;;;;;;;;;; ; Enable the PHP scripting language engine under Apache. ; http://php.net/engine engine = On ; This directive determines whether or not PHP will recognize code between ; <? and ?> tags as PHP source which should be processed as such. It's been ; recommended for several years that you not use the short tag "short cut" and ; instead to use the full <?php and ?> tag combination. With the wide spread use ; of XML and use of these tags by other languages, the server can become easily ; confused and end up parsing the wrong code in the wrong context. But because ; this short cut has been a feature for such a long time, it's currently still ; supported for backwards compatibility, but we recommend you don't use them. ; Default Value: On ; Development Value: Off ; Production Value: Off ; http://php.net/short-open-tag short_open_tag = Off ; Allow ASP-style <% %> tags. ; http://php.net/asp-tags asp_tags = Off ; The number of significant digits displayed in floating point numbers. ; http://php.net/precision precision = 14 ; Enforce year 2000 compliance (will cause problems with non-compliant browsers) ; http://php.net/y2k-compliance y2k_compliance = On ; Output buffering is a mechanism for controlling how much output data ; (excluding headers and cookies) PHP should keep internally before pushing that ; data to the client. If your application's output exceeds this setting, PHP ; will send that data in chunks of roughly the size you specify. ; Turning on this setting and managing its maximum buffer size can yield some ; interesting side-effects depending on your application and web server. ; You may be able to send headers and cookies after you've already sent output ; through print or echo. You also may see performance benefits if your server is ; emitting less packets due to buffered output versus PHP streaming the output ; as it gets it. On production servers, 4096 bytes is a good setting for performance ; reasons. ; Note: Output buffering can also be controlled via Output Buffering Control ; functions. ; Possible Values: ; On = Enabled and buffer is unlimited. (Use with caution) ; Off = Disabled ; Integer = Enables the buffer and sets its maximum size in bytes. ; Note: This directive is hardcoded to Off for the CLI SAPI ; Default Value: Off ; Development Value: 4096 ; Production Value: 4096 ; http://php.net/output-buffering output_buffering = Off ; You can redirect all of the output of your scripts to a function. For ; example, if you set output_handler to "mb_output_handler", character ; encoding will be transparently converted to the specified encoding. ; Setting any output handler automatically turns on output buffering. ; Note: People who wrote portable scripts should not depend on this ini ; directive. Instead, explicitly set the output handler using ob_start(). ; Using this ini directive may cause problems unless you know what script ; is doing. ; Note: You cannot use both "mb_output_handler" with "ob_iconv_handler" ; and you cannot use both "ob_gzhandler" and "zlib.output_compression". ; Note: output_handler must be empty if this is set 'On' !!!! ; Instead you must use zlib.output_handler. ; http://php.net/output-handler ;output_handler = ; Transparent output compression using the zlib library ; Valid values for this option are 'off', 'on', or a specific buffer size ; to be used for compression (default is 4KB) ; Note: Resulting chunk size may vary due to nature of compression. PHP ; outputs chunks that are few hundreds bytes each as a result of ; compression. If you prefer a larger chunk size for better ; performance, enable output_buffering in addition. ; Note: You need to use zlib.output_handler instead of the standard ; output_handler, or otherwise the output will be corrupted. ; http://php.net/zlib.output-compression zlib.output_compression = Off ; http://php.net/zlib.output-compression-level ;zlib.output_compression_level = -1 ; You cannot specify additional output handlers if zlib.output_compression ; is activated here. This setting does the same as output_handler but in ; a different order. ; http://php.net/zlib.output-handler ;zlib.output_handler = ; Implicit flush tells PHP to tell the output layer to flush itself ; automatically after every output block. This is equivalent to calling the ; PHP function flush() after each and every call to print() or echo() and each ; and every HTML block. Turning this option on has serious performance ; implications and is generally recommended for debugging purposes only. ; http://php.net/implicit-flush ; Note: This directive is hardcoded to On for the CLI SAPI implicit_flush = Off ; The unserialize callback function will be called (with the undefined class' ; name as parameter), if the unserializer finds an undefined class ; which should be instantiated. A warning appears if the specified function is ; not defined, or if the function doesn't include/implement the missing class. ; So only set this entry, if you really want to implement such a ; callback-function. unserialize_callback_func = ; When floats & doubles are serialized store serialize_precision significant ; digits after the floating point. The default value ensures that when floats ; are decoded with unserialize, the data will remain the same. serialize_precision = 100 ; This directive allows you to enable and disable warnings which PHP will issue ; if you pass a value by reference at function call time. Passing values by ; reference at function call time is a deprecated feature which will be removed ; from PHP at some point in the near future. The acceptable method for passing a ; value by reference to a function is by declaring the reference in the functions ; definition, not at call time. This directive does not disable this feature, it ; only determines whether PHP will warn you about it or not. These warnings ; should enabled in development environments only. ; Default Value: On (Suppress warnings) ; Development Value: Off (Issue warnings) ; Production Value: Off (Issue warnings) ; http://php.net/allow-call-time-pass-reference allow_call_time_pass_reference = On ; Safe Mode ; http://php.net/safe-mode safe_mode = Off ; By default, Safe Mode does a UID compare check when ; opening files. If you want to relax this to a GID compare, ; then turn on safe_mode_gid. ; http://php.net/safe-mode-gid safe_mode_gid = Off ; When safe_mode is on, UID/GID checks are bypassed when ; including files from this directory and its subdirectories. ; (directory must also be in include_path or full path must ; be used when including) ; http://php.net/safe-mode-include-dir safe_mode_include_dir = ; When safe_mode is on, only executables located in the safe_mode_exec_dir ; will be allowed to be executed via the exec family of functions. ; http://php.net/safe-mode-exec-dir safe_mode_exec_dir = ; Setting certain environment variables may be a potential security breach. ; This directive contains a comma-delimited list of prefixes. In Safe Mode, ; the user may only alter environment variables whose names begin with the ; prefixes supplied here. By default, users will only be able to set ; environment variables that begin with PHP_ (e.g. PHP_FOO=BAR). ; Note: If this directive is empty, PHP will let the user modify ANY ; environment variable! ; http://php.net/safe-mode-allowed-env-vars safe_mode_allowed_env_vars = PHP_ ; This directive contains a comma-delimited list of environment variables that ; the end user won't be able to change using putenv(). These variables will be ; protected even if safe_mode_allowed_env_vars is set to allow to change them. ; http://php.net/safe-mode-protected-env-vars safe_mode_protected_env_vars = LD_LIBRARY_PATH ; open_basedir, if set, limits all file operations to the defined directory ; and below. This directive makes most sense if used in a per-directory ; or per-virtualhost web server configuration file. This directive is ; *NOT* affected by whether Safe Mode is turned On or Off. ; http://php.net/open-basedir ;open_basedir = ; This directive allows you to disable certain functions for security reasons. ; It receives a comma-delimited list of function names. This directive is ; *NOT* affected by whether Safe Mode is turned On or Off. ; http://php.net/disable-functions disable_functions = ; This directive allows you to disable certain classes for security reasons. ; It receives a comma-delimited list of class names. This directive is ; *NOT* affected by whether Safe Mode is turned On or Off. ; http://php.net/disable-classes disable_classes = ; Colors for Syntax Highlighting mode. Anything that's acceptable in ; <span style="color: ???????"> would work. ; http://php.net/syntax-highlighting ;highlight.string = #DD0000 ;highlight.comment = #FF9900 ;highlight.keyword = #007700 ;highlight.bg = #FFFFFF ;highlight.default = #0000BB ;highlight.html = #000000 ; If enabled, the request will be allowed to complete even if the user aborts ; the request. Consider enabling it if executing long requests, which may end up ; being interrupted by the user or a browser timing out. PHP's default behavior ; is to disable this feature. ; http://php.net/ignore-user-abort ;ignore_user_abort = On ; Determines the size of the realpath cache to be used by PHP. This value should ; be increased on systems where PHP opens many files to reflect the quantity of ; the file operations performed. ; http://php.net/realpath-cache-size ;realpath_cache_size = 16k ; Duration of time, in seconds for which to cache realpath information for a given ; file or directory. For systems with rarely changing files, consider increasing this ; value. ; http://php.net/realpath-cache-ttl ;realpath_cache_ttl = 120 ;;;;;;;;;;;;;;;;; ; Miscellaneous ; ;;;;;;;;;;;;;;;;; ; Decides whether PHP may expose the fact that it is installed on the server ; (e.g. by adding its signature to the Web server header). It is no security ; threat in any way, but it makes it possible to determine whether you use PHP ; on your server or not. ; http://php.net/expose-php expose_php = On ;;;;;;;;;;;;;;;;;;; ; Resource Limits ; ;;;;;;;;;;;;;;;;;;; ; Maximum execution time of each script, in seconds ; http://php.net/max-execution-time ; Note: This directive is hardcoded to 0 for the CLI SAPI max_execution_time = 60 ; Maximum amount of time each script may spend parsing request data. It's a good ; idea to limit this time on productions servers in order to eliminate unexpectedly ; long running scripts. ; Note: This directive is hardcoded to -1 for the CLI SAPI ; Default Value: -1 (Unlimited) ; Development Value: 60 (60 seconds) ; Production Value: 60 (60 seconds) ; http://php.net/max-input-time max_input_time = 60 ; Maximum input variable nesting level ; http://php.net/max-input-nesting-level ;max_input_nesting_level = 64 ; Maximum amount of memory a script may consume (128MB) ; http://php.net/memory-limit memory_limit = 128M ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Error handling and logging ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; This directive informs PHP of which errors, warnings and notices you would like ; it to take action for. The recommended way of setting values for this ; directive is through the use of the error level constants and bitwise ; operators. The error level constants are below here for convenience as well as ; some common settings and their meanings. ; By default, PHP is set to take action on all errors, notices and warnings EXCEPT ; those related to E_NOTICE and E_STRICT, which together cover best practices and ; recommended coding standards in PHP. For performance reasons, this is the ; recommend error reporting setting. Your production server shouldn't be wasting ; resources complaining about best practices and coding standards. That's what ; development servers and development settings are for. ; Note: The php.ini-development file has this setting as E_ALL | E_STRICT. This ; means it pretty much reports everything which is exactly what you want during ; development and early testing. ; ; Error Level Constants: ; E_ALL - All errors and warnings (includes E_STRICT as of PHP 6.0.0) ; E_ERROR - fatal run-time errors ; E_RECOVERABLE_ERROR - almost fatal run-time errors ; E_WARNING - run-time warnings (non-fatal errors) ; E_PARSE - compile-time parse errors ; E_NOTICE - run-time notices (these are warnings which often result ; from a bug in your code, but it's possible that it was ; intentional (e.g., using an uninitialized variable and ; relying on the fact it's automatically initialized to an ; empty string) ; E_STRICT - run-time notices, enable to have PHP suggest changes ; to your code which will ensure the best interoperability ; and forward compatibility of your code ; E_CORE_ERROR - fatal errors that occur during PHP's initial startup ; E_CORE_WARNING - warnings (non-fatal errors) that occur during PHP's ; initial startup ; E_COMPILE_ERROR - fatal compile-time errors ; E_COMPILE_WARNING - compile-time warnings (non-fatal errors) ; E_USER_ERROR - user-generated error message ; E_USER_WARNING - user-generated warning message ; E_USER_NOTICE - user-generated notice message ; E_DEPRECATED - warn about code that will not work in future versions ; of PHP ; E_USER_DEPRECATED - user-generated deprecation warnings ; ; Common Values: ; E_ALL & ~E_NOTICE (Show all errors, except for notices and coding standards warnings.) ; E_ALL & ~E_NOTICE | E_STRICT (Show all errors, except for notices) ; E_COMPILE_ERROR|E_RECOVERABLE_ERROR|E_ERROR|E_CORE_ERROR (Show only errors) ; E_ALL | E_STRICT (Show all errors, warnings and notices including coding standards.) ; Default Value: E_ALL & ~E_NOTICE ; Development Value: E_ALL | E_STRICT ; Production Value: E_ALL & ~E_DEPRECATED ; http://php.net/error-reporting error_reporting = E_ALL & ~E_NOTICE & ~E_DEPRECATED ; This directive controls whether or not and where PHP will output errors, ; notices and warnings too. Error output is very useful during development, but ; it could be very dangerous in production environments. Depending on the code ; which is triggering the error, sensitive information could potentially leak ; out of your application such as database usernames and passwords or worse. ; It's recommended that errors be logged on production servers rather than ; having the errors sent to STDOUT. ; Possible Values: ; Off = Do not display any errors ; stderr = Display errors to STDERR (affects only CGI/CLI binaries!) ; On or stdout = Display errors to STDOUT ; Default Value: On ; Development Value: On ; Production Value: Off ; http://php.net/display-errors display_errors = On ; The display of errors which occur during PHP's startup sequence are handled ; separately from display_errors. PHP's default behavior is to suppress those ; errors from clients. Turning the display of startup errors on can be useful in ; debugging configuration problems. But, it's strongly recommended that you ; leave this setting off on production servers. ; Default Value: Off ; Development Value: On ; Production Value: Off ; http://php.net/display-startup-errors display_startup_errors = On ; Besides displaying errors, PHP can also log errors to locations such as a ; server-specific log, STDERR, or a location specified by the error_log ; directive found below. While errors should not be displayed on productions ; servers they should still be monitored and logging is a great way to do that. ; Default Value: Off ; Development Value: On ; Production Value: On ; http://php.net/log-errors log_errors = Off ; Set maximum length of log_errors. In error_log information about the source is ; added. The default is 1024 and 0 allows to not apply any maximum length at all. ; http://php.net/log-errors-max-len log_errors_max_len = 1024 ; Do not log repeated messages. Repeated errors must occur in same file on same ; line unless ignore_repeated_source is set true. ; http://php.net/ignore-repeated-errors ignore_repeated_errors = Off ; Ignore source of message when ignoring repeated messages. When this setting ; is On you will not log errors with repeated messages from different files or ; source lines. ; http://php.net/ignore-repeated-source ignore_repeated_source = Off ; If this parameter is set to Off, then memory leaks will not be shown (on ; stdout or in the log). This has only effect in a debug compile, and if ; error reporting includes E_WARNING in the allowed list ; http://php.net/report-memleaks report_memleaks = On ; This setting is on by default. ;report_zend_debug = 0 ; Store the last error/warning message in $php_errormsg (boolean). Setting this value ; to On can assist in debugging and is appropriate for development servers. It should ; however be disabled on production servers. ; Default Value: Off ; Development Value: On ; Production Value: Off ; http://php.net/track-errors track_errors = Off ; Turn off normal error reporting and emit XML-RPC error XML ; http://php.net/xmlrpc-errors ;xmlrpc_errors = 0 ; An XML-RPC faultCode ;xmlrpc_error_number = 0 ; When PHP displays or logs an error, it has the capability of inserting html ; links to documentation related to that error. This directive controls whether ; those HTML links appear in error messages or not. For performance and security ; reasons, it's recommended you disable this on production servers. ; Note: This directive is hardcoded to Off for the CLI SAPI ; Default Value: On ; Development Value: On ; Production value: Off ; http://php.net/html-errors html_errors = On ; If html_errors is set On PHP produces clickable error messages that direct ; to a page describing the error or function causing the error in detail. ; You can download a copy of the PHP manual from http://php.net/docs ; and change docref_root to the base URL of your local copy including the ; leading '/'. You must also specify the file extension being used including ; the dot. PHP's default behavior is to leave these settings empty. ; Note: Never use this feature for production boxes. ; http://php.net/docref-root ; Examples ;docref_root = "/phpmanual/" ; http://php.net/docref-ext ;docref_ext = .html ; String to output before an error message. PHP's default behavior is to leave ; this setting blank. ; http://php.net/error-prepend-string ; Example: ;error_prepend_string = "<font color=#ff0000>" ; String to output after an error message. PHP's default behavior is to leave ; this setting blank. ; http://php.net/error-append-string ; Example: ;error_append_string = "</font>" ; Log errors to specified file. PHP's default behavior is to leave this value ; empty. ; http://php.net/error-log ; Example: ;error_log = php_errors.log ; Log errors to syslog (Event Log on NT, not valid in Windows 95). ;error_log = syslog ;error_log = "C:\xampp\apache\logs\php_error.log" ;;;;;;;;;;;;;;;;; ; Data Handling ; ;;;;;;;;;;;;;;;;; ; Note - track_vars is ALWAYS enabled ; The separator used in PHP generated URLs to separate arguments. ; PHP's default setting is "&". ; http://php.net/arg-separator.output ; Example: arg_separator.output = "&amp;" ; List of separator(s) used by PHP to parse input URLs into variables. ; PHP's default setting is "&

    Read the article

< Previous Page | 16 17 18 19 20