Search Results

Search found 533 results on 22 pages for 'velocity'.

Page 20/22 | < Previous Page | 16 17 18 19 20 21 22  | Next Page >

  • Fast, very lightweight algorithm for camera motion detection?

    - by Ertebolle
    I'm working on an augmented reality app for iPhone that involves a very processor-intensive object recognition algorithm (pushing the CPU at 100% it can get through maybe 5 frames per second), and in an effort to both save battery power and make the whole thing less "jittery" I'm trying to come up with a way to only run that object recognizer when the user is actually moving the camera around. My first thought was to simply use the iPhone's accelerometers / gyroscope, but in testing I found that very often people would move the iPhone at a consistent enough attitude and velocity that there wouldn't be any way to tell that it was still in motion. So that left the option of analyzing the actual video feed and detecting movement in that. I got OpenCV working and tried running their pyramidal Lucas-Kanade optical flow algorithm, which works well but seems to be almost as processor-intensive as my object recognizer - I can get it to an acceptable framerate if I lower the depth levels / downsample the image / track fewer points, but then accuracy suffers and it starts to miss some large movements and trigger on small hand-shaking-y ones. So my question is, is there another optical flow algorithm that's faster than Lucas-Kanade if I just want to detect the overall magnitude of camera movement? I don't need to track individual objects, I don't even need to know which direction the camera is moving, all I really need is a way to feed something two frames of video and have it tell me how far apart they are.

    Read the article

  • Free Fall Question

    - by Makenshi
    ok im gonna try my best to explain my problem i have this program where u can select 5 balls when u select one you can take it with you while you have the mouse button pressed and its within the ball radius. The problem is that i need a way to make the ball go up when the user stop pressing the mouse button like he sent it to float in the air then make it fall down again i have one way to know the time,velocity and thus the acceleration but i dont know how to implement it... right now i have this void Circulo::caida(float velocidad,float tiempo) { if(this->posY >= 580) { this->posY = 580; this->vcaida = 0.0f; } else if(this->posY < 580) { //this->distancia=9.81f * 0.5f*tiempo*tiempo; this->vcaida += velocidad; this->posY += this->vcaida; } } with this like this it just falls and i cant make the effect i tried to explain... thank you i hope someone can help me .< oh yeah im calculating the time like this just in case it helps difX=(x> evento.motion.xrel)? x-evento.motion.xrel : evento.motion.xrel-x; difY=(y> evento.motion.yrel)? y-evento.motion.yrel : evento.motion.yrel-y; and im sending difY as the time variable

    Read the article

  • Paddle Movement using Box2D

    - by Anubhav Sharma
    Hello everybody, I'm making a game like Arkanoid and to move the ship with mouse, I'm using the following code : var mousex:int = costume.stage.mouseX; if (mousex < paddleWidth/2) mousex = paddleWidth/2; else if (mousex > PhysiVals.STAGE_WIDTH - paddleWidth/2) mousex = PhysiVals.STAGE_WIDTH - paddleWidth / 2; var idealLocation:Point = new Point(mousex, ypos); var directionToTravel:b2Vec2 = new b2Vec2((idealLocation.x -> costume.x) * PhysiVals.paddleSpeed, idealLocation.y-costume.y); directionToTravel.Multiply(1 / PhysiVals.RATIO); directionToTravel.Multiply(30); body.SetLinearVelocity(directionToTravel); Everything's going fine there! The paddle is moving the way it should! The problem is I want a little inclination towards the direction its moving and when it stops moving the angle of inclination should become zero. I tried playing with the angular velocity but I have no real idea how to do this! So Please help!

    Read the article

  • 2D Platformer Collision Problems With Both Axes

    - by AusGat
    I'm working on a little 2D platformer/fighting game with C++ and SDL, and I'm having quite a bit of trouble with the collision detection. The levels are made up of an array of tiles, and I use a for loop to go through each one (I know it may not be the best way to do it, and I may need help with that too). For each side of the character, I move it one pixel in that direction and check for a collision (I also check to see if the character is moving in that direction). If there is a collision, I set the velocity to 0 and move the player to the edge of the tile. My problem is that if I check for horizontal collisions first, and the player moves vertically at more than one pixel per frame, it handles the horizontal collision and moves the character to the side of the tile even if the tile is below (or above) the character. If I handle vertical collision first, it does the same, except it does it for the horizontal axis. How can I handle collisions on both axes without having those problems? Is there any better way to handle collision than how I'm doing it?

    Read the article

  • FOSS ASP.Net Session Replication Solution?

    - by jsight
    I've been searching (with little success) for a free/opensource session clustering and replication solution for asp.net. I've run across the usual suspects (indexus sharedcache, memcached), however, each has some limitations. Indexus - Very immature, stubbed session interface implementation. Its otherwise a great caching solution, though. Memcached - Little replication/failover support without going to a db backend. Several SF.Net projects - All aborted in the early stages... nothing that appears to have any traction, and one which seems to have gone all commercial. Microsoft Velocity - Not OSS, but seems nice. Unfortunately, I didn't see where CTP1 supported failover, and there is no clear roadmap for this one. I fear that this one could fall off into the ether like many other MS dev projects. I am fairly used to the Java world where it is kind of taken for granted that many solutions to problems such as this will be available from the FOSS world. Are there any suitable alternatives available on the .Net world?

    Read the article

  • Matlab matrix translation and rotation multiple times

    - by pinnacler
    I have a map of individual trees from a forest stored as x,y points in a matrix. I call it fixedPositions. It's cartesian and (0,0) is the origin. I would like 0/360 degrees to be the top of the screen and 90 degrees to be to the right. Given a velocity and a heading, i.e. .5 m/s and 60 degrees (2 o'clock equivalent on a watch), how do I rotate that x,y points, so that the new origin is centered at (.5cos(60),.5sin(60)) and 60 degrees is now at the top of the screen? Then if I were to give you another heading and speed, i.e. 0 degrees and 2m/s, it should calculate it from the last point, not the original fixedPositions origin. I've wasted my day trying to figure this out. I wish I took matrix algebra but I'm at a loss. I tried doing cos(30) and even those wouldn't compute correctly, which after an hour I realize were in radians.

    Read the article

  • Boost Asio UDP retrieve last packet in socket buffer

    - by Alberto Toglia
    I have been messing around Boost Asio for some days now but I got stuck with this weird behavior. Please let me explain. Computer A is sending continuos udp packets every 500 ms to computer B, computer B desires to read A's packets with it own velocity but only wants A's last packet, obviously the most updated one. It has come to my attention that when I do a: mSocket.receive_from(boost::asio::buffer(mBuffer), mEndPoint); I can get OLD packets that were not processed (almost everytime). Does this make any sense? A friend of mine told me that sockets maintain a buffer of packets and therefore If I read with a lower frequency than the sender this could happen. ¡? So, the first question is how is it possible to receive the last packet and discard the ones I missed? Later I tried using the async example of the Boost documentation but found it did not do what I wanted. http://www.boost.org/doc/libs/1_36_0/doc/html/boost_asio/tutorial/tutdaytime6.html From what I could tell the async_receive_from should call the method "handle_receive" when a packet arrives, and that works for the first packet after the service was "run". If I wanted to keep listening the port I should call the async_receive_from again in the handle code. right? BUT what I found is that I start an infinite loop, it doesn't wait till the next packet, it just enters "handle_receive" again and again. I'm not doing a server application, a lot of things are going on (its a game), so my second question is, do I have to use threads to use the async receive method properly, is there some example with threads and async receive? Thanks for you attention.

    Read the article

  • Measuring time spent in application / thread

    - by Adamski
    I am writing a simulation in Java whereby objects act under Newtonian physics. An object may have a force applied to it and the resulting velocity causes it to move across the screen. The nature of the simulation means that objects move in discrete steps depending on the time ellapsed between the current and previous iteration of the animation loop; e.g public void animationLoop() { long prev = System.currentTimeMillis(); long now; while(true) { long now = System.currentTimeMillis(); long deltaMillis = now - prev; prev = now; if (deltaMillis > 0) { // Some time has passed for (Mass m : masses) { m.updatePosition(deltaMillis); } // Do all repaints. } } } A problem arises if the animation thread is delayed in some way causing a large amount of time to ellapse (the classic case being under Windows whereby clicking and holding on minimise / maximise prevents a repaint), which causes objects to move at an alarming rate. My question: Is there a way to determine the time spent in the animation thread rather than the wallclock time, or can anyone suggest a workaround to avoid this problem? My only thought so far is to contstrain deltaMillis by some upper bound.

    Read the article

  • Code Contracts: Do we have to specify Contract.Requires(...) statements redundantly in delegating me

    - by herzmeister der welten
    I'm intending to use the new .NET 4 Code Contracts feature for future development. This made me wonder if we have to specify equivalent Contract.Requires(...) statements redundantly in a chain of methods. I think a code example is worth a thousand words: public bool CrushGodzilla(string weapon, int velocity) { Contract.Requires(weapon != null); // long code return false; } public bool CrushGodzilla(string weapon) { Contract.Requires(weapon != null); // specify contract requirement here // as well??? return this.CrushGodzilla(weapon, int.MaxValue); } For runtime checking it doesn't matter much, as we will eventually always hit the requirement check, and we will get an error if it fails. However, is it considered bad practice when we don't specify the contract requirement here in the second overload again? Also, there will be the feature of compile time checking, and possibly also design time checking of code contracts. It seems it's not yet available for C# in Visual Studio 2010, but I think there are some languages like Spec# that already do. These engines will probably give us hints when we write code to call such a method and our argument currently can or will be null. So I wonder if these engines will always analyze a call stack until they find a method with a contract that is currently not satisfied? Furthermore, here I learned about the difference between Contract.Requires(...) and Contract.Assume(...). I suppose that difference is also to consider in the context of this question then?

    Read the article

  • In Scrum, should a team remove points from (defect) stories that don't result in a code change?

    - by CanIgtAW00tW00t
    My work uses a Scrum-like process to manage projects. I say Scrum-like, because we call it Scrum, but our project managers exclude aspects of Scrum that are inconvenient (most notably customer interaction). One of the stories in our current sprint was to correct a defect. After spending almost an entire day working on the issue, I determined the issue was the result of a permissions issue, so I didn't end up modifying any code. Our Scrum master / project manager decided that no code change equals zero points. I know that Scrum points are supposed to measure size / complexity and not time, but our Scrum master invests a lot of time in preparing graphs and statistical information from past sprints (average velocity, average points completed, etc.) I've always been of the opinion that for statistics to be meaningful in any way, the data must be as accurate as possible. All of our data is fuzzy to begin with, because, from time to time, we're encouraged by the Scrum master to "adjust" our size / complexity estimates, both increasing and decreasing them. I'd like to hear some other developers / Scrum team members thoughts on the merits of statistics based on past sprints, and also whether they think it's appropriate to "adjust" size / complexity estimates in the middle of a sprint, or the remove all points from a story all together for situations similar to what I've just described.

    Read the article

  • C# struct with an array

    - by Whitey
    I am making a game using C# with the XNA framework. The player is a 2D soldier on screen and the user is able to fire bullets. The bullets are stored in an array. I have looked into using Lists and arrays for this and I came to the conclusion that an array is a lot better for me, as there will be a lot of bullets firing and being destroyed at once, something that I read Lists don't handle so well. After reading through some posts on the XNA forums, this came to my attention: http://forums.xna.com/forums/p/16037/84353.aspx I have created a struct like so: // Bullets struct Bullet { Vector2 Position; Vector2 Velocity; float Rotation; Rectangle BoundingRect; bool Active; } And I made the array like this: Bullet[] bulletCollection = new Bullet[100]; But when I try to do some code like this: // Fire bullet if (mouseState.LeftButton == ButtonState.Pressed) { for (int i = 0; i < bulletCollection.Length; i++) { if (!bulletCollection[i].Active) { // something } } I get the following error: 'Zombie_Apocalypse.Game1.Bullet.Active' is inaccessible due to its protection level Can anyone lend a hand? I have no idea why this error is popping up, or even if I'm declaring the array properly or anything... as the post on the XNA forums doesn't go into detail about that. Thank you for any help you can provide. :)

    Read the article

  • ArrayIndexOutOfBoundsException trying to access data

    - by Eggy
    I am getting an array index out of bounds exception in the following code: for (int i=1; i<11; i++) { int a[][] = new int[10][3]; double LeftTrim = 1.0; double RightTrim = 1.0; a [i][0]=(int) (LeftTrim*((i)*25)); a [i][1]=(int) (RightTrim*((i)*25)); a [i][2]= 5000; //leftWheel, rightWheel, Milliseconds myf.setWheelVelocities(a[i][0], a[i][1], a[i][2]); JOptionPane.showMessageDialog(null, + (a [i][0] + a [i][1])/2 + "wheel velocities" + " | " + a [i][2] + " Milliseconds" + " Click OK to continue..."); } Every-time I reach the 9th increment Eclipse gives me the error "Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10" I have to test the velocity up to 250, but when I reach 225 and I click 'Ok' on 'Click ok to continue..." this error shows up! Am I going out of the array bounds or something? Thank you!

    Read the article

  • Heap Algorithmic Issue

    - by OberynMarDELL
    I am having this algorithmic problem that I want to discuss about. Its not about find a solution but about optimization in terms of runtime. So here it is: Suppose we have a race court of Length L and a total of N cars that participate on the race. The race rules are simple. Once a car overtakes an other car the second car is eliminated from the race. The race ends when no more overtakes are possible to happen. The tricky part is that the k'th car has a starting point x[k] and a velocity v[k]. The points are given in an ascending order, but the velocities may differ. What I've done so far: Given that a car can get overtaken only by its previous, I calculated the time that it takes for each car to reach its next one t = (x[i] - x[i+1])/(v[i] - v[i+1]) and I insert these times onto a min heap in O(n log n). So in theory I have to pop the first element in O(logn), find its previous, pop it as well , update its time and insert it in the heap once more, much like a priority queue. My main problem is how I can access specific points of a heap in O(log n) or faster in order to keep the complexity in O(n log n) levels. This program should be written on Haskell so I would like to keep things simple as far as possible EDIT: I Forgot to write the actual point of the race. The goal is to find the order in which cars exit the game

    Read the article

  • SQL inner join from field defined table?

    - by Wolftousen
    I have a, currently, a total of 6 tables that are part of this question. The primary table, tableA, contains columns that all the entries in the other 5 tables have in common. The other 5 tables have columns which define the entry in tableA in more detail. For example: TableA ID|Name|Volumn|Weight|Description 0 |T1 |0.4 |0.1 |Random text 1 |R1 |5.3 |25 |Random text TableB ID|Color|Shape 0 |Blue |Sphere TableC ID|Direction|Velocity 1 |North |3.4 (column names are just examples don't take them for what they mean...) The ID field in Table A is unique to all other tables (i.e. TableB will have 0, but TableC will not, nor any other Tables). What I would like to do is select all the fields from TableA and the corresponding (according to ID field) detail Table (TableB-F). What I have currently done and not tested is added a field to TableA so it looks like this: TableA ID|Name|Volumn|Weight|Description|Table 0 |T1 |0.4 |0.1 |Random text|TableB 1 |R1 |5.3 |25 |Random text|TableC I have a few questions about this: 1.Is it proper to do such a thing to TableA, as foreign keys wont work in this situation since they all need to link to different tables? 2.If this is proper, would the SQL query look like this (ID would be input by the user)? SELECT * FROM TableA AS a INNER JOIN a.Table AS t ON a.ID = ID; 3.Is there a better way to do this? Thanks for the help.

    Read the article

  • Fast Data: Go Big. Go Fast.

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 For those of you who may have missed it, today’s second full day of Oracle OpenWorld 2012 started with a rumpus. Joe Tucci, from EMC outlined the human face of big data with real examples of how big data is transforming our world. And no not the usual tried-and-true weblog examples, but real stories about taxi cab drivers in Singapore using big data to better optimize their routes as well as folks just trying to get a better hair cut. Next we heard from Thomas Kurian who talked at length about the important platform characteristics of Oracle’s Cloud and more specifically Oracle’s expanded Cloud Services portfolio. Especially interesting to our integration customers are the messaging support for Oracle’s Cloud applications. What this means is that now Oracle’s Cloud applications have a lightweight integration fabric that on-premise applications can communicate to it via REST-APIs using Oracle SOA Suite. It’s an important element to our strategy at Oracle that supports this idea that whether your requirements are for private or public, Oracle has a solution in the Cloud for all of your applications and we give you more deployment choice than any vendor. If this wasn’t enough to get the juices flowing, later that morning we heard from Hasan Rizvi who outlined in his Fusion Middleware session the four most important enterprise imperatives: Social, Mobile, Cloud, and a brand new one: Fast Data. Today, Rizvi made an important step in the definition of this term to explain that he believes it’s a convergence of four essential technology elements: Event Processing for event filtering, business rules – with Oracle Event Processing Data Transformation and Loading - with Oracle Data Integrator Real-time replication and integration – with Oracle GoldenGate Analytics and data discovery – with Oracle Business Intelligence Each of these four elements can be considered (and architect-ed) together on a single integrated platform that can help customers integrate any type of data (structured, semi-structured) leveraging new styles of big data technologies (MapReduce, HDFS, Hive, NoSQL) to process more volume and variety of data at a faster velocity with greater results.  Fast data processing (and especially real-time) has always been our credo at Oracle with each one of these products in Fusion Middleware. For example, Oracle GoldenGate continues to be made even faster with the recent 11g R2 Release of Oracle GoldenGate which gives us some even greater optimization to Oracle Database with Integrated Capture, as well as some new heterogeneity capabilities. With Oracle Data Integrator with Big Data Connectors, we’re seeing much improved performance by running MapReduce transformations natively on Hadoop systems. And with Oracle Event Processing we’re seeing some remarkable performance with customers like NTT Docomo. Check out their upcoming session at Oracle OpenWorld on Wednesday to hear more how this customer is using Event processing and Big Data together. If you missed any of these sessions and keynotes, not to worry. There's on-demand versions available on the Oracle OpenWorld website. You can also checkout our upcoming webcast where we will outline some of these new breakthroughs in Data Integration technologies for Big Data, Cloud, and Real-time in more details. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";}

    Read the article

  • 30 Steps to Master ASP.NET MVC Application development

    - by Rajesh Pillai
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Welcome Readers!,   I am starting out a new series on ASP.NET  MVC skill building which will be posted over the next couple of weeks.  Let me know your thoughts on the content, which I have planned and a couple of them has been taken from ASP.NET MVC2 Cookbook. (NOTE: Only the heading has been taken, the content will be not :)).   Do let me know what you would like to see, or any additional inputs or ideas to cover in this topics.  The 30 steps are oultined below for quick reference.  Will start filling this out quickly.   Outlined is the ‘30’ step to master ASP.NET MVC.   A Peek Into Model What is a model? Different types of model Presentation/ViewModel Model Mapping (AutoMapper)   A Peak into View How view works in ASP.NET MVC? View Engine Design Custom View Engine View Best Practices Templated Helpers Partial Views   A Peak into Controller Introduction Controller Design Controller Best Practices Asynchronous Controller Custom Action Result Action Filters Controller Factory to use with IOC   Routes Explanation Routes from the database Routes from XML More complex routing   Master Pages Basics Setting Master Page Dynamically   Working with data in the view Repeating Views Array of check boxes Array of radio buttons Paged data CRUD Client side action Confirmation Dialog (modal window) jqGrid   Working with Forms   Validation Model Validation with DataAnnotations Using the xVal validation framework Client side validation with jQuery Validation Fluent Validation Model Binders   Templating Create strongly typed helper using T4 Custom View Templates with T4 Create custom MVC project template using T4   IOC AutoFac Ninject Unity Application   Areas   jQuery, Ajax and jQuery Plugins   State Maintenance Application State User state Cookies Webfarm   Error Handling View error handling Controller error handling ELMAH (Error Logging Modules and Handlers)   Authentication and Authorization User Registration form SignOn Process Password Reminder Membership and Roles Windows authentication Restricting access to all pages Restricting access to selected pages Restricting access to pages by role Restricting access to a controller Restricting access to selected area   Profiles and Themes Using Profiles Inheriting a Profile Migrating an anonymous profile Creating custom themes Using themes User personalized themes   Configuration Adding custom application settings in web.config Displaying custom error messages Accessing other web.config configuration elements Adding custom configuration elements to web.config Encrypting web.config sections   Tracing, Debugging and Logging   Caching Caching a whole page Caching pages based on route details Caching pages based on browser type and version Caching pages based custom strings Caching partial pages Caching application data Object Caching Using Microsoft Velocity Using MemCache Using AppFabric cache   Localization   HTTP Handlers and Modules   Security XSS/CSRF AnitForgery Encoding   HtmlHelpers Strongly typed helpers Writing custom helpers   Repository Pattern (Data access)   WF/WCF   Unit Testing   Mocking Framework   Integration Testing   Load / Performance Testing   Deployment    Once again let me know your thoughts on this.   Till then, Enjoy MVC'ing!!!

    Read the article

  • Big Data – Operational Databases Supporting Big Data – Key-Value Pair Databases and Document Databases – Day 13 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Relational Database and NoSQL database in the Big Data Story. In this article we will understand the role of Key-Value Pair Databases and Document Databases Supporting Big Data Story. Now we will see a few of the examples of the operational databases. Relational Databases (Yesterday’s post) NoSQL Databases (Yesterday’s post) Key-Value Pair Databases (This post) Document Databases (This post) Columnar Databases (Tomorrow’s post) Graph Databases (Tomorrow’s post) Spatial Databases (Tomorrow’s post) Key Value Pair Databases Key Value Pair Databases are also known as KVP databases. A key is a field name and attribute, an identifier. The content of that field is its value, the data that is being identified and stored. They have a very simple implementation of NoSQL database concepts. They do not have schema hence they are very flexible as well as scalable. The disadvantages of Key Value Pair (KVP) database are that they do not follow ACID (Atomicity, Consistency, Isolation, Durability) properties. Additionally, it will require data architects to plan for data placement, replication as well as high availability. In KVP databases the data is stored as strings. Here is a simple example of how Key Value Database will look like: Key Value Name Pinal Dave Color Blue Twitter @pinaldave Name Nupur Dave Movie The Hero As the number of users grow in Key Value Pair databases it starts getting difficult to manage the entire database. As there is no specific schema or rules associated with the database, there are chances that database grows exponentially as well. It is very crucial to select the right Key Value Pair Database which offers an additional set of tools to manage the data and provides finer control over various business aspects of the same. Riak Rick is one of the most popular Key Value Database. It is known for its scalability and performance in high volume and velocity database. Additionally, it implements a mechanism for collection key and values which further helps to build manageable system. We will further discuss Riak in future blog posts. Key Value Databases are a good choice for social media, communities, caching layers for connecting other databases. In simpler words, whenever we required flexibility of the data storage keeping scalability in mind – KVP databases are good options to consider. Document Database There are two different kinds of document databases. 1) Full document Content (web pages, word docs etc) and 2) Storing Document Components for storage. The second types of the document database we are talking about over here. They use Javascript Object Notation (JSON) and Binary JSON for the structure of the documents. JSON is very easy to understand language and it is very easy to write for applications. There are two major structures of JSON used for Document Database – 1) Name Value Pairs and 2) Ordered List. MongoDB and CouchDB are two of the most popular Open Source NonRelational Document Database. MongoDB MongoDB databases are called collections. Each collection is build of documents and each document is composed of fields. MongoDB collections can be indexed for optimal performance. MongoDB ecosystem is highly available, supports query services as well as MapReduce. It is often used in high volume content management system. CouchDB CouchDB databases are composed of documents which consists fields and attachments (known as description). It supports ACID properties. The main attraction points of CouchDB are that it will continue to operate even though network connectivity is sketchy. Due to this nature CouchDB prefers local data storage. Document Database is a good choice of the database when users have to generate dynamic reports from elements which are changing very frequently. A good example of document usages is in real time analytics in social networking or content management system. Tomorrow In tomorrow’s blog post we will discuss about various other Operational Databases supporting Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Bridging Two Worlds: Big Data and Enterprise Data

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The big data world is all the vogue in today’s IT conversations. It’s a world of volume, velocity, variety – tantalizing us with its untapped potential. It’s a world of transformational game-changing technologies that have already begun to alter the information management landscape. One of the reasons that big data is so compelling is that it’s a universal challenge that impacts every one of us. Whether it is healthcare, financial, manufacturing, government, retail - big data presents a pressing problem for many industries: how can so much information be processed so quickly to deliver the ‘bigger’ picture? With big data we’re tapping into new information that didn’t exist before: social data, weblogs, sensor data, complex content, and more. What also makes big data revolutionary is that it turns traditional information architecture on its head, putting into question commonly accepted notions of where and how data should be aggregated processed, analyzed, and stored. This is where Hadoop and NoSQL come in – new technologies which solve new problems for managing unstructured data. And now for some worst practices that I'd recommend that you please not follow: Worst Practice Lesson 1: Throw away everything that you already know about data management, data integration tools, and start completely over. One shouldn’t forget what’s already running in today’s IT. Today’s Business Analytics, Data Warehouses, Business Applications (ERP, CRM, SCM, HCM), and even many social, mobile, cloud applications still rely almost exclusively on structured data – or what we’d like to call enterprise data. This dilemma is what today’s IT leaders are up against: what are the best ways to bridge enterprise data with big data? And what are the best strategies for dealing with the complexities of these two unique worlds? Worst Practice Lesson 2: Throw away all of your existing business applications … because they don’t run on big data yet. Bridging the two worlds of big data and enterprise data means considering solutions that are complete, based on emerging Hadoop technologies (as well as traditional), and are poised for success through integrated design tools, integrated platforms that connect to your existing business applications, as well as and support real-time analytics. Leveraging these types of best practices translates to improved productivity, lowered TCO, IT optimization, and better business insights. Worst Practice Lesson 3: Separate out [and keep separate] your big data sandboxes from all the current enterprise IT systems. Don’t mix sand among playgrounds. We didn't tell you that you wouldn't get dirty doing this. Correlation between the two worlds is key. The real advantage to analyzing big data comes when you can correlate it with the existing data in your data warehouse or your current applications to make sense of the larger patterns. If you have not followed these worst practices 1-3 then you qualify for the first step of our journey: bridging the two worlds of enterprise data and big data. Over the next several weeks we’ll be discussing this topic along with several others around big data as it relates to data integration. We welcome you to join us in the conversation by following us on twitter on #BridgingBigData or download our latest white paper and resource kit: Big Data and Enterprise Data: Bridging Two Worlds.

    Read the article

  • Move a sphere along the swipe?

    - by gameOne
    I am trying to get a sphere curl based on the swipe. I know this has been asked many times, but still it's yearning to be answered. I have managed to add force on the direction of the swipe and it works near perfect. I also have all the swipe positions stored in a list. Now I would like to know how can the curl be achieved. I believe the the curve in the swipe can be calculated by the Vector dot product If theta is 0, then there is no need to add the swipe. If it is not, then add the curl. Maybe this condition is redundant if I managed to find how to curl the sphere along the swipe position The code that adds the force to sphere based on the swipe direction is as below: using UnityEngine; using System.Collections; using System.Collections.Generic; public class SwipeControl : MonoBehaviour { //First establish some variables private Vector3 fp; //First finger position private Vector3 lp; //Last finger position private Vector3 ip; //some intermediate finger position private float dragDistance; //Distance needed for a swipe to register public float power; private Vector3 footballPos; private bool canShoot = true; private float factor = 40f; private List<Vector3> touchPositions = new List<Vector3>(); void Start(){ dragDistance = Screen.height*20/100; Physics.gravity = new Vector3(0, -20, 0); footballPos = transform.position; } // Update is called once per frame void Update() { //Examine the touch inputs foreach (Touch touch in Input.touches) { /*if (touch.phase == TouchPhase.Began) { fp = touch.position; lp = touch.position; }*/ if (touch.phase == TouchPhase.Moved) { touchPositions.Add(touch.position); } if (touch.phase == TouchPhase.Ended) { fp = touchPositions[0]; lp = touchPositions[touchPositions.Count-1]; ip = touchPositions[touchPositions.Count/2]; //First check if it's actually a drag if (Mathf.Abs(lp.x - fp.x) > dragDistance || Mathf.Abs(lp.y - fp.y) > dragDistance) { //It's a drag //Now check what direction the drag was //First check which axis if (Mathf.Abs(lp.x - fp.x) > Mathf.Abs(lp.y - fp.y)) { //If the horizontal movement is greater than the vertical movement... if ((lp.x>fp.x) && canShoot) //If the movement was to the right) { //Right move float x = (lp.x - fp.x) / Screen.height * factor; rigidbody.AddForce((new Vector3(x,10,16))*power); Debug.Log("right "+(lp.x-fp.x));//MOVE RIGHT CODE HERE canShoot = false; //rigidbody.AddForce((new Vector3((lp.x-fp.x)/30,10,16))*power); StartCoroutine(ReturnBall()); } else { //Left move float x = (lp.x - fp.x) / Screen.height * factor; rigidbody.AddForce((new Vector3(x,10,16))*power); Debug.Log("left "+(lp.x-fp.x));//MOVE LEFT CODE HERE canShoot = false; //rigidbody.AddForce(new Vector3((lp.x-fp.x)/30,10,16)*power); StartCoroutine(ReturnBall()); } } else { //the vertical movement is greater than the horizontal movement if (lp.y>fp.y) //If the movement was up { //Up move float y = (lp.y-fp.y)/Screen.height*factor; float x = (lp.x - fp.x) / Screen.height * factor; rigidbody.AddForce((new Vector3(x,y,16))*power); Debug.Log("up "+(lp.x-fp.x));//MOVE UP CODE HERE canShoot = false; //rigidbody.AddForce(new Vector3((lp.x-fp.x)/30,10,16)*power); StartCoroutine(ReturnBall()); } else { //Down move Debug.Log("down "+lp+" "+fp);//MOVE DOWN CODE HERE } } } else { //It's a tap Debug.Log("none");//TAP CODE HERE } } } } IEnumerator ReturnBall() { yield return new WaitForSeconds(5.0f); rigidbody.velocity = Vector3.zero; rigidbody.angularVelocity = Vector3.zero; transform.position = footballPos; canShoot =true; isKicked = false; } }

    Read the article

  • Fast Data - Big Data's achilles heel

    - by thegreeneman
    At OOW 2013 in Mark Hurd and Thomas Kurian's keynote, they discussed Oracle's Fast Data software solution stack and discussed a number of customers deploying Oracle's Big Data / Fast Data solutions and in particular Oracle's NoSQL Database.  Since that time, there have been a large number of request seeking clarification on how the Fast Data software stack works together to deliver on the promise of real-time Big Data solutions.   Fast Data is a software solution stack that deals with one aspect of Big Data, high velocity.   The software in the Fast Data solution stack involves 3 key pieces and their integration:  Oracle Event Processing, Oracle Coherence, Oracle NoSQL Database.   All three of these technologies address a high throughput, low latency data management requirement.   Oracle Event Processing enables continuous query to filter the Big Data fire hose, enable intelligent chained events to real-time service invocation and augments the data stream to provide Big Data enrichment. Extended SQL syntax allows the definition of sliding windows of time to allow SQL statements to look for triggers on events like breach of weighted moving average on a real-time data stream.    Oracle Coherence is a distributed, grid caching solution which is used to provide very low latency access to cached data when the data is too big to fit into a single process, so it is spread around in a grid architecture to provide memory latency speed access.  It also has some special capabilities to deploy remote behavioral execution for "near data" processing.   The Oracle NoSQL Database is designed to ingest simple key-value data at a controlled throughput rate while providing data redundancy in a cluster to facilitate highly concurrent low latency reads.  For example, when large sensor networks are generating data that need to be captured while analysts are simultaneously extracting the data using range based queries for upstream analytics.  Another example might be storing cookies from user web sessions for ultra low latency user profile management, also leveraging that data using holistic MapReduce operations with your Hadoop cluster to do segmented site analysis.  Understand how NoSQL plays a critical role in Big Data capture and enrichment while simultaneously providing a low latency and scalable data management infrastructure thru clustered, always on, parallel processing in a shared nothing architecture. Learn how easily a NoSQL cluster can be deployed to provide essential services in industry specific Fast Data solutions. See these technologies work together in a demonstration highlighting the salient features of these Fast Data enabling technologies in a location based personalization service. The question then becomes how do these things work together to deliver an end to end Fast Data solution.  The answer is that while different applications will exhibit unique requirements that may drive the need for one or the other of these technologies, often when it comes to Big Data you may need to use them together.   You may have the need for the memory latencies of the Coherence cache, but just have too much data to cache, so you use a combination of Coherence and Oracle NoSQL to handle extreme speed cache overflow and retrieval.   Here is a great reference to how these two technologies are integrated and work together.  Coherence & Oracle NoSQL Database.   On the stream processing side, it is similar as with the Coherence case.  As your sliding windows get larger, holding all the data in the stream can become difficult and out of band data may need to be offloaded into persistent storage.  OEP needs an extreme speed database like Oracle NoSQL Database to help it continue to perform for the real time loop while dealing with persistent spill in the data stream.  Here is a great resource to learn more about how OEP and Oracle NoSQL Database are integrated and work together.  OEP & Oracle NoSQL Database.

    Read the article

  • Do Great Work

    - by user12601034
    Have you ever attended an online conference and actually had a desire to attend all of it?? Yesterday I attended the first day of the Great Work MBA program, sponsored by Box of Crayons and hosted by Michael Bungay Stanier. The topic of the day was “Grounding Yourself,” and the day featured five speakers on five different topics. I have to admit that I started the first session with kind of a “blech” feeling that I didn’t really want to participate, but for some reason I did. So I listened to the first session, and I was hooked. I ended up listening to all of the sessions for the day, and I had some great take-aways from the sessions – my highlights included: The opposite of bravery isn’t fear, it’s settling. In essence, you need to be brave in order to accomplish anything. If you’re settling, you’re not being brave, and your accomplishments will likely be lackluster. Bravery requires confidence and permission. You need to work at being brave by taking small wins, build them up and then take slightly larger risks. Additionally, you need to “claim your own crown.” Nobody in the business world is going to give you permission to be a guru in X – you need to give yourself permission to become a guru in X and then do it. Fall in love with obstacles. Everyone is going to face some form of failure. One way to deal with this is to fall in love with solving the puzzle of obstacles. You don’t have to hit it if you can go around it. Understanding purpose brings out the best in people and the best people. As a leader, drawing in people who are passionate and highly motivated about their work creates velocity for your organization. Being clear about purpose is the first step in doing this. You must own your own story. Everything about you creates a “unique you” that is distinct from everyone else. As you take ownership of this, it becomes part of your strength. It’s not a strength if you’re running away from it. Focus on what’s right. Be aware of your tendency to interpret a situation a certain way and differentiate between helpful and unhelpful interpretations. Three questions for how to think differently: 1) Why? 2) Who says so? 3) What would happen if? These three questions can help you build alternative perspectives and options that can increase resiliency. Even though this first day was focused on “Grounding Yourself,” I see plenty of application in the corporate environment for both individuals and leaders of teams. To apply these highlights to my work environment, I would do the following: Understand the purpose – of my company, of my team and of my role on the team. If I know the purpose, I know what I need to bring to the table to make me, my team and my company successful. Declare your goals…your BEHAGS (big, hairy, audacious goals).Have the confidence to declare what you and/or your team is going to accomplish.Sure, you might have to re-state those goals down the line, but you can learn from that as well. Get creative about achieving your goals.Break down your obstacles by asking yourself what is going to stop you from achieving your goals and then, for each obstacles, ask those three questions:Why?Who says so? What would happen if? Focus on what’s right.I had a manager who asked us to write status reports every week.“Status” consisted of 1) What did I accomplish; 2) What will I accomplish next week; 3) How can my manager help me.The focus on our status report was always “what’s right”(“what’s wrong” was always a conversation at the point in time it was needed). I’m normally a skeptic of online webcasts/conferences, and I normally expect to take away maybe one or two ideas. I’m really glad, however, that I took the time to listen to all of the sessions yesterday, and I hope that my take-aways inspire you to think about how you might do great work also. --

    Read the article

  • How to make a stack stable? Need help for an explicit resting contact scheme (2-dimensional)

    - by Register Sole
    Previously, I struggle with the sequential impulse-based method I developed. Thanks to jedediah referring me to this paper, I managed to rebuild the codes and implement the simultaneous impulse based method with Projected-Gauss-Seidel (PGS) iterative solver as described by Erin Catto (mentioned in the reference of the paper as [Catt05]). So here's how it currently is: The simulation handles 2-dimensional rotating convex polygons. Detection is using separating-axis test, with a SKIN, meaning closest points between two polygons is detected and determined if their distance is less than SKIN. To resolve collision, simultaneous impulse-based method is used. It is solved using iterative solver (PGS-solver) as in Erin Catto's paper. Error-correction is implemented using Baumgarte's stabilization (you can refer to either paper for this) using J V = beta/dt*overlap, J is the Jacobian for the constraints, V the matrix containing the velocities of the bodies, beta an error-correction parameter that is better be < 1, dt the time-step taken by the engine, and overlap, the overlap between the bodies (true overlap, so SKIN is ignored). However, it is still less stable than I expected :s I tried to stack hexagons (or squares, doesn't really matter), and even with only 4 to 5 of them, they would swing! Also note that I am not looking for a sleeping scheme. But I would settle if you have any explicit scheme to handle resting contacts. That said, I would be more than happy if you have a way of treating it generally (as continuous collision, instead of explicitly as a special state). Ideas I have tried: Using simultaneous position based error correction as described in the paper in section 5.3.2, turned out to be worse than the current scheme. If you want to know the parameters I used: Hexagons, side 50 (pixels) gravity 2400 (pixels/sec^2) time-step 1/60 (sec) beta 0.1 restitution 0 to 0.2 coeff. of friction 0.2 PGS iteration 10 initial separation 10 (pixels) mass 1 (unit is irrelevant for now, i modified velocity directly<-impulse method) inertia 1/1000 Thanks in advance! I really appreciate any help from you guys!! :) EDIT In response to Cholesky's comment about warm starting the solver and Baumgarte: Oh right, I forgot to mention! I do save the contact history and the impulse determined in this time step to be used as initial guess in the next time step. As for the Baumgarte, here's what actually happens in the code. Collision is detected when the bodies' closest distance is less than SKIN, meaning they are actually still separated. If at this moment, I used the PGS solver without Baumgarte, restitution of 0 alone would be able to stop the bodies, separated by a distance of ~SKIN, in mid-air! So this isn't right, I want to have the bodies touching each other. So I turn on the Baumgarte, where its role is actually to pull the bodies together! Weird I know, a scheme intended to push the body apart becomes useful for the reverse. Also, I found that if I increase the number of iteration to 100, stacks become much more stable, though the program becomes so slow. UPDATE Since the stack swings left and right, could it be something is wrong with my friction model? Current friction constraint: relative_tangential_velocity = 0

    Read the article

  • JavaOne Afterglow by Simon Ritter

    - by JuergenKress
    Last week was the eighteenth JavaOne conference and I thought it would be a good idea to write up my thoughts about how things went. Firstly thanks to Yoshio Terada for the photos, I didn't bother bringing a camera with me so it's good to have some pictures to add to the words. Things kicked off full-throttle on Sunday.  We had the Java Champions and JUG leaders breakfast, which was a great way to meet up with a lot of familiar faces and start talking all things Java.  At midday the show really started with the Strategy and Technical Keynotes.  This was always going to be tougher job than some years because there was no big shiny ball to reveal to the audience.  With the Java EE 7 spec being finalised a few months ago and Java SE 8, Java ME 8 and JDK8 not due until the start of next year there was not going to be any big announcement.  I thought both keynotes worked really well each focusing on the things most important to Java developers: Strategy One of the things that is becoming more and more prominent in many companies marketing is the Internet of Things (IoT).  We've moved from the conventional desktop/laptop environment to much more mobile connected computing with smart phones and tablets.  The next wave of the internet is not just billions of people connected, but 10s or 100s of billions of devices connected to the network, all generating data and providing much more precise control of almost any process you can imagine.  This ties into the ideas of Big Data and Cloud Computing, but implementation is certainly not without its challenges.  As Peter Utzschneider explained it's about three Vs: Volume, Velocity and Value.  All these devices will create huge volumes of data at very high speed; to avoid being overloaded these devices will need some sort of processing capabilities that can filter the useful data from the redundant.  The raw data then needs to be turned into useful information that has value.  To make this happen will require applications on devices, at gateways and on the back-end servers, all very tightly integrated.  This is where Java plays a pivotal role, write once, run everywhere becomes essential, having nine million developers fluent in the language makes it the defacto lingua franca of IoT.  There will be lots more information on how this will become a reality, so watch this space. Technical How do we make the IoT a reality, technically?  Using the game of chess Mark Reinhold, with the help of people like John Ceccarelli, Jasper Potts and Richard Bair, showed what you could do.  Using Java EE on the back end, Java SE and JavaFX on the desktop and Java ME Embedded and JavaFX on devices they showed a complete end-to-end demo. This was really impressive, using 3D features from JavaFX 8 (that's included with JDK8) to make a 3D animated Duke chess board.  Jasper also unveiled the "DukePad" a home made tablet using a Raspberry Pi, touch screen and accelerometer. Although the Raspberry Pi doesn't have earth shattering CPU performance (about the same level as a mid 1990s Pentium), it does have really quite good GPU performance so the GUI works really well.  The plans are all open sourced and available here.  One small, but very significant announcement was that Java SE will now be included with the NOOB and Raspbian Linux distros provided by the Raspberry Pi foundation (these can be found here).  No more hassle having to download and install the JDK after you've flashed your SD card OS image.  The finale was the Raspberry Pi powered chess playing robot.  Really very, very cool.  I talked to Jasper about this and he told me each of the chess pieces had been 3D printed and then he had to use acetone to give them a glossy finish (not sure what his wife thought of him spending hours in the kitchen in a gas mask!)  The way the robot arm worked was very impressive as it did not have any positioning data (like a potentiometer connected to each motor), but relied purely on carefully calibrated timings to get the arm to the right place.  Having done things like this myself in the past I know how easy it is to find a small error gets magnified into very big mistakes. Here's some pictures from the keynote: The "Dukepad" architecture Nice clear perspex case so you can see the innards. The very nice 3D chess set.  Maya's obviously a great tool. Read the full article here. WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: Simon Ritter,Java One,OOW,Oracle OpenWorld,WebLogic,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

  • Big Data – Evolution of Big Data – Day 3 of 21

    - by Pinal Dave
    In yesterday’s blog post we answered what is the Big Data. Today we will understand why and how the evolution of Big Data has happened. Though the answer is very simple, I would like to tell it in the form of a history lesson. Data in Flat File In earlier days data was stored in the flat file and there was no structure in the flat file.  If any data has to be retrieved from the flat file it was a project by itself. There was no possibility of retrieving the data efficiently and data integrity has been just a term discussed without any modeling or structure around. Database residing in the flat file had more issues than we would like to discuss in today’s world. It was more like a nightmare when there was any data processing involved in the application. Though, applications developed at that time were also not that advanced the need of the data was always there and there was always need of proper data management. Edgar F Codd and 12 Rules Edgar Frank Codd was a British computer scientist who, while working for IBM, invented the relational model for database management, the theoretical basis for relational databases. He presented 12 rules for the Relational Database and suddenly the chaotic world of the database seems to see discipline in the rules. Relational Database was a promising land for all the unstructured database users. Relational Database brought into the relationship between data as well improved the performance of the data retrieval. Database world had immediately seen a major transformation and every single vendors and database users suddenly started to adopt the relational database models. Relational Database Management Systems Since Edgar F Codd proposed 12 rules for the RBDMS there were many different vendors who started them to build applications and tools to support the relationship between database. This was indeed a learning curve for many of the developer who had never worked before with the modeling of the database. However, as time passed by pretty much everybody accepted the relationship of the database and started to evolve product which performs its best with the boundaries of the RDBMS concepts. This was the best era for the databases and it gave the world extreme experts as well as some of the best products. The Entity Relationship model was also evolved at the same time. In software engineering, an Entity–relationship model (ER model) is a data model for describing a database in an abstract way. Enormous Data Growth Well, everything was going fine with the RDBMS in the database world. As there were no major challenges the adoption of the RDBMS applications and tools was pretty much universal. There was a race at times to make the developer’s life much easier with the RDBMS management tools. Due to the extreme popularity and easy to use system pretty much every data was stored in the RDBMS system. New age applications were built and social media took the world by the storm. Every organizations was feeling pressure to provide the best experience for their users based the data they had with them. While this was all going on at the same time data was growing pretty much every organization and application. Data Warehousing The enormous data growth now presented a big challenge for the organizations who wanted to build intelligent systems based on the data and provide near real time superior user experience to their customers. Various organizations immediately start building data warehousing solutions where the data was stored and processed. The trend of the business intelligence becomes the need of everyday. Data was received from the transaction system and overnight was processed to build intelligent reports from it. Though this is a great solution it has its own set of challenges. The relational database model and data warehousing concepts are all built with keeping traditional relational database modeling in the mind and it still has many challenges when unstructured data was present. Interesting Challenge Every organization had expertise to manage structured data but the world had already changed to unstructured data. There was intelligence in the videos, photos, SMS, text, social media messages and various other data sources. All of these needed to now bring to a single platform and build a uniform system which does what businesses need. The way we do business has also been changed. There was a time when user only got the features what technology supported, however, now users ask for the feature and technology is built to support the same. The need of the real time intelligence from the fast paced data flow is now becoming a necessity. Large amount (Volume) of difference (Variety) of high speed data (Velocity) is the properties of the data. The traditional database system has limits to resolve the challenges this new kind of the data presents. Hence the need of the Big Data Science. We need innovation in how we handle and manage data. We need creative ways to capture data and present to users. Big Data is Reality! Tomorrow In tomorrow’s blog post we will try to answer discuss Basics of Big Data Architecture. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Getting a handle on mobile data

    - by Eric Jensen
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} written by Ashok Joshi The proliferation of mobile devices in the corporate world is both a blessing as well as a challenge.  Mobile devices improve productivity and the velocity of business for the end users; on the other hand, IT departments need to manage the corporate data and applications that run on these devices. Oracle Database Mobile Server (DMS for short) provides a simple and effective way to deal with the management challenge.  DMS supports data synchronization between a central Oracle database server and data on mobile devices.  It also provides authentication, encryption and application and device management.  Finally, DMS is a highly scalable solution that can be used to manage hundreds of thousands of devices.   Here’s a simplified outline of how such a solution might work. Each device runs local sync and mgmt agents that handle bidirectional data flow with an Oracle enterprise backend, run remote commands, and provide status to the management console. For example, mobile admins could monitor multiple networks of mobile devices, upgrade their software remotely, and even destroy the local database on a compromised device. DMS supports either Oracle Berkeley DB or SQLite for device-local storage, and runs on a wide variety of mobile platforms. The schema for the device-local database is pretty simple – it contains the name of the application that’s installed on the device as well as details such as product name, version number, time of last access etc. Each mobile user has an account on the monitoring system.  DMS supports authentication via the Oracle database authentication mechanisms or alternately, via an external authentication server such as Oracle Identity Management. DMS also provides the option of encrypting the data on disk as well as while it is being synchronized. Whenever a device connects with DMS, it sends the list of all local application changes to the server; the server updates the central repository with this information.  Synchronization can be triggered on-demand, whenever there’s a change on the device (e.g. new application installed or an existing application removed) or via a rule-based schedule (e.g. every Saturday). Synchronization is very fast and efficient, since only the changes are propagated.  This includes resume capability; should synchronization be interrupted for any reason, the next synchronization will resume where the previous synchronization was interrupted. If the device should be lost or stolen, DMS has the capability to remove the applications and/or data from the device. This ability to control access to sensitive data and applications is critical in the corporate environment. The central repository also allows the IT manager to track the kinds of applications that mobile users use and recommend patches and upgrades, while still allowing the mobile user full control over what applications s/he downloads and uses on the device.  This is useful since most devices are used for corporate as well as personal information. In certain restricted use scenarios, the IT manager can also control whether a certain application can be installed on a mobile device.  Should an unapproved application be installed, it can easily be removed the next time the device connects with the central server. Oracle Database mobile server provides a simple, effective and highly secure and scalable solution for managing the data and applications for the mobile workforce.

    Read the article

< Previous Page | 16 17 18 19 20 21 22  | Next Page >