Search Results

Search found 546 results on 22 pages for 'nvarchar'.

Page 20/22 | < Previous Page | 16 17 18 19 20 21 22  | Next Page >

  • .Net SQL Parameter for String List Problem

    - by JK
    I am writing a C# program in which I send a query to SQL Server to be processed and a dataset returns. I am using parameters to pass information to the query before it is sent to SQL server. This works fine except in the situation below. The query looks like this: reportQuery = " Select * From tableName Where Account_Number in (@AccountNum); and Account_Date = @AccountDate "; The AccountDate parameter works find but not the AccountNum parameter. I need the final query to execute like this: Select * From tableName Where Account_Number in ('AX3456','YZYL123','ZZZ123'); and Account_Date = '1-Jan-2010' The problem is that I have these account numbers (actually text) in a C# string list. To feed it to the parameter, I have been declaring the parameter as a string. I turn the list into one string and feed it to the parameter. I think the problem is that I am feeding the paramater this: "'AX3456','YZYL123','ZZZ123'" when it wants this 'AX3456','YZYL123','ZZZ123' How do I get the string list into the query using a parameter and have it execute as shown above? This is how I am declaring and assigning the parameter. SqlParameter AccountNumsParam = new SqlParameter(); AccountNumsParam.ParameterName = "@AccountNums"; AccountNumsParam.SqlDbType = SqlDbType.NVarChar; AccountNumsParam.Value = AccountNumsString; FYI, AccountNumString == "'AX3456','YZYL123','ZZZ123'"

    Read the article

  • Insert Into Two SQL Tables From XML Maintaining Relationship

    - by Thx
    I am looking to insert records from xml into two different tables. For example <Root> <A> <AValue>1</AValue> <Children> <B> <BValue>2</BValue> </B> </Children> </A> </Root> Would insert a record into table A AID AValue # 1 also insert a record into table B BID AID BValue # #(Same as AID Above) 2 I have this DECLARE @idoc INT DECLARE @doc NVARCHAR(MAX) SET @doc = ' <Root> <A> <AValue>1</AValue> <Children> <B> <BValue>2</BValue> </B> </Children> </A> </Root> ' EXEC sp_xml_preparedocument @idoc OUTPUT, @doc CREATE TABLE #A ( AID INT IDENTITY(1, 1) , AValue INT ) INSERT INTO #A SELECT * FROM OPENXML (@idoc, '/Root/A',2) WITH (AValue INT ) CREATE TABLE #B ( BID INT IDENTITY(1, 1) , AID INT , BValue INT ) INSERT INTO #B SELECT * FROM OPENXML (@idoc, '/Root/A/Children/B',2) WITH ( AID INT, BValue INT ) SELECT * FROM #A SELECT * FROM #B DROP TABLE #A DROP TABLE #B Thanks!

    Read the article

  • Querying using table-valued parameter

    - by antmx
    I need help please with writing a sproc, it takes a table-valued parameter @Locations, whose Type is defined as follows: CREATE TYPE [dbo].[tvpLocation] AS TABLE( [CountryId] [int] NULL, [ResortName] [nvarchar](100) NULL, [Ordinal] [int] NOT NULL, PRIMARY KEY CLUSTERED ( [Ordinal] ASC )WITH (IGNORE_DUP_KEY = OFF) ) @Locations will contain at least 1 row. Each row WILL have a non-null CountryId, and MAY have a non-null ResortName. Each row will have a unique Ordinal, the first being 0. The combinations of CountryId and ResortName in @Locations will be unique. The sproc needs to search against the following table structure. The image can be seen better by right-clicking it and View Image, or similar depending on your browser. Now this is where I'm stuck, the sproc should be able to find Tours where: The Tour's 1st TourHotel (Ordinal 0) has the same CountryId (and ResortName if specified) of the 1st row of @Locations (Ordinal 0). And also if @Locations has 1 row, the Tour must have additional TourHotels, ALL of which must be in the remaining CountryIds (and ResortNames if specified) of these remaining @Locations rows. Edit This is the code I finally used, based on Anthony Faull's suggestion. Thank you so much Anthony: select distinct T.Id from tblTour T join tblTourHotel TH on TH.TourId = T.Id join tblHotel H ON H.Id = TH.HotelId JOIN @Locations L ON ( ( L.Ordinal = 0 AND TH.Ordinal = 0 ) OR ( L.Ordinal > 0 AND TH.Ordinal > 0 ) ) AND L.CountryId = H.CountryId AND ( L.ResortName = H.ResortName OR L.ResortName IS NULL ) cross apply( select COUNT(TH2.Id) AS [Count] FROM tblTourHotel TH2 where TH2.TourId = TH.TourId ) TourHotelCount where TourHotelCount.[Count] = @LocationCount group by T.Id, T.TourRef, T.Description, T.DepartureDate, T.NumNights, T.DepartureAirportId, T.DestinationAirportId, T.AirlineId, T.FEPrice having COUNT(distinct TH.Id) = @LocationCount

    Read the article

  • Sorting nested set by name while keep depth integrity

    - by wb
    I'm using the nested set model that'll later be used to build a sitemap for my web site. This is my table structure. create table departments ( id int identity(0, 1) primary key , lft int , rgt int , name nvarchar(60) ); insert into departments (lft, rgt, name) values (1, 10, 'departments'); insert into departments (lft, rgt, name) values (2, 3, 'd'); insert into departments (lft, rgt, name) values (4, 9, 'a'); insert into departments (lft, rgt, name) values (5, 6, 'b'); insert into departments (lft, rgt, name) values (7, 8, 'c'); How can I sort by depth as well as name? I can do select replicate('----', count(parent.name) - 1) + ' ' + node.name , count(parent.name) - 1 as depth , node.lft from departments node , departments parent where node.lft between parent.lft and parent.rgt group by node.name, node.lft order by depth asc, node.name asc; However, that does not match children with their parent for some reason. department lft rgt --------------------------- departments 0 1 ---- a 1 4 ---- d 1 2 -------- b 2 5 -------- c 2 7 As you can see, department 'd' has department 'a's children! Thank you.

    Read the article

  • How to emulate a BEFORE DELETE trigger in SQL Server 2005

    - by Mark
    Let's say I have three tables, [ONE], [ONE_TWO], and [TWO]. [ONE_TWO] is a many-to-many join table with only [ONE_ID and [TWO_ID] columns. There are foreign keys set up to link [ONE] to [ONE_TWO] and [TWO] to [ONE_TWO]. The FKs use the ON DELETE CASCADE option so that if either a [ONE] or [TWO] record is deleted, the associated [ONE_TWO] records will be automatically deleted as well. I want to have a trigger on the [TWO] table such that when a [TWO] record is deleted, it executes a stored procedure that takes a [ONE_ID] as a parameter, passing the [ONE_ID] values that were linked to the [TWO_ID] before the delete occurred: DECLARE @Statement NVARCHAR(max) SET @Statement = '' SELECT @Statement = @Statement + N'EXEC [MyProc] ''' + CAST([one_two].[one_id] AS VARCHAR(36)) + '''; ' FROM deleted JOIN [one_two] ON deleted.[two_id] = [one_two].[two_id] EXEC (@Statement) Clearly, I need a BEFORE DELETE trigger, but there is no such thing in SQL Server 2005. I can't use an INSTEAD OF trigger because of the cascading FK. I get the impression that if I use a FOR DELETE trigger, when I join [deleted] to [ONE_TWO] to find the list of [ONE_ID] values, the FK cascade will have already deleted the associated [ONE_TWO] records so I will never find any [ONE_ID] values. Is this true? If so, how can I achieve my objective? I'm thinking that I'd need to change the FK joining [TWO] to [ONE_TWO] to not use cascades and to do the delete from [ONE_TWO] manually in the trigger just before I manually delete the [TWO] records. But I'd rather not go through all that if there is a simpler way.

    Read the article

  • SQL Server: Why use shorter VARCHAR(n) fields?

    - by chryss
    It is frequently advised to choose database field sizes to be as narrow as possible. I am wondering to what degree this applies to SQL Server 2005 VARCHAR columns: Storing 10-letter English words in a VARCHAR(255) field will not take up more storage than in a VARCHAR(10) field. Are there other reasons to restrict the size of VARCHAR fields to stick as closely as possible to the size of the data? I'm thinking of Performance: Is there an advantage to using a smaller n when selecting, filtering and sorting on the data? Memory, including on the application side (C++)? Style/validation: How important do you consider restricting colunm size to force non-sensical data imports to fail (such as 200-character surnames)? Anything else? Background: I help data integrators with the design of data flows into a database-backed system. They have to use an API that restricts their choice of data types. For character data, only VARCHAR(n) with n <= 255 is available; CHAR, NCHAR, NVARCHAR and TEXT are not. We're trying to lay down some "good practices" rules, and the question has come up if there is a real detriment to using VARCHAR(255) even for data where real maximum sizes will never exceed 30 bytes or so. Typical data volumes for one table are 1-10 Mio records with up to 150 attributes. Query performance (SELECT, with frequently extensive WHERE clauses) and application-side retrieval performance are paramount.

    Read the article

  • SQL Server 05, which is optimal, LIKE %<term>% or CONTAINS() for searching large column

    - by Spud1
    I've got a function written by another developer which I am trying to modify for a slightly different use. It is used by a SP to check if a certain phrase exists in a text document stored in the DB, and returns 1 if the value is found or 0 if its not. This is the query: SELECT @mres=1 from documents where id=@DocumentID and contains(text, @search_term) The document contains mostly XML, and the search_term is a GUID formatted as an nvarchar(40). This seems to run quite slowly to me (taking 5-6 seconds to execute this part of the process), but in the same script file there is also this version of the above, commented out. SELECT @mres=1 from documents where id=@DocumentID and textlike '%' + @search_term + '%' This version runs MUCH quicker, taking 4ms compared to 15ms for the first example. So, my question is why use the first over the second? I assume this developer (who is no longer working with me) had a good reason, but at the moment I am struggling to find it.. Is it possibly something to do with the full text indexing? (this is a dev DB I am working with, so the production version may have better indexing..) I am not that clued up on FTI really so not quite sure at the moment. Thoughts/ideas?

    Read the article

  • Migrating SQL Server Databases – The DBA’s Checklist (Part 3)

    - by Sadequl Hussain
    Continuing from Part 2 of the Database Migration Checklist series: Step 10: Full-text catalogs and full-text indexing This is one area of SQL Server where people do not seem to take notice unless something goes wrong. Full-text functionality is a specialised area in database application development and is not usually implemented in your everyday OLTP systems. Nevertheless, if you are migrating a database that uses full-text indexing on one or more tables, you need to be aware a few points. First of all, SQL Server 2005 now allows full-text catalog files to be restored or attached along with the rest of the database. However, after migration, if you are unable to look at the properties of any full-text catalogs, you are probably better off dropping and recreating it. You may also get the following error messages along the way: Msg 9954, Level 16, State 2, Line 1 The Full-Text Service (msftesql) is disabled. The system administrator must enable this service. This basically means full text service is not running (disabled or stopped) in the destination instance. You will need to start it from the Configuration Manager. Similarly, if you get the following message, you will also need to drop and recreate the catalog and populate it. Msg 7624, Level 16, State 1, Line 1 Full-text catalog ‘catalog_name‘ is in an unusable state. Drop and re-create this full-text catalog. A full population of full-text indexes can be a time and resource intensive operation. Obviously you will want to schedule it for low usage hours if the database is restored in an existing production server. Also, bear in mind that any scheduled job that existed in the source server for populating the full text catalog (e.g. nightly process for incremental update) will need to be re-created in the destination. Step 11: Database collation considerations Another sticky area to consider during a migration is the collation setting. Ideally you would want to restore or attach the database in a SQL Server instance with the same collation. Although not used commonly, SQL Server allows you to change a database’s collation by using the ALTER DATABASE command: ALTER DATABASE database_name COLLATE collation_name You should not be using this command for no reason as it can get really dangerous.  When you change the database collation, it does not change the collation of the existing user table columns.  However the columns of every new table, every new UDT and subsequently created variables or parameters in code will use the new setting. The collation of every char, nchar, varchar, nvarchar, text or ntext field of the system tables will also be changed. Stored procedure and function parameters will be changed to the new collation and finally, every character-based system data type and user defined data types will also be affected. And the change may not be successful either if there are dependent objects involved. You may get one or multiple messages like the following: Cannot ALTER ‘object_name‘ because it is being referenced by object ‘dependent_object_name‘. That is why it is important to test and check for collation related issues. Collation also affects queries that use comparisons of character-based data.  If errors arise due to two sides of a comparison being in different collation orders, the COLLATE keyword can be used to cast one side to the same collation as the other. Continues…

    Read the article

  • SQL SERVER – How to Ignore Columnstore Index Usage in Query

    - by pinaldave
    Earlier I wrote about SQL SERVER – Fundamentals of Columnstore Index and very first question I received in email was as following. “We are using SQL Server 2012 CTP3 and so far so good. In our data warehouse solution we have created 1 non-clustered columnstore index on our large fact table. We have very unique situation but your article did not cover it. We are running few queries on our fact table which is working very efficiently but there is one query which earlier was running very fine but after creating this non-clustered columnstore index this query is running very slow. We dropped the columnstore index and suddenly this one query is running fast but other queries which were benefited by this columnstore index it is running slow. Any workaround in this situation?” In summary the question in simple words “How can we ignore using columnstore index in selective queries?” Very interesting question – you can use I can understand there may be the cases when columnstore index is not ideal and needs to be ignored the same. You can use the query hint IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX to ignore the columnstore index. SQL Server Engine will use any other index which is best after ignoring the columnstore index. Here is the quick script to prove the same. We will first create sample database and then create columnstore index on the same. Once columnstore index is created we will write simple query. This query will use columnstore index. We will then show the usage of the query hint. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO Now we have created columnstore index so if we run following query it will use for sure the same index. -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO We can specify Query Hint IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX as described in following query and it will not use columnstore index. -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID OPTION (IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX) GO Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO Again, make sure that you use hint sparingly and understanding the proper implication of the same. Make sure that you test it with and without hint and select the best option after review of your administrator. Here is the question for you – have you started to use SQL Server 2012 for your validation and development (not on production)? It will be interesting to know the answer. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Updating Data in A Columnstore Index

    - by pinaldave
    So far I have written two articles on Columnstore Indexes, and both of them got very interesting readership. In fact, just recently I got a query on my previous article on Columnstore Index. Read the following two articles to get familiar with the Columnstore Index. They will give you a reference to the question which was asked by a certain reader: SQL SERVER – Fundamentals of Columnstore Index SQL SERVER – How to Ignore Columnstore Index Usage in Query Here is the reader’s question: ” When I tried to update my table after creating the Columnstore index, it gives me an error. What should I do?” When the Columnstore index is created on the table, the table becomes Read-Only table and it does not let any insert/update/delete on the table. The basic understanding is that Columnstore Index will be created on the table that is very huge and holds lots of data. If a table is small enough, there is no need to create a Columnstore index. The regular index should just help it. The reason why Columnstore index was needed is because the table was so big that retrieving the data was taking a really, really long time. Now, updating such a huge table is always a challenge by itself. If the Columnstore Index is created on the table, and the table needs to be updated, you need to know that there are various ways to update it. The easiest way is to disable the Index and enable it. Consider the following code: USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO -- Attempt to Update the table UPDATE [dbo].[MySalesOrderDetail] SET OrderQty = OrderQty +1 WHERE [SalesOrderID] = 43659 GO /* It will throw following error Msg 35330, Level 15, State 1, Line 2 UPDATE statement failed because data cannot be updated in a table with a columnstore index. Consider disabling the columnstore index before issuing the UPDATE statement, then rebuilding the columnstore index after UPDATE is complete. */ A similar error also shows up for Insert/Delete function. Here is the workaround. Disable the Columnstore Index and performance update, enable the Columnstore Index: -- Disable the Columnstore Index ALTER INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] DISABLE GO -- Attempt to Update the table UPDATE [dbo].[MySalesOrderDetail] SET OrderQty = OrderQty +1 WHERE [SalesOrderID] = 43659 GO -- Rebuild the Columnstore Index ALTER INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] REBUILD GO This time it will not throw an error while the update of the table goes successfully. Let us do a cleanup of our tables using this code: -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO In the next post we will see how we can use Partition to update the Columnstore Index. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Index, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Database Mirroring on SQL Server Express Edition

    - by Most Valuable Yak (Rob Volk)
    Like most SQL Server users I'm rather frustrated by Microsoft's insistence on making the really cool features only available in Enterprise Edition.  And it really doesn't help that they changed the licensing for SQL 2012 to be core-based, so now it's like 4 times as expensive!  It almost makes you want to go with Oracle.  That, and a desire to have Larry Ellison do things to your orifices. And since they've introduced Availability Groups, and marked database mirroring as deprecated, you'd think they'd make make mirroring available in all editions.  Alas…they don't…officially anyway.  Thanks to my constant poking around in places I'm not "supposed" to, I've discovered the low-level code that implements database mirroring, and found that it's available in all editions! It turns out that the query processor in all SQL Server editions prepends a simple check before every edition-specific DDL statement: IF CAST(SERVERPROPERTY('Edition') as nvarchar(max)) NOT LIKE '%e%e%e% Edition%' print 'Lame' else print 'Cool' If that statement returns true, it fails. (the print statements are just placeholders)  Go ahead and test it on Standard, Workgroup, and Express editions compared to an Enterprise or Developer edition instance (which support everything). Once again thanks to Argenis Fernandez (b | t) and his awesome sessions on using Sysinternals, I was able to watch the exact process SQL Server performs when setting up a mirror.  Surprisingly, it's not actually implemented in SQL Server!  Some of it is, but that's something of a smokescreen, the real meat of it is simple filesystem primitives. The NTFS filesystem supports links, both hard links and symbolic, so that you can create two entries for the same file in different directories and/or different names.  You can create them using the MKLINK command in a command prompt: mklink /D D:\SkyDrive\Data D:\Data mklink /D D:\SkyDrive\Log D:\Log This creates a symbolic link from my data and log folders to my Skydrive folder.  Any file saved in either location will instantly appear in the other.  And since my Skydrive will be automatically synchronized with the cloud, any changes I make will be copied instantly (depending on my internet bandwidth of course). So what does this have to do with database mirroring?  Well, it seems that the mirroring endpoint that you have to create between mirror and principal servers is really nothing more than a Skydrive link.  Although it doesn't actually use Skydrive, it performs the same function.  So in effect, the following statement: ALTER DATABASE Mir SET PARTNER='TCP://MyOtherServer.domain.com:5022' Is turned into: mklink /D "D:\Data" "\\MyOtherServer.domain.com\5022$" The 5022$ "port" is actually a hidden system directory on the principal and mirror servers. I haven't quite figured out how the log files are included in this, or why you have to SET PARTNER on both principal and mirror servers, except maybe that mklink has to do something special when linking across servers.  I couldn't get the above statement to work correctly, but found that doing mklink to a local Skydrive folder gave me similar functionality. To wrap this up, all you have to do is the following: Install Skydrive on both SQL Servers (principal and mirror) and set the local Skydrive folder (D:\SkyDrive in these examples) On the principal server, run mklink /D on the data and log folders to point to SkyDrive: mklink /D D:\SkyDrive\Data D:\Data On the mirror server, run the complementary linking: mklink /D D:\Data D:\SkyDrive\Data Create your database and make sure the files map to the principal data and log folders (D:\Data and D:\Log) Viola! Your databases are kept in sync on multiple servers! One wrinkle you will encounter is that the mirror server will show the data and log files, but you won't be able to attach them to the mirror SQL instance while they are attached to the principal. I think this is a bug in the Skydrive, but as it turns out that's fine: you can't access a mirror while it's hosted on the principal either.  So you don't quite get automatic failover, but you can attach the files to the mirror if the principal goes offline.  It's also not exactly synchronous, but it's better than nothing, and easier than either replication or log shipping with a lot less latency. I will end this with the obvious "not supported by Microsoft" and "Don't do this in production without an updated resume" spiel that you should by now assume with every one of my blog posts, especially considering the date.

    Read the article

  • Setup MSSQL replication with peer to peer topology: problem setting up Conflict Detection

    - by Roel
    Hi, I'm setting up a SQL Replication strategy, using MSSQL2008 with peer-to-peer publications (2 servers, each one subscribes to the other). I followed this HOWTO from MSDN, and the setup seems to be working fine: add a record to one table on server A, query on server B shows the new record. So far, so good. So far I only have one table 'Templates': Id PK (calculated field) NodeId int default 1/2 (Server A = 1, Server B = 2) LocalId int autoid Name nvarchar(100) Now, I would like to enable 'Conflict detection', which should be enabled by default. But every time I try to save the 'Conflict Detection' feature in the Publication Properties I get the following error: Cannot save Peer conflict detection properties. An exception occurred while executing a Transact-SQL statement or batch.(Microsoft.SqlServer.ConnectionInfo) Program Location: at Microsoft.SqlServer.Management.Common.ServerConnection.ExecuteNonQuery(String sqlCommand, ExecutionTypes executionType) at Microsoft.SqlServer.Management.Common.ServerConnection.ExecuteNonQuery(String sqlCommand) at Microsoft.SqlServer.Replication.ReplicationObject.ExecCommand(String commandIn) at Microsoft.SqlServer.Replication.TransPublication.SetPeerConflictDetection(Boolean enablePeerConflictDetection, Int32 peerOriginatorID) at Microsoft.SqlServer.Management.UI.PubPropSubscriptionOptions.SaveP2PConflictDetection() at Microsoft.SqlServer.Management.UI.PubPropSubscriptionOptions.SaveProperties(ExecutionMode& executionResult) Column name 'Id' does not exist in the target table or view. Changed database context to 'TestDB'. (.Net SqlClient Data Provider) For help, click: http://go.microsoft.com/fwlink?ProdName=Microsoft+SQL+Server&ProdVer=10.00.2531&EvtSrc=MSSQLServer&EvtID=1911&LinkId=20476 Server Name: SERVER_A Error Number: 1911 Severity: 16 State: 1 Line Number: 2 Program Location: at System.Data.SqlClient.SqlConnection.OnError(SqlException exception, Boolean breakConnection) at System.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception, Boolean breakConnection) at System.Data.SqlClient.TdsParser.ThrowExceptionAndWarning(TdsParserStateObject stateObj) at System.Data.SqlClient.TdsParser.Run(RunBehavior runBehavior, SqlCommand cmdHandler, SqlDataReader dataStream, BulkCopySimpleResultSet bulkCopyHandler, TdsParserStateObject stateObj) at System.Data.SqlClient.SqlCommand.RunExecuteNonQueryTds(String methodName, Boolean async) at System.Data.SqlClient.SqlCommand.InternalExecuteNonQuery(DbAsyncResult result, String methodName, Boolean sendToPipe) at System.Data.SqlClient.SqlCommand.ExecuteNonQuery() at Microsoft.SqlServer.Management.Common.ServerConnection.ExecuteNonQuery(String sqlCommand, ExecutionTypes executionType) Now, I googled the hell out of this error, and nothing shows up. I also can't seem to find out what the exact target table of the error "Column name 'Id' does not exist..." is. Has anyone every done this successfully? Am I missing something? Having this setup without conflict detection feels pretty useless... EDIT OK, so after some more research and setting up with different databases etc, I found out that the calculated 'Id' column of the Templates table is the culprit. I don't know why, but the replication doesn't seem to allow calculated columns (which are also primary key). It works now too, without the 'Id' column, and using the NodeId and LocalId as a combined PK. So now the question is, why isn't it allowed to have a calculated column as PK for replication with conflict detection?

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • SSAS: Using fake dimension and scopes for dynamic ranges

    - by DigiMortal
    In one of my BI projects I needed to find count of objects in income range. Usual solution with range dimension was useless because range where object belongs changes in time. These ranges depend on calculation that is done over incomes measure so I had really no option to use some classic solution. Thanks to SSAS forums I got my problem solved and here is the solution. The problem – how to create dynamic ranges? I have two dimensions in SSAS cube: one for invoices related to objects rent and the other for objects. There is measure that sums invoice totals and two calculations. One of these calculations performs some computations based on object income and some other object attributes. Second calculation uses first one to define income ranges where object belongs. What I need is query that returns me how much objects there are in each group. I cannot use dimension for range because on one date object may belong to one range and two days later to another income range. By example, if object is not rented out for two days it makes no money and it’s income stays the same as before. If object is rented out after two days it makes some income and this income may move it to another income range. Solution – fake dimension and scopes Thanks to Gerhard Brueckl from pmOne I got everything work fine after some struggling with BI Studio. The original discussion he pointed out can be found from SSAS official forums thread Create a banding dimension that groups by a calculated measure. Solution was pretty simple by nature – we have to define fake dimension for our range and use scopes to assign values for object count measure. Object count measure is primitive – it just counts objects and that’s it. We will use it to find out how many objects belong to one or another range. We also need table for fake ranges and we have to fill it with ranges used in ranges calculation. After creating the table and filling it with ranges we can add fake range dimension to our cube. Let’s see now how to solve the problem step-by-step. Solving the problem Suppose you have ranges calculation defined like this: CASE WHEN [Measures].[ComplexCalc] < 0 THEN 'Below 0'WHEN [Measures].[ComplexCalc] >=0 AND  [Measures].[ComplexCalc] <=50 THEN '0 - 50'...END Let’s create now new table to our analysis database and name it as FakeIncomeRange. Here is the definition for table: CREATE TABLE [FakeIncomeRange] (     [range_id] [int] IDENTITY(1,1) NOT NULL,     [range_name] [nvarchar](50) NOT NULL,     CONSTRAINT [pk_fake_income_range] PRIMARY KEY CLUSTERED      (         [range_id] ASC     ) ) Don’t forget to fill this table with range labels you are using in ranges calculation. To use ranges from table we have to add this table to our data source view and create new dimension. We cannot bind this table to other tables but we have to leave it like it is. Our dimension has two attributes: ID and Name. The next thing to create is calculation that returns objects count. This calculation is also fake because we override it’s values for all ranges later. Objects count measure can be defined as calculation like this: COUNT([Object].[Object].[Object].members) Now comes the most crucial part of our solution – defining the scopes. Based on data used in this posting we have to define scope for each of our ranges. Here is the example for first range. SCOPE([FakeIncomeRange].[Name].&[Below 0], [Measures].[ObjectCount])     This=COUNT(            FILTER(                [Object].[Object].[Object].members,                 [Measures].[ComplexCalc] < 0          )     ) END SCOPE To get these scopes defined in cube we need MDX script blocks for each line given here. Take a look at the screenshot to get better idea what I mean. This example is given from SQL Server books online to avoid conflicts with NDA. :) From previous example the lines (MDX scripts) are: Line starting with SCOPE Block for This = Line with END SCOPE And now it is time to deploy and process our cube. Although you may see examples where there are semicolons in the end of statements you don’t need them. Visual Studio BI tools generate separate command from each script block so you don’t need to worry about it.

    Read the article

  • Creating packages in code – Execute SQL Task

    The Execute SQL Task is for obvious reasons very well used, so I thought if you are building packages in code the chances are you will be using it. Using the task basic features of the task are quite straightforward, add the task and set some properties, just like any other. When you start interacting with variables though it can be a little harder to grasp so these samples should see you through. Some of these more advanced features are explained in much more detail in our ever popular post The Execute SQL Task, here I’ll just be showing you how to implement them in code. The abbreviated code blocks below demonstrate the different features of the task. The complete code has been encapsulated into a sample class which you can download (ExecSqlPackage.cs). Each feature described has its own method in the sample class which is mentioned after the code block. This first sample just shows adding the task, setting the basic properties for a connection and of course an SQL statement. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Set required properties taskHost.Properties["Connection"].SetValue(taskHost, sqlConnection.ID); taskHost.Properties["SqlStatementSource"].SetValue(taskHost, "SELECT * FROM sysobjects"); For the full version of this code, see the CreatePackage method in the sample class. The AddSqlConnection method is a helper method that adds an OLE-DB connection to the package, it is of course in the sample class file too. Returning a single value with a Result Set The following sample takes a different approach, getting a reference to the ExecuteSQLTask object task itself, rather than just using the non-specific TaskHost as above. Whilst it means we need to add an extra reference to our project (Microsoft.SqlServer.SQLTask) it makes coding much easier as we have compile time validation of any property and types we use. For the more complex properties that is very valuable and saves a lot of time during development. The query has also been changed to return a single value, one row and one column. The sample shows how we can return that value into a variable, which we also add to our package in the code. To do this manually you would set the Result Set property on the General page to Single Row and map the variable on the Result Set page in the editor. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, "localhost", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Add variable to hold result value package.Variables.Add("Variable", false, "User", 0); // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = 'sysrowsets'"; // Set single row result set task.ResultSetType = ResultSetType.ResultSetType_SingleRow; // Add result set binding, map the id column to variable task.ResultSetBindings.Add(); IDTSResultBinding resultBinding = task.ResultSetBindings.GetBinding(0); resultBinding.ResultName = "id"; resultBinding.DtsVariableName = "User::Variable"; For the full version of this code, see the CreatePackageResultVariable method in the sample class. The other types of Result Set behaviour are just a variation on this theme, set the property and map the result binding as required. Parameter Mapping for SQL Statements This final example uses a parameterised SQL statement, with the coming from a variable. The syntax varies slightly between connection types, as explained in the Working with Parameters and Return Codes in the Execute SQL Taskhelp topic, but OLE-DB is the most commonly used, for which a question mark is the parameter value placeholder. Package package = new Package(); // Add the SQL OLE-DB connection ConnectionManager sqlConnection = AddSqlConnection(package, ".", "master"); // Add the SQL Task package.Executables.Add("STOCK:SQLTask"); // Get the task host wrapper TaskHost taskHost = package.Executables[0] as TaskHost; // Get the task object ExecuteSQLTask task = taskHost.InnerObject as ExecuteSQLTask; // Set core properties task.Connection = sqlConnection.Name; task.SqlStatementSource = "SELECT id FROM sysobjects WHERE name = ?"; // Add variable to hold parameter value package.Variables.Add("Variable", false, "User", "sysrowsets"); // Add input parameter binding task.ParameterBindings.Add(); IDTSParameterBinding parameterBinding = task.ParameterBindings.GetBinding(0); parameterBinding.DtsVariableName = "User::Variable"; parameterBinding.ParameterDirection = ParameterDirections.Input; parameterBinding.DataType = (int)OleDBDataTypes.VARCHAR; parameterBinding.ParameterName = "0"; parameterBinding.ParameterSize = 255; For the full version of this code, see the CreatePackageParameterVariable method in the sample class. You’ll notice the data type has to be specified for the parameter IDTSParameterBinding .DataType Property, and these type codes are connection specific too. My enumeration I wrote several years ago is shown below was probably done by reverse engineering a package and also the API header file, but I recently found a very handy post that covers more connections as well for exactly this, Setting the DataType of IDTSParameterBinding objects (Execute SQL Task). /// <summary> /// Enumeration of OLE-DB types, used when mapping OLE-DB parameters. /// </summary> private enum OleDBDataTypes { BYTE = 0x11, CURRENCY = 6, DATE = 7, DB_VARNUMERIC = 0x8b, DBDATE = 0x85, DBTIME = 0x86, DBTIMESTAMP = 0x87, DECIMAL = 14, DOUBLE = 5, FILETIME = 0x40, FLOAT = 4, GUID = 0x48, LARGE_INTEGER = 20, LONG = 3, NULL = 1, NUMERIC = 0x83, NVARCHAR = 130, SHORT = 2, SIGNEDCHAR = 0x10, ULARGE_INTEGER = 0x15, ULONG = 0x13, USHORT = 0x12, VARCHAR = 0x81, VARIANT_BOOL = 11 } Download Sample code ExecSqlPackage.cs (10KB)

    Read the article

  • SQL SERVER – Fundamentals of Columnstore Index

    - by pinaldave
    There are two kind of storage in database. Row Store and Column Store. Row store does exactly as the name suggests – stores rows of data on a page – and column store stores all the data in a column on the same page. These columns are much easier to search – instead of a query searching all the data in an entire row whether the data is relevant or not, column store queries need only to search much lesser number of the columns. This means major increases in search speed and hard drive use. Additionally, the column store indexes are heavily compressed, which translates to even greater memory and faster searches. I am sure this looks very exciting and it does not mean that you convert every single index from row store to column store index. One has to understand the proper places where to use row store or column store indexes. Let us understand in this article what is the difference in Columnstore type of index. Column store indexes are run by Microsoft’s VertiPaq technology. However, all you really need to know is that this method of storing data is columns on a single page is much faster and more efficient. Creating a column store index is very easy, and you don’t have to learn new syntax to create them. You just need to specify the keyword “COLUMNSTORE” and enter the data as you normally would. Keep in mind that once you add a column store to a table, though, you cannot delete, insert or update the data – it is READ ONLY. However, since column store will be mainly used for data warehousing, this should not be a big problem. You can always use partitioning to avoid rebuilding the index. A columnstore index stores each column in a separate set of disk pages, rather than storing multiple rows per page as data traditionally has been stored. The difference between column store and row store approaches is illustrated below: In case of the row store indexes multiple pages will contain multiple rows of the columns spanning across multiple pages. In case of column store indexes multiple pages will contain multiple single columns. This will lead only the columns needed to solve a query will be fetched from disk. Additionally there is good chance that there will be redundant data in a single column which will further help to compress the data, this will have positive effect on buffer hit rate as most of the data will be in memory and due to same it will not need to be retrieved. Let us see small example of how columnstore index improves the performance of the query on a large table. As a first step let us create databaseset which is large enough to show performance impact of columnstore index. The time taken to create sample database may vary on different computer based on the resources. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 Now let us do quick performance test. I have kept STATISTICS IO ON for measuring how much IO following queries take. In my test first I will run query which will use regular index. We will note the IO usage of the query. After that we will create columnstore index and will measure the IO of the same. -- Performance Test -- Comparing Regular Index with ColumnStore Index USE AdventureWorks GO SET STATISTICS IO ON GO -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO -- Table 'MySalesOrderDetail'. Scan count 1, logical reads 342261, physical reads 0, read-ahead reads 0. -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO -- Select Table with Columnstore Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO It is very clear from the results that query is performance extremely fast after creating ColumnStore Index. The amount of the pages it has to read to run query is drastically reduced as the column which are needed in the query are stored in the same page and query does not have to go through every single page to read those columns. If we enable execution plan and compare we can see that column store index performance way better than regular index in this case. Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO In future posts we will see cases where Columnstore index is not appropriate solution as well few other tricks and tips of the columnstore index. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Simple Example of Incremental Statistics – Performance improvements in SQL Server 2014 – Part 2

    - by Pinal Dave
    This is the second part of the series Incremental Statistics. Here is the index of the complete series. What is Incremental Statistics? – Performance improvements in SQL Server 2014 – Part 1 Simple Example of Incremental Statistics – Performance improvements in SQL Server 2014 – Part 2 DMV to Identify Incremental Statistics – Performance improvements in SQL Server 2014 – Part 3 In part 1 we have understood what is incremental statistics and now in this second part we will see a simple example of incremental statistics. This blog post is heavily inspired from my friend Balmukund’s must read blog post. If you have partitioned table and lots of data, this feature can be specifically very useful. Prerequisite Here are two things you must know before you start with the demonstrations. AdventureWorks – For the demonstration purpose I have installed AdventureWorks 2012 as an AdventureWorks 2014 in this demonstration. Partitions – You should know how partition works with databases. Setup Script Here is the setup script for creating Partition Function, Scheme, and the Table. We will populate the table based on the SalesOrderDetails table from AdventureWorks. -- Use Database USE AdventureWorks2014 GO -- Create Partition Function CREATE PARTITION FUNCTION IncrStatFn (INT) AS RANGE LEFT FOR VALUES (44000, 54000, 64000, 74000) GO -- Create Partition Scheme CREATE PARTITION SCHEME IncrStatSch AS PARTITION [IncrStatFn] TO ([PRIMARY], [PRIMARY], [PRIMARY], [PRIMARY], [PRIMARY]) GO -- Create Table Incremental_Statistics CREATE TABLE [IncrStatTab]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [ModifiedDate] [datetime] NOT NULL) ON IncrStatSch(SalesOrderID) GO -- Populate Table INSERT INTO [IncrStatTab]([SalesOrderID], [SalesOrderDetailID], [CarrierTrackingNumber], [OrderQty], [ProductID], [SpecialOfferID], [UnitPrice],   [UnitPriceDiscount], [ModifiedDate]) SELECT     [SalesOrderID], [SalesOrderDetailID], [CarrierTrackingNumber], [OrderQty], [ProductID], [SpecialOfferID], [UnitPrice],   [UnitPriceDiscount], [ModifiedDate] FROM       [Sales].[SalesOrderDetail] WHERE      SalesOrderID < 54000 GO Check Details Now we will check details in the partition table IncrStatSch. -- Check the partition SELECT * FROM sys.partitions WHERE OBJECT_ID = OBJECT_ID('IncrStatTab') GO You will notice that only a few of the partition are filled up with data and remaining all the partitions are empty. Now we will create statistics on the Table on the column SalesOrderID. However, here we will keep adding one more keyword which is INCREMENTAL = ON. Please note this is the new keyword and feature added in SQL Server 2014. It did not exist in earlier versions. -- Create Statistics CREATE STATISTICS IncrStat ON [IncrStatTab] (SalesOrderID) WITH FULLSCAN, INCREMENTAL = ON GO Now we have successfully created statistics let us check the statistical histogram of the table. Now let us once again populate the table with more data. This time the data are entered into a different partition than earlier populated partition. -- Populate Table INSERT INTO [IncrStatTab]([SalesOrderID], [SalesOrderDetailID], [CarrierTrackingNumber], [OrderQty], [ProductID], [SpecialOfferID], [UnitPrice],   [UnitPriceDiscount], [ModifiedDate]) SELECT     [SalesOrderID], [SalesOrderDetailID], [CarrierTrackingNumber], [OrderQty], [ProductID], [SpecialOfferID], [UnitPrice],   [UnitPriceDiscount], [ModifiedDate] FROM       [Sales].[SalesOrderDetail] WHERE      SalesOrderID > 54000 GO Let us check the status of the partition once again with following script. -- Check the partition SELECT * FROM sys.partitions WHERE OBJECT_ID = OBJECT_ID('IncrStatTab') GO Statistics Update Now here has the new feature come into action. Previously, if we have to update the statistics, we will have to FULLSCAN the entire table irrespective of which partition got the data. However, in SQL Server 2014 we can just specify which partition we want to update in terms of Statistics. Here is the script for the same. -- Update Statistics Manually UPDATE STATISTICS IncrStatTab (IncrStat) WITH RESAMPLE ON PARTITIONS(3, 4) GO Now let us check the statistics once again. -- Show Statistics DBCC SHOW_STATISTICS('IncrStatTab', IncrStat) WITH HISTOGRAM GO Upon examining statistics histogram, you will notice that now the distribution has changed and there is way more rows in the histogram. Summary The new feature of Incremental Statistics is indeed a boon for the scenario where there are partitions and statistics needs to be updated frequently on the partitions. In earlier version to update statistics one has to do FULLSCAN on the entire table which was wasting too many resources. With the new feature in SQL Server 2014, now only those partitions which are significantly changed can be specified in the script to update statistics. Cleanup You can clean up the database by executing following scripts. -- Clean up DROP TABLE [IncrStatTab] DROP PARTITION SCHEME [IncrStatSch] DROP PARTITION FUNCTION [IncrStatFn] GO Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SQL Statistics, Statistics

    Read the article

  • Performing a clean database creation using msbuild

    - by Robert May
    So I’m taking a break from writing about other Agile stuff for a post. :)  I’m still going to get back to the other subjects, but this is fun too. Something I’ve done quite a bit of is MSBuild and CI work.  I’m experimenting with ways to improve what I’ve done in the past, particularly around database CI. Today, I developed a mechanism for starting from scratch with your database.  By scratch, I mean blowing away the existing database and creating it again from a single command line call.  I’m a firm believer that developers should be able to get to a known clean state at the database level with a single command and that they should be operating off of their own isolated database to improve productivity.  These scripts will help that. Here’s how I did it.  First, we have to disconnect users.  I did so using the help of a script from sql server central.  Note that I’m using sqlcmd variable replacement. -- kills all the users in a particular database -- dlhatheway/3M, 11-Jun-2000 declare @arg_dbname sysname declare @a_spid smallint declare @msg varchar(255) declare @a_dbid int set @arg_dbname = '$(DatabaseName)' select @a_dbid = sdb.dbid from master..sysdatabases sdb where sdb.name = @arg_dbname declare db_users insensitive cursor for select sp.spid from master..sysprocesses sp where sp.dbid = @a_dbid open db_users fetch next from db_users into @a_spid while @@fetch_status = 0 begin select @msg = 'kill '+convert(char(5),@a_spid) print @msg execute (@msg) fetch next from db_users into @a_spid end close db_users deallocate db_users GO Once all users are booted from the database, we can commence with recreating the database.  I generated the script that is used to create a database from SQL Server management studio, so I’m only going to show the bits that weren’t generated that are important.  There are a bunch of Alter Database statements that aren’t shown. First, I had to find the default location of the database files in the install, since they can be in many different locations.  I used Method 1 from a technet blog and then modified it a bit to do what I needed to do.  I ended up using dynamic SQL because for the life of me, I couldn’t get the “Filename” property to not return an error when I used anything besides a string.  I’m dropping the database first, if it exists.  Here’s the code:   IF EXISTS(SELECT 1 FROM [master].[sys].[databases] WHERE [name] = N'$(DatabaseName)') BEGIN drop database $(DatabaseName) END; go IF EXISTS(SELECT 1 FROM [master].[sys].[databases] WHERE [name] = 'zzTempDBForDefaultPath') BEGIN DROP DATABASE zzTempDBForDefaultPath END; -- Create temp database. Because no options are given, the default data and --- log path locations are used CREATE DATABASE zzTempDBForDefaultPath; DECLARE @Default_Data_Path VARCHAR(512), @Default_Log_Path VARCHAR(512); --Get the default data path SELECT @Default_Data_Path = ( SELECT LEFT(physical_name,LEN(physical_name)-CHARINDEX('\',REVERSE(physical_name))+1) FROM sys.master_files mf INNER JOIN sys.[databases] d ON mf.[database_id] = d.[database_id] WHERE d.[name] = 'zzTempDBForDefaultPath' AND type = 0); --Get the default Log path SELECT @Default_Log_Path = ( SELECT LEFT(physical_name,LEN(physical_name)-CHARINDEX('\',REVERSE(physical_name))+1) FROM sys.master_files mf INNER JOIN sys.[databases] d ON mf.[database_id] = d.[database_id] WHERE d.[name] = 'zzTempDBForDefaultPath' AND type = 1); --Clean up. IF EXISTS(SELECT 1 FROM [master].[sys].[databases] WHERE [name] = 'zzTempDBForDefaultPath') BEGIN DROP DATABASE zzTempDBForDefaultPath END; DECLARE @SQL nvarchar(max) SET @SQL= 'CREATE DATABASE $(DatabaseName) ON PRIMARY ( NAME = N''$(DatabaseName)'', FILENAME = N''' + @Default_Data_Path + N'$(DatabaseName)' + '.mdf' + ''', SIZE = 2048KB , FILEGROWTH = 1024KB ) LOG ON ( NAME = N''$(DatabaseName)Log'', FILENAME = N''' + @Default_Log_Path + N'$(DatabaseName)' + '.ldf' + ''', SIZE = 1024KB , FILEGROWTH = 10%) ' exec (@SQL) GO And with that, your database is created.  You can run these scripts on any server and on any database name.  To do that, I created an MSBuild script that looks like this: <Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0"> <PropertyGroup> <DatabaseName>MyDatabase</DatabaseName> <Server>localhost</Server> <SqlCmd>sqlcmd -v DatabaseName=$(DatabaseName) -S $(Server) -i </SqlCmd> <ScriptDirectory>.\Scripts</ScriptDirectory> </PropertyGroup> <Target Name ="Rebuild"> <ItemGroup> <ScriptFiles Include="$(ScriptDirectory)\*.sql"/> </ItemGroup> <Exec Command="$(SqlCmd) &quot;%(ScriptFiles.Identity)&quot;" ContinueOnError="false"/> </Target> </Project> Note that the Scripts directory is underneath the directory where I’m running the msbuild command and is relative to that directory.  Note also that the target is using batching to run each script in the scripts subdirectory, one after the other.  Each script is passed to the sqlcmd command line execution using the .Identity property on the itemgroup that is created.  This target file is saved in the file “Database.target”. To make this work, you’ll need msbuild in your path, and then run the following command: msbuild database.target /target:Rebuild Once you’ve got your virgin database setup, you’d then need to use a tool like dbdeploy.net to determine that it was a virgin database, build a change script based on the change scripts, and then you’d want another sqlcmd call to update the database with the appropriate scripts.  I’m doing that next, so I’ll post a blog update when I’ve got it working. Technorati Tags: MSBuild,Agile,CI,Database

    Read the article

  • To Bit or Not To Bit

    - by Johnm
    'Twas a long day of troubleshooting and firefighting and now, with most of the office vacant, you face a blank scripting window to create a new table in his database. Many questions circle your mind like dirty water gurgling down the bathtub drain: "How normalized should this table be?", "Should I use an identity column?", "NVarchar or Varchar?", "Should this column be NULLABLE?", "I wonder what apple blue cheese bacon cheesecake tastes like?" Well, there are times when the mind goes it's own direction. A Bit About Bit At some point during your table creation efforts you will encounter the decision of whether to use the bit data type for a column. The bit data type is an integer data type that recognizes only the values of 1, 0 and NULL as valid. This data type is often utilized to store yes/no or true/false values. An example of its use would be a column called [IsGasoline] which would be intended to contain the value of 1 if the row's subject (a car) had a gasoline engine and a 0 if the subject did not have a gasoline engine. The bit data type can even be found in some of the system tables of SQL Server. For example, the sysssispackages table in the msdb database which contains SQL Server Integration Services Package information for the packages stored in SQL Server. This table contains a column called [IsEncrypted]. A value of 1 indicates that the package has been encrypted while the value of 0 indicates that it is not. I have learned that the most effective way to disperse the crowd that surrounds the office coffee machine is to engage into SQL Server debates. The bit data type has been one of the most reoccurring, as well as the most enjoyable, of these topics. It contains a practical side and a philosophical side. Practical Consideration This data type certainly has its place and is a valuable option for database design; but it is often used in situations where the answer is really not a pure true/false response. In addition, true/false values are not very informative or scalable. Let's use the previously noted [IsGasoline] column for illustration. While on the surface it appears to be a rather simple question when evaluating a car: "Does the car have a gasoline engine?" If the person entering data is entering a row for a Jeep Liberty, the response would be a 1 since it has a gasoline engine. If the person is entering data is entering a row for a Chevrolet Volt, the response would be a 0 since it is an electric engine. What happens when a person is entering a row for the gasoline/electric hybrid Toyota Prius? Would one person's conclusion be consistent with another person's conclusion? The argument could be made that the current intent for the database is to be used only for pure gasoline and pure electric engines; but this is where the scalability issue comes into play. With the use of a bit data type a database modification and data conversion would be required if the business decided to take on hybrid engines. Whereas, alternatively, if the int data type were used as a foreign key to a reference table containing the engine type options, the change to include the hybrid option would only require an entry into the reference table. Philosophical Consideration Since the bit data type is often used for true/false or yes/no data (also called Boolean) it presents a philosophical conundrum of what to do about the allowance of the NULL value. The inclusion of NULL in a true/false or yes/no response simply violates the logical principle of bivalence which states that "every proposition is either true or false". If NULL is not true, then it must be false. The mathematical laws of Boolean logic support this concept by stating that the only valid values of this scenario are 1 and 0. There is another way to look at this conundrum: NULL is also considered to be the absence of a response. In other words, it is the equivalent to "undecided". Anyone who watches the news can tell you that polls always include an "undecided" option. This could be considered a valid option in the world of yes/no/dunno. Through out all of these considerations I have discovered one absolute certainty: When you have found a person, or group of persons, who are willing to entertain a philosophical debate of the bit data type, you have found some true friends.

    Read the article

  • Working with packed dates in SSIS

    - by Jim Giercyk
    One of the challenges recently thrown my way was to read an EBCDIC flat file, decode packed dates, and insert the dates into a SQL table.  For those unfamiliar with packed data, it is a way to store data at the nibble level (half a byte), and was often used by mainframe programmers to conserve storage space.  In the case of my input file, the dates were 2 bytes long and  represented the number of days that have past since 01/01/1950.  My first thought was, in the words of Scooby, Hmmmmph?  But, I love a good challenge, so I dove in. Reading in the flat file was rather simple.  The only difference between reading an EBCDIC and an ASCII file is the Code Page option in the connection manager.  In my case, I needed to use Code Page 1140 for EBCDIC (I could have also used Code Page 37).       Once the code page is set correctly, SSIS can understand what it is reading and it will convert the output to the default code page, 1252.  However, packed data is either unreadable or produces non-alphabetic characters, as we can see in the preview window.   Column 1 is actually the packed date, columns 0 and 2 are the values in the rest of the file.  We are only interested in Column 1, which is a 2 byte field representing a packed date.  We know that 2 bytes of packed data can be stored in 1 byte of character data, so we are working with 4 packed digits in 2 character bytes.  If you are confused, stay tuned….this will make sense in a minute.   Right-click on your Flat File Source shape and select “Show Advanced Editor”. Here is where the magic begins. By changing the properties of the output columns, we can access the packed digits from each byte. By default, the Output Column data type is DT_STR. Since we want to look at the bytes individually and not the entire string, change the data type to DT_BYTES. Next, and most important, set UseBinaryFormat to TRUE. This will write the HEX VALUES of the output string instead of writing the character values.  Now we are getting somewhere! Next, you will need to use a Data Conversion shape in your Data Flow to transform the 2 position byte stream to a 4 position Unicode string containing the packed data.  You need the string to be 4 bytes long because it will contain the 4 packed digits.  Here is what that should look like in the Data Conversion shape: Direct the output of your data flow to a test table or file to see the results.  In my case, I created a test table.  The results looked like this:     Hold on a second!  That doesn't look like a date at all.  No, of course not.  It is a hex number which represents the days which have passed between 01/01/1950 and the date.  We have to convert the Hex value to a decimal value, and use the DATEADD function to get a date value.  Luckily, I have created a function to convert Hex to Decimal:   -- ============================================= -- Author:        Jim Giercyk -- Create date: March, 2012 -- Description:    Converts a Hex string to a decimal value -- ============================================= CREATE FUNCTION [dbo].[ftn_HexToDec] (     @hexValue NVARCHAR(6) ) RETURNS DECIMAL AS BEGIN     -- Declare the return variable here DECLARE @decValue DECIMAL IF @hexValue LIKE '0x%' SET @hexValue = SUBSTRING(@hexValue,3,4) DECLARE @decTab TABLE ( decPos1 VARCHAR(2), decPos2 VARCHAR(2), decPos3 VARCHAR(2), decPos4 VARCHAR(2) ) DECLARE @pos1 VARCHAR(1) = SUBSTRING(@hexValue,1,1) DECLARE @pos2 VARCHAR(1) = SUBSTRING(@hexValue,2,1) DECLARE @pos3 VARCHAR(1) = SUBSTRING(@hexValue,3,1) DECLARE @pos4 VARCHAR(1) = SUBSTRING(@hexValue,4,1) INSERT @decTab VALUES (CASE               WHEN @pos1 = 'A' THEN '10'                 WHEN @pos1 = 'B' THEN '11'               WHEN @pos1 = 'C' THEN '12'               WHEN @pos1 = 'D' THEN '13'               WHEN @pos1 = 'E' THEN '14'               WHEN @pos1 = 'F' THEN '15'               ELSE @pos1              END, CASE               WHEN @pos2 = 'A' THEN '10'                 WHEN @pos2 = 'B' THEN '11'               WHEN @pos2 = 'C' THEN '12'               WHEN @pos2 = 'D' THEN '13'               WHEN @pos2 = 'E' THEN '14'               WHEN @pos2 = 'F' THEN '15'               ELSE @pos2              END, CASE               WHEN @pos3 = 'A' THEN '10'                 WHEN @pos3 = 'B' THEN '11'               WHEN @pos3 = 'C' THEN '12'               WHEN @pos3 = 'D' THEN '13'               WHEN @pos3 = 'E' THEN '14'               WHEN @pos3 = 'F' THEN '15'               ELSE @pos3              END, CASE               WHEN @pos4 = 'A' THEN '10'                 WHEN @pos4 = 'B' THEN '11'               WHEN @pos4 = 'C' THEN '12'               WHEN @pos4 = 'D' THEN '13'               WHEN @pos4 = 'E' THEN '14'               WHEN @pos4 = 'F' THEN '15'               ELSE @pos4              END) SET @decValue = (CONVERT(INT,(SELECT decPos4 FROM @decTab)))         +                 (CONVERT(INT,(SELECT decPos3 FROM @decTab))*16)      +                 (CONVERT(INT,(SELECT decPos2 FROM @decTab))*(16*16)) +                 (CONVERT(INT,(SELECT decPos1 FROM @decTab))*(16*16*16))     RETURN @decValue END GO     Making use of the function, I found the decimal conversion, added that number of days to 01/01/1950 and FINALLY arrived at my “unpacked relative date”.  Here is the query I used to retrieve the formatted date, and the result set which was returned: SELECT [packedDate] AS 'Hex Value',        dbo.ftn_HexToDec([packedDate]) AS 'Decimal Value',        CONVERT(DATE,DATEADD(day,dbo.ftn_HexToDec([packedDate]),'01/01/1950'),101) AS 'Relative String Date'   FROM [dbo].[Output Table]         This technique can be used any time you need to retrieve the hex value of a character string in SSIS.  The date example may be a bit difficult to understand at first, but with SSIS becoming the preferred tool for enterprise level integration for many companies, there is no doubt that developers will encounter these types of requirements with regularity in the future. Please feel free to contact me if you have any questions.

    Read the article

  • Coping with infrastructure upgrades

    - by Fatherjack
    A common topic for questions on SQL Server forums is how to plan and implement upgrades to SQL Server. Moving from old to new hardware or moving from one version of SQL Server to another. There are other circumstances where upgrades of other systems affect SQL Server DBAs. For example, where I work at the moment there is an Microsoft Exchange (email) server upgrade in progress. It it being handled by a different team so I’m not wholly sure on the details but we are in a situation where there are currently 2 Exchange email servers – the old one and the new one. Users mail boxes are being transferred in a planned process but as we approach the old server being turned off we have to also make sure that our SQL Servers get updated to use the new SMTP server for all of the SQL Agent notifications, SSIS packages etc. My servers have a number of profiles so that various jobs can send emails on behalf of various departments and different systems. This means there are lots of places that the old server name needs to be replaced by the new one. Anyone who has set up DBMail and enjoyed the click-tastic odyssey of screens to create Profiles and Accounts and so on and so forth ought to seek some professional help in my opinion. It’s a nightmare of back and forth settings changes and it stinks. I wasn’t looking forward to heading into this mess of a UI and changing the old Exchange server name for the new one on all my SQL Instances for all of the accounts I have set up. So I did what any Englishmen with a shed would do, I decided to take it apart and see if I can fix it another way. I took a guess that we are going to be working in MSDB and Books OnLine was remarkably helpful and amongst a lot of information told me about a couple of procedures that can be used to interrogate DBMail settings. USE [msdb] -- It's where all the good stuff is kept GO EXEC dbo.sysmail_help_profile_sp; EXEC dbo.sysmail_help_account_sp; Both of these procedures take optional parameters with the same name – ID and Name. If you provide an ID or a name then the results you get back are for that specific Profile or Account. Otherwise you get details of all Profiles and Accounts on the server you are connected to. As you can see (click for a bigger image), the Account has the SMTP server information in the servername column. We want to change that value to NewSMTP.Contoso.com. Now it appears that the procedure we are looking at gets it’s data from the sysmail_account and sysmail_server tables, you can get the results the stored procedure provides if you run the code below. SELECT [account_id] , [name] , [description] , [email_address] , [display_name] , [replyto_address] , [last_mod_datetime] , [last_mod_user] FROM dbo.sysmail_account AS sa; SELECT [account_id] , [servertype] , [servername] , [port] , [username] , [credential_id] , [use_default_credentials] , [enable_ssl] , [flags] , [last_mod_datetime] , [last_mod_user] , [timeout] FROM dbo.sysmail_server AS sms Now, we have no real idea how these tables are linked and whether making an update direct to one or other of them is going to do what we want or whether it will entirely cripple our ability to send email from SQL Server so we wont touch those tables with any UPDATE TSQL. So, back to Books OnLine then and we find sysmail_update_account_sp. It’s exactly what we need. The examples in BOL take the form (as below) of having every parameter explicitly defined. Not wanting to totally obliterate the existing values by not passing values in all of the parameters I set to writing some code to gather the existing data from the tables and re-write the SMTP server name and then execute the resulting TSQL. IF OBJECT_ID('tempdb..#sysmailprofiles') IS NOT NULL DROP TABLE #sysmailprofiles GO CREATE TABLE #sysmailprofiles ( account_id INT , [name] VARCHAR(50) , [description] VARCHAR(500) , email_address VARCHAR(500) , display_name VARCHAR(500) , replyto_address VARCHAR(500) , servertype VARCHAR(10) , servername VARCHAR(100) , port INT , username VARCHAR(100) , use_default_credentials VARCHAR(1) , ENABLE_ssl VARCHAR(1) ) INSERT [#sysmailprofiles] ( [account_id] , [name] , [description] , [email_address] , [display_name] , [replyto_address] , [servertype] , [servername] , [port] , [username] , [use_default_credentials] , [ENABLE_ssl] ) EXEC [dbo].[sysmail_help_account_sp] DECLARE @TSQL NVARCHAR(1000) SELECT TOP 1 @TSQL = 'EXEC [dbo].[sysmail_update_account_sp] @account_id = ' + CAST([s].[account_id] AS VARCHAR(20)) + ', @account_name = ''' + [s].[name] + '''' + ', @email_address = N''' + [s].[email_address] + '''' + ', @display_name = N''' + [s].[display_name] + '''' + ', @replyto_address = N''' + s.replyto_address + '''' + ', @description = N''' + [s].[description] + '''' + ', @mailserver_name = ''NEWSMTP.contoso.com''' + +', @mailserver_type = ' + [s].[servertype] + ', @port = ' + CAST([s].[port] AS VARCHAR(20)) + ', @username = ' + COALESCE([s].[username], '''''') + ', @use_default_credentials =' + CAST(s.[use_default_credentials] AS VARCHAR(1)) + ', @enable_ssl =' + [s].[ENABLE_ssl] FROM [#sysmailprofiles] AS s WHERE [s].[servername] = 'SMTP.Contoso.com' SELECT @tsql EXEC [sys].[sp_executesql] @tsql This worked well for me and testing the email function EXEC dbo.sp_send_dbmail afterwards showed that the settings were indeed using our new Exchange server. It was only later in writing this blog that I tried running the sysmail_update_account_sp procedure with only the SMTP server name parameter value specified. Despite what Books OnLine might intimate, you can do this and only the values for parameters specified get changed. If a parameter is not specified in the execution of the procedure then the values remain unchanged. This renders most of the above script unnecessary as I could have simply specified the account_id that I want to amend and the new value for the parameter I want to update. EXEC sysmail_update_account_sp @account_id = 1, @mailserver_name = 'NEWSMTP.Contoso.com' This wasn’t going to be the main reason for this post, it was meant to describe how to capture values from a stored procedure and use them in dynamic TSQL but instead we are here and (re)learning the fact that Books Online is a little flawed in places. It is a fantastic resource for anyone working with SQL Server but the reader must adopt an enquiring frame of mind and use a little curiosity to try simple variations on examples to fully understand the code you are working with. I think the author(s) of this part of Books OnLine missed an opportunity to include a third example that had fewer than all parameters specified to give a lead to this method existing.

    Read the article

  • Null Values And The T-SQL IN Operator

    - by Jesse
    I came across some unexpected behavior while troubleshooting a failing test the other day that took me long enough to figure out that I thought it was worth sharing here. I finally traced the failing test back to a SELECT statement in a stored procedure that was using the IN t-sql operator to exclude a certain set of values. Here’s a very simple example table to illustrate the issue: Customers CustomerId INT, NOT NULL, Primary Key CustomerName nvarchar(100) NOT NULL SalesRegionId INT NULL   The ‘SalesRegionId’ column contains a number representing the sales region that the customer belongs to. This column is nullable because new customers get created all the time but assigning them to sales regions is a process that is handled by a regional manager on a periodic basis. For the purposes of this example, the Customers table currently has the following rows: CustomerId CustomerName SalesRegionId 1 Customer A 1 2 Customer B NULL 3 Customer C 4 4 Customer D 2 5 Customer E 3   How could we write a query against this table for all customers that are NOT in sales regions 2 or 4? You might try something like this: 1: SELECT 2: CustomerId, 3: CustomerName, 4: SalesRegionId 5: FROM Customers 6: WHERE SalesRegionId NOT IN (2,4)   Will this work? In short, no; at least not in the way that you might expect. Here’s what this query will return given the example data we’re working with: CustomerId CustomerName SalesRegionId 1 Customer A 1 5 Customer E 5   I was expecting that this query would also return ‘Customer B’, since that customer has a NULL SalesRegionId. In my mind, having a customer with no sales region should be included in a set of customers that are not in sales regions 2 or 4.When I first started troubleshooting my issue I made note of the fact that this query should probably be re-written without the NOT IN clause, but I didn’t suspect that the NOT IN clause was actually the source of the issue. This particular query was only one minor piece in a much larger process that was being exercised via an automated integration test and I simply made a poor assumption that the NOT IN would work the way that I thought it should. So why doesn’t this work the way that I thought it should? From the MSDN documentation on the t-sql IN operator: If the value of test_expression is equal to any value returned by subquery or is equal to any expression from the comma-separated list, the result value is TRUE; otherwise, the result value is FALSE. Using NOT IN negates the subquery value or expression. The key phrase out of that quote is, “… is equal to any expression from the comma-separated list…”. The NULL SalesRegionId isn’t included in the NOT IN because of how NULL values are handled in equality comparisons. From the MSDN documentation on ANSI_NULLS: The SQL-92 standard requires that an equals (=) or not equal to (<>) comparison against a null value evaluates to FALSE. When SET ANSI_NULLS is ON, a SELECT statement using WHERE column_name = NULL returns zero rows even if there are null values in column_name. A SELECT statement using WHERE column_name <> NULL returns zero rows even if there are nonnull values in column_name. In fact, the MSDN documentation on the IN operator includes the following blurb about using NULL values in IN sub-queries or expressions that are used with the IN operator: Any null values returned by subquery or expression that are compared to test_expression using IN or NOT IN return UNKNOWN. Using null values in together with IN or NOT IN can produce unexpected results. If I were to include a ‘SET ANSI_NULLS OFF’ command right above my SELECT statement I would get ‘Customer B’ returned in the results, but that’s definitely not the right way to deal with this. We could re-write the query to explicitly include the NULL value in the WHERE clause: 1: SELECT 2: CustomerId, 3: CustomerName, 4: SalesRegionId 5: FROM Customers 6: WHERE (SalesRegionId NOT IN (2,4) OR SalesRegionId IS NULL)   This query works and properly includes ‘Customer B’ in the results, but I ultimately opted to re-write the query using a LEFT OUTER JOIN against a table variable containing all of the values that I wanted to exclude because, in my case, there could potentially be several hundred values to be excluded. If we were to apply the same refactoring to our simple sales region example we’d end up with: 1: DECLARE @regionsToIgnore TABLE (IgnoredRegionId INT) 2: INSERT @regionsToIgnore values (2),(4) 3:  4: SELECT 5: c.CustomerId, 6: c.CustomerName, 7: c.SalesRegionId 8: FROM Customers c 9: LEFT OUTER JOIN @regionsToIgnore r ON r.IgnoredRegionId = c.SalesRegionId 10: WHERE r.IgnoredRegionId IS NULL By performing a LEFT OUTER JOIN from Customers to the @regionsToIgnore table variable we can simply exclude any rows where the IgnoredRegionId is null, as those represent customers that DO NOT appear in the ignored regions list. This approach will likely perform better if the number of sales regions to ignore gets very large and it also will correctly include any customers that do not yet have a sales region.

    Read the article

  • Separating text strings into a table of individual words in SQL via XML.

    - by Phil Factor
    p.MsoNormal {margin-top:0cm; margin-right:0cm; margin-bottom:10.0pt; margin-left:0cm; line-height:115%; font-size:11.0pt; font-family:"Calibri","sans-serif"; } Nearly nine years ago, Mike Rorke of the SQL Server 2005 XML team blogged ‘Querying Over Constructed XML Using Sub-queries’. I remember reading it at the time without being able to think of a use for what he was demonstrating. Just a few weeks ago, whilst preparing my article on searching strings, I got out my trusty function for splitting strings into words and something reminded me of the old blog. I’d been trying to think of a way of using XML to split strings reliably into words. The routine I devised turned out to be slightly slower than the iterative word chop I’ve always used in the past, so I didn’t publish it. It was then I suddenly remembered the old routine. Here is my version of it. I’ve unwrapped it from its obvious home in a function or procedure just so it is easy to appreciate. What it does is to chop a text string into individual words using XQuery and the good old nodes() method. I’ve benchmarked it and it is quicker than any of the SQL ways of doing it that I know about. Obviously, you can’t use the trick I described here to do it, because it is awkward to use REPLACE() on 1…n characters of whitespace. I’ll carry on using my iterative function since it is able to tell me the location of each word as a character-offset from the start, and also because this method leaves punctuation in (removing it takes time!). However, I can see other uses for this in passing lists as input or output parameters, or as return values.   if exists (Select * from sys.xml_schema_collections where name like 'WordList')   drop XML SCHEMA COLLECTION WordList go create xml schema collection WordList as ' <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:element name="words">        <xs:simpleType>               <xs:list itemType="xs:string" />        </xs:simpleType> </xs:element> </xs:schema>'   go   DECLARE @string VARCHAR(MAX) –we'll get some sample data from the great Ogden Nash Select @String='This is a song to celebrate banks, Because they are full of money and you go into them and all you hear is clinks and clanks, Or maybe a sound like the wind in the trees on the hills, Which is the rustling of the thousand dollar bills. Most bankers dwell in marble halls, Which they get to dwell in because they encourage deposits and discourage withdrawals, And particularly because they all observe one rule which woe betides the banker who fails to heed it, Which is you must never lend any money to anybody unless they don''t need it. I know you, you cautious conservative banks! If people are worried about their rent it is your duty to deny them the loan of one nickel, yes, even one copper engraving of the martyred son of the late Nancy Hanks; Yes, if they request fifty dollars to pay for a baby you must look at them like Tarzan looking at an uppity ape in the jungle, And tell them what do they think a bank is, anyhow, they had better go get the money from their wife''s aunt or ungle. But suppose people come in and they have a million and they want another million to pile on top of it, Why, you brim with the milk of human kindness and you urge them to accept every drop of it, And you lend them the million so then they have two million and this gives them the idea that they would be better off with four, So they already have two million as security so you have no hesitation in lending them two more, And all the vice-presidents nod their heads in rhythm, And the only question asked is do the borrowers want the money sent or do they want to take it withm. Because I think they deserve our appreciation and thanks, the jackasses who go around saying that health and happi- ness are everything and money isn''t essential, Because as soon as they have to borrow some unimportant money to maintain their health and happiness they starve to death so they can''t go around any more sneering at good old money, which is nothing short of providential. '   –we now turn it into XML declare @xml_data xml(WordList)  set @xml_data='<words>'+ replace(@string,'&', '&amp;')+'</words>'    select T.ref.value('.', 'nvarchar(100)')  from (Select @xml_data.query('                      for $i in data(/words) return                      element li { $i }               '))  A(list) cross apply A.List.nodes('/li') T(ref)     …which gives (truncated, of course)…

    Read the article

  • T-SQL selecting values that match ISNUMERIC and also are within a specified range. (plus Linq-to-sql

    - by Toby
    I am trying to select rows from a table where one of the (NVARCHAR) columns is within a numeric range. SELECT ID, Value FROM Data WHERE ISNUMERIC(Value) = 1 AND CONVERT(FLOAT, Value) < 66.6 Unfortunately as part of the SQL spec the AND clauses don't have to short circuit (and don't on MSSQL Server EE 2008). More info: http://stackoverflow.com/questions/789231/is-the-sql-where-clause-short-circuit-evaluated My next attempt was to try this to see if I could achieve delayed evaluation of the CONVERT SELECT ID, Value FROM Data WHERE (CASE WHEN ISNUMERIC(Value) = 1 THEN CONVERT(FLOAT, Value) < 66.6 ELSE 0 END) but I cannot seem to use a < (or any comparison) with the result of a CONVERT. It fails with the error Incorrect syntax near '<'. I can get away with SELECT ID, CONVERT(FLOAT, Value) AS Value FROM Data WHERE ISNUMERIC(Value) = 1 So the obvious solution is to wrap the whole select statement in another SELECT and WHERE and return the converted values from the inner select and filter in there where of the outer select. Unfortunately this is where my Linq-to-sql problem comes in. I am filtering not only by one range but potentialy by many, or just by the existance of the record (there are some date range selects and comparisons I've left out.) Essentially I would like to be able to generate something like this: SELECT ID, TypeID, Value FROM Data WHERE (TypeID = 4 AND ISNUMERIC(Value) AND CONVERT(Float, Value) < 66.6) OR (TypeID = 8 AND ISNUMERIC(Value) AND CONVERT(Float, Value) > 99) OR (TypeID = 9) (With some other clauses in each of those where options.) This clearly doesn't work if I filter out the non-ISNUMERIC values in an inner select. As I mentioned I am using Linq-to-sql (and PredicateBulider) to build up these queries but unfortunately Datas.Where(x => ISNUMERIC(x.Value) ? Convert.ToDouble(x.Value) < 66.6 : false) Gets converted to this which fails the initial problem. WHERE (ISNUMERIC([t0].[Value]) = 1) AND ((CONVERT(Float,[t0].[Value])) < @p0) My last resort will have to be to outer join against a double select on the same table for each of the comparisons but this isn't really an idea solution. I was wondering if anyone has run into similar issues before?

    Read the article

  • Getting results in a result set from dynamic SQL in Oracle

    - by msorens
    This question is similar to a couple others I have found on StackOverflow, but the differences are signficant enough to me to warrant a new question, so here it is: I want to obtain a result set from dynamic SQL in Oracle and then display it as a result set in a SqlDeveloper-like tool, just as if I had executed the dynamic SQL statement directly. This is straightforward in SQL Server, so to be concrete, here is an example from SQL Server that returns a result set in SQL Server Management Studio or Query Explorer: EXEC sp_executesql N'select * from countries' Or more properly: DECLARE @stmt nvarchar(100) SET @stmt = N'select * from countries' EXEC sp_executesql @stmt The question "How to return a resultset / cursor from a Oracle PL/SQL anonymous block that executes Dynamic SQL?" addresses the first half of the problem--executing dynamic SQL into a cursor. The question "How to make Oracle procedure return result sets" provides a similar answer. Web search has revealed many variations of the same theme, all addressing just the first half of my question. I found this post explaining how to do it in SqlDeveloper, but that uses a bit of functionality of SqlDeveloper. I am actually using a custom query tool so I need the solution to be self-contained in the SQL code. This custom query tool similarly does not have the capability to show output of print (dbms_output.put_line) statements; it only displays result sets. Here is yet one more possible avenue using 'execute immediate...bulk collect', but this example again renders the results with a loop of dbms_output.put_line statements. This link attempts to address the topic but the question never quite got answered there either. Assuming this is possible, I will add one more condition: I would like to do this without having to define a function or procedure (due to limited DB permissions). That is, I would like to execute a self-contained PL/SQL block containing dynamic SQL and return a result set in SqlDeveloper or a similar tool. So to summarize: I want to execute an arbitrary SQL statement (hence dynamic SQL). The platform is Oracle. The solution must be a PL/SQL block with no procedures or functions. The output must be generated as a canonical result set; no print statements. The output must render as a result set in SqlDeveloper without using any SqlDeveloper special functionality. Any suggestions?

    Read the article

< Previous Page | 16 17 18 19 20 21 22  | Next Page >