Search Results

Search found 28957 results on 1159 pages for 'single instance'.

Page 200/1159 | < Previous Page | 196 197 198 199 200 201 202 203 204 205 206 207  | Next Page >

  • Keeping track of File System Utilization in Ops Center 12c

    - by S Stelting
    Enterprise Manager Ops Center 12c provides significant monitoring capabilities, combined with very flexible incident management. These capabilities even extend to monitoring the file systems associated with Solaris or Linux assets. Depending on your needs you can monitor and manage incidents, or you can fine tune alert monitoring rules to specific file systems. This article will show you how to use Ops Center 12c to Track file system utilization Adjust file system monitoring rules Disable file system rules Create custom monitoring rules If you're interested in this topic, please join us for a WebEx presentation! Date: Thursday, November 8, 2012 Time: 11:00 am, Eastern Standard Time (New York, GMT-05:00) Meeting Number: 598 796 842 Meeting Password: oracle123 To join the online meeting ------------------------------------------------------- 1. Go to https://oracleconferencing.webex.com/oracleconferencing/j.php?ED=209833597&UID=1512095432&PW=NOWQ3YjJlMmYy&RT=MiMxMQ%3D%3D 2. If requested, enter your name and email address. 3. If a password is required, enter the meeting password: oracle123 4. Click "Join". To view in other time zones or languages, please click the link: https://oracleconferencing.webex.com/oracleconferencing/j.php?ED=209833597&UID=1512095432&PW=NOWQ3YjJlMmYy&ORT=MiMxMQ%3D%3D   Monitoring File Systems for OS Assets The Libraries tab provides basic, device-level information about the storage associated with an OS instance. This tab shows you the local file system associated with the instance and any shared storage libraries mounted by Ops Center. More detailed information about file system storage is available under the Analytics tab under the sub-tab named Charts. Here, you can select and display the individual mount points of an OS, and export the utilization data if desired: In this example, the OS instance has a basic root file partition and several NFS directories. Each file system mount point can be independently chosen for display in the Ops Center chart. File Systems and Incident  Reporting Every asset managed by Ops Center has a "monitoring policy", which determines what represents a reportable issue with the asset. The policy is made up of a bunch of monitoring rules, where each rule describes An attribute to monitor The conditions which represent an issue The level or levels of severity for the issue When the conditions are met, Ops Center sends a notification and creates an incident. By default, OS instances have three monitoring rules associated with file systems: File System Reachability: Triggers an incident if a file system is not reachable NAS Library Status: Triggers an incident for a value of "WARNING" or "DEGRADED" for a NAS-based file system File System Used Space Percentage: Triggers an incident when file system utilization grows beyond defined thresholds You can view these rules in the Monitoring tab for an OS: Of course, the default monitoring rules is that they apply to every file system associated with an OS instance. As a result, any issue with NAS accessibility or disk utilization will trigger an incident. This can cause incidents for file systems to be reported multiple times if the same shared storage is used by many assets, as shown in this screen shot: Depending on the level of control you'd like, there are a number of ways to fine tune incident reporting. Note that any changes to an asset's monitoring policy will detach it from the default, creating a new monitoring policy for the asset. If you'd like, you can extract a monitoring policy from an asset, which allows you to save it and apply the customized monitoring profile to other OS assets. Solution #1: Modify the Reporting Thresholds In some cases, you may want to modify the basic conditions for incident reporting in your file system. The changes you make to a default monitoring rule will apply to all of the file systems associated with your operating system. Selecting the File Systems Used Space Percentage entry and clicking the "Edit Alert Monitoring Rule Parameters" button opens a pop-up dialog which allows you to modify the rule. The first screen lets you decide when you will check for file system usage, and how long you will wait before opening an incident in Ops Center. By default, Ops Center monitors continuously and reports disk utilization issues which exist for more than 15 minutes. The second screen lets you define actual threshold values. By default, Ops Center opens a Warning level incident is utilization rises above 80%, and a Critical level incident for utilization above 95% Solution #2: Disable Incident Reporting for File System If you'd rather not report file system incidents, you can disable the monitoring rules altogether. In this case, you can select the monitoring rules and click the "Disable Alert Monitoring Rule(s)" button to open the pop-up confirmation dialog. Like the first solution, this option affects all file system monitoring. It allows you to completely disable incident reporting for NAS library status or file system space consumption. Solution #3: Create New Monitoring Rules for Specific File Systems If you'd like to have the greatest flexibility when monitoring file systems, you can create entirely new rules. Clicking the "Add Alert Monitoring Rule" (the icon with the green plus sign) opens a wizard which allows you to define a new rule.  This rule will be based on a threshold, and will be used to monitor operating system assets. We'd like to add a rule to track disk utilization for a specific file system - the /nfs-guest directory. To do this, we specify the following attribute FileSystemUsages.name=/nfs-guest.usedSpacePercentage The value of name in the attribute allows us to define a specific NFS shared directory or file system... in the case of this OS, we could have chosen any of the values shown in the File Systems Utilization chart at the beginning of this article. usedSpacePercentage lets us define a threshold based on the percentage of total disk space used. There are a number of other values that we could use for threshold-based monitoring of FileSystemUsages, including freeSpace freeSpacePercentage totalSpace usedSpace usedSpacePercentage The final sections of the screen allow us to determine when to monitor for disk usage, and how long to wait after utilization reaches a threshold before creating an incident. The next screen lets us define the threshold values and severity levels for the monitoring rule: If historical data is available, Ops Center will display it in the screen. Clicking the Apply button will create the new monitoring rule and active it in your monitoring policy. If you combine this with one of the previous solutions, you can precisely define which file systems will generate incidents and notifications. For example, this monitoring policy has the default "File System Used Space Percentage" rule disabled, but the new rule reports ONLY on utilization for the /nfs-guest directory. Stay Connected: Twitter |  Facebook |  YouTube |  Linkedin |  Newsletter

    Read the article

  • Migrating SQL Server Databases – The DBA’s Checklist (Part 1)

    - by Sadequl Hussain
    It is a fact of life: SQL Server databases change homes. They move from one instance to another, from one version to the next, from old servers to new ones.  They move around as an organisation’s data grows, applications are enhanced or new versions of the database software are released. If not anything else, servers become old and unreliable and databases eventually need to find a new home. Consider the following scenarios: 1.     A new  database application is rolled out in a production server from the development or test environment 2.     A copy of the production database needs to be installed in a test server for troubleshooting purposes 3.     A copy of the development database is regularly refreshed in a test server during the system development life cycle 4.     A SQL Server is upgraded to a newer version. This can be an in-place upgrade or a side-by-side migration 5.     One or more databases need to be moved between different instances as part of a consolidation strategy. The instances can be running the same or different version of SQL Server 6.     A database has to be restored from a backup file provided by a third party application vendor 7.     A backup of the database is restored in the same or different instance for disaster recovery 8.     A database needs to be migrated within the same instance: a.     Files are moved from direct attached storage to storage area network b.    The same database is copied under a different name for another application Migrating SQL Server database applications is a complex topic in itself. There are a number of components that can be involved: jobs, DTS or SSIS packages, logins or linked servers are only few pieces of the puzzle. However, in this article we will focus only on the central part of migration: the installation of the database itself. Unless it is an in-place upgrade, typically the database is taken from a source server and installed in a destination instance.  Most of the time, a full backup file is used for the rollout. The backup file is either provided to the DBA or the DBA takes the backup and restores it in the target server. Sometimes the database is detached from the source and the files are copied to and attached in the destination. Regardless of the method of copying, moving, refreshing, restoring or upgrading the physical database, there are a number of steps the DBA should follow before and after it has been installed in the destination. It is these post database installation steps we are going to discuss below. Some of these steps apply in almost every scenario described above while some will depend on the type of objects contained within the database.  Also, the principles hold regardless of the number of databases involved. Step 1:  Make a copy of data and log files when attaching and detaching When detaching and attaching databases, ensure you have made copies of the data and log files if the destination is running a newer version of SQL Server. This is because once attached to a newer version, the database cannot be detached and attached back to an older version. Trying to do so will give you a message like the following: Server: Msg 602, Level 21, State 50, Line 1 Could not find row in sysindexes for database ID 6, object ID 1, index ID 1. Run DBCC CHECKTABLE on sysindexes. Connection Broken If you try to backup the attached database and restore it in the source, it will still fail. Similarly, if you are restoring the database in a newer version, it cannot be backed up or detached and put back in an older version of SQL. Unlike detach and attach method though, you do not lose the backup file or the original database here. When detaching and attaching a database, it is important you keep all the log files available along with the data files. It is possible to attach a database without a log file and SQL Server can be instructed to create a new log file, however this does not work if the database was detached when the primary file group was read-only. You will need all the log files in such cases. Step 2: Change database compatibility level Once the database has been restored or attached to a newer version of SQL Server, change the database compatibility level to reflect the newer version unless there is a compelling reason not to do so. When attaching or restoring from a previous version of SQL, the database retains the older version’s compatibility level.  The only time you would want to keep a database with an older compatibility level is when the code within your database is no longer supported by SQL Server. For example, outer joins with *= or the =* operators were still possible in SQL 2000 (with a warning message), but not in SQL 2005 anymore. If your stored procedures or triggers are using this form of join, you would want to keep the database with an older compatibility level.  For a list of compatibility issues between older and newer versions of SQL Server databases, refer to the Books Online under the sp_dbcmptlevel topic. Application developers and architects can help you in deciding whether you should change the compatibility level or not. You can always change the compatibility mode from the newest to an older version if necessary. To change the compatibility level, you can either use the database’s property from the SQL Server Management Studio or use the sp_dbcmptlevel stored procedure.   Bear in mind that you cannot run the built-in reports for databases from SQL Server Management Studio if you keep the database with an older compatibility level. The following figure shows the error message I received when trying to run the “Disk Usage by Top Tables” report against a database. This database was hosted in a SQL Server 2005 system and still had a compatibility mode 80 (SQL 2000).     Continues…

    Read the article

  • Using the HTML5 &lt;input type=&quot;file&quot; multiple=&quot;multiple&quot;&gt; Tag in ASP.NET

    - by Rick Strahl
    Per HTML5 spec the <input type="file" /> tag allows for multiple files to be picked from a single File upload button. This is actually a very subtle change that's very useful as it makes it much easier to send multiple files to the server without using complex uploader controls. Please understand though, that even though you can send multiple files using the <input type="file" /> tag, the process of how those files are sent hasn't really changed - there's still no progress information or other hooks that allow you to automatically make for a nicer upload experience without additional libraries or code. For that you will still need some sort of library (I'll post an example in my next blog post using plUpload). All the new features allow for is to make it easier to select multiple images from disk in one operation. Where you might have required many file upload controls before to upload several files, one File control can potentially do the job. How it works To create a file input box that allows with multiple file support you can simply do:<form method="post" enctype="multipart/form-data"> <label>Upload Images:</label> <input type="file" multiple="multiple" name="File1" id="File1" accept="image/*" /> <hr /> <input type="submit" id="btnUpload" value="Upload Images" /> </form> Now when the file open dialog pops up - depending on the browser and whether the browser supports it - you can pick multiple files. Here I'm using Firefox using the thumbnail preview I can easily pick images to upload on a form: Note that I can select multiple images in the dialog all of which get stored in the file textbox. The UI for this can be different in some browsers. For example Chrome displays 3 files selected as text next to the Browse… button when I choose three rather than showing any files in the textbox. Most other browsers display the standard file input box and display the multiple filenames as a comma delimited list in the textbox. Note that you can also specify the accept attribute in the <input> tag, which specifies a mime-type to specify what type of content to allow.Here I'm only allowing images (image/*) and the browser complies by just showing me image files to display. Likewise I could use text/* for all text formats registered on the machine or text/xml to only show XML files (which would include xml,xst,xsd etc.). Capturing Files on the Server with ASP.NET When you upload files to an ASP.NET server there are a couple of things to be aware of. When multiple files are uploaded from a single file control, they are assigned the same name. In other words if I select 3 files to upload on the File1 control shown above I get three file form variables named File1. This means I can't easily retrieve files by their name:HttpPostedFileBase file = Request.Files["File1"]; because there will be multiple files for a given name. The above only selects the first file. Instead you can only reliably retrieve files by their index. Below is an example I use in app to capture a number of images uploaded and store them into a database using a business object and EF 4.2.for (int i = 0; i < Request.Files.Count; i++) { HttpPostedFileBase file = Request.Files[i]; if (file.ContentLength == 0) continue; if (file.ContentLength > App.Configuration.MaxImageUploadSize) { ErrorDisplay.ShowError("File " + file.FileName + " is too large. Max upload size is: " + App.Configuration.MaxImageUploadSize); return View("UploadClassic",model); } var image = new ClassifiedsBusiness.Image(); var ms = new MemoryStream(16498); file.InputStream.CopyTo(ms); image.Entered = DateTime.Now; image.EntryId = model.Entry.Id; image.ContentType = "image/jpeg"; image.ImageData = ms.ToArray(); ms.Seek(0, SeekOrigin.Begin); // resize image if necessary and turn into jpeg Bitmap bmp = Imaging.ResizeImage(ms.ToArray(), App.Configuration.MaxImageWidth, App.Configuration.MaxImageHeight); ms.Close(); ms = new MemoryStream(); bmp.Save(ms,ImageFormat.Jpeg); image.ImageData = ms.ToArray(); bmp.Dispose(); ms.Close(); model.Entry.Images.Add(image); } This works great and also allows you to capture input from multiple input controls if you are dealing with browsers that don't support multiple file selections in the file upload control. The important thing here is that I iterate over the files by index, rather than using a foreach loop over the Request.Files collection. The files collection returns key name strings, rather than the actual files (who thought that was good idea at Microsoft?), and so that isn't going to work since you end up getting multiple keys with the same name. Instead a plain for loop has to be used to loop over all files. Another Option in ASP.NET MVC If you're using ASP.NET MVC you can use the code above as well, but you have yet another option to capture multiple uploaded files by using a parameter for your post action method.public ActionResult Save(HttpPostedFileBase[] file1) { foreach (var file in file1) { if (file.ContentLength < 0) continue; // do something with the file }} Note that in order for this to work you have to specify each posted file variable individually in the parameter list. This works great if you have a single file upload to deal with. You can also pass this in addition to your main model to separate out a ViewModel and a set of uploaded files:public ActionResult Edit(EntryViewModel model,HttpPostedFileBase[] uploadedFile) You can also make the uploaded files part of the ViewModel itself - just make sure you use the appropriate naming for the variable name in the HTML document (since there's Html.FileFor() extension). Browser Support You knew this was coming, right? The feature is really nice, but unfortunately not supported universally yet. Once again Internet Explorer is the problem: No shipping version of Internet Explorer supports multiple file uploads. IE10 supposedly will, but even IE9 does not. All other major browsers - Chrome, Firefox, Safari and Opera - support multi-file uploads in their latest versions. So how can you handle this? If you need to provide multiple file uploads you can simply add multiple file selection boxes and let people either select multiple files with a single upload file box or use multiples. Alternately you can do some browser detection and if IE is used simply show the extra file upload boxes. It's not ideal, but either one of these approaches makes life easier for folks that use a decent browser and leaves you with a functional interface for those that don't. Here's a UI I recently built as an alternate uploader with multiple file upload buttons: I say this is my 'alternate' uploader - for my primary uploader I continue to use an add-in solution. Specifically I use plUpload and I'll discuss how that's implemented in my next post. Although I think that plUpload (and many of the other packaged JavaScript upload solutions) are a better choice especially for large uploads, for simple one file uploads input boxes work well enough. The advantage of this solution is that it's very easy to handle on the server side. Any of the JavaScript controls require special handling for uploads which I'll also discuss in my next post.© Rick Strahl, West Wind Technologies, 2005-2012Posted in HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Reading All Users Session

    - by imran_ku07
      Introduction :            InProc Session is the widely used state management. Storing the session state Inproc is also the fastest method and is well-suited to small amounts of volatile data. Reading and writing current user Session is very easy. But some times we need to read all users session before taking a decision or sometimes we may need to check which users are currently active with the help of Session. But unfortunately there is no class in .Net Framework (i don't found myself) to read all user InProc Session Data. In this article i will use reflection to read all user Inproc Session.   Description :              This code will work equally in both MVC and webform, but for demonstration i will use a simple webform example. So let's create a simple Website and Add two aspx pages, Default.aspx and Default2.aspx. In Default.aspx just add a link to navigate to Default2.aspx and in Default.aspx.cs just add a Session. Default.aspx: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="Default" %><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html ><head runat="server">    <title>Untitled Page</title></head><body>    <form id="form1" runat="server">    <div>        <a href="Default2.aspx">Click to navigate to next page</a>    </div>    </form></body></html>  Default.aspx.cs:  using System;using System.Data;using System.Configuration;using System.Collections;using System.Web;using System.Web.Security;using System.Web.UI;using System.Web.UI.WebControls;using System.Web.UI.WebControls.WebParts;using System.Web.UI.HtmlControls;public partial class Default : System.Web.UI.Page{    protected void Page_Load(object sender, EventArgs e)    {        Session["User"] = "User" + DateTime.Now;    }} Now when every user click this link will navigate to Default2.aspx where all the magic appears.Default2.aspx.cs: using System;using System.Data;using System.Configuration;using System.Collections;using System.Web;using System.Web.Security;using System.Web.UI;using System.Web.UI.WebControls;using System.Web.UI.WebControls.WebParts;using System.Web.UI.HtmlControls;using System.Reflection;using System.Web.SessionState;public partial class Default2 : System.Web.UI.Page{    protected void Page_Load(object sender, EventArgs e)    {        object obj = typeof(HttpRuntime).GetProperty("CacheInternal", BindingFlags.NonPublic | BindingFlags.Static).GetValue(null, null);        Hashtable c2 = (Hashtable)obj.GetType().GetField("_entries", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(obj);        foreach (DictionaryEntry entry in c2)        {            object o1 = entry.Value.GetType().GetProperty("Value", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(entry.Value, null);            if (o1.GetType().ToString() == "System.Web.SessionState.InProcSessionState")            {                SessionStateItemCollection sess = (SessionStateItemCollection)o1.GetType().GetField("_sessionItems", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(o1);                if (sess != null)                {                    if (sess["User"] != null)                    {                        Label1.Text += sess["User"] + " is Active.<br>";                    }                }            }        }    }}            Now just open more than one browsers or more than one browser instance and then navigate to Default.aspx and click the link, you will see all the user's Session data.    How this works :        InProc session data is stored in the HttpRuntime’s internal cache in an implementation of ISessionStateItemCollection that implements ICollection. In this code, first of all i got CacheInternal Static Property of HttpRuntime class and then with the help of this object i got _entries private member which is of type ICollection. Then simply enumerate this dictionary and only take object of type System.Web.SessionState.InProcSessionState and finaly got SessionStateItemCollection for each user.Summary :        In this article, I shows you how you can get all current user Sessions. However one thing you will find when executing this code is that it will not show the current user Session which is set in the current request context because Session will be saved after all the Page Events.

    Read the article

  • Crash when trying to get NSManagedObject from NSFetchedResultsController after 25 objects?

    - by Jeremy
    Hey everyone, I'm relatively new to Core Data on iOS, but I think I've been getting better with it. I've been experiencing a bizarre crash, however, in one of my applications and have not been able to figure it out. I have approximately 40 objects in Core Data, presented in a UITableView. When tapping on a cell, a UIActionSheet appears, presenting the user with a UIActionSheet with options related to the cell that was selected. So that I can reference the selected object, I declare an NSIndexPath in my header called "lastSelection" and do the following when the UIActionSheet is presented: // Each cell has a tag based on its row number (i.e. first row has tag 0) lastSelection = [NSIndexPath indexPathForRow:[sender tag] inSection:0]; NSManagedObject *managedObject = [self.fetchedResultsController objectAtIndexPath:lastSelection]; BOOL onDuty = [[managedObject valueForKey:@"onDuty"] boolValue]; UIActionSheet *actionSheet = [[UIActionSheet alloc] initWithTitle:@"Status" delegate:self cancelButtonTitle:nil destructiveButtonTitle:nil otherButtonTitles:nil]; if(onDuty) { [actionSheet addButtonWithTitle:@"Off Duty"]; } else { [actionSheet addButtonWithTitle:@"On Duty"]; } actionSheet.actionSheetStyle = UIActionSheetStyleBlackOpaque; // Override the typical UIActionSheet behavior by presenting it overlapping the sender's frame. This makes it more clear which cell is selected. CGRect senderFrame = [sender frame]; CGPoint point = CGPointMake(senderFrame.origin.x + (senderFrame.size.width / 2), senderFrame.origin.y + (senderFrame.size.height / 2)); CGRect popoverRect = CGRectMake(point.x, point.y, 1, 1); [actionSheet showFromRect:popoverRect inView:[sender superview] animated:NO]; [actionSheet release]; When the UIActionSheet is dismissed with a button, the following code is called: - (void)actionSheet:(UIActionSheet *)actionSheet willDismissWithButtonIndex:(NSInteger)buttonIndex { // Set status based on UIActionSheet button pressed if(buttonIndex == -1) { return; } NSManagedObject *managedObject = [self.fetchedResultsController objectAtIndexPath:lastSelection]; if([actionSheet.title isEqualToString:@"Status"]) { if([[actionSheet buttonTitleAtIndex:buttonIndex] isEqualToString:@"On Duty"]) { [managedObject setValue:[NSNumber numberWithBool:YES] forKey:@"onDuty"]; [managedObject setValue:@"onDuty" forKey:@"status"]; } else { [managedObject setValue:[NSNumber numberWithBool:NO] forKey:@"onDuty"]; [managedObject setValue:@"offDuty" forKey:@"status"]; } } NSError *error; [self.managedObjectContext save:&error]; [tableView reloadData]; } This might not be the most efficient code (sorry, I'm new!), but it does work. That is, for the first 25 items in the list. Selecting the 26th item or beyond, the UIActionSheet will appear, but if it is dismissed with a button, I get a variety of errors, including any one of the following: [__NSCFArray section]: unrecognized selector sent to instance 0x4c6bf90 Program received signal: “EXC_BAD_ACCESS” [_NSObjectID_48_0 section]: unrecognized selector sent to instance 0x4c54710 [__NSArrayM section]: unrecognized selector sent to instance 0x4c619a0 [NSComparisonPredicate section]: unrecognized selector sent to instance 0x6088790 [NSKeyPathExpression section]: unrecognized selector sent to instance 0x4c18950 If I comment out NSManagedObject *managedObject = [self.fetchedResultsController objectAtIndexPath:lastSelection]; it doesn't crash anymore, so I believe it has something do do with that. Can anyone offer any insight? Please let me know if I need to include any other information. Thanks! EDIT: Interestingly, my fetchedResultsController code returns a different object every time. Is this expected, or could this be a cause of my issue? The code looks like this: - (NSFetchedResultsController *)fetchedResultsController { /* Set up the fetched results controller. */ // Create the fetch request for the entity. NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init]; // Edit the entity name as appropriate. NSEntityDescription *entity = [NSEntityDescription entityForName:@"Employee" inManagedObjectContext:self.managedObjectContext]; [fetchRequest setEntity:entity]; // Set the batch size to a suitable number. [fetchRequest setFetchBatchSize:80]; // Edit the sort key as appropriate. NSString *sortKey; BOOL ascending; if(sortControl.selectedSegmentIndex == 0) { sortKey = @"startTime"; ascending = YES; } else if(sortControl.selectedSegmentIndex == 1) { sortKey = @"name"; ascending = YES; } else { sortKey = @"onDuty"; ascending = NO; } NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:sortKey ascending:ascending]; NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil]; [fetchRequest setSortDescriptors:sortDescriptors]; // Edit the section name key path and cache name if appropriate. NSFetchedResultsController *aFetchedResultsController = [[NSFetchedResultsController alloc] initWithFetchRequest:fetchRequest managedObjectContext:self.managedObjectContext sectionNameKeyPath:nil cacheName:@"Root"]; aFetchedResultsController.delegate = self; self.fetchedResultsController = aFetchedResultsController; [aFetchedResultsController release]; [fetchRequest release]; [sortDescriptor release]; [sortDescriptors release]; NSError *error = nil; if (![fetchedResultsController_ performFetch:&error]) { /* Replace this implementation with code to handle the error appropriately. abort() causes the application to generate a crash log and terminate. You should not use this function in a shipping application, although it may be useful during development. If it is not possible to recover from the error, display an alert panel that instructs the user to quit the application by pressing the Home button. */ //NSLog(@"Unresolved error %@, %@", error, [error userInfo]); abort(); } return fetchedResultsController_; } This happens when I set a breakpoint: (gdb) po [self fetchedResultsController] <NSFetchedResultsController: 0x61567c0> (gdb) po [self fetchedResultsController] <NSFetchedResultsController: 0x4c83630>

    Read the article

  • Controlar Autentificaci&oacute;n Crystal Reports

    - by Jason Ulloa
    Para todos los que hemos trabajamos con Crystal Reports, no es un secreto que cuando tratamos de conectar nuestro reporte directamente a la base de datos, se nos viene encima el problema de autenticación. Es decir nuestro reporte al momento de iniciar la carga nos solicita autentificarnos en el servidor y sino lo hacemos, simplemente no veremos el reporte. Esto, además de ser tedioso para los usuarios se convierte en un problema de seguridad bastante grande, de ahí que en la mayoría de los casos se recomienda utilizar dataset. Sin embargo, para todos los que aún sabiendo esto no desean utilizar datasets, sino que, quieren conectar su crystal directamente veremos como implementar una pequeña clase que nos ayudará con esa tarea. Generalmente, cuando trabajamos con una aplicación web, nuestra cadena de conexión esta incluida en el web.config y también en muchas ocasiones contiene los datos como el usuario y password para acceder a la base de datos.  De esta cadena de conexión y estos datos es de los que nos ayudaremos para implementar la autentificación en el reporte. Generalmente, la cadena de conexión se vería así <connectionStrings> <remove name="LocalSqlServer"/> <add name="xxx" connectionString="Data Source=.\SqlExpress;Integrated Security=False;Initial Catalog=xxx;user id=myuser;password=mypass" providerName="System.Data.SqlClient"/> </connectionStrings>   Para nuestro ejemplo, nombraremos a nuestra clase CrystalRules (es solo algo que pensé de momento) 1. Primer Paso Creamos una variable de tipo SqlConnectionStringBuilder, a la cual le asignaremos la cadena de conexión que definimos en el web.config, y que luego utilizaremos para obtener los datos del usuario y el password para el crystal report. SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder(ConfigurationManager.ConnectionStrings["xxx"].ConnectionString); 2. Implementación de propiedad Para ser más ordenados crearemos varias propiedad de tipo Privado, que se encargarán de recibir los datos de:   La Base de datos, el password, el usuario y el servidor private string _dbName; private string _serverName; private string _userID; private string _passWord;   private string dataBase { get { return _dbName; } set { _dbName = value; } }   private string serverName { get { return _serverName; } set { _serverName = value; } }   private string userName { get { return _userID; } set { _userID = value; } }   private string dataBasePassword { get { return _passWord; } set { _passWord = value; } } 3. Creación del Método para aplicar los datos de conexión Una vez que ya tenemos las propiedades, asignaremos a las variables los valores que se han recogido en el SqlConnectionStringBuilder. Y crearemos una variable de tipo ConnectionInfo para aplicar los datos de conexión. internal void ApplyInfo(ReportDocument _oRpt) { dataBase = builder.InitialCatalog; serverName = builder.DataSource; userName = builder.UserID; dataBasePassword = builder.Password;   Database oCRDb = _oRpt.Database; Tables oCRTables = oCRDb.Tables; //Table oCRTable = default(Table); TableLogOnInfo oCRTableLogonInfo = default(TableLogOnInfo); ConnectionInfo oCRConnectionInfo = new ConnectionInfo();   oCRConnectionInfo.DatabaseName = _dbName; oCRConnectionInfo.ServerName = _serverName; oCRConnectionInfo.UserID = _userID; oCRConnectionInfo.Password = _passWord;   foreach (Table oCRTable in oCRTables) { oCRTableLogonInfo = oCRTable.LogOnInfo; oCRTableLogonInfo.ConnectionInfo = oCRConnectionInfo; oCRTable.ApplyLogOnInfo(oCRTableLogonInfo);     }   }   4. Creación del report document y aplicación de la seguridad Una vez recogidos los datos y asignados, crearemos un elemento report document al cual le asignaremos el CrystalReportViewer y le aplicaremos los datos de acceso que obtuvimos anteriormente public void loadReport(string repName, CrystalReportViewer viewer) {   // attached our report to viewer and set database login. ReportDocument report = new ReportDocument(); report.Load(HttpContext.Current.Server.MapPath("~/Reports/" + repName)); ApplyInfo(report); viewer.ReportSource = report; } Al final, nuestra clase completa ser vería así public class CrystalRules { SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder(ConfigurationManager.ConnectionStrings["Fatchoy.Data.Properties.Settings.FatchoyConnectionString"].ConnectionString);   private string _dbName; private string _serverName; private string _userID; private string _passWord;   private string dataBase { get { return _dbName; } set { _dbName = value; } }   private string serverName { get { return _serverName; } set { _serverName = value; } }   private string userName { get { return _userID; } set { _userID = value; } }   private string dataBasePassword { get { return _passWord; } set { _passWord = value; } }   internal void ApplyInfo(ReportDocument _oRpt) { dataBase = builder.InitialCatalog; serverName = builder.DataSource; userName = builder.UserID; dataBasePassword = builder.Password;   Database oCRDb = _oRpt.Database; Tables oCRTables = oCRDb.Tables; //Table oCRTable = default(Table); TableLogOnInfo oCRTableLogonInfo = default(TableLogOnInfo); ConnectionInfo oCRConnectionInfo = new ConnectionInfo();   oCRConnectionInfo.DatabaseName = _dbName; oCRConnectionInfo.ServerName = _serverName; oCRConnectionInfo.UserID = _userID; oCRConnectionInfo.Password = _passWord;   foreach (Table oCRTable in oCRTables) { oCRTableLogonInfo = oCRTable.LogOnInfo; oCRTableLogonInfo.ConnectionInfo = oCRConnectionInfo; oCRTable.ApplyLogOnInfo(oCRTableLogonInfo);     }   }   public void loadReport(string repName, CrystalReportViewer viewer) {   // attached our report to viewer and set database login. ReportDocument report = new ReportDocument(); report.Load(HttpContext.Current.Server.MapPath("~/Reports/" + repName)); ApplyInfo(report); viewer.ReportSource = report; }       #region instance   private static CrystalRules m_instance;   // Properties public static CrystalRules Instance { get { if (m_instance == null) { m_instance = new CrystalRules(); } return m_instance; } }   public DataDataContext m_DataContext { get { return DataDataContext.Instance; } }     #endregion instance   }   Si bien, la solución no es robusta y no es la mas segura. En casos de uso como una intranet y cuando estamos contra tiempo, podría ser de gran ayuda.

    Read the article

  • Azure, don't give me multiple VMs, give me one elastic VM

    - by FransBouma
    Yesterday, Microsoft revealed new major features for Windows Azure (see ScottGu's post). It all looks shiny and great, but after reading most of the material describing the new features, I still find the overall idea behind all of it flawed: why should I care on how much VMs my web app runs? Isn't that a problem to solve for the Windows Azure engineers / software? And what if I need the file system, why can't I simply get a virtual filesystem ? To illustrate my point, let's use a real example: a product website with a customer system/database and next to it a support site with accompanying database. Both are written in .NET, using ASP.NET and use a SQL Server database each. The product website offers files to download by customers, very simple. You have a couple of options to host these websites: Buy a server, place it in a rack at an ISP and run the sites on that server Use 'shared hosting' with an ISP, which means your sites' appdomains are running on the same machine, as well as the files stored, and the databases are hosted in the same server as the other shared databases. Hire a VM, install your OS of choice at an ISP, and host the sites on that VM, basically the same as the first option, except you don't have a physical server At some cloud-vendor, either host the sites 'shared' or in a VM. See above. With all of those options, scalability is a problem, even the cloud-based ones, though not due to the same reasons: The physical server solution has the obvious problem that if you need more power, you need to buy a bigger server or more servers which requires you to add replication and other overhead Shared hosting solutions are almost always capped on memory usage / traffic and database size: if your sites get too big, you have to move out of the shared hosting environment and start over with one of the other solutions The VM solution, be it a VM at an ISP or 'in the cloud' at e.g. Windows Azure or Amazon, in theory allows scaling out by simply instantiating more VMs, however that too introduces the same overhead problems as with the physical servers: suddenly more than 1 instance runs your sites. If a cloud vendor offers its services in the form of VMs, you won't gain much over having a VM at some ISP: the main problems you have to work around are still there: when you spin up more than one VM, your application must be completely stateless at any moment, including the DB sub system, because what's in memory in instance 1 might not be in memory in instance 2. This might sounds trivial but it's not. A lot of the websites out there started rather small: they were perfectly runnable on a single machine with normal memory and CPU power. After all, you don't need a big machine to run a website with even thousands of users a day. Moving these sites to a multi-VM environment will cause a problem: all the in-memory state they use, all the multi-page transitions they use while keeping state across the transition, they can't do that anymore like they did that on a single machine: state is something of the past, you have to store every byte of state in either a DB or in a viewstate or in a cookie somewhere so with the next request, all state information is available through the request, as nothing is kept in-memory. Our example uses a bunch of files in a file system. Using multiple VMs will require that these files move to a cloud storage system which is mounted in each VM so we don't have to store the files on each VM. This might require different file paths, but this change should be minor. What's perhaps less minor is the maintenance procedure in place on the new type of cloud storage used: instead of ftp-ing into a VM, you might have to update the files using different ways / tools. All in all this makes moving an existing website which was written for an environment that's based around a VM (namely .NET with its CLR) overly cumbersome and problematic: it forces you to refactor your website system to be able to be used 'in the cloud', which is caused by the limited way how e.g. Windows Azure offers its cloud services: in blocks of VMs. Offer a scalable, flexible VM which extends with my needs Instead, cloud vendors should offer simply one VM to me. On that VM I run the websites, store my DB and my files. As it's a virtual machine, how this machine is actually ran on physical hardware (e.g. partitioned), I don't care, as that's the problem for the cloud vendor to solve. If I need more resources, e.g. I have more traffic to my server, way more visitors per day, the VM stretches, like I bought a bigger box. This frees me from the problem which comes with multiple VMs: I don't have any refactoring to do at all: I can simply build my website as if it runs on my local hardware server, upload it to the VM offered by the cloud vendor, install it on the VM and I'm done. "But that might require changes to windows!" Yes, but Microsoft is Windows. Windows Azure is their service, they can make whatever change to what they offer to make it look like it's windows. Yet, they're stuck, like Amazon, in thinking in VMs, which forces developers to 'think ahead' and gamble whether they would need to migrate to a cloud with multiple VMs in the future or not. Which comes down to: gamble whether they should invest time in code / architecture which they might never need. (YAGNI anyone?) So the VM we're talking about, is that a low-level VM which runs a guest OS, or is that VM a different kind of VM? The flexible VM: .NET's CLR ? My example websites are ASP.NET based, which means they run inside a .NET appdomain, on the .NET CLR, which is a VM. The only physical OS resource the sites need is the file system, however this too is accessed through .NET. In short: all the websites see is what .NET allows the websites to see, the world as the websites know it is what .NET shows them and lets them access. How the .NET appdomain is run physically, that's the concern of .NET, not mine. This begs the question why Windows Azure doesn't offer virtual appdomains? Or better: .NET environments which look like one machine but could be physically multiple machines. In such an environment, no change has to be made to the websites to migrate them from a local machine or own server to the cloud to get proper scaling: the .NET VM will simply scale with the need: more memory needed, more CPU power needed, it stretches. What it offers to the application running inside the appdomain is simply increasing, but not fragmented: all resources are available to the application: this means that the problem of how to scale is back to where it should be: with the cloud vendor. "Yeah, great, but what about the databases?" The .NET application communicates with the database server through a .NET ADO.NET provider. Where the database is located is not a problem of the appdomain: the ADO.NET provider has to solve that. I.o.w.: we can host the databases in an environment which offers itself as a single resource and is accessible through one connection string without replication overhead on the outside, and use that environment inside the .NET VM as if it was a single DB. But what about memory replication and other problems? This environment isn't simple, at least not for the cloud vendor. But it is simple for the customer who wants to run his sites in that cloud: no work needed. No refactoring needed of existing code. Upload it, run it. Perhaps I'm dreaming and what I described above isn't possible. Yet, I think if cloud vendors don't move into that direction, what they're offering isn't interesting: it doesn't solve a problem at all, it simply offers a way to instantiate more VMs with the guest OS of choice at the cost of me needing to refactor my website code so it can run in the straight jacket form factor dictated by the cloud vendor. Let's not kid ourselves here: most of us developers will never build a website which needs a truck load of VMs to run it: almost all websites created by developers can run on just a few VMs at most. Yet, the most expensive change is right at the start: moving from one to two VMs. As soon as you have refactored your website code to run across multiple VMs, adding another one is just as easy as clicking a mouse button. But that first step, that's the problem here and as it's right there at the beginning of scaling the website, it's particularly strange that cloud vendors refuse to solve that problem and leave it to the developers to solve that. Which makes migrating 'to the cloud' particularly expensive.

    Read the article

  • C#/.NET Little Wonders: Using &lsquo;default&rsquo; to Get Default Values

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Today’s little wonder is another of those small items that can help a lot in certain situations, especially when writing generics.  In particular, it is useful in determining what the default value of a given type would be. The Problem: what’s the default value for a generic type? There comes a time when you’re writing generic code where you may want to set an item of a given generic type.  Seems simple enough, right?  We’ll let’s see! Let’s say we want to query a Dictionary<TKey, TValue> for a given key and get back the value, but if the key doesn’t exist, we’d like a default value instead of throwing an exception. So, for example, we might have a the following dictionary defined: 1: var lookup = new Dictionary<int, string> 2: { 3: { 1, "Apple" }, 4: { 2, "Orange" }, 5: { 3, "Banana" }, 6: { 4, "Pear" }, 7: { 9, "Peach" } 8: }; And using those definitions, perhaps we want to do something like this: 1: // assume a default 2: string value = "Unknown"; 3:  4: // if the item exists in dictionary, get its value 5: if (lookup.ContainsKey(5)) 6: { 7: value = lookup[5]; 8: } But that’s inefficient, because then we’re double-hashing (once for ContainsKey() and once for the indexer).  Well, to avoid the double-hashing, we could use TryGetValue() instead: 1: string value; 2:  3: // if key exists, value will be put in value, if not default it 4: if (!lookup.TryGetValue(5, out value)) 5: { 6: value = "Unknown"; 7: } But the “flow” of using of TryGetValue() can get clunky at times when you just want to assign either the value or a default to a variable.  Essentially it’s 3-ish lines (depending on formatting) for 1 assignment.  So perhaps instead we’d like to write an extension method to support a cleaner interface that will return a default if the item isn’t found: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } 17:  So this creates an extension method on Dictionary<TKey, TValue> that will attempt to get a value using the given key, and will return the defaultIfNotFound as a stand-in if the key does not exist. This code compiles, fine, but what if we would like to go one step further and allow them to specify a default if not found, or accept the default for the type?  Obviously, we could overload the method to take the default or not, but that would be duplicated code and a bit heavy for just specifying a default.  It seems reasonable that we could set the not found value to be either the default for the type, or the specified value. So what if we defaulted the type to null? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = null) // ... No, this won’t work, because only reference types (and Nullable<T> wrapped types due to syntactical sugar) can be assigned to null.  So what about a calling parameterless constructor? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = new TValue()) // ... No, this won’t work either for several reasons.  First, we’d expect a reference type to return null, not an “empty” instance.  Secondly, not all reference types have a parameter-less constructor (string for example does not).  And finally, a constructor cannot be determined at compile-time, while default values can. The Solution: default(T) – returns the default value for type T Many of us know the default keyword for its uses in switch statements as the default case.  But it has another use as well: it can return us the default value for a given type.  And since it generates the same defaults that default field initialization uses, it can be determined at compile-time as well. For example: 1: var x = default(int); // x is 0 2:  3: var y = default(bool); // y is false 4:  5: var z = default(string); // z is null 6:  7: var t = default(TimeSpan); // t is a TimeSpan with Ticks == 0 8:  9: var n = default(int?); // n is a Nullable<int> with HasValue == false Notice that for numeric types the default is 0, and for reference types the default is null.  In addition, for struct types, the value is a default-constructed struct – which simply means a struct where every field has their default value (hence 0 Ticks for TimeSpan, etc.). So using this, we could modify our code to this: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound = default(TValue)) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } Now, if defaultIfNotFound is unspecified, it will use default(TValue) which will be the default value for whatever value type the dictionary holds.  So let’s consider how we could use this: 1: lookup.GetValueOrDefault(1); // returns “Apple” 2:  3: lookup.GetValueOrDefault(5); // returns null 4:  5: lookup.GetValueOrDefault(5, “Unknown”); // returns “Unknown” 6:  Again, do not confuse a parameter-less constructor with the default value for a type.  Remember that the default value for any type is the compile-time default for any instance of that type (0 for numeric, false for bool, null for reference types, and struct will all default fields for struct).  Consider the difference: 1: // both zero 2: int i1 = default(int); 3: int i2 = new int(); 4:  5: // both “zeroed” structs 6: var dt1 = default(DateTime); 7: var dt2 = new DateTime(); 8:  9: // sb1 is null, sb2 is an “empty” string builder 10: var sb1 = default(StringBuilder()); 11: var sb2 = new StringBuilder(); So in the above code, notice that the value types all resolve the same whether using default or parameter-less construction.  This is because a value type is never null (even Nullable<T> wrapped types are never “null” in a reference sense), they will just by default contain fields with all default values. However, for reference types, the default is null and not a constructed instance.  Also it should be noted that not all classes have parameter-less constructors (string, for instance, doesn’t have one – and doesn’t need one). Summary Whenever you need to get the default value for a type, especially a generic type, consider using the default keyword.  This handy word will give you the default value for the given type at compile-time, which can then be used for initialization, optional parameters, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,default

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #048

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Order of Result Set of SELECT Statement on Clustered Indexed Table When ORDER BY is Not Used Above theory is true in most of the cases. However SQL Server does not use that logic when returning the resultset. SQL Server always returns the resultset which it can return fastest.In most of the cases the resultset which can be returned fastest is the resultset which is returned using clustered index. Effect of TRANSACTION on Local Variable – After ROLLBACK and After COMMIT One of the Jr. Developer asked me this question (What will be the Effect of TRANSACTION on Local Variable – After ROLLBACK and After COMMIT?) while I was rushing to an important meeting. I was getting late so I asked him to talk with his Application Tech Lead. When I came back from meeting both of them were looking for me. They said they are confused. I quickly wrote down following example for them. 2008 SQL SERVER – Guidelines and Coding Standards Complete List Download Coding standards and guidelines are very important for any developer on the path of a successful career. A coding standard is a set of guidelines, rules and regulations on how to write code. Coding standards should be flexible enough or should take care of the situation where they should not prevent best practices for coding. They are basically the guidelines that one should follow for better understanding. Download Guidelines and Coding Standards complete List Download Get Answer in Float When Dividing of Two Integer Many times we have requirements of some calculations amongst different fields in Tables. One of the software developers here was trying to calculate some fields having integer values and divide it which gave incorrect results in integer where accurate results including decimals was expected. Puzzle – Computed Columns Datatype Explanation SQL Server automatically does a cast to the data type having the highest precedence. So the result of INT and INT will be INT, but INT and FLOAT will be FLOAT because FLOAT has a higher precedence. If you want a different data type, you need to do an EXPLICIT cast. Renaming SP is Not Good Idea – Renaming Stored Procedure Does Not Update sys.procedures I have written many articles about renaming a tables, columns and procedures SQL SERVER – How to Rename a Column Name or Table Name, here I found something interesting about renaming the stored procedures and felt like sharing it with you all. The interesting fact is that when we rename a stored procedure using SP_Rename command, the Stored Procedure is successfully renamed. But when we try to test the procedure using sp_helptext, the procedure will be having the old name instead of new names. 2009 Insert Values of Stored Procedure in Table – Use Table Valued Function It is clear from the result set that , where I have converted stored procedure logic into the table valued function, is much better in terms of logic as it saves a large number of operations. However, this option should be used carefully. The performance of the stored procedure is “usually” better than that of functions. Interesting Observation – Index on Index View Used in Similar Query Recently, I was working on an optimization project for one of the largest organizations. While working on one of the queries, we came across a very interesting observation. We found that there was a query on the base table and when the query was run, it used the index, which did not exist in the base table. On careful examination, we found that the query was using the index that was on another view. This was very interesting as I have personally never experienced a scenario like this. In simple words, “Query on the base table can use the index created on the indexed view of the same base table.” Interesting Observation – Execution Plan and Results of Aggregate Concatenation Queries Working with SQL Server has never seemed to be monotonous – no matter how long one has worked with it. Quite often, I come across some excellent comments that I feel like acknowledging them as blog posts. Recently, I wrote an article on SQL SERVER – Execution Plan and Results of Aggregate Concatenation Queries Depend Upon Expression Location, which is well received in the community. 2010 I encourage all of you to go through complete series and write your own on the subject. If you write an article and send it to me, I will publish it on this blog with due credit to you. If you write on your own blog, I will update this blog post pointing to your blog post. SQL SERVER – ORDER BY Does Not Work – Limitation of the View 1 SQL SERVER – Adding Column is Expensive by Joining Table Outside View – Limitation of the View 2 SQL SERVER – Index Created on View not Used Often – Limitation of the View 3 SQL SERVER – SELECT * and Adding Column Issue in View – Limitation of the View 4 SQL SERVER – COUNT(*) Not Allowed but COUNT_BIG(*) Allowed – Limitation of the View 5 SQL SERVER – UNION Not Allowed but OR Allowed in Index View – Limitation of the View 6 SQL SERVER – Cross Database Queries Not Allowed in Indexed View – Limitation of the View 7 SQL SERVER – Outer Join Not Allowed in Indexed Views – Limitation of the View 8 SQL SERVER – SELF JOIN Not Allowed in Indexed View – Limitation of the View 9 SQL SERVER – Keywords View Definition Must Not Contain for Indexed View – Limitation of the View 10 SQL SERVER – View Over the View Not Possible with Index View – Limitations of the View 11 2011 Startup Parameters Easy to Configure If you are a regular reader of this blog, you must be aware that I have written about SQL Server Denali recently. Here is the quickest way to reach into the screen where we can change the startup parameters. Go to SQL Server Configuration Manager >> SQL Server Services >> Right Click on the Server >> Properties >> Startup Parameters 2012 Validating Unique Columnname Across Whole Database I sometimes come across very strange requirements and often I do not receive a proper explanation of the same. Here is the one of those examples. For example “Our business requirement is when we add new column we want it unique across current database.” Read the solution to this strange request in this blog post. Excel Losing Decimal Values When Value Pasted from SSMS ResultSet It is very common when users are coping the resultset to Excel, the floating point or decimals are missed. The solution is very much simple and it requires a small adjustment in the Excel. By default Excel is very smart and when it detects the value which is getting pasted is numeric it changes the column format to accommodate that. Basic Calculation and PEMDAS Order of Operation Read this interesting blog post for fantastic conversation about the subject. Copy Column Headers from Resultset – SQL in Sixty Seconds #027 – Video http://www.youtube.com/watch?v=x_-3tLqTRv0 Delete From Multiple Table – Update Multiple Table in Single Statement There are two questions which I get every single day multiple times. In my gmail, I have created standard canned reply for them. Let us see the questions here. I want to delete from multiple table in a single statement how will I do it? I want to update multiple table in a single statement how will I do it? Read the answer in the blog post. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Using WeakReference to resolve issue with .NET unregistered event handlers causing memory leaks.

    - by Eric
    The problem: Registered event handlers create a reference from the event to the event handler's instance. If that instance fails to unregister the event handler (via Dispose, presumably), then the instance memory will not be freed by the garbage collector. Example: class Foo { public event Action AnEvent; public void DoEvent() { if (AnEvent != null) AnEvent(); } } class Bar { public Bar(Foo l) { l.AnEvent += l_AnEvent; } void l_AnEvent() { } } If I instantiate a Foo, and pass this to a new Bar constructor, then let go of the Bar object, it will not be freed by the garbage collector because of the AnEvent registration. I consider this a memory leak, and seems just like my old C++ days. I can, of course, make Bar IDisposable, unregister the event in the Dispose() method, and make sure to call Dispose() on instances of it, but why should I have to do this? I first question why events are implemented with strong references? Why not use weak references? An event is used to abstractly notify an object of changes in another object. It seems to me that if the event handler's instance is no longer in use (i.e., there are no non-event references to the object), then any events that it is registered with should automatically be unregistered. What am I missing? I have looked at WeakEventManager. Wow, what a pain. Not only is it very difficult to use, but its documentation is inadequate (see http://msdn.microsoft.com/en-us/library/system.windows.weakeventmanager.aspx -- noticing the "Notes to Inheritors" section that has 6 vaguely described bullets). I have seen other discussions in various places, but nothing I felt I could use. I propose a simpler solution based on WeakReference, as described here. My question is: Does this not meet the requirements with significantly less complexity? To use the solution, the above code is modified as follows: class Foo { public WeakReferenceEvent AnEvent = new WeakReferenceEvent(); internal void DoEvent() { AnEvent.Invoke(); } } class Bar { public Bar(Foo l) { l.AnEvent += l_AnEvent; } void l_AnEvent() { } } Notice two things: 1. The Foo class is modified in two ways: The event is replaced with an instance of WeakReferenceEvent, shown below; and the invocation of the event is changed. 2. The Bar class is UNCHANGED. No need to subclass WeakEventManager, implement IWeakEventListener, etc. OK, so on to the implementation of WeakReferenceEvent. This is shown here. Note that it uses the generic WeakReference that I borrowed from here: http://damieng.com/blog/2006/08/01/implementingweakreferencet I had to add Equals() and GetHashCode() to his class, which I include below for reference. class WeakReferenceEvent { public static WeakReferenceEvent operator +(WeakReferenceEvent wre, Action handler) { wre._delegates.Add(new WeakReference<Action>(handler)); return wre; } public static WeakReferenceEvent operator -(WeakReferenceEvent wre, Action handler) { foreach (var del in wre._delegates) if (del.Target == handler) { wre._delegates.Remove(del); return wre; } return wre; } HashSet<WeakReference<Action>> _delegates = new HashSet<WeakReference<Action>>(); internal void Invoke() { HashSet<WeakReference<Action>> toRemove = null; foreach (var del in _delegates) { if (del.IsAlive) del.Target(); else { if (toRemove == null) toRemove = new HashSet<WeakReference<Action>>(); toRemove.Add(del); } } if (toRemove != null) foreach (var del in toRemove) _delegates.Remove(del); } } public class WeakReference<T> : IDisposable { private GCHandle handle; private bool trackResurrection; public WeakReference(T target) : this(target, false) { } public WeakReference(T target, bool trackResurrection) { this.trackResurrection = trackResurrection; this.Target = target; } ~WeakReference() { Dispose(); } public void Dispose() { handle.Free(); GC.SuppressFinalize(this); } public virtual bool IsAlive { get { return (handle.Target != null); } } public virtual bool TrackResurrection { get { return this.trackResurrection; } } public virtual T Target { get { object o = handle.Target; if ((o == null) || (!(o is T))) return default(T); else return (T)o; } set { handle = GCHandle.Alloc(value, this.trackResurrection ? GCHandleType.WeakTrackResurrection : GCHandleType.Weak); } } public override bool Equals(object obj) { var other = obj as WeakReference<T>; return other != null && Target.Equals(other.Target); } public override int GetHashCode() { return Target.GetHashCode(); } } It's functionality is trivial. I override operator + and - to get the += and -= syntactic sugar matching events. These create WeakReferences to the Action delegate. This allows the garbage collector to free the event target object (Bar in this example) when nobody else is holding on to it. In the Invoke() method, simply run through the weak references and call their Target Action. If any dead (i.e., garbage collected) references are found, remove them from the list. Of course, this only works with delegates of type Action. I tried making this generic, but ran into the missing where T : delegate in C#! As an alternative, simply modify class WeakReferenceEvent to be a WeakReferenceEvent, and replace the Action with Action. Fix the compiler errors and you have a class that can be used like so: class Foo { public WeakReferenceEvent<int> AnEvent = new WeakReferenceEvent<int>(); internal void DoEvent() { AnEvent.Invoke(5); } } Hopefully this will help someone else when they run into the mystery .NET event memory leak!

    Read the article

  • How-to delete a tree node using the context menu

    - by frank.nimphius
    Hierarchical trees in Oracle ADF make use of View Accessors, which means that only the top level node needs to be exposed as a View Object instance on the ADF Business Components Data Model. This also means that only the top level node has a representation in the PageDef file as a tree binding and iterator binding reference. Detail nodes are accessed through tree rule definitions that use the accessor mentioned above (or nested collections in the case of POJO or EJB business services). The tree component is configured for single node selection, which however can be declaratively changed for users to press the ctrl key and selecting multiple nodes. In the following, I explain how to create a context menu on the tree for users to delete the selected tree nodes. For this, the context menu item will access a managed bean, which then determines the selected node(s), the internal ADF node bindings and the rows they represent. As mentioned, the ADF Business Components Data Model only needs to expose the top level node data sources, which in this example is an instance of the Locations View Object. For the tree to work, you need to have associations defined between entities, which usually is done for you by Oracle JDeveloper if the database tables have foreign keys defined Note: As a general hint of best practices and to simplify your life: Make sure your database schema is well defined and designed before starting your development project. Don't treat the database as something organic that grows and changes with the requirements as you proceed in your project. Business service refactoring in response to database changes is possible, but should be treated as an exception, not the rule. Good database design is a necessity – even for application developers – and nothing evil. To create the tree component, expand the Data Controls panel and drag the View Object collection to the view. From the context menu, select the tree component entry and continue with defining the tree rules that make up the hierarchical structure. As you see, when pressing the green plus icon  in the Edit Tree Binding  dialog, the data structure, Locations -  Departments – Employees in my sample, shows without you having created a View Object instance for each of the nodes in the ADF Business Components Data Model. After you configured the tree structure in the Edit Tree Binding dialog, you press OK and the tree is created. Select the tree in the page editor and open the Structure Window (ctrl+shift+S). In the Structure window, expand the tree node to access the conextMenu facet. Use the right mouse button to insert a Popup  into the facet. Repeat the same steps to insert a Menu and a Menu Item into the Popup you created. The Menu item text should be changed to something meaningful like "Delete". Note that the custom menu item later is added to the context menu together with the default context menu options like expand and expand all. To define the action that is executed when the menu item is clicked on, you select the Action Listener property in the Property Inspector and click the arrow icon followed by the Edit menu option. Create or select a managed bean and define a method name for the action handler. Next, select the tree component and browse to its binding property in the Property Inspector. Again, use the arrow icon | Edit option to create a component binding in the same managed bean that has the action listener defined. The tree handle is used in the action listener code, which is shown below: public void onTreeNodeDelete(ActionEvent actionEvent) {   //access the tree from the JSF component reference created   //using the af:tree "binding" property. The "binding" property   //creates a pair of set/get methods to access the RichTree instance   RichTree tree = this.getTreeHandler();   //get the list of selected row keys   RowKeySet rks = tree.getSelectedRowKeys();   //access the iterator to loop over selected nodes   Iterator rksIterator = rks.iterator();          //The CollectionModel represents the tree model and is   //accessed from the tree "value" property   CollectionModel model = (CollectionModel) tree.getValue();   //The CollectionModel is a wrapper for the ADF tree binding   //class, which is JUCtrlHierBinding   JUCtrlHierBinding treeBinding =                  (JUCtrlHierBinding) model.getWrappedData();          //loop over the selected nodes and delete the rows they   //represent   while(rksIterator.hasNext()){     List nodeKey = (List) rksIterator.next();     //find the ADF node binding using the node key     JUCtrlHierNodeBinding node =                       treeBinding.findNodeByKeyPath(nodeKey);     //delete the row.     Row rw = node.getRow();       rw.remove();   }          //only refresh the tree if tree nodes have been selected   if(rks.size() > 0){     AdfFacesContext adfFacesContext =                          AdfFacesContext.getCurrentInstance();     adfFacesContext.addPartialTarget(tree);   } } Note: To enable multi node selection for a tree, select the tree and change the row selection setting from "single" to "multiple". Note: a fully pictured version of this post will become available at the end of the month in a PDF summary on ADF Code Corner : http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html 

    Read the article

  • Superclass Sensitive Actions

    - by Geertjan
    I've created a small piece of functionality that enables you to create actions for Java classes in the IDE. When the user right-clicks on a Java class, they will see one or more actions depending on the superclass of the selected class. To explain this visually, here I have "BlaTopComponent.java". I right-click on its node in the Projects window and I see "This is a TopComponent": Indeed, when you look at the source code of "BlaTopComponent.java", you'll see that it implements the TopComponent class. Next, in the screenshot below, you see that I have right-click a different class. In this case, there's an action available because the selected class implements the ActionListener class. Then, take a look at this one. Here both TopComponent and ActionListener are superclasses of the current class, hence both the actions are available to be invoked: Finally, here's a class that subclasses neither TopComponent nor ActionListener, hence neither of the actions that I created for doing something that relates to TopComponents or ActionListeners is available, since those actions are irrelevant in this context: How does this work? Well, it's a combination of my blog entries "Generic Node Popup Registration Solution" and "Showing an Action on a TopComponent Node". The cool part is that the definition of the two actions that you see above is remarkably trivial: import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JOptionPane; import org.openide.loaders.DataObject; import org.openide.util.Utilities; public class TopComponentSensitiveAction implements ActionListener { private final DataObject context; public TopComponentSensitiveAction() { context = Utilities.actionsGlobalContext().lookup(DataObject.class); } @Override public void actionPerformed(ActionEvent ev) { //Do something with the context: JOptionPane.showMessageDialog(null, "TopComponent: " + context.getNodeDelegate().getDisplayName()); } } The above is the action that will be available if you right-click a Java class that extends TopComponent. This, in turn, is the action that will be available if you right-click a Java class that implements ActionListener: import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JOptionPane; import org.openide.loaders.DataObject; import org.openide.util.Utilities; public class ActionListenerSensitiveAction implements ActionListener { private final DataObject context; public ActionListenerSensitiveAction() { context = Utilities.actionsGlobalContext().lookup(DataObject.class); } @Override public void actionPerformed(ActionEvent ev) { //Do something with the context: JOptionPane.showMessageDialog(null, "ActionListener: " + context.getNodeDelegate().getDisplayName()); } } Indeed, the classes, at this stage are the same. But, depending on what I want to do with TopComponents or ActionListeners, I now have a starting point, which includes access to the DataObject, from where I can get down into the source code, as shown here. This is how the two ActionListeners that you see defined above are registered in the layer, which could ultimately be done via annotations on the ActionListeners, of course: <folder name="Actions"> <folder name="Tools"> <file name="org-netbeans-sbas-impl-TopComponentSensitiveAction.instance"> <attr stringvalue="This is a TopComponent" name="displayName"/> <attr name="instanceCreate" methodvalue="org.netbeans.sbas.SuperclassSensitiveAction.create"/> <attr name="type" stringvalue="org.openide.windows.TopComponent"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.TopComponentSensitiveAction"/> </file> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"> <attr stringvalue="This is an ActionListener" name="displayName"/> <attr name="instanceCreate" methodvalue="org.netbeans.sbas.SuperclassSensitiveAction.create"/> <attr name="type" stringvalue="java.awt.event.ActionListener"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.ActionListenerSensitiveAction"/> </file> </folder> </folder> <folder name="Loaders"> <folder name="text"> <folder name="x-java"> <folder name="Actions"> <file name="org-netbeans-sbas-impl-TopComponentSensitiveAction.shadow"> <attr name="originalFile" stringvalue="Actions/Tools/org-netbeans-sbas-impl-TopComponentSensitiveAction.instance"/> <attr intvalue="150" name="position"/> </file> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.shadow"> <attr name="originalFile" stringvalue="Actions/Tools/org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"/> <attr intvalue="160" name="position"/> </file> </folder> </folder> </folder> </folder> The most important parts of the layer registration are the lines that are highlighted above. Those lines connect the layer to the generic action that delegates back to the action listeners defined above, as follows: public final class SuperclassSensitiveAction extends AbstractAction implements ContextAwareAction { private final Map map; //This method is called from the layer, via "instanceCreate", //magically receiving a map, which contains all the attributes //that are defined in the layer for the file: static SuperclassSensitiveAction create(Map map) { return new SuperclassSensitiveAction(Utilities.actionsGlobalContext(), map); } public SuperclassSensitiveAction(Lookup context, Map m) { super(m.get("displayName").toString()); this.map = m; String superclass = m.get("type").toString(); //Enable the menu item only if //we're dealing with a class of type superclass: JavaSource javaSource = JavaSource.forFileObject( context.lookup(DataObject.class).getPrimaryFile()); try { javaSource.runUserActionTask(new ScanTask(this, superclass), true); } catch (IOException ex) { Exceptions.printStackTrace(ex); } //Hide the menu item if it isn't enabled: putValue(DynamicMenuContent.HIDE_WHEN_DISABLED, true); } @Override public void actionPerformed(ActionEvent ev) { ActionListener delegatedAction = (ActionListener)map.get("delegate"); delegatedAction.actionPerformed(ev); } @Override public Action createContextAwareInstance(Lookup actionContext) { return new SuperclassSensitiveAction(actionContext, map); } private class ScanTask implements Task<CompilationController> { private SuperclassSensitiveAction action = null; private String superclass; private ScanTask(SuperclassSensitiveAction action, String superclass) { this.action = action; this.superclass = superclass; } @Override public void run(final CompilationController info) throws Exception { info.toPhase(Phase.ELEMENTS_RESOLVED); new EnableIfGivenSuperclassMatches(info, action, superclass).scan( info.getCompilationUnit(), null); } } private static class EnableIfGivenSuperclassMatches extends TreePathScanner<Void, Void> { private CompilationInfo info; private final AbstractAction action; private final String superclassName; public EnableIfGivenSuperclassMatches(CompilationInfo info, AbstractAction action, String superclassName) { this.info = info; this.action = action; this.superclassName = superclassName; } @Override public Void visitClass(ClassTree t, Void v) { Element el = info.getTrees().getElement(getCurrentPath()); if (el != null) { TypeElement te = (TypeElement) el; List<? extends TypeMirror> interfaces = te.getInterfaces(); if (te.getSuperclass().toString().equals(superclassName)) { action.setEnabled(true); } else { action.setEnabled(false); } for (TypeMirror typeMirror : interfaces) { if (typeMirror.toString().equals(superclassName)){ action.setEnabled(true); } } } return null; } } } This is a pretty cool solution and, as you can see, very generic. Create a new ActionListener, register it in the layer so that it maps to the generic class above, and make sure to set the type attribute, which defines the superclass to which the action should be sensitive.

    Read the article

  • When is a Seek not a Seek?

    - by Paul White
    The following script creates a single-column clustered table containing the integers from 1 to 1,000 inclusive. IF OBJECT_ID(N'tempdb..#Test', N'U') IS NOT NULL DROP TABLE #Test ; GO CREATE TABLE #Test ( id INTEGER PRIMARY KEY CLUSTERED ); ; INSERT #Test (id) SELECT V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 1000 ; Let’s say we need to find the rows with values from 100 to 170, excluding any values that divide exactly by 10.  One way to write that query would be: SELECT T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; That query produces a pretty efficient-looking query plan: Knowing that the source column is defined as an INTEGER, we could also express the query this way: SELECT T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; We get a similar-looking plan: If you look closely, you might notice that the line connecting the two icons is a little thinner than before.  The first query is estimated to produce 61.9167 rows – very close to the 63 rows we know the query will return.  The second query presents a tougher challenge for SQL Server because it doesn’t know how to predict the selectivity of the modulo expression (T.id % 10 > 0).  Without that last line, the second query is estimated to produce 68.1667 rows – a slight overestimate.  Adding the opaque modulo expression results in SQL Server guessing at the selectivity.  As you may know, the selectivity guess for a greater-than operation is 30%, so the final estimate is 30% of 68.1667, which comes to 20.45 rows. The second difference is that the Clustered Index Seek is costed at 99% of the estimated total for the statement.  For some reason, the final SELECT operator is assigned a small cost of 0.0000484 units; I have absolutely no idea why this is so, or what it models.  Nevertheless, we can compare the total cost for both queries: the first one comes in at 0.0033501 units, and the second at 0.0034054.  The important point is that the second query is costed very slightly higher than the first, even though it is expected to produce many fewer rows (20.45 versus 61.9167). If you run the two queries, they produce exactly the same results, and both complete so quickly that it is impossible to measure CPU usage for a single execution.  We can, however, compare the I/O statistics for a single run by running the queries with STATISTICS IO ON: Table '#Test'. Scan count 63, logical reads 126, physical reads 0. Table '#Test'. Scan count 01, logical reads 002, physical reads 0. The query with the IN list uses 126 logical reads (and has a ‘scan count’ of 63), while the second query form completes with just 2 logical reads (and a ‘scan count’ of 1).  It is no coincidence that 126 = 63 * 2, by the way.  It is almost as if the first query is doing 63 seeks, compared to one for the second query. In fact, that is exactly what it is doing.  There is no indication of this in the graphical plan, or the tool-tip that appears when you hover your mouse over the Clustered Index Seek icon.  To see the 63 seek operations, you have click on the Seek icon and look in the Properties window (press F4, or right-click and choose from the menu): The Seek Predicates list shows a total of 63 seek operations – one for each of the values from the IN list contained in the first query.  I have expanded the first seek node to show the details; it is seeking down the clustered index to find the entry with the value 101.  Each of the other 62 nodes expands similarly, and the same information is contained (even more verbosely) in the XML form of the plan. Each of the 63 seek operations starts at the root of the clustered index B-tree and navigates down to the leaf page that contains the sought key value.  Our table is just large enough to need a separate root page, so each seek incurs 2 logical reads (one for the root, and one for the leaf).  We can see the index depth using the INDEXPROPERTY function, or by using the a DMV: SELECT S.index_type_desc, S.index_depth FROM sys.dm_db_index_physical_stats ( DB_ID(N'tempdb'), OBJECT_ID(N'tempdb..#Test', N'U'), 1, 1, DEFAULT ) AS S ; Let’s look now at the Properties window when the Clustered Index Seek from the second query is selected: There is just one seek operation, which starts at the root of the index and navigates the B-tree looking for the first key that matches the Start range condition (id >= 101).  It then continues to read records at the leaf level of the index (following links between leaf-level pages if necessary) until it finds a row that does not meet the End range condition (id <= 169).  Every row that meets the seek range condition is also tested against the Residual Predicate highlighted above (id % 10 > 0), and is only returned if it matches that as well. You will not be surprised that the single seek (with a range scan and residual predicate) is much more efficient than 63 singleton seeks.  It is not 63 times more efficient (as the logical reads comparison would suggest), but it is around three times faster.  Let’s run both query forms 10,000 times and measure the elapsed time: DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON; SET STATISTICS XML OFF; ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; GO DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; On my laptop, running SQL Server 2008 build 4272 (SP2 CU2), the IN form of the query takes around 830ms and the range query about 300ms.  The main point of this post is not performance, however – it is meant as an introduction to the next few parts in this mini-series that will continue to explore scans and seeks in detail. When is a seek not a seek?  When it is 63 seeks © Paul White 2011 email: [email protected] twitter: @SQL_kiwi

    Read the article

  • Unlocking Productivity

    - by Michael Snow
    Unlocking Productivity in Life Sciences with Consolidated Content Management by Joe Golemba, Vice President, Product Management, Oracle WebCenter As life sciences organizations look to become more operationally efficient, the ability to effectively leverage information is a competitive advantage. Whether data mining at the drug discovery phase or prepping the sales team before a product launch, content management can play a key role in developing, organizing, and disseminating vital information. The goal of content management is relatively straightforward: put the information that people need where they can find it. A number of issues can complicate this; information sits in many different systems, each of those systems has its own security, and the information in those systems exists in many different formats. Identifying and extracting pertinent information from mountains of farflung data is no simple job, but the alternative—wasted effort or even regulatory compliance issues—is worse. An integrated information architecture can enable health sciences organizations to make better decisions, accelerate clinical operations, and be more competitive. Unstructured data matters Often when we think of drug development data, we think of structured data that fits neatly into one or more research databases. But structured data is often directly supported by unstructured data such as experimental protocols, reaction conditions, lot numbers, run times, analyses, and research notes. As life sciences companies seek integrated views of data, they are typically finding diverse islands of data that seemingly have no relationship to other data in the organization. Information like sales reports or call center reports can be locked into siloed systems, and unavailable to the discovery process. Additionally, in the increasingly networked clinical environment, Web pages, instant messages, videos, scientific imaging, sales and marketing data, collaborative workspaces, and predictive modeling data are likely to be present within an organization, and each source potentially possesses information that can help to better inform specific efforts. Historically, content management solutions that had 21CFR Part 11 capabilities—electronic records and signatures—were focused mainly on content-enabling manufacturing-related processes. Today, life sciences companies have many standalone repositories, requiring different skills, service level agreements, and vendor support costs to manage them. With the amount of content doubling every three to six months, companies have recognized the need to manage unstructured content from the beginning, in order to increase employee productivity and operational efficiency. Using scalable and secure enterprise content management (ECM) solutions, organizations can better manage their unstructured content. These solutions can also be integrated with enterprise resource planning (ERP) systems or research systems, making content available immediately, in the context of the application and within the flow of the employee’s typical business activity. Administrative safeguards—such as content de-duplication—can also be applied within ECM systems, so documents are never recreated, eliminating redundant efforts, ensuring one source of truth, and maintaining content standards in the organization. Putting it in context Consolidating structured and unstructured information in a single system can greatly simplify access to relevant information when it is needed through contextual search. Using contextual filters, results can include therapeutic area, position in the value chain, semantic commonalities, technology-specific factors, specific researchers involved, or potential business impact. The use of taxonomies is essential to organizing information and enabling contextual searches. Taxonomy solutions are composed of a hierarchical tree that defines the relationship between different life science terms. When overlaid with additional indexing related to research and/or business processes, it becomes possible to effectively narrow down the amount of data that is returned during searches, as well as prioritize results based on specific criteria and/or prior search history. Thus, search results are more accurate and relevant to an employee’s day-to-day work. For example, a search for the word "tissue" by a lab researcher would return significantly different results than a search for the same word performed by someone in procurement. Of course, diverse data repositories, combined with the immense amounts of data present in an organization, necessitate that the data elements be regularly indexed and cached beforehand to enable reasonable search response times. In its simplest form, indexing of a single, consolidated data warehouse can be expected to be a relatively straightforward effort. However, organizations require the ability to index multiple data repositories, enabling a single search to reference multiple data sources and provide an integrated results listing. Security and compliance Beyond yielding efficiencies and supporting new insight, an enterprise search environment can support important security considerations as well as compliance initiatives. For example, the systems enable organizations to retain the relevance and the security of the indexed systems, so users can only see the results to which they are granted access. This is especially important as life sciences companies are working in an increasingly networked environment and need to provide secure, role-based access to information across multiple partners. Although not officially required by the 21 CFR Part 11 regulation, the U.S. Food and Drug Administraiton has begun to extend the type of content considered when performing relevant audits and discoveries. Having an ECM infrastructure that provides centralized management of all content enterprise-wide—with the ability to consistently apply records and retention policies along with the appropriate controls, validations, audit trails, and electronic signatures—is becoming increasingly critical for life sciences companies. Making the move Creating an enterprise-wide ECM environment requires moving large amounts of content into a single enterprise repository, a daunting and risk-laden initiative. The first key is to focus on data taxonomy, allowing content to be mapped across systems. The second is to take advantage new tools which can dramatically speed and reduce the cost of the data migration process through automation. Additional content need not be frozen while it is migrated, enabling productivity throughout the process. The ability to effectively leverage information into success has been gaining importance in the life sciences industry for years. The rapid adoption of enterprise content management, both in operational processes as well as in scientific management, are clear indicators that the companies are looking to use all available data to be better informed, improve decision making, minimize risk, and increase time to market, to maintain profitability and be more competitive. As more and more varieties and sources of information are brought under the strategic management umbrella, the ability to divine knowledge from the vast pool of information is increasingly difficult. Simple search engines and basic content management are increasingly unable to effectively extract the right information from the mountains of data available. By bringing these tools into context and integrating them with business processes and applications, we can effectively focus on the right decisions that make our organizations more profitable. More Information Oracle will be exhibiting at DIA 2012 in Philadelphia on June 25-27. Stop by our booth Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} (#2825) to learn more about the advantages of a centralized ECM strategy and see the Oracle WebCenter Content solution, our 21 CFR Part 11 compliant content management platform.

    Read the article

  • MapReduce in DryadLINQ and PLINQ

    - by JoshReuben
    MapReduce See http://en.wikipedia.org/wiki/Mapreduce The MapReduce pattern aims to handle large-scale computations across a cluster of servers, often involving massive amounts of data. "The computation takes a set of input key/value pairs, and produces a set of output key/value pairs. The developer expresses the computation as two Func delegates: Map and Reduce. Map - takes a single input pair and produces a set of intermediate key/value pairs. The MapReduce function groups results by key and passes them to the Reduce function. Reduce - accepts an intermediate key I and a set of values for that key. It merges together these values to form a possibly smaller set of values. Typically just zero or one output value is produced per Reduce invocation. The intermediate values are supplied to the user's Reduce function via an iterator." the canonical MapReduce example: counting word frequency in a text file.     MapReduce using DryadLINQ see http://research.microsoft.com/en-us/projects/dryadlinq/ and http://connect.microsoft.com/Dryad DryadLINQ provides a simple and straightforward way to implement MapReduce operations. This The implementation has two primary components: A Pair structure, which serves as a data container. A MapReduce method, which counts word frequency and returns the top five words. The Pair Structure - Pair has two properties: Word is a string that holds a word or key. Count is an int that holds the word count. The structure also overrides ToString to simplify printing the results. The following example shows the Pair implementation. public struct Pair { private string word; private int count; public Pair(string w, int c) { word = w; count = c; } public int Count { get { return count; } } public string Word { get { return word; } } public override string ToString() { return word + ":" + count.ToString(); } } The MapReduce function  that gets the results. the input data could be partitioned and distributed across the cluster. 1. Creates a DryadTable<LineRecord> object, inputTable, to represent the lines of input text. For partitioned data, use GetPartitionedTable<T> instead of GetTable<T> and pass the method a metadata file. 2. Applies the SelectMany operator to inputTable to transform the collection of lines into collection of words. The String.Split method converts the line into a collection of words. SelectMany concatenates the collections created by Split into a single IQueryable<string> collection named words, which represents all the words in the file. 3. Performs the Map part of the operation by applying GroupBy to the words object. The GroupBy operation groups elements with the same key, which is defined by the selector delegate. This creates a higher order collection, whose elements are groups. In this case, the delegate is an identity function, so the key is the word itself and the operation creates a groups collection that consists of groups of identical words. 4. Performs the Reduce part of the operation by applying Select to groups. This operation reduces the groups of words from Step 3 to an IQueryable<Pair> collection named counts that represents the unique words in the file and how many instances there are of each word. Each key value in groups represents a unique word, so Select creates one Pair object for each unique word. IGrouping.Count returns the number of items in the group, so each Pair object's Count member is set to the number of instances of the word. 5. Applies OrderByDescending to counts. This operation sorts the input collection in descending order of frequency and creates an ordered collection named ordered. 6. Applies Take to ordered to create an IQueryable<Pair> collection named top, which contains the 100 most common words in the input file, and their frequency. Test then uses the Pair object's ToString implementation to print the top one hundred words, and their frequency.   public static IQueryable<Pair> MapReduce( string directory, string fileName, int k) { DryadDataContext ddc = new DryadDataContext("file://" + directory); DryadTable<LineRecord> inputTable = ddc.GetTable<LineRecord>(fileName); IQueryable<string> words = inputTable.SelectMany(x => x.line.Split(' ')); IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x); IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count())); IQueryable<Pair> ordered = counts.OrderByDescending(x => x.Count); IQueryable<Pair> top = ordered.Take(k);   return top; }   To Test: IQueryable<Pair> results = MapReduce(@"c:\DryadData\input", "TestFile.txt", 100); foreach (Pair words in results) Debug.Print(words.ToString());   Note: DryadLINQ applications can use a more compact way to represent the query: return inputTable         .SelectMany(x => x.line.Split(' '))         .GroupBy(x => x)         .Select(x => new Pair(x.Key, x.Count()))         .OrderByDescending(x => x.Count)         .Take(k);     MapReduce using PLINQ The pattern is relevant even for a single multi-core machine, however. We can write our own PLINQ MapReduce in a few lines. the Map function takes a single input value and returns a set of mapped values àLINQ's SelectMany operator. These are then grouped according to an intermediate key à LINQ GroupBy operator. The Reduce function takes each intermediate key and a set of values for that key, and produces any number of outputs per key à LINQ SelectMany again. We can put all of this together to implement MapReduce in PLINQ that returns a ParallelQuery<T> public static ParallelQuery<TResult> MapReduce<TSource, TMapped, TKey, TResult>( this ParallelQuery<TSource> source, Func<TSource, IEnumerable<TMapped>> map, Func<TMapped, TKey> keySelector, Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce) { return source .SelectMany(map) .GroupBy(keySelector) .SelectMany(reduce); } the map function takes in an input document and outputs all of the words in that document. The grouping phase groups all of the identical words together, such that the reduce phase can then count the words in each group and output a word/count pair for each grouping: var files = Directory.EnumerateFiles(dirPath, "*.txt").AsParallel(); var counts = files.MapReduce( path => File.ReadLines(path).SelectMany(line => line.Split(delimiters)), word => word, group => new[] { new KeyValuePair<string, int>(group.Key, group.Count()) });

    Read the article

  • Silverlight IConvertible TypeConverter

    - by codingbloke
    I recently answered the following question on stackoverflow:  Silverlight 3 custom control: only ‘int’ as numeric type for a property? [e.g. long or int64 seems to break] I quickly knocked up the class ConvertibleTypeConverter<T> that I posted in the question (listed later here as well). Afterward I fully expected to find that of the usual clever “bods who blog” to have covered this probably with a better solution than I.  So far though I’ve not found one so I thought I’d blog it myself. The Problem Here is a classic gotcha I’ve seen asked more than once on stackoverflow :- public class MyClass {     public float SomeValue { get; set; } } <local:MyClass SomeValue="45.15" /> This fails with the error  “Failed to create a 'System.Single' from the text '45.15'”  and results in much premature hair loss.  Fortunately this is SL4, in SL3 the error message is almost meaningless.  So what gives, how can it be that this fails when we can see other very similar values parsing happily all over the place? It comes down the fact that the Xaml parser only handles a few of the primitive data types namely: bool, int, string and double.  Since the parser has no idea how to convert a string to a float we get the above error. The Solution The sensible solution is “use double not float” but lets not dwell on that, there has to be occasions where such an answer isn’t acceptable. In order to achieve parsing of other types we need an implementation of TypeConverter for the type of the property and then we need to use the TypeConverterAttribute to decorate the property .  As an example the Silverlight SDK provides one for DateTime the DateTimeTypeConverter (yes I know DateTime isn’t really a primitive). The following class will parse in Xaml:- public class MyClass {     [TypeConverter(typeof(DateTimeTypeConverter))]     public DateTime SomeValue {get; set; } } So far though we would need to create a TypeConverter for each primitive type we are using, what if I had the following mad class to support in Xaml:- public class StrangePrimitives {     public Boolean BooleanProp { get; set; }     public Byte ByteProp { get; set; }     public Char CharProp { get; set; }     public DateTime DateTimeProp { get; set; }     public Decimal DecimalProp { get; set; }     public Double DoubleProp { get; set; }     public Int16 Int16Prop { get; set; }     public Int32 Int32Prop { get; set; }     public Int64 Int64Prop { get; set; }     public SByte SByteProp { get; set; }     public Single SingleProp { get; set; }     public String StringProp { get; set; }     public UInt16 UInt16Prop { get; set; }     public UInt32 UInt32Prop { get; set; }     public UInt64 UInt64Prop { get; set; } } Then I want to fill an instance of StrangePrimitives with the following Xaml which of course fails. <local:StrangePrimitives x:Key="MyStrangePrimitives"                          BooleanProp="True"                          ByteProp="156"                          CharProp="A"                          DateTimeProp="06 Jun 2010"                          DecimalProp="123.56"                          DoubleProp="8372.937803"                          Int16Prop="16532"                          Int32Prop="73738248"                          Int64Prop="12345678909298"                          SByteProp="-123"                          SingleProp="39.0"                          StringProp="Hello, World!"                          UInt16Prop="40000"                          UInt32Prop="4294967295"                          UInt64Prop="18446744073709551615"      /> I got to thinking, though, one thing all these primitive types have in common is that they all implement IConvertible so it should be possible to write just one converter to handle them all.  Here it is:- The ConvertibleTypeConverter public class ConvertibleTypeConverter<T> : TypeConverter where T : IConvertible {     public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType)     {         return sourceType.GetInterface("IConvertible", false) != null;     }     public override bool CanConvertTo(ITypeDescriptorContext context, Type destinationType)     {         return destinationType.GetInterface("IConvertible", false) != null;     }     public override object ConvertFrom(ITypeDescriptorContext context, System.Globalization.CultureInfo culture, object value)     {         return ((IConvertible)value).ToType(typeof(T), culture);     }     public override object ConvertTo(ITypeDescriptorContext context, System.Globalization.CultureInfo culture, object value, Type destinationType)     {         return ((IConvertible)value).ToType(destinationType, culture);     } } I won’t bore you with an explanation of how it works, it simply adapts one existing interface (the IConvertible) and exposes it as another (the TypeConverter).   With that in place the previous strange primitives class can be modified as:- public class StrangePrimitives {     public Boolean BooleanProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Byte>))]     public Byte ByteProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Char>))]     public Char CharProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<DateTime>))]     public DateTime DateTimeProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Decimal>))]     public Decimal DecimalProp { get; set; }     public Double DoubleProp {get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Int16>))]     public Int16 Int16Prop { get; set; }     public Int32 Int32Prop { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Int64>))]     public Int64 Int64Prop { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<SByte>))]     public SByte SByteProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<Single>))]     public Single SingleProp { get; set; }     public String StringProp { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<UInt16>))]     public UInt16 UInt16Prop { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<UInt32>))]     public UInt32 UInt32Prop { get; set; }     [TypeConverter(typeof(ConvertibleTypeConverter<UInt64>))]     public UInt64 UInt64Prop { get; set; } } This results in the previous Xaml parsing happily.  Now it seems such an obvious thing to do that one may wonder why such a class doesn’t already existing in Silverlight or at least in the SDK.   I would not be surprised if there were some very good reasons hence use the ConvertibleTypeConverter with caution.  It does seem to me to be a useful little class to have lying around in the toolbox for the odd occasion where it may be needed.

    Read the article

  • Windows Azure – Write, Run or Use Software

    - by BuckWoody
    Windows Azure is a platform that has you covered, whether you need to write software, run software that is already written, or Install and use “canned” software whether you or someone else wrote it. Like any platform, it’s a set of tools you can use where it makes sense to solve a problem. The primary location for Windows Azure information is located at http://windowsazure.com. You can find everything there from the development kits for writing software to pricing, licensing and tutorials on all of that. I have a few links here for learning to use Windows Azure – although it’s best if you focus not on the tools, but what you want to solve. I’ve got it broken down here into various sections, so you can quickly locate things you want to know. I’ll include resources here from Microsoft and elsewhere – I use these same resources in the Architectural Design Sessions (ADS) I do with my clients worldwide. Write Software Also called “Platform as a Service” (PaaS), Windows Azure has lots of components you can use together or separately that allow you to write software in .NET or various Open Source languages to work completely online, or in partnership with code you have on-premises or both – even if you’re using other cloud providers. Keep in mind that all of the features you see here can be used together, or independently. For instance, you might only use a Web Site, or use Storage, but you can use both together. You can access all of these components through standard REST API calls, or using our Software Development Kit’s API’s, which are a lot easier. In any case, you simply use Visual Studio, Eclipse, Cloud9 IDE, or even a text editor to write your code from a Mac, PC or Linux.  Components you can use: Azure Web Sites: Windows Azure Web Sites allow you to quickly write an deploy websites, without setting a Virtual Machine, installing a web server or configuring complex settings. They work alone, with other Windows Azure Web Sites, or with other parts of Windows Azure. Web and Worker Roles: Windows Azure Web Roles give you a full stateless computing instance with Internet Information Services (IIS) installed and configured. Windows Azure Worker Roles give you a full stateless computing instance without Information Services (IIS) installed, often used in a "Services" mode. Scale-out is achieved either manually or programmatically under your control. Storage: Windows Azure Storage types include Blobs to store raw binary data, Tables to use key/value pair data (like NoSQL data structures), Queues that allow interaction between stateless roles, and a relational SQL Server database. Other Services: Windows Azure has many other services such as a security mechanism, a Cache (memcacheD compliant), a Service Bus, a Traffic Manager and more. Once again, these features can be used with a Windows Azure project, or alone based on your needs. Various Languages: Windows Azure supports the .NET stack of languages, as well as many Open-Source languages like Java, Python, PHP, Ruby, NodeJS, C++ and more.   Use Software Also called “Software as a Service” (SaaS) this often means consumer or business-level software like Hotmail or Office 365. In other words, you simply log on, use the software, and log off – there’s nothing to install, and little to even configure. For the Information Technology professional, however, It’s not quite the same. We want software that provides services, but in a platform. That means we want things like Hadoop or other software we don’t want to have to install and configure.  Components you can use: Kits: Various software “kits” or packages are supported with just a few clicks, such as Umbraco, Wordpress, and others. Windows Azure Media Services: Windows Azure Media Services is a suite of services that allows you to upload media for encoding, processing and even streaming – or even one or more of those functions. We can add DRM and even commercials to your media if you like. Windows Azure Media Services is used to stream large events all the way down to small training videos. High Performance Computing and “Big Data”: Windows Azure allows you to scale to huge workloads using a few clicks to deploy Hadoop Clusters or the High Performance Computing (HPC) nodes, accepting HPC Jobs, Pig and Hive Jobs, and even interfacing with Microsoft Excel. Windows Azure Marketplace: Windows Azure Marketplace offers data and programs you can quickly implement and use – some free, some for-fee.   Run Software Also known as “Infrastructure as a Service” (IaaS), this offering allows you to build or simply choose a Virtual Machine to run server-based software.  Components you can use: Persistent Virtual Machines: You can choose to install Windows Server, Windows Server with Active Directory, with SQL Server, or even SharePoint from a pre-configured gallery. You can configure your own server images with standard Hyper-V technology and load them yourselves – and even bring them back when you’re done. As a new offering, we also even allow you to select various distributions of Linux – a first for Microsoft. Windows Azure Connect: You can connect your on-premises networks to Windows Azure Instances. Storage: Windows Azure Storage can be used as a remote backup, a hybrid storage location and more using software or even hardware appliances.   Decision Matrix With all of these options, you can use Windows Azure to solve just about any computing problem. It’s often hard to know when to use something on-premises, in the cloud, and what kind of service to use. I’ve used a decision matrix in the last couple of years to take a particular problem and choose the proper technology to solve it. It’s all about options – there is no “silver bullet”, whether that’s Windows Azure or any other set of functions. I take the problem, decide which particular component I want to own and control – and choose the column that has that box darkened. For instance, if I have to control the wiring for a solution (a requirement in some military and government installations), that means the “Networking” component needs to be dark, and so I select the “On Premises” column for that particular solution. If I just need the solution provided and I want no control at all, I can look as “Software as a Service” solutions. Security, Pricing, and Other Info  Security: Security is one of the first questions you should ask in any distributed computing environment. We have certification info, coding guidelines and more, even a general “Request for Information” RFI Response already created for you.   Pricing: Are there licenses? How much does this cost? Is there a way to estimate the costs in this new environment? New Features: Many new features were added to Windows Azure - a good roundup of those changes can be found here. Support: Software Support on Virtual Machines, general support.    

    Read the article

  • Building an OpenStack Cloud for Solaris Engineering, Part 1

    - by Dave Miner
    One of the signature features of the recently-released Solaris 11.2 is the OpenStack cloud computing platform.  Over on the Solaris OpenStack blog the development team is publishing lots of details about our version of OpenStack Havana as well as some tips on specific features, and I highly recommend reading those to get a feel for how we've leveraged Solaris's features to build a top-notch cloud platform.  In this and some subsequent posts I'm going to look at it from a different perspective, which is that of the enterprise administrator deploying an OpenStack cloud.  But this won't be just a theoretical perspective: I've spent the past several months putting together a deployment of OpenStack for use by the Solaris engineering organization, and now that it's in production we'll share how we built it and what we've learned so far.In the Solaris engineering organization we've long had dedicated lab systems dispersed among our various sites and a home-grown reservation tool for developers to reserve those systems; various teams also have private systems for specific testing purposes.  But as a developer, it can still be difficult to find systems you need, especially since most Solaris changes require testing on both SPARC and x86 systems before they can be integrated.  We've added virtual resources over the years as well in the form of LDOMs and zones (both traditional non-global zones and the new kernel zones).  Fundamentally, though, these were all still deployed in the same model: our overworked lab administrators set up pre-configured resources and we then reserve them.  Sounds like pretty much every traditional IT shop, right?  Which means that there's a lot of opportunity for efficiencies from greater use of virtualization and the self-service style of cloud computing.  As we were well into development of OpenStack on Solaris, I was recruited to figure out how we could deploy it to both provide more (and more efficient) development and test resources for the organization as well as a test environment for Solaris OpenStack.At this point, let's acknowledge one fact: deploying OpenStack is hard.  It's a very complex piece of software that makes use of sophisticated networking features and runs as a ton of service daemons with myriad configuration files.  The web UI, Horizon, doesn't often do a good job of providing detailed errors.  Even the command-line clients are not as transparent as you'd like, though at least you can turn on verbose and debug messaging and often get some clues as to what to look for, though it helps if you're good at reading JSON structure dumps.  I'd already learned all of this in doing a single-system Grizzly-on-Linux deployment for the development team to reference when they were getting started so I at least came to this job with some appreciation for what I was taking on.  The good news is that both we and the community have done a lot to make deployment much easier in the last year; probably the easiest approach is to download the OpenStack Unified Archive from OTN to get your hands on a single-system demonstration environment.  I highly recommend getting started with something like it to get some understanding of OpenStack before you embark on a more complex deployment.  For some situations, it may in fact be all you ever need.  If so, you don't need to read the rest of this series of posts!In the Solaris engineering case, we need a lot more horsepower than a single-system cloud can provide.  We need to support both SPARC and x86 VM's, and we have hundreds of developers so we want to be able to scale to support thousands of VM's, though we're going to build to that scale over time, not immediately.  We also want to be able to test both Solaris 11 updates and a release such as Solaris 12 that's under development so that we can work out any upgrade issues before release.  One thing we don't have is a requirement for extremely high availability, at least at this point.  We surely don't want a lot of down time, but we can tolerate scheduled outages and brief (as in an hour or so) unscheduled ones.  Thus I didn't need to spend effort on trying to get high availability everywhere.The diagram below shows our initial deployment design.  We're using six systems, most of which are x86 because we had more of those immediately available.  All of those systems reside on a management VLAN and are connected with a two-way link aggregation of 1 Gb links (we don't yet have 10 Gb switching infrastructure in place, but we'll get there).  A separate VLAN provides "public" (as in connected to the rest of Oracle's internal network) addresses, while we use VxLANs for the tenant networks. One system is more or less the control node, providing the MySQL database, RabbitMQ, Keystone, and the Nova API and scheduler as well as the Horizon console.  We're curious how this will perform and I anticipate eventually splitting at least the database off to another node to help simplify upgrades, but at our present scale this works.I had a couple of systems with lots of disk space, one of which was already configured as the Automated Installation server for the lab, so it's just providing the Glance image repository for OpenStack.  The other node with lots of disks provides Cinder block storage service; we also have a ZFS Storage Appliance that will help back-end Cinder in the near future, I just haven't had time to get it configured in yet.There's a separate system for Neutron, which is our Elastic Virtual Switch controller and handles the routing and NAT for the guests.  We don't have any need for firewalling in this deployment so we're not doing so.  We presently have only two tenants defined, one for the Solaris organization that's funding this cloud, and a separate tenant for other Oracle organizations that would like to try out OpenStack on Solaris.  Each tenant has one VxLAN defined initially, but we can of course add more.  Right now we have just a single /24 network for the floating IP's, once we get demand up to where we need more then we'll add them.Finally, we have started with just two compute nodes; one is an x86 system, the other is an LDOM on a SPARC T5-2.  We'll be adding more when demand reaches the level where we need them, but as we're still ramping up the user base it's less work to manage fewer nodes until then.My next post will delve into the details of building this OpenStack cloud's infrastructure, including how we're using various Solaris features such as Automated Installation, IPS packaging, SMF, and Puppet to deploy and manage the nodes.  After that we'll get into the specifics of configuring and running OpenStack itself.

    Read the article

  • Will creating a background thread in a WCF service during a call, take up a thread in the ASP .NET t

    - by Nate Pinchot
    The following code is part of a WCF service. Will eventWatcher take up a thread in the ASP .NET thread pool, even if it is set IsBackground = true? /// <summary> /// Provides methods to work with the PhoneSystem web services SDK. /// This is a singleton since we need to keep track of what lines (extensions) are open. /// </summary> public sealed class PhoneSystemWebServiceFactory : IDisposable { // singleton instance reference private static readonly PhoneSystemWebServiceFactory instance = new PhoneSystemWebServiceFactory(); private static readonly object l = new object(); private static volatile Hashtable monitoredExtensions = new Hashtable(); private static readonly PhoneSystemWebServiceClient webServiceClient = CreateWebServiceClient(); private static volatile bool isClientRegistered; private static volatile string clientHandle; private static readonly Thread eventWatcherThread = new Thread(EventPoller) {IsBackground = true}; #region Constructor // these constructors are hacks to make the C# compiler not mark beforefieldinit // more info: http://www.yoda.arachsys.com/csharp/singleton.html static PhoneSystemWebServiceFactory() { } PhoneSystemWebServiceFactory() { } #endregion #region Properties /// <summary> /// Gets a thread safe instance of PhoneSystemWebServiceFactory /// </summary> public static PhoneSystemWebServiceFactory Instance { get { return instance; } } #endregion #region Private methods /// <summary> /// Create and configure a PhoneSystemWebServiceClient with basic http binding and endpoint from app settings. /// </summary> /// <returns>PhoneSystemWebServiceClient</returns> private static PhoneSystemWebServiceClient CreateWebServiceClient() { string url = ConfigurationManager.AppSettings["PhoneSystemWebService_Url"]; if (string.IsNullOrEmpty(url)) { throw new ConfigurationErrorsException( "The AppSetting \"PhoneSystemWebService_Url\" could not be found. Check the application configuration and ensure that the element exists. Example: <appSettings><add key=\"PhoneSystemWebService_Url\" value=\"http://xyz\" /></appSettings>"); } return new PhoneSystemWebServiceClient(new BasicHttpBinding(), new EndpointAddress(url)); } #endregion #region Event poller public static void EventPoller() { while (true) { if (Thread.CurrentThread.ThreadState == ThreadState.Aborted || Thread.CurrentThread.ThreadState == ThreadState.AbortRequested || Thread.CurrentThread.ThreadState == ThreadState.Stopped || Thread.CurrentThread.ThreadState == ThreadState.StopRequested) break; // get events //webServiceClient.GetEvents(clientHandle, 30, 100); } Thread.Sleep(5000); } #endregion #region Client registration methods private static void RegisterClientIfNeeded() { if (isClientRegistered) { return; } lock (l) { // double lock check if (isClientRegistered) { return; } //clientHandle = webServiceClient.RegisterClient("PhoneSystemWebServiceFactoryInternal", null); isClientRegistered = true; } } private static void UnregisterClient() { if (!isClientRegistered) { return; } lock (l) { // double lock check if (!isClientRegistered) { return; } //webServiceClient.UnegisterClient(clientHandle); } } #endregion #region Phone extension methods public bool SubscribeToEventsForExtension(string extension) { if (monitoredExtensions.Contains(extension)) { return false; } lock (monitoredExtensions.SyncRoot) { // double lock check if (monitoredExtensions.Contains(extension)) { return false; } RegisterClientIfNeeded(); // open line so we receive events for extension LineInfo lineInfo; try { //lineInfo = webServiceClient.OpenLine(clientHandle, extension); } catch (FaultException<PhoneSystemWebSDKErrorDetail>) { // TODO: log error return false; } // add extension to list of monitored extensions //monitoredExtensions.Add(extension, lineInfo.lineID); monitoredExtensions.Add(extension, 1); // start event poller thread if not already started if (eventWatcherThread.ThreadState == ThreadState.Stopped || eventWatcherThread.ThreadState == ThreadState.Unstarted) { eventWatcherThread.Start(); } return true; } } public bool UnsubscribeFromEventsForExtension(string extension) { if (!monitoredExtensions.Contains(extension)) { return false; } lock (monitoredExtensions.SyncRoot) { if (!monitoredExtensions.Contains(extension)) { return false; } // close line try { //webServiceClient.CloseLine(clientHandle, (int) monitoredExtensions[extension]); } catch (FaultException<PhoneSystemWebSDKErrorDetail>) { // TODO: log error return false; } // remove extension from list of monitored extensions monitoredExtensions.Remove(extension); // if we are not monitoring anything else, stop the poller and unregister the client if (monitoredExtensions.Count == 0) { eventWatcherThread.Abort(); UnregisterClient(); } return true; } } public bool IsExtensionMonitored(string extension) { lock (monitoredExtensions.SyncRoot) { return monitoredExtensions.Contains(extension); } } #endregion #region Dispose public void Dispose() { lock (l) { // close any open lines var extensions = monitoredExtensions.Keys.Cast<string>().ToList(); while (extensions.Count > 0) { UnsubscribeFromEventsForExtension(extensions[0]); extensions.RemoveAt(0); } if (!isClientRegistered) { return; } // unregister web service client UnregisterClient(); } } #endregion }

    Read the article

  • How to Control Screen Layouts in LightSwitch

    - by ChrisD
    Visual Studio LightSwitch has a bunch of screen templates that you can use to quickly generate screens. They give you good starting points that you can customize further. When you add a new screen to your project you see a set of screen templates that you can choose from. These templates lay out all the related data you choose to put on a screen automatically for you. And don’t under estimate them; they do a great job of laying out controls in a smart way. For instance, a tab control will be used when you select more than one related set of data to display on a screen. However, you’re not limited to taking the layout as is. In fact, the screen designer is pretty flexible and allows you to create stacks of controls in a variety of configurations. You just need to visualize your screen as a series of containers that you can lay out in rows and columns. You then place controls or stacks of controls into these areas to align the screen exactly how you want. If you’re new in Visual Studio LightSwitch, you can see this tutorial. OK, Let’s start with a simple example. I have already designed my data entities for a simple order tracking system similar to the Northwind database. I also have added a Search Data  Screen to search my Products already. Now I will add a new Details Screen for my Products and make it the default screen via the “Add New Screen” dialog: The screen designer picks a simple layout for me based on the single entity I chose, in this case Product. Hit F5 to run the application, select a Product on the search screen to open the Product Details Screen. Notice that it’s pretty simple because my entity is simple. Click the “Customize” button in the top right of the screen so we can start tweaking it. The left side of the screen shows the containership of controls and data bindings (called the content tree) and the right side shows the live preview with data. Notice that we have a simple layout of two rows but only one row is populated (with a vertical stack of controls in this case). The bottom row is empty. You can envision the screen like this: Each container will display a group of data that you select. For instance in the above screen, the top row is set to a vertical stack control and the group of data to display is coming from Product. So when laying out screens you need to think in terms of containers of controls bound to groups of data. To change the data to which a container is bound, select the data item next to the container: You can select the “New Group” item in order to create more containers (or controls) within the current container. For instance to totally control the layout, select the Product in the top row and hit the delete key. This will delete the vertical stack and therefore all the controls on the screen. The content tree will still have two rows, but the rows are now both empty. If you want a layout of four containers (two rows and two columns) then select “New Group” for the data item and then change the vertical stack control to “Two Columns” for both of the rows as shown here: You can keep going on and on by selecting new groups and choosing between rows or columns. Here’s a layout with 8 containers, 4 rows and 2 columns: And here is a layout with 7 content areas; one row across the top of the screen and three rows with two columns below that: When you select Choose Content and select a data item like Product it will populate all the controls within the container (row or column in a vertical stack) however you have complete control on what to display within each group. You can delete fields you don’t want to display and/or change their controls. You can also change the size of controls and how they display by changing the settings in the properties window. If you are in the Screen Designer (and not the customization mode like we are here) you can also drag-drop data items from the left-hand side of the screen to the content tree. Note, however, that not all areas of the tree will allow you to drop a data item if there is a binding already set to a different set of data. For instance you can’t drop a Customer ID into the same group as a Product if they originate from different entities. To get around this, all you need to do is create a new group and content area as shown above. Let’s take a more complex example that deals with more than just product. I want to design a complex screen that displays Products and their Category, as well as all the OrderDetails for which that product is selected. This time I will create a new screen and select List and Details, select the Products screen data, and include the related OrderDetails. However I’m going to totally change the layout so that a Product grid is at the top left and below that is the selected Product detail. Below that will be the Category text fields and image in two columns below. On the right side I want the OrderDetails grid to take up the whole right side of the screen. All this can be done in customization mode while you’re debugging the application. To do this, I first deleted all the content items in the tree and then re-created the content tree as shown in the image below. I also set the image to be larger and the description textbox to be 5 rows using the property window below the live preview. I added the green lines to indicate the containers and show how it maps to the content tree (click to enlarge): I hope this demystifies the screen designer a little bit. Remember that screen templates are excellent starting points – you can take them as-is or customize them further. It takes a little fooling around with customizing screens to get them to do exactly what you want but there are a ton of possibilities once you get the hang of it. Stay tuned for more information on how to create your own screen templates that show up in the “Add New Screen” dialog. Enjoy! The tutorial that might be interested: Adding Custom Control In LightSwitch

    Read the article

  • Getting Started With Tailoring Business Processes

    - by Richard Bingham
    In this article, and for the sake of simplicity, we will use the term “On-Premise” to mean a deployment where you have design-time development access to the instance, including administration of the technology components, the applications filesystem, and the database. In reality this might be a local development instance that is then supported by a team who can deploy your customizations to the restricted production instance equivalents. Tools Overview Firstly let’s look at the Design-Time tools within JDeveloper for customizing and extending the artifacts of a Business Process. In essence this falls into two buckets; SOA Composite Editor for working with BPEL processes, and the BPM Studio. The SOA Composite Editor As a standard extension to JDeveloper, this graphical design tool should be familiar to anyone previously worked with Oracle SOA Server. With easy-to-use modeling capability, backed-up by full XML source-view (for read-only), it provides everything that is needed to implement the technical design. In simple terms, once deployed to the remote SOA Server the composite components (like Mediator) leverage the Event Delivery Network (EDN) for interaction with the application logic. If you are customizing an existing Fusion Applications BPEL process then be aware that it does support MDS-based customization layers just like Page Composer where different customizations are used based on the run-time context, like for a specific Product or Business Unit. This also makes them safe from patching and upgrades, although only a single active version of the composite is available at run-time. This is defined by a field on the composite record, available in Enterprise Manager. Obviously if you wish to fire different activities and tasks based on the user context then you can should include switches to fork the flows in your custom BPEL process. Figure 1 – A BPEL process in Composite Editor The following describes the simplified steps for making customizations to BPEL processes. This is the most common method of changing the business processes of Fusion Applications, as over 400 BPEL-based composite applications are provided out-of-the-box. Setup your local Fusion Applications JDeveloper environment. The SOA Composite Editor should be installed as part of the Fusion Applications extension. If there are problems you can also find it under the ‘Check for Updates’ help menu option. Since SOA Server is not part of the JDeveloper integrated WebLogic Server, setup a standalone WebLogic environment for deploying and testing. Obviously you might use a Fusion Applications development instance also. Package the existing standard Fusion Applications SOA Composite using Enterprise Manager and export it as a complete SOA Archive (SAR) file, resulting in a local .jar file. You may need to ask your system administrator for this. Import the exported SAR .jar file into JDeveloper using the File menu, under the option ‘SOA Archive into SOA Project’. In JDeveloper set the appropriate customization layer values, and then change from the default role to the Fusion Applications Customization Developer role. Make the customizations and save the application project. Finally redeploy the composite application, either to a direct Application Server connection, or as a fresh SAR (jar) file that can then be re-imported and deployed via Enterprise Manager. The Business Process Management (BPM) Suite In addition to the relatively low-level development environment associated with BPEL process creation, Oracle provides a suite of products that allow business process adjustments to be made without the need for some of the programming skills.  The aim is to abstract much of the technical implementation and to provide a Business Analyst tools for immediately implementing organization changes. Obviously there are some limitations on what they can do, however the BPM Suite functionality increases with each release and for the majority of the cases the tools remains as applicable as its developer-orientated sister. At the current time business processes must be explicitly coded to support just one of these use-cases, either BPEL for developer use or BPM for business analyst use. That said, they both run on the same SOA Server in much the same way. The components bundled in each SOA Composite Application can be verified by inspection through Enterprise Manager. Figure 2 – A BPM Process in JDeveloper BPM Suite. BPM processes are written in a standard notation (BPMN) and the modeling tools are very similar to that of BPEL. The steps to deploy a custom BPM process are also essentially much the same, since the BPM process is bundled into a SOA Composite just like a BPEL process. As such the SOA Composite Editor  actually has support for both artifacts and even allows use of them together, such as a calling a BPM process as a partnerlink from a BPEL process. For more details see the references below. Business Analyst Tooling In addition to using JDeveloper extensions for BPM development, there are run-time tools that Business Analysts can use to make adjustments, so that without high costs of an IT project the system can be tuned to match changes to the business operation. The first tool to consider is the BPM Composer, deployed with the middleware SOA Server and accessible online, and for Fusion Applications it is under the Business Process icon on the homepage of the Application Composer. Figure 3 – Business Process Composer showing a CRM process flow. The key difference between this and using JDeveloper is that the BPM Composer has a Business Catalog prepopulated with features and functions that can be used, mostly through registered WebServices. This means no coding or complex interface development is required, simply drag-drop-configure. The items in the business catalog are seeded by either Oracle (as a BPM Template) or added to by your own custom development. You cannot create or generate catalog content from BPM Composer directly. As per the screenshot you can see the Business Catalog content in the BPM Project browser region. In addition, other online tools for use by Business Analysts include the BPM Worklist application for editing business rules and approval management configuration, plus the SOA Composer which focuses on non-approval business rules and domain value maps. At the current time there are only a handful of BPM processes shipped with Fusion Applications HCM and CRM, including on-boarding workers and processing customer registrations.  This also means a limited number of associated BPM Templates provided out-of-the-box, therefore a limited Business Catalog. That said, BPM-based extension is a powerful capability to leverage and will most likely develop going forwards, especially for use in SaaS deployments where full design-time JDeveloper access is not available. Further Reading For BPEL – Fusion Applications Extensibility Guide – Section 12 For BPM – Fusion Applications Extensibility Guide – Section 7 The product-specific documentation and implementation guides for Fusion Applications Fusion Middleware Developers Guide for SOA Suite Modeling and Implementation Guide for Oracle Business Process Management User’s Guide for Oracle Business Process Composer Oracle University courses on BPM Suite and SOA Development

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 2 of 2 &ndash; Memory Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible. Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind… In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve. One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well. In this review, I am going to cover some of the features of the ANTS memory profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program. I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction – Part 2 In my last post, I reviewed the feature packed Red Gate ANTS Performance Profiler.  Separate from the Red Gate Performance Profiler is the Red Gate ANTS Memory Profiler – a simple, easy to use utility for checking how your application is handling memory management…  A tool that I wish I had had many times in the past.  This post will be focusing on the ANTS Memory Profiler and its tool set. The memory profiler has a large assortment of features just like the Performance Profiler, with the new session looking nearly exactly alike: ANTS Memory Profiler Memory profiling is not something that I have to do very often…  In the past, the few cases I’ve had to find a memory leak in an application I have usually just had to trace the code of the operations being performed to look for oddities…  Sadly, I have come across more undisposed/non-using’ed IDisposable objects, usually from ADO.Net than I would like to ever see.  Support is not fun, however using ANTS Memory Profiler makes this task easier.  For this round of testing, I am going to use the same code from my previous example, using the WPF application. This time, I will choose the ‘Profile Memory’ option from the ANTS menu in Visual Studio, which launches the solution in its currently configured state/start-up project, and then launches the ANTS Memory Profiler to help.  It prepopulates all of the fields with the current project information, and all I have to do is select the ‘Start Profiling’ option. When the window comes up, it is actually quite barren, just giving ideas on how to work the profiler.  You start by getting to the point in your application that you want to profile, and then taking a ‘Memory Snapshot’.  This performs a full garbage collection, and snapshots the managed heap.  Using the same WPF app as before, I will go ahead and take a snapshot now. As you can see, ANTS is already giving me lots of information regarding the snapshot, however this is just a snapshot.  The whole point of the profiler is to perform an action, usually one where a memory problem is being noticed, and then take another snapshot and perform a diff between them to see what has changed.  I am going to go ahead and generate 5000 primes, and then take another snapshot: As you can see, ANTS is already giving me a lot of new information about this snapshot compared to the last.  Information such as difference in memory usage, fragmentation, class usage, etc…  If you take more snapshots, you can use the dropdown at the top to set your actual comparison snapshots. If you beneath the timeline, you will see a breadcrumb trail showing how best to approach profiling memory using ANTS.  When you first do the comparison, you start on the Summary screen.  You can either use the charts at the bottom, or switch to the class list screen to get to the next step.  Here is the class list screen: As you can see, it lists information about all of the instances between the snapshots, as well as at the bottom giving you a way to filter by telling ANTS what your problem is.  I am going to go ahead and select the Int16[] to look at the Instance Categorizer Using the instance categorizer, you can travel backwards to see where all of the instances are coming from.  It may be hard to see in this image, but hopefully the lightbox (click on it) will help: I can see that all of these instances are rooted to the application through the UI TextBlock control.  This image will probably be even harder to see, however using the ‘Instance Retention Graph’, you can trace an objects memory inheritance up the chain to see its roots as well.  This is a simple example, as this is simply a known element.  Usually you would be profiling an actual problem, and comparing those differences.  I know in the past, I have spotted a problem where a new context was created per page load, and it was rooted into the application through an event.  As the application began to grow, performance and reliability problems started to emerge.  A tool like this would have been a great way to identify the problem quickly. Overview Overall, I think that the Red Gate ANTS Memory Profiler is a great utility for debugging those pesky leaks.  3 Biggest Pros: Easy to use interface with lots of options for configuring profiling session Intuitive and helpful interface for drilling down from summary, to instance, to root graphs ANTS provides an API for controlling the profiler. Not many options, but still helpful. 2 Biggest Cons: Inability to automatically snapshot the memory by interval Lack of complete integration with Visual Studio via an extension panel Ratings Ease of Use (9/10) – I really do believe that they have brought simplicity to the once difficult task of memory profiling.  I especially liked how it stepped you further into the drilldown by directing you towards the best options. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Features (7/10) – A really great set of features all around in the application, however, I would like to see some ability for automatically triggering snapshots based on intervals or framework level items such as events. Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (9/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (9/10) – Overall, I am happy with the Memory Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  Thank you for reading up to here, or skipping ahead – I told you it would be shorter!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • Azure Task Scheduling Options

    - by charlie.mott
    Currently, the Azure PaaS does not offer a distributed\resilient task scheduling service.  If you do want to host a task scheduling product\solution off-premise (and ideally use Azure), what are your options? PaaS Option 1: Worker Roles Use a worker role to schedule and execute actions at specific time periods.  There are a few frameworks available to assist with this: http://azuretoolkit.codeplex.com https://github.com/Lokad/lokad-cloud/wiki/TaskScheduler http://blog.smarx.com/posts/building-a-task-scheduler-in-windows-azure - This addresses a slightly different set of requirements. It’s a more dynamic approach for queuing up tasks, but not repeatable tasks (e.g. daily). I found the Azure Toolkit option the most simple to implement.  Step 1 : Create a domain entity implementing IJob for each job to schedule.  In this sample, I asynchronously call a WCF service method. 1: namespace Acme.WorkerRole.Jobs 2: { 3: using AzureToolkit; 4: using ScheduledTasksService; 5: 6: public class UploadEmployeesJob : IJob 7: { 8: public void Run() 9: { 10: // Call Tasks Service 11: var client = new ScheduledTasksServiceClient("BasicHttpBinding_IScheduledTasksService"); 12: client.UploadEmployees(); 13: client.Close(); 14: } 15: } 16: } Step 2 : In the worker role run method, add the jobs to the toolkit engine. 1: namespace Acme.WorkerRole 2: { 3: using AzureToolkit.Engine; 4: using Jobs; 5:   6: public class WorkerRole : WorkerRoleEntryPoint 7: { 8: public override void Run() 9: { 10: var engine = new CloudEngine(); 11:   12: // Add Scheduled Jobs (using CronJob syntax - see http://www.adminschoice.com/crontab-quick-reference). 13:   14: // 1. Upload Employee job - 8.00 PM every weekday (Mon-Fri) 15: engine.WithJobScheduler().ScheduleJob<UploadEmployeesJob>(c => { c.CronSchedule = "0 20 * * 1-5"; }); 16: // 2. Purge Data job - 10 AM every Saturday 17: engine.WithJobScheduler().ScheduleJob<PurgeDataJob>(c => { c.CronSchedule = "0 10 * * 6"; }); 18: // 3. Process Exceptions job - Every 5 minutes 19: engine.WithJobScheduler().ScheduleJob<ProcessExceptionsJob>(c => { c.CronSchedule = "*/5 * * * *"; }); 20:   21: engine.Run(); 22: base.Run(); 23: } 24: } 25: } Pros Cons Azure Toolkit option is simple to implement. For the AzureToolkit option, you are limited to a single worker role.  Otherwise, the jobs will be executed multiple times, once for each worker role instance.   Paying for a continuously running worker role, even if it just processes a single job once a week.  If you only have a few scheduled tasks to run calling asynchronous services hosted in different web roles, an extra small worker role likely to be sufficient.  However, for an extra small worker role this still costs $14.40/month (03/09/2012). Option 2: Use Scheduled Task on Azure Web Role calling a console app Setup a Windows Scheduled Task on the Azure Web Role. This calls a console application that calls the WCF service methods that run the task actions. This design is described here: http://www.ronaldwidha.net/2011/02/23/cron-job-on-azure-using-scheduled-task-on-a-web-role-to-replace-azure-worker-role-for-background-job/ http://www.voiceoftech.com/swhitley/index.php/2011/07/windows-azure-task-scheduler/ http://devlicio.us/blogs/vinull/archive/2011/10/23/moving-to-azure-worker-roles-for-nothing-and-tasks-for-free.aspx Pros Cons Fairly easy to implement. Supportability - I RDC’ed onto the Azure server and stopped the scheduled task. I then rebooted the machine and the task was re-started. I also tried deleting the task and rebooting, the same thing occurred. The only way to permanently guarantee that a task is disabled is to do a fresh deployment. I think this is a major supportability concern.   Saleability - multiple instances would trigger multiple tasks. You can only have one instance for the scheduled task web role. The guidance implements setup of the scheduled task as part of a web role instance. But if you have more than one instance in a web role, the task will be triggered multiple times for each scheduled action (once per machine). Workaround: If we wanted to use scheduled tasks for another client with a saleable WCF service, then we could include the console & tasks scripts in a separate web role (e.g. a empty WCF service with no real purpose to it). SaaS Option 3: Azure Marketplace I thought that someone might be offering this type of service via the Azure marketplace. At the point of writing this blog post, I did not find anyone doing so. https://datamarket.azure.com/ Pros Cons   Nobody currently offers this on the Azure Marketplace. Option 4: Online Job Scheduling Service Provider There are plenty of online providers that offer this type of service on a pay-as-you-go approach.  Some of these are free for small usage.   Many of these providers are listed here: http://en.wikipedia.org/wiki/Webcron Pros Cons No bespoke development for scheduler. Reliance on third party. IaaS Option 5: Setup Scheduling Software on Azure IaaS VM’s One of job scheduling software offerings could be installed and configured on Azure VM’s.  A list of software options is listed here: http://en.wikipedia.org/wiki/List_of_job_scheduler_software Pros Cons Enterprise distributed\resilient task scheduling service VM Setup and maintenance   Software Licence Costs Option 6: VM Gallery A the time of writing this blog post, I did not spot a VM in the gallery that included pre-installation of any of the above software options. Pros Cons   No current VM template. Summary For my current project that had a small handful of tasks to schedule with a limited project budget I chose option 1 (a worker role using the Azure Toolkit to schedule tasks).  If I was building an enterprise scale solution for the future, options 4 and 5 are currently worthy of consideration. Hopefully, Microsoft will include tasks scheduling in the future as part of their PaaS offerings.

    Read the article

  • Data Guard - Snapshot Standby Database??

    - by Jian Zhang-Oracle
    ?? -------- ?????,??standby?????mount??????????REDO??,??standby????????????????????,???????read-only???open????,????ACTIVE DATA GUARD,????standby?????????(read-only)??(????????),????standby???????????(read-write)? ?????,?????????????Real Application Testing(RAT)??????????,?????????standby??????snapshot standby?????????,??snapshot standby??????????,???????????(read-write)??????snapshot standby??????????????,?????????,??????????,????????,?????????snapshot standby?????standby???,????????? ?? ---------  1.??standby?????? SQL> Alter system set db_recovery_file_dest_size=500M; System altered. SQL> Alter system set db_recovery_file_dest='/u01/app/oracle/snapshot_standby'; System altered. 2.??standby?????? SQL> alter database recover managed standby database cancel; Database altered. 3.??standby???snapshot standby,??open snapshot standby SQL> alter database convert to snapshot standby; Database altered. SQL> alter database open;    Database altered. ??snapshot standby??????SNAPSHOT STANDBY,open???READ WRITE: SQL> select DATABASE_ROLE,name,OPEN_MODE from v$database; DATABASE_ROLE    NAME      OPEN_MODE ---------------- --------- -------------------- SNAPSHOT STANDBY FSDB      READ WRITE 4.?snapshot standby???????????Real Application Testing(RAT)????????? 5.?????,??snapshot standby???physical standby,?????????? SQL> shutdown immediate; Database closed. Database dismounted. ORACLE instance shut down. SQL> startup mount; ORACLE instance started. Database mounted. SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY; Database altered. SQL> shutdown immediate; ORA-01507: database not mounted ORACLE instance shut down. SQL> startup mount; ORACLE instance started. Database mounted. SQL>ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION; Database altered. 5.?????standby?,???????PHYSICAL STANDBY,open???MOUNTED SQL> select DATABASE_ROLE,name,OPEN_MODE from v$database; DATABASE_ROLE    NAME      OPEN_MODE ---------------- --------- -------------------- PHYSICAL STANDBY FSDB      MOUNTED 6.??????????????? ????: SQL> select ads.dest_id,max(sequence#) "Current Sequence",            max(log_sequence) "Last Archived"        from v$archived_log al, v$archive_dest ad, v$archive_dest_status ads        where ad.dest_id=al.dest_id        and al.dest_id=ads.dest_id        and al.resetlogs_change#=(select max(resetlogs_change#) from v$archived_log )        group by ads.dest_id;    DEST_ID Current Sequence Last Archived ---------- ---------------- -------------      1              361           361      2              361           362 --???? SQL>    select al.thrd "Thread", almax "Last Seq Received", lhmax "Last Seq Applied"       from (select thread# thrd, max(sequence#) almax           from v$archived_log           where resetlogs_change#=(select resetlogs_change# from v$database)           group by thread#) al,          (select thread# thrd, max(sequence#) lhmax           from v$log_history           where resetlogs_change#=(select resetlogs_change# from v$database)           group by thread#) lh      where al.thrd = lh.thrd;     Thread Last Seq Received Last Seq Applied ---------- ----------------- ----------------          1               361              361 ??????????,???blog,???????????,??"??:Data Guard - Snapshot Standby Database??" 

    Read the article

  • Partially Modifying an XML serialized document.

    - by Stacey
    I have an XML document, several actually, that will be editable via a front-end UI. I've discovered a problem with this approach (other than the fact that it is using xml files instead of a database... but I cannot change that right now). If one user makes a change while another user is in the process of making a change, then the second one's changes will overwrite the first. I need to be able to request objects from the xml files, change them, and then submit the changes back to the xml file without re-writing the entire file. I've got my entire xml access class posted here (which was formed thanks to wonderful help from stackoverflow!) using System; using System.Linq; using System.Collections; using System.Collections.Generic; namespace Repositories { /// <summary> /// A file base repository represents a data backing that is stored in an .xml file. /// </summary> public partial class Repository<T> : IRepository { /// <summary> /// Default constructor for a file repository /// </summary> public Repository() { } /// <summary> /// Initialize a basic repository with a filename. This will have to be passed from a context to be mapped. /// </summary> /// <param name="filename"></param> public Repository(string filename) { FileName = filename; } /// <summary> /// Discovers a single item from this repository. /// </summary> /// <typeparam name="TItem">The type of item to recover.</typeparam> /// <typeparam name="TCollection">The collection the item belongs to.</typeparam> /// <param name="expression"></param> /// <returns></returns> public TItem Single<TItem, TCollection>(Predicate<TItem> expression) where TCollection : IDisposable, IEnumerable<TItem> { using (var list = List<TCollection>()) { return list.Single(i => expression(i)); } } /// <summary> /// Discovers a collection from the repository, /// </summary> /// <typeparam name="TCollection"></typeparam> /// <returns></returns> public TCollection List<TCollection>() where TCollection : IDisposable { using (var list = System.Xml.Serializer.Deserialize<TCollection>(FileName)) { return (TCollection)list; } } /// <summary> /// Discovers a single item from this repository. /// </summary> /// <typeparam name="TItem">The type of item to recover.</typeparam> /// <typeparam name="TCollection">The collection the item belongs to.</typeparam> /// <param name="expression"></param> /// <returns></returns> public List<TItem> Select<TItem, TCollection>(Predicate<TItem> expression) where TCollection : IDisposable, IEnumerable<TItem> { using (var list = List<TCollection>()) { return list.Where( i => expression(i) ).ToList<TItem>(); } } /// <summary> /// Attempts to save an entire collection. /// </summary> /// <typeparam name="TCollection"></typeparam> /// <param name="collection"></param> /// <returns></returns> public Boolean Save<TCollection>(TCollection collection) { try { // load the collection into an xml reader and try to serialize it. System.Xml.XmlDocument xDoc = new System.Xml.XmlDocument(); xDoc.LoadXml(System.Xml.Serializer.Serialize<TCollection>(collection)); // attempt to flush the file xDoc.Save(FileName); // assume success return true; } catch { return false; } } internal string FileName { get; private set; } } public interface IRepository { TItem Single<TItem, TCollection>(Predicate<TItem> expression) where TCollection : IDisposable, IEnumerable<TItem>; TCollection List<TCollection>() where TCollection : IDisposable; List<TItem> Select<TItem, TCollection>(Predicate<TItem> expression) where TCollection : IDisposable, IEnumerable<TItem>; Boolean Save<TCollection>(TCollection collection); } }

    Read the article

< Previous Page | 196 197 198 199 200 201 202 203 204 205 206 207  | Next Page >