Search Results

Search found 33445 results on 1338 pages for 'single instance storage'.

Page 200/1338 | < Previous Page | 196 197 198 199 200 201 202 203 204 205 206 207  | Next Page >

  • Propel-load-data is causing an error

    - by Jon Winstanley
    I am trying to load fixtures but myproject is erroring at the CLI and starting the indexer process. I have tried: Rebuilding the schema and model Emptying the database and starting again Clearing the cache Validating the YML file and trying much simpler data-dumps My platform is Symfony 1.0 on Windows Some also seems to have had the same issue in the past. C:\web\my_project>symfony propel-load-data backend >> propel load data from "C:\web\my_project\data\fixtures" PHP Warning: session_start(): Cannot send session cookie - headers already sent by (output started at C:\php\PEAR\symfony\vendor\pake\pakeFunction.php:366) in C:\php\PEAR\symfony\storage\sfSessionStorage.class.php on line 77 Warning: session_start(): Cannot send session cookie - headers already sent by (output started at C:\php\PEAR\symfony\vendor\pake\pakeFunction.php:366) in C:\php\PEAR\symfony\storage\sfSessionStorage.class.php on line 77 PHP Warning: session_start(): Cannot send session cache limiter - headers already sent (output started at C:\php\PEAR\symfony\vendor\pake\pakeFunction.php:366) in C:\php\PEAR\symfony\storage\sfSessionStorage.class.php on line 77 Warning: session_start(): Cannot send session cache limiter - headers already sent (output started at C:\php\PEAR\symfony\vendor\pake\pakeFunction.php:366) in C:\php\PEAR\symfony\storage\sfSessionStorage.class.php on line 77

    Read the article

  • Using @Context, @Provider and ContextResolver in JAX-RS

    - by Tamás
    I'm just getting acquainted with implementing REST web services in Java using JAX-RS and I ran into the following problem. One of my resource classes requires access to a storage backend, which is abstracted away behind a StorageEngine interface. I would like to inject the current StorageEngine instance into the resource class serving the REST requests and I thought a nice way of doing this would be by using the @Context annotation and an appropriate ContextResolver class. This is what I have so far: In MyResource.java: class MyResource { @Context StorageEngine storage; [...] } In StorageEngineProvider.java: @Provider class StorageEngineProvider implements ContextResolver<StorageEngine> { private StorageEngine storage = new InMemoryStorageEngine(); public StorageEngine getContext(Class<?> type) { if (type.equals(StorageEngine.class)) return storage; return null; } } I'm using com.sun.jersey.api.core.PackagesResourceConfig to discover the providers and the resource classes automatically, and according to the logs, it picks up the StorageEngineProvider class nicely (timestamps and unnecessary stuff left out intentionally): INFO: Root resource classes found: class MyResource INFO: Provider classes found: class StorageEngineProvider However, the value of storage in my resource class is always null - neither the constructor of StorageEngineProvider nor its getContext method is called by Jersey, ever. What am I doing wrong here?

    Read the article

  • Boost tuple + transform

    - by JH
    Is it possible to do the following. Say my boost tuple has <String, int> I would like to use std::transform + mem_fun to insert only the String element in a corresponding vector. Is it possible or are we required to use a loop and push_back(get<0) Ie the following doesn't like to compile... (unknown types...) result.resize(storage.size()) std::transform(storage.begin(), storage.end(), result.begin(), std::mem_fun(&boost::get<0>)); Here is an example (trying one of the comments): #include <boost/tuple/tuple.hpp> #include <vector> #include <string> #include <algorithm> int main(int argc, char**argv) { std::vector< boost::tuple<std::string, int> > storage; std::vector< std::string> result; result.resize(storage.size()); std::transform(storage.begin(), storage.end(), result.begin(), &boost::get<0, boost::tuple<std::string, int> >); return 0; } Output: g++ test.cpp /usr/include/boost/tuple/detail/tuple_basic.hpp: In instantiation of `boost::tuples::cons<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>, TT>': /usr/include/boost/tuple/detail/tuple_basic.hpp:151: instantiated from `boost::tuples::element<0, boost::tuples::cons<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>, TT> >' test.cpp:14: instantiated from here /usr/include/boost/tuple/detail/tuple_basic.hpp:329: error: `boost::tuples::cons<HT, TT>::tail' has incomplete type /usr/include/boost/tuple/detail/tuple_basic.hpp:329: error: invalid use of template type parameter test.cpp: In function `int main(int, char**)': test.cpp:14: error: no matching function for call to `transform(__gnu_cxx::__normal_iterator<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>*, std::vector<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>, std::allocator<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type> > > >, __gnu_cxx::__normal_iterator<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>*, std::vector<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>, std::allocator<boost::tuples::tuple<std::string, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type> > > >, __gnu_cxx::__normal_iterator<std::string*, std::vector<std::string, std::allocator<std::string> > >, <unresolved overloaded function type>)'

    Read the article

  • How to setup matlabpool for multiple processors?

    - by JohnIdol
    I just setup a Extra Large Heavy Computation EC2 instance to throw it at my Genetic Algorithms problem, hoping to speed up things. This instance has 8 Intel Xeon processors (around 2.4Ghz each) and 7 Gigs of RAM. On my machine I have an Intel Core Duo, and matlab is able to work with my two cores just fine by runinng: matlabpool open 2 On the EC2 instance though, matlab only is capable of detecting 1 out of 8 processors, and if I try running: matlabpool open 8 I get an error saying that the ClusterSize is 1 since there's only 1 core on my CPU. True, there is only 1 core on each CPU, but I have 8 CPUs on the given EC2 instance! So the difference from my machine and the ec2 instance is that I have my 2 cores on a single processor locally, while the EC2 instance has 8 distinct processors. My question is, how do I get matlab to work with those 8 processors? I found this paper, but it seems related to setting up matlab with multiple EC2 instances (not related to multiple processors on the same instance, EC2 or not), which is not my problem. Any help appreciated!

    Read the article

  • How to create a rails staging environment in engineyard?

    - by siulamvictor
    I have a production instance in engineyard up and running well. I would like to create a new staging instance for internal testing. I cloned the existing production instance, changed Framework Environment to staging. I can deploy all the code to staging instance from Github. Engineyard reported the server is fully configured and ready. I have subdomain-fu in my Rails app, as I have some subdomain handling in my app. I set the subdomain initializer like this.... SubdomainFu.tld_sizes = {:development => 1, :test => 0, :production => 1, :staging => 2} As the production instance is using the domain xxxxx.com, I would like my staging instance use the domain staging.xxxxx.com. But I got an error when open this domain. Seems the app use xxxxx.com as domain but not the staging.xxxxx.com. I checked the engineyard database.yml. It use xxxxx_production database, I supposed it should be xxxxx_staging. Seems the engineyard instance is not set to staging environment, but just clone all the setting from production server. Does anyone have experience with this and can show me the way on how to fix it? Thanks. :)

    Read the article

  • PHP Multiple Calls to Server Share Objects?

    - by user1513171
    I’m wondering this about PHP on Apache. Do multiple calls to the server from different users—could be sitting next to each other, in different states, different countries, etc…—share memory? For example, if I create a static variable in a PHP script and set it to 1 by default, then user1 comes in and it changes to 2, and then almost at the exactly same time, user2 comes in, does he see that static variable with a value of 1 or 2? An even better example is this class I have in PHP: class ApplicationRegistry { private static $instance; private static $PDO; private function __construct() { self::$PDO = $db = new \PDO('mysql:unix_socket=/........'); self::$PDO->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION); } static function instance() { if(!isset(self::$instance)) { self::$instance = new self(); } return self::$instance; } static function getDSN() { if(!isset(self::$PDO)) { self::instance(); return self::$PDO; } return self::$PDO; } } So this is a Singleton that has a static PDO instance. If user1 and user2 are hitting the server at the exact same time are they using different instances of PDO or are they using the same one? This is a confusing concept for me and I'm trying to think of how my application will scale.

    Read the article

  • Python metaclass for enforcing immutability of custom types

    - by Mark Lehmacher
    Having searched for a way to enforce immutability of custom types and not having found a satisfactory answer I came up with my own shot at a solution in form of a metaclass: class ImmutableTypeException( Exception ): pass class Immutable( type ): ''' Enforce some aspects of the immutability contract for new-style classes: - attributes must not be created, modified or deleted after object construction - immutable types must implement __eq__ and __hash__ ''' def __new__( meta, classname, bases, classDict ): instance = type.__new__( meta, classname, bases, classDict ) # Make sure __eq__ and __hash__ have been implemented by the immutable type. # In the case of __hash__ also make sure the object default implementation has been overridden. # TODO: the check for eq and hash functions could probably be done more directly and thus more efficiently # (hasattr does not seem to traverse the type hierarchy) if not '__eq__' in dir( instance ): raise ImmutableTypeException( 'Immutable types must implement __eq__.' ) if not '__hash__' in dir( instance ): raise ImmutableTypeException( 'Immutable types must implement __hash__.' ) if _methodFromObjectType( instance.__hash__ ): raise ImmutableTypeException( 'Immutable types must override object.__hash__.' ) instance.__setattr__ = _setattr instance.__delattr__ = _delattr return instance def __call__( self, *args, **kwargs ): obj = type.__call__( self, *args, **kwargs ) obj.__immutable__ = True return obj def _setattr( self, attr, value ): if '__immutable__' in self.__dict__ and self.__immutable__: raise AttributeError( "'%s' must not be modified because '%s' is immutable" % ( attr, self ) ) object.__setattr__( self, attr, value ) def _delattr( self, attr ): raise AttributeError( "'%s' must not be deleted because '%s' is immutable" % ( attr, self ) ) def _methodFromObjectType( method ): ''' Return True if the given method has been defined by object, False otherwise. ''' try: # TODO: Are we exploiting an implementation detail here? Find better solution! return isinstance( method.__objclass__, object ) except: return False However, while the general approach seems to be working rather well there are still some iffy implementation details (also see TODO comments in code): How do I check if a particular method has been implemented anywhere in the type hierarchy? How do I check which type is the origin of a method declaration (i.e. as part of which type a method has been defined)?

    Read the article

  • UnicodeDecodeError on attempt to save file through django default filebased backend

    - by Ivan Kuznetsov
    When i attempt to add a file with russian symbols in name to the model instance through default instance.file_field.save method, i get an UnicodeDecodeError (ascii decoding error, not in range (128) from the storage backend (stacktrace ended on os.exist). If i write this file through default python file open/write all goes right. All filenames in utf-8. I get this error only on testing Gentoo, on my Ubuntu workstation all works fine. class Article(models.Model): file = models.FileField(null=True, blank=True, max_length = 300, upload_to='articles_files/%Y/%m/%d/') Traceback: File "/usr/lib/python2.6/site-packages/django/core/handlers/base.py" in get_response 100. response = callback(request, *callback_args, **callback_kwargs) File "/usr/lib/python2.6/site-packages/django/contrib/auth/decorators.py" in _wrapped_view 24. return view_func(request, *args, **kwargs) File "/var/www/localhost/help/wiki/views.py" in edit_article 338. new_article.file.save(fp, fi, save=True) File "/usr/lib/python2.6/site-packages/django/db/models/fields/files.py" in save 92. self.name = self.storage.save(name, content) File "/usr/lib/python2.6/site-packages/django/core/files/storage.py" in save 47. name = self.get_available_name(name) File "/usr/lib/python2.6/site-packages/django/core/files/storage.py" in get_available_name 73. while self.exists(name): File "/usr/lib/python2.6/site-packages/django/core/files/storage.py" in exists 196. return os.path.exists(self.path(name)) File "/usr/lib/python2.6/genericpath.py" in exists 18. st = os.stat(path) Exception Type: UnicodeEncodeError at /edit/ Exception Value: ('ascii', u'/var/www/localhost/help/i/articles_files/2010/03/17/\u041f\u0440\u0438\u0432\u0435\u0442', 52, 58, 'ordinal not in range(128)')

    Read the article

  • Using Parallel Extensions with ThreadStatic attribute. Could it leak memory?

    - by the-locster
    I'm using Parallel Extensions fairly heavily and I've just now encountered a case where using thread locla storrage might be sensible to allow re-use of objects by worker threads. As such I was lookign at the ThreadStatic attribute which marks a static field/variable as having a unique value per thread. It seems to me that it would be unwise to use PE with the ThreadStatic attribute without any guarantee of thread re-use by PE. That is, if threads are created and destroyed to some degree would the variables (and thus objects they point to) remain in thread local storage for some indeterminate amount of time, thus causing a memory leak? Or perhaps the thread storage is tied to the threads and disposed of when the threads are disposed? But then you still potentially have threads in a pool that are longed lived and that accumulate thread local storage from various pieces of code the threads are used for. Is there a better approach to obtaining thread local storage with PE? Thankyou.

    Read the article

  • Need details about applications that are running on Windows Azure

    - by veda
    I have an application which requires large amount of data storage (say some PB) and computing resources. Instead of going for clusters, I am planning to propose to use Windows Azure Cloud for this application. I have gone through white papers of Windows Azure and have collected some details about Azure. But I feel that is not substantial. I need to do some case study about applications that are running on the azure and that uses azure storage efficiently. I looked for several research paper in related to performance of the applications in Windows Azure. But as Azure was quite new, I wasn't able to find any. Now, I am looking for some white papers/details regarding application that uses azure storage to substantiate my proposal. I also need to understand the windows azure storage architecture and virtual machine architecture. Do anyone know some research papers or details or blogs or something related to these topics.

    Read the article

  • convincing C# compiler that execution will stop after a member returns

    - by Sarah Vessels
    I don't think this is currently possible or if it's even a good idea, but it's something I was thinking about just now. I use MSTest for unit testing my C# project. In one of my tests, I do the following: MyClass instance; try { instance = getValue(); } catch (MyException ex) { Assert.Fail("Caught MyException"); } instance.doStuff(); // Use of unassigned local variable 'instance' To make this code compile, I have to assign a value to instance either at its declaration or in the catch block. However, Assert.Fail will never, to the best of my knowledge, allow execution to proceed past it, hence instance will never be used without a value. Why is it then that I must assign a value to it? If I change the Assert.Fail to something like throw ex, the code compiles fine, I assume because it knows that exception will disallow execution to proceed to a point where instance would be used uninitialized. So is it a case of runtime versus compile-time knowledge about where execution will be allowed to proceed? Would it ever be reasonable for C# to have some way of saying that a member, in this case Assert.Fail, will never allow execution after it returns? Maybe that could be in the form of a method attribute. Would this be useful or an unnecessary complexity for the compiler?

    Read the article

  • How do I merge multiple PDB files ?

    - by blue.tuxedo
    We are currently using a single command line tool to build our product on both Windows and Linux. Si far its works nicely, allowing us to build out of source and with finer dependencies than what any of our previous build system allowed. This buys us great incremental and parallel build capabilities. To describe shortly the build process, we get the usual: .cpp -- cl.exe --> .obj and .pdb multiple .obj and .pdb -- cl.exe --> single .dll .lib .pdb multiple .obj and .pdb -- cl.exe --> single .exe .pdb The msvc C/C++ compiler supports it adequately. Recently the need to build a few static libraries emerged. From what we gathered, the process to build a static library is: multiple .cpp -- cl.exe --> multiple .obj and a single .pdb multiple .obj -- lib.exe --> a single .lib The single .pdb means that cl.exe should only be executed once for all the .cpp sources. This single execution means that we can't parallelize the build for this static library. This is really unfortunate. We investigated a bit further and according to the documentation (and the available command line options): cl.exe does not know how to build static libraries lib.exe does not know how to build .pdb files Does anybody know a way to merge multiple PDB files ? Are we doomed to have slow builds for static libraries ? How do tools like Incredibuild work around this issue ?

    Read the article

  • C++ smart pointer for a non-object type?

    - by Brian
    Hi, I'm trying to use smart pointers such as auto_ptr, shared_ptr. However, I don't know how to use it in this situation. CvMemStorage *storage = cvCreateMemStorage(); ... use the pointer ... cvReleaseMemStorage(&storage); I'm not sure, but I think that the storage variable is just a malloc'ed memory, not a C++ class object. Is there a way to use the smart pointers for the storage variable? Thank you.

    Read the article

  • C++ smart pointer for non-object type?

    - by Brian
    Hi, I'm trying to use smart pointers such as auto_ptr, shared_ptr. However, I don't know how to use it in this situation. CvMemStorage *storage = cvCreateMemStorage(); ... use the pointer ... cvReleaseMemStorage(&storage); I'm not sure, but I think that the storage variable is just malloc'ed memory, not object. Is there a way to use the smart pointers for the storage variable? Thank you.

    Read the article

  • SMS Receiving using DOTNET C#

    - by sheery
    Hi dears, I have build an application using C# to send and receive sms, my application works fine for sending sms but when i try to read sms from my mobile through my application i get following error "Error: Phone reports generic communication error or syntax error." can any one help me in this matter, my syntax for reading sms is private void btnReadMessages_Click(object sender, System.EventArgs e) { Cursor.Current = Cursors.WaitCursor; string storage = GetMessageStorage(); try { // Read all SMS messages from the storage DecodedShortMessage[] messages = comm.ReadMessages(PhoneMessageStatus.All, storage); foreach(DecodedShortMessage message in messages) { Output(string.Format("Message status = {0}, Location = {1}/{2}", StatusToString(message.Status), message.Storage, message.Index)); ShowMessage(message.Data); Output(""); } Output(string.Format("{0,9} messages read.", messages.Length.ToString())); Output(""); } catch(Exception ex) { ShowException(ex); } Cursor.Current = Cursors.Default; }

    Read the article

  • Importing into a Exported object with MEF

    - by Nathan W
    I'm sorry if this question has already been asked 100 times, but I'm really struggling to get it to work. Say I have have three projects. Core.dll Has common interfaces Shell.exe Loads all modules in assembly folder. References Core.dll ModuleA.dll Exports Name, Version of module. References Core.dll Shell.exe has a [Export] that contains an single instance of a third party application that I need to inject into all loaded modules. So far the code that I have in Shell.exe is: static void Main(string[] args) { ThirdPartyApp map = new ThirdPartyApp(); var ad = new AssemblyCatalog(Assembly.GetExecutingAssembly()); var dircatalog = new DirectoryCatalog("."); var a = new AggregateCatalog(dircatalog, ad); // Not to sure what to do here. } class Test { [Export(typeof(ThirdPartyApp))] public ThirdPartyApp Instance { get; set; } [Import(typeof(IModule))] public IModule Module { get; set; } } I need to create a instance of Test, and load Instance with map from the Main method then load the Module from ModuleA.dll that is in the executing directory then [Import] Instance into the loaded module. In ModuleA I have a class like this: [Export(IModule)] class Module : IModule { [Import(ThirdPartyApp)] public ThirdPartyApp Instance {get;set;} } I know I'm half way there I just don't know how to put it all together, mainly with loading up test with a instance of map from Main. Could anyone help me with this.

    Read the article

  • FF extension: saving a value in preferences and retrieving in the js file

    - by encryptor
    I am making an extension which should take a link as the user input only once. Then the entire extension keeps using that link on various functions in the JS file. When the user changes it, the value accessed by the js file also changes accordingly. I am using the following but it does not work for me var pref_manager = Components.classes["@mozilla.org/preferencesservice;1"].getService(Components.interfaces.nsIPrefService) function setInstance(){ if (pref_manager.prefHasUserValue("myvar")) { instance = pref_manager.getString("myvar"); alert(instance); } if(instance == null){ instance = prompt("Please enter webcenter host and port"); // Setting the value pref_manager.setString("myvar", instance); } } instance is the global variable in which i take the user input. The alert (instance) does not show up, which means there is some problem by the way i am saving the pref or extracting it. Can someone please help me with this. I have never worked with preferences before. so even if there are minor problems i might not be able to figure out.

    Read the article

  • How do you use jQuery .data() to store html?

    - by Al
    Hi all - when I look up the syntax for .data(), it gives examples like this: $('body').data('foo', 52); I am doing AJAX loads and I was wondering if it is possible to store the incoming html using .data() so once the content is loaded, I would not need to do another AJAX load if the same link is clicked again - I would check to see if the .data key is empty. Would something like this work?: To load the contents of a #ajaxdiv into storage: $('body').data('storage', div#ajaxdiv.html()); To test if the data has already been loaded: if $('body').data('storage') != '' { div#ajaxdiv.html($('body').data('storage')); } Thanks in advance!! Al

    Read the article

  • static initialization order fiasco

    - by Happy Mittal
    I was reading about SIOF from a book and it gave an example : //file1.cpp extern int y; int x=y+1; //file2.cpp extern int x; y=x+1; Now My question is : In above code..will following things happen ? 1. while compiling file1.cpp, compiler leaves y as it is i.e doesn't allocate storage for it. 2. compiler allocates storage for x, but doesn't initialize it. 3. While compiling file2.cpp, compiler leaves x as it is i.e doesn't allocate storage for it. 4. compiler allocates storage for y, but doesn't initialize it. 5. While linking file1.o and file2.o, now let file2.o is initialized first, so now: Does x gets initial value of 0? or doesn't get initialized?

    Read the article

  • Question about array subscripting in C#

    - by Michael J
    Back in the old days of C, one could use array subscripting to address storage in very useful ways. For example, one could declare an array as such. This array represents an EEPROM image with 8 bit words. BYTE eepromImage[1024] = { ... }; And later refer to that array as if it were really multi-dimensional storage BYTE mpuImage[2][512] = eepromImage; I'm sure I have the syntax wrong, but I hope you get the idea. Anyway, this projected a two dimension image of what is really single dimensional storage. The two dimensional projection represents the EEPROM image when loaded into the memory of an MPU with 16 bit words. In C one could reference the storage multi-dimensionaly and change values and the changed values would show up in the real (single dimension) storage almost as if by magic. Is it possible to do this same thing using C#? Our current solution uses multiple arrays and event handlers to keep things synchronized. This kind of works but it is additional complexity that we would like to avoid if there is a better way.

    Read the article

  • SQL Server 2012 - AlwaysOn

    - by Claus Jandausch
    Ich war nicht nur irritiert, ich war sogar regelrecht schockiert - und für einen kurzen Moment sprachlos (was nur selten der Fall ist). Gerade eben hatte mich jemand gefragt "Wann Oracle denn etwas Vergleichbares wie AlwaysOn bieten würde - und ob überhaupt?" War ich hier im falschen Film gelandet? Ich konnte nicht anders, als meinen Unmut kundzutun und zu erklären, dass die Fragestellung normalerweise anders herum läuft. Zugegeben - es mag vielleicht strittige Punkte geben im Vergleich zwischen Oracle und SQL Server - bei denen nicht unbedingt immer Oracle die Nase vorn haben muss - aber das Thema Clustering für Hochverfügbarkeit (HA), Disaster Recovery (DR) und Skalierbarkeit gehört mit Sicherheit nicht dazu. Dieses Erlebnis hakte ich am Nachgang als Einzelfall ab, der so nie wieder vorkommen würde. Bis ich kurz darauf eines Besseren belehrt wurde und genau die selbe Frage erneut zu hören bekam. Diesmal sogar im Exadata-Umfeld und einem Oracle Stretch Cluster. Einmal ist keinmal, doch zweimal ist einmal zu viel... Getreu diesem alten Motto war mir klar, dass man das so nicht länger stehen lassen konnte. Ich habe keine Ahnung, wie die Microsoft Marketing Abteilung es geschafft hat, unter dem AlwaysOn Brading eine innovative Technologie vermuten zu lassen - aber sie hat ihren Job scheinbar gut gemacht. Doch abgesehen von einem guten Marketing, stellt sich natürlich die Frage, was wirklich dahinter steckt und wie sich das Ganze mit Oracle vergleichen lässt - und ob überhaupt? Damit wären wir wieder bei der ursprünglichen Frage angelangt.  So viel zum Hintergrund dieses Blogbeitrags - von meiner Antwort handelt der restliche Blog. "Windows was the God ..." Um den wahren Unterschied zwischen Oracle und Microsoft verstehen zu können, muss man zunächst das bedeutendste Microsoft Dogma kennen. Es lässt sich schlicht und einfach auf den Punkt bringen: "Alles muss auf Windows basieren." Die Überschrift dieses Absatzes ist kein von mir erfundener Ausspruch, sondern ein Zitat. Konkret stammt es aus einem längeren Artikel von Kurt Eichenwald in der Vanity Fair aus dem August 2012. Er lautet Microsoft's Lost Decade und sei jedem ans Herz gelegt, der die "Microsoft-Maschinerie" unter Steve Ballmer und einige ihrer Kuriositäten besser verstehen möchte. "YOU TALKING TO ME?" Microsoft C.E.O. Steve Ballmer bei seiner Keynote auf der 2012 International Consumer Electronics Show in Las Vegas am 9. Januar   Manche Dinge in diesem Artikel mögen überspitzt dargestellt erscheinen - sind sie aber nicht. Vieles davon kannte ich bereits aus eigener Erfahrung und kann es nur bestätigen. Anderes hat sich mir erst so richtig erschlossen. Insbesondere die folgenden Passagen führten zum Aha-Erlebnis: “Windows was the god—everything had to work with Windows,” said Stone... “Every little thing you want to write has to build off of Windows (or other existing roducts),” one software engineer said. “It can be very confusing, …” Ich habe immer schon darauf hingewiesen, dass in einem SQL Server Failover Cluster die Microsoft Datenbank eigentlich nichts Nenneswertes zum Geschehen beiträgt, sondern sich voll und ganz auf das Windows Betriebssystem verlässt. Deshalb muss man auch die Windows Server Enterprise Edition installieren, soll ein Failover Cluster für den SQL Server eingerichtet werden. Denn hier werden die Cluster Services geliefert - nicht mit dem SQL Server. Er ist nur lediglich ein weiteres Server Produkt, für das Windows in Ausfallszenarien genutzt werden kann - so wie Microsoft Exchange beispielsweise, oder Microsoft SharePoint, oder irgendein anderes Server Produkt das auf Windows gehostet wird. Auch Oracle kann damit genutzt werden. Das Stichwort lautet hier: Oracle Failsafe. Nur - warum sollte man das tun, wenn gleichzeitig eine überlegene Technologie wie die Oracle Real Application Clusters (RAC) zur Verfügung steht, die dann auch keine Windows Enterprise Edition voraussetzen, da Oracle die eigene Clusterware liefert. Welche darüber hinaus für kürzere Failover-Zeiten sorgt, da diese Cluster-Technologie Datenbank-integriert ist und sich nicht auf "Dritte" verlässt. Wenn man sich also schon keine technischen Vorteile mit einem SQL Server Failover Cluster erkauft, sondern zusätzlich noch versteckte Lizenzkosten durch die Lizenzierung der Windows Server Enterprise Edition einhandelt, warum hat Microsoft dann in den vergangenen Jahren seit SQL Server 2000 nicht ebenfalls an einer neuen und innovativen Lösung gearbeitet, die mit Oracle RAC mithalten kann? Entwickler hat Microsoft genügend? Am Geld kann es auch nicht liegen? Lesen Sie einfach noch einmal die beiden obenstehenden Zitate und sie werden den Grund verstehen. Anders lässt es sich ja auch gar nicht mehr erklären, dass AlwaysOn aus zwei unterschiedlichen Technologien besteht, die beide jedoch wiederum auf dem Windows Server Failover Clustering (WSFC) basieren. Denn daraus ergeben sich klare Nachteile - aber dazu später mehr. Um AlwaysOn zu verstehen, sollte man sich zunächst kurz in Erinnerung rufen, was Microsoft bisher an HA/DR (High Availability/Desaster Recovery) Lösungen für SQL Server zur Verfügung gestellt hat. Replikation Basiert auf logischer Replikation und Pubisher/Subscriber Architektur Transactional Replication Merge Replication Snapshot Replication Microsoft's Replikation ist vergleichbar mit Oracle GoldenGate. Oracle GoldenGate stellt jedoch die umfassendere Technologie dar und bietet High Performance. Log Shipping Microsoft's Log Shipping stellt eine einfache Technologie dar, die vergleichbar ist mit Oracle Managed Recovery in Oracle Version 7. Das Log Shipping besitzt folgende Merkmale: Transaction Log Backups werden von Primary nach Secondary/ies geschickt Einarbeitung (z.B. Restore) auf jedem Secondary individuell Optionale dritte Server Instanz (Monitor Server) für Überwachung und Alarm Log Restore Unterbrechung möglich für Read-Only Modus (Secondary) Keine Unterstützung von Automatic Failover Database Mirroring Microsoft's Database Mirroring wurde verfügbar mit SQL Server 2005, sah aus wie Oracle Data Guard in Oracle 9i, war funktional jedoch nicht so umfassend. Für ein HA/DR Paar besteht eine 1:1 Beziehung, um die produktive Datenbank (Principle DB) abzusichern. Auf der Standby Datenbank (Mirrored DB) werden alle Insert-, Update- und Delete-Operationen nachgezogen. Modi Synchron (High-Safety Modus) Asynchron (High-Performance Modus) Automatic Failover Unterstützt im High-Safety Modus (synchron) Witness Server vorausgesetzt     Zur Frage der Kontinuität Es stellt sich die Frage, wie es um diesen Technologien nun im Zusammenhang mit SQL Server 2012 bestellt ist. Unter Fanfaren seinerzeit eingeführt, war Database Mirroring das erklärte Mittel der Wahl. Ich bin kein Produkt Manager bei Microsoft und kann hierzu nur meine Meinung äußern, aber zieht man den SQL AlwaysOn Team Blog heran, so sieht es nicht gut aus für das Database Mirroring - zumindest nicht langfristig. "Does AlwaysOn Availability Group replace Database Mirroring going forward?” “The short answer is we recommend that you migrate from the mirroring configuration or even mirroring and log shipping configuration to using Availability Group. Database Mirroring will still be available in the Denali release but will be phased out over subsequent releases. Log Shipping will continue to be available in future releases.” Damit wären wir endlich beim eigentlichen Thema angelangt. Was ist eine sogenannte Availability Group und was genau hat es mit der vielversprechend klingenden Bezeichnung AlwaysOn auf sich?   SQL Server 2012 - AlwaysOn Zwei HA-Features verstekcne sich hinter dem “AlwaysOn”-Branding. Einmal das AlwaysOn Failover Clustering aka SQL Server Failover Cluster Instances (FCI) - zum Anderen die AlwaysOn Availability Groups. Failover Cluster Instances (FCI) Entspricht ungefähr dem Stretch Cluster Konzept von Oracle Setzt auf Windows Server Failover Clustering (WSFC) auf Bietet HA auf Instanz-Ebene AlwaysOn Availability Groups (Verfügbarkeitsgruppen) Ähnlich der Idee von Consistency Groups, wie in Storage-Level Replikations-Software von z.B. EMC SRDF Abhängigkeiten zu Windows Server Failover Clustering (WSFC) Bietet HA auf Datenbank-Ebene   Hinweis: Verwechseln Sie nicht eine SQL Server Datenbank mit einer Oracle Datenbank. Und auch nicht eine Oracle Instanz mit einer SQL Server Instanz. Die gleichen Begriffe haben hier eine andere Bedeutung - nicht selten ein Grund, weshalb Oracle- und Microsoft DBAs schnell aneinander vorbei reden. Denken Sie bei einer SQL Server Datenbank eher an ein Oracle Schema, das kommt der Sache näher. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema. Wenn Sie die genauen Unterschiede kennen möchten, finden Sie eine detaillierte Beschreibung in meinem Buch "Oracle10g Release 2 für Windows und .NET", erhältich bei Lehmanns, Amazon, etc.   Windows Server Failover Clustering (WSFC) Wie man sieht, basieren beide AlwaysOn Technologien wiederum auf dem Windows Server Failover Clustering (WSFC), um einerseits Hochverfügbarkeit auf Ebene der Instanz zu gewährleisten und andererseits auf der Datenbank-Ebene. Deshalb nun eine kurze Beschreibung der WSFC. Die WSFC sind ein mit dem Windows Betriebssystem geliefertes Infrastruktur-Feature, um HA für Server Anwendungen, wie Microsoft Exchange, SharePoint, SQL Server, etc. zu bieten. So wie jeder andere Cluster, besteht ein WSFC Cluster aus einer Gruppe unabhängiger Server, die zusammenarbeiten, um die Verfügbarkeit einer Applikation oder eines Service zu erhöhen. Falls ein Cluster-Knoten oder -Service ausfällt, kann der auf diesem Knoten bisher gehostete Service automatisch oder manuell auf einen anderen im Cluster verfügbaren Knoten transferriert werden - was allgemein als Failover bekannt ist. Unter SQL Server 2012 verwenden sowohl die AlwaysOn Avalability Groups, als auch die AlwaysOn Failover Cluster Instances die WSFC als Plattformtechnologie, um Komponenten als WSFC Cluster-Ressourcen zu registrieren. Verwandte Ressourcen werden in eine Ressource Group zusammengefasst, die in Abhängigkeit zu anderen WSFC Cluster-Ressourcen gebracht werden kann. Der WSFC Cluster Service kann jetzt die Notwendigkeit zum Neustart der SQL Server Instanz erfassen oder einen automatischen Failover zu einem anderen Server-Knoten im WSFC Cluster auslösen.   Failover Cluster Instances (FCI) Eine SQL Server Failover Cluster Instanz (FCI) ist eine einzelne SQL Server Instanz, die in einem Failover Cluster betrieben wird, der aus mehreren Windows Server Failover Clustering (WSFC) Knoten besteht und so HA (High Availability) auf Ebene der Instanz bietet. Unter Verwendung von Multi-Subnet FCI kann auch Remote DR (Disaster Recovery) unterstützt werden. Eine weitere Option für Remote DR besteht darin, eine unter FCI gehostete Datenbank in einer Availability Group zu betreiben. Hierzu später mehr. FCI und WSFC Basis FCI, das für lokale Hochverfügbarkeit der Instanzen genutzt wird, ähnelt der veralteten Architektur eines kalten Cluster (Aktiv-Passiv). Unter SQL Server 2008 wurde diese Technologie SQL Server 2008 Failover Clustering genannt. Sie nutzte den Windows Server Failover Cluster. In SQL Server 2012 hat Microsoft diese Basistechnologie unter der Bezeichnung AlwaysOn zusammengefasst. Es handelt sich aber nach wie vor um die klassische Aktiv-Passiv-Konfiguration. Der Ablauf im Failover-Fall ist wie folgt: Solange kein Hardware-oder System-Fehler auftritt, werden alle Dirty Pages im Buffer Cache auf Platte geschrieben Alle entsprechenden SQL Server Services (Dienste) in der Ressource Gruppe werden auf dem aktiven Knoten gestoppt Die Ownership der Ressource Gruppe wird auf einen anderen Knoten der FCI transferriert Der neue Owner (Besitzer) der Ressource Gruppe startet seine SQL Server Services (Dienste) Die Connection-Anforderungen einer Client-Applikation werden automatisch auf den neuen aktiven Knoten mit dem selben Virtuellen Network Namen (VNN) umgeleitet Abhängig vom Zeitpunkt des letzten Checkpoints, kann die Anzahl der Dirty Pages im Buffer Cache, die noch auf Platte geschrieben werden müssen, zu unvorhersehbar langen Failover-Zeiten führen. Um diese Anzahl zu drosseln, besitzt der SQL Server 2012 eine neue Fähigkeit, die Indirect Checkpoints genannt wird. Indirect Checkpoints ähnelt dem Fast-Start MTTR Target Feature der Oracle Datenbank, das bereits mit Oracle9i verfügbar war.   SQL Server Multi-Subnet Clustering Ein SQL Server Multi-Subnet Failover Cluster entspricht vom Konzept her einem Oracle RAC Stretch Cluster. Doch dies ist nur auf den ersten Blick der Fall. Im Gegensatz zu RAC ist in einem lokalen SQL Server Failover Cluster jeweils nur ein Knoten aktiv für eine Datenbank. Für die Datenreplikation zwischen geografisch entfernten Sites verlässt sich Microsoft auf 3rd Party Lösungen für das Storage Mirroring.     Die Verbesserung dieses Szenario mit einer SQL Server 2012 Implementierung besteht schlicht darin, dass eine VLAN-Konfiguration (Virtual Local Area Network) nun nicht mehr benötigt wird, so wie dies bisher der Fall war. Das folgende Diagramm stellt dar, wie der Ablauf mit SQL Server 2012 gehandhabt wird. In Site A und Site B wird HA jeweils durch einen lokalen Aktiv-Passiv-Cluster sichergestellt.     Besondere Aufmerksamkeit muss hier der Konfiguration und dem Tuning geschenkt werden, da ansonsten völlig inakzeptable Failover-Zeiten resultieren. Dies liegt darin begründet, weil die Downtime auf Client-Seite nun nicht mehr nur von der reinen Failover-Zeit abhängt, sondern zusätzlich von der Dauer der DNS Replikation zwischen den DNS Servern. (Rufen Sie sich in Erinnerung, dass wir gerade von Multi-Subnet Clustering sprechen). Außerdem ist zu berücksichtigen, wie schnell die Clients die aktualisierten DNS Informationen abfragen. Spezielle Konfigurationen für Node Heartbeat, HostRecordTTL (Host Record Time-to-Live) und Intersite Replication Frequeny für Active Directory Sites und Services werden notwendig. Default TTL für Windows Server 2008 R2: 20 Minuten Empfohlene Einstellung: 1 Minute DNS Update Replication Frequency in Windows Umgebung: 180 Minuten Empfohlene Einstellung: 15 Minuten (minimaler Wert)   Betrachtet man diese Werte, muss man feststellen, dass selbst eine optimale Konfiguration die rigiden SLAs (Service Level Agreements) heutiger geschäftskritischer Anwendungen für HA und DR nicht erfüllen kann. Denn dies impliziert eine auf der Client-Seite erlebte Failover-Zeit von insgesamt 16 Minuten. Hierzu ein Auszug aus der SQL Server 2012 Online Dokumentation: Cons: If a cross-subnet failover occurs, the client recovery time could be 15 minutes or longer, depending on your HostRecordTTL setting and the setting of your cross-site DNS/AD replication schedule.    Wir sind hier an einem Punkt unserer Überlegungen angelangt, an dem sich erklärt, weshalb ich zuvor das "Windows was the God ..." Zitat verwendet habe. Die unbedingte Abhängigkeit zu Windows wird zunehmend zum Problem, da sie die Komplexität einer Microsoft-basierenden Lösung erhöht, anstelle sie zu reduzieren. Und Komplexität ist das Letzte, was sich CIOs heutzutage wünschen.  Zur Ehrenrettung des SQL Server 2012 und AlwaysOn muss man sagen, dass derart lange Failover-Zeiten kein unbedingtes "Muss" darstellen, sondern ein "Kann". Doch auch ein "Kann" kann im unpassenden Moment unvorhersehbare und kostspielige Folgen haben. Die Unabsehbarkeit ist wiederum Ursache vieler an der Implementierung beteiligten Komponenten und deren Abhängigkeiten, wie beispielsweise drei Cluster-Lösungen (zwei von Microsoft, eine 3rd Party Lösung). Wie man die Sache auch dreht und wendet, kommt man an diesem Fakt also nicht vorbei - ganz unabhängig von der Dauer einer Downtime oder Failover-Zeiten. Im Gegensatz zu AlwaysOn und der hier vorgestellten Version eines Stretch-Clusters, vermeidet eine entsprechende Oracle Implementierung eine derartige Komplexität, hervorgerufen duch multiple Abhängigkeiten. Den Unterschied machen Datenbank-integrierte Mechanismen, wie Fast Application Notification (FAN) und Fast Connection Failover (FCF). Für Oracle MAA Konfigurationen (Maximum Availability Architecture) sind Inter-Site Failover-Zeiten im Bereich von Sekunden keine Seltenheit. Wenn Sie dem Link zur Oracle MAA folgen, finden Sie außerdem eine Reihe an Customer Case Studies. Auch dies ist ein wichtiges Unterscheidungsmerkmal zu AlwaysOn, denn die Oracle Technologie hat sich bereits zigfach in höchst kritischen Umgebungen bewährt.   Availability Groups (Verfügbarkeitsgruppen) Die sogenannten Availability Groups (Verfügbarkeitsgruppen) sind - neben FCI - der weitere Baustein von AlwaysOn.   Hinweis: Bevor wir uns näher damit beschäftigen, sollten Sie sich noch einmal ins Gedächtnis rufen, dass eine SQL Server Datenbank nicht die gleiche Bedeutung besitzt, wie eine Oracle Datenbank, sondern eher einem Oracle Schema entspricht. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema.   Eine Verfügbarkeitsgruppe setzt sich zusammen aus einem Set mehrerer Benutzer-Datenbanken, die im Falle eines Failover gemeinsam als Gruppe behandelt werden. Eine Verfügbarkeitsgruppe unterstützt ein Set an primären Datenbanken (primäres Replikat) und einem bis vier Sets von entsprechenden sekundären Datenbanken (sekundäre Replikate).       Es können jedoch nicht alle SQL Server Datenbanken einer AlwaysOn Verfügbarkeitsgruppe zugeordnet werden. Der SQL Server Spezialist Michael Otey zählt in seinem SQL Server Pro Artikel folgende Anforderungen auf: Verfügbarkeitsgruppen müssen mit Benutzer-Datenbanken erstellt werden. System-Datenbanken können nicht verwendet werden Die Datenbanken müssen sich im Read-Write Modus befinden. Read-Only Datenbanken werden nicht unterstützt Die Datenbanken in einer Verfügbarkeitsgruppe müssen Multiuser Datenbanken sein Sie dürfen nicht das AUTO_CLOSE Feature verwenden Sie müssen das Full Recovery Modell nutzen und es muss ein vollständiges Backup vorhanden sein Eine gegebene Datenbank kann sich nur in einer einzigen Verfügbarkeitsgruppe befinden und diese Datenbank düerfen nicht für Database Mirroring konfiguriert sein Microsoft empfiehl außerdem, dass der Verzeichnispfad einer Datenbank auf dem primären und sekundären Server identisch sein sollte Wie man sieht, eignen sich Verfügbarkeitsgruppen nicht, um HA und DR vollständig abzubilden. Die Unterscheidung zwischen der Instanzen-Ebene (FCI) und Datenbank-Ebene (Availability Groups) ist von hoher Bedeutung. Vor kurzem wurde mir gesagt, dass man mit den Verfügbarkeitsgruppen auf Shared Storage verzichten könne und dadurch Kosten spart. So weit so gut ... Man kann natürlich eine Installation rein mit Verfügbarkeitsgruppen und ohne FCI durchführen - aber man sollte sich dann darüber bewusst sein, was man dadurch alles nicht abgesichert hat - und dies wiederum für Desaster Recovery (DR) und SLAs (Service Level Agreements) bedeutet. Kurzum, um die Kombination aus beiden AlwaysOn Produkten und der damit verbundene Komplexität kommt man wohl in der Praxis nicht herum.    Availability Groups und WSFC AlwaysOn hängt von Windows Server Failover Clustering (WSFC) ab, um die aktuellen Rollen der Verfügbarkeitsreplikate einer Verfügbarkeitsgruppe zu überwachen und zu verwalten, und darüber zu entscheiden, wie ein Failover-Ereignis die Verfügbarkeitsreplikate betrifft. Das folgende Diagramm zeigt de Beziehung zwischen Verfügbarkeitsgruppen und WSFC:   Der Verfügbarkeitsmodus ist eine Eigenschaft jedes Verfügbarkeitsreplikats. Synychron und Asynchron können also gemischt werden: Availability Modus (Verfügbarkeitsmodus) Asynchroner Commit-Modus Primäres replikat schließt Transaktionen ohne Warten auf Sekundäres Synchroner Commit-Modus Primäres Replikat wartet auf Commit von sekundärem Replikat Failover Typen Automatic Manual Forced (mit möglichem Datenverlust) Synchroner Commit-Modus Geplanter, manueller Failover ohne Datenverlust Automatischer Failover ohne Datenverlust Asynchroner Commit-Modus Nur Forced, manueller Failover mit möglichem Datenverlust   Der SQL Server kennt keinen separaten Switchover Begriff wie in Oracle Data Guard. Für SQL Server werden alle Role Transitions als Failover bezeichnet. Tatsächlich unterstützt der SQL Server keinen Switchover für asynchrone Verbindungen. Es gibt nur die Form des Forced Failover mit möglichem Datenverlust. Eine ähnliche Fähigkeit wie der Switchover unter Oracle Data Guard ist so nicht gegeben.   SQL Sever FCI mit Availability Groups (Verfügbarkeitsgruppen) Neben den Verfügbarkeitsgruppen kann eine zweite Failover-Ebene eingerichtet werden, indem SQL Server FCI (auf Shared Storage) mit WSFC implementiert wird. Ein Verfügbarkeitesreplikat kann dann auf einer Standalone Instanz gehostet werden, oder einer FCI Instanz. Zum Verständnis: Die Verfügbarkeitsgruppen selbst benötigen kein Shared Storage. Diese Kombination kann verwendet werden für lokale HA auf Ebene der Instanz und DR auf Datenbank-Ebene durch Verfügbarkeitsgruppen. Das folgende Diagramm zeigt dieses Szenario:   Achtung! Hier handelt es sich nicht um ein Pendant zu Oracle RAC plus Data Guard, auch wenn das Bild diesen Eindruck vielleicht vermitteln mag - denn alle sekundären Knoten im FCI sind rein passiv. Es existiert außerdem eine weitere und ernsthafte Einschränkung: SQL Server Failover Cluster Instanzen (FCI) unterstützen nicht das automatische AlwaysOn Failover für Verfügbarkeitsgruppen. Jedes unter FCI gehostete Verfügbarkeitsreplikat kann nur für manuelles Failover konfiguriert werden.   Lesbare Sekundäre Replikate Ein oder mehrere Verfügbarkeitsreplikate in einer Verfügbarkeitsgruppe können für den lesenden Zugriff konfiguriert werden, wenn sie als sekundäres Replikat laufen. Dies ähnelt Oracle Active Data Guard, jedoch gibt es Einschränkungen. Alle Abfragen gegen die sekundäre Datenbank werden automatisch auf das Snapshot Isolation Level abgebildet. Es handelt sich dabei um eine Versionierung der Rows. Microsoft versuchte hiermit die Oracle MVRC (Multi Version Read Consistency) nachzustellen. Tatsächlich muss man die SQL Server Snapshot Isolation eher mit Oracle Flashback vergleichen. Bei der Implementierung des Snapshot Isolation Levels handelt sich um ein nachträglich aufgesetztes Feature und nicht um einen inhärenten Teil des Datenbank-Kernels, wie im Falle Oracle. (Ich werde hierzu in Kürze einen weiteren Blogbeitrag verfassen, wenn ich mich mit der neuen SQL Server 2012 Core Lizenzierung beschäftige.) Für die Praxis entstehen aus der Abbildung auf das Snapshot Isolation Level ernsthafte Restriktionen, derer man sich für den Betrieb in der Praxis bereits vorab bewusst sein sollte: Sollte auf der primären Datenbank eine aktive Transaktion zu dem Zeitpunkt existieren, wenn ein lesbares sekundäres Replikat in die Verfügbarkeitsgruppe aufgenommen wird, werden die Row-Versionen auf der korrespondierenden sekundären Datenbank nicht sofort vollständig verfügbar sein. Eine aktive Transaktion auf dem primären Replikat muss zuerst abgeschlossen (Commit oder Rollback) und dieser Transaktions-Record auf dem sekundären Replikat verarbeitet werden. Bis dahin ist das Isolation Level Mapping auf der sekundären Datenbank unvollständig und Abfragen sind temporär geblockt. Microsoft sagt dazu: "This is needed to guarantee that row versions are available on the secondary replica before executing the query under snapshot isolation as all isolation levels are implicitly mapped to snapshot isolation." (SQL Storage Engine Blog: AlwaysOn: I just enabled Readable Secondary but my query is blocked?)  Grundlegend bedeutet dies, dass ein aktives lesbares Replikat nicht in die Verfügbarkeitsgruppe aufgenommen werden kann, ohne das primäre Replikat vorübergehend stillzulegen. Da Leseoperationen auf das Snapshot Isolation Transaction Level abgebildet werden, kann die Bereinigung von Ghost Records auf dem primären Replikat durch Transaktionen auf einem oder mehreren sekundären Replikaten geblockt werden - z.B. durch eine lang laufende Abfrage auf dem sekundären Replikat. Diese Bereinigung wird auch blockiert, wenn die Verbindung zum sekundären Replikat abbricht oder der Datenaustausch unterbrochen wird. Auch die Log Truncation wird in diesem Zustant verhindert. Wenn dieser Zustand längere Zeit anhält, empfiehlt Microsoft das sekundäre Replikat aus der Verfügbarkeitsgruppe herauszunehmen - was ein ernsthaftes Downtime-Problem darstellt. Die Read-Only Workload auf den sekundären Replikaten kann eingehende DDL Änderungen blockieren. Obwohl die Leseoperationen aufgrund der Row-Versionierung keine Shared Locks halten, führen diese Operatioen zu Sch-S Locks (Schemastabilitätssperren). DDL-Änderungen durch Redo-Operationen können dadurch blockiert werden. Falls DDL aufgrund konkurrierender Lese-Workload blockiert wird und der Schwellenwert für 'Recovery Interval' (eine SQL Server Konfigurationsoption) überschritten wird, generiert der SQL Server das Ereignis sqlserver.lock_redo_blocked, welches Microsoft zum Kill der blockierenden Leser empfiehlt. Auf die Verfügbarkeit der Anwendung wird hierbei keinerlei Rücksicht genommen.   Keine dieser Einschränkungen existiert mit Oracle Active Data Guard.   Backups auf sekundären Replikaten  Über die sekundären Replikate können Backups (BACKUP DATABASE via Transact-SQL) nur als copy-only Backups einer vollständigen Datenbank, Dateien und Dateigruppen erstellt werden. Das Erstellen inkrementeller Backups ist nicht unterstützt, was ein ernsthafter Rückstand ist gegenüber der Backup-Unterstützung physikalischer Standbys unter Oracle Data Guard. Hinweis: Ein möglicher Workaround via Snapshots, bleibt ein Workaround. Eine weitere Einschränkung dieses Features gegenüber Oracle Data Guard besteht darin, dass das Backup eines sekundären Replikats nicht ausgeführt werden kann, wenn es nicht mit dem primären Replikat kommunizieren kann. Darüber hinaus muss das sekundäre Replikat synchronisiert sein oder sich in der Synchronisation befinden, um das Beackup auf dem sekundären Replikat erstellen zu können.   Vergleich von Microsoft AlwaysOn mit der Oracle MAA Ich komme wieder zurück auf die Eingangs erwähnte, mehrfach an mich gestellte Frage "Wann denn - und ob überhaupt - Oracle etwas Vergleichbares wie AlwaysOn bieten würde?" und meine damit verbundene (kurze) Irritation. Wenn Sie diesen Blogbeitrag bis hierher gelesen haben, dann kennen Sie jetzt meine darauf gegebene Antwort. Der eine oder andere Punkt traf dabei nicht immer auf Jeden zu, was auch nicht der tiefere Sinn und Zweck meiner Antwort war. Wenn beispielsweise kein Multi-Subnet mit im Spiel ist, sind alle diesbezüglichen Kritikpunkte zunächst obsolet. Was aber nicht bedeutet, dass sie nicht bereits morgen schon wieder zum Thema werden könnten (Sag niemals "Nie"). In manch anderes Fettnäpfchen tritt man wiederum nicht unbedingt in einer Testumgebung, sondern erst im laufenden Betrieb. Erst recht nicht dann, wenn man sich potenzieller Probleme nicht bewusst ist und keine dedizierten Tests startet. Und wer AlwaysOn erfolgreich positionieren möchte, wird auch gar kein Interesse daran haben, auf mögliche Schwachstellen und den besagten Teufel im Detail aufmerksam zu machen. Das ist keine Unterstellung - es ist nur menschlich. Außerdem ist es verständlich, dass man sich in erster Linie darauf konzentriert "was geht" und "was gut läuft", anstelle auf das "was zu Problemen führen kann" oder "nicht funktioniert". Wer will schon der Miesepeter sein? Für mich selbst gesprochen, kann ich nur sagen, dass ich lieber vorab von allen möglichen Einschränkungen wissen möchte, anstelle sie dann nach einer kurzen Zeit der heilen Welt schmerzhaft am eigenen Leib erfahren zu müssen. Ich bin davon überzeugt, dass es Ihnen nicht anders geht. Nachfolgend deshalb eine Zusammenfassung all jener Punkte, die ich im Vergleich zur Oracle MAA (Maximum Availability Architecture) als unbedingt Erwähnenswert betrachte, falls man eine Evaluierung von Microsoft AlwaysOn in Betracht zieht. 1. AlwaysOn ist eine komplexe Technologie Der SQL Server AlwaysOn Stack ist zusammengesetzt aus drei verschiedenen Technlogien: Windows Server Failover Clustering (WSFC) SQL Server Failover Cluster Instances (FCI) SQL Server Availability Groups (Verfügbarkeitsgruppen) Man kann eine derartige Lösung nicht als nahtlos bezeichnen, wofür auch die vielen von Microsoft dargestellten Einschränkungen sprechen. Während sich frühere SQL Server Versionen in Richtung eigener HA/DR Technologien entwickelten (wie Database Mirroring), empfiehlt Microsoft nun die Migration. Doch weshalb dieser Schwenk? Er führt nicht zu einem konsisten und robusten Angebot an HA/DR Technologie für geschäftskritische Umgebungen.  Liegt die Antwort in meiner These begründet, nach der "Windows was the God ..." noch immer gilt und man die Nachteile der allzu engen Kopplung mit Windows nicht sehen möchte? Entscheiden Sie selbst ... 2. Failover Cluster Instanzen - Kein RAC-Pendant Die SQL Server und Windows Server Clustering Technologie basiert noch immer auf dem veralteten Aktiv-Passiv Modell und führt zu einer Verschwendung von Systemressourcen. In einer Betrachtung von lediglich zwei Knoten erschließt sich auf Anhieb noch nicht der volle Mehrwert eines Aktiv-Aktiv Clusters (wie den Real Application Clusters), wie er von Oracle bereits vor zehn Jahren entwickelt wurde. Doch kennt man die Vorzüge der Skalierbarkeit durch einfaches Hinzufügen weiterer Cluster-Knoten, die dann alle gemeinsam als ein einziges logisches System zusammenarbeiten, versteht man was hinter dem Motto "Pay-as-you-Grow" steckt. In einem Aktiv-Aktiv Cluster geht es zwar auch um Hochverfügbarkeit - und ein Failover erfolgt zudem schneller, als in einem Aktiv-Passiv Modell - aber es geht eben nicht nur darum. An dieser Stelle sei darauf hingewiesen, dass die Oracle 11g Standard Edition bereits die Nutzung von Oracle RAC bis zu vier Sockets kostenfrei beinhaltet. Möchten Sie dazu Windows nutzen, benötigen Sie keine Windows Server Enterprise Edition, da Oracle 11g die eigene Clusterware liefert. Sie kommen in den Genuss von Hochverfügbarkeit und Skalierbarkeit und können dazu die günstigere Windows Server Standard Edition nutzen. 3. SQL Server Multi-Subnet Clustering - Abhängigkeit zu 3rd Party Storage Mirroring  Die SQL Server Multi-Subnet Clustering Architektur unterstützt den Aufbau eines Stretch Clusters, basiert dabei aber auf dem Aktiv-Passiv Modell. Das eigentlich Problematische ist jedoch, dass man sich zur Absicherung der Datenbank auf 3rd Party Storage Mirroring Technologie verlässt, ohne Integration zwischen dem Windows Server Failover Clustering (WSFC) und der darunterliegenden Mirroring Technologie. Wenn nun im Cluster ein Failover auf Instanzen-Ebene erfolgt, existiert keine Koordination mit einem möglichen Failover auf Ebene des Storage-Array. 4. Availability Groups (Verfügbarkeitsgruppen) - Vier, oder doch nur Zwei? Ein primäres Replikat erlaubt bis zu vier sekundäre Replikate innerhalb einer Verfügbarkeitsgruppe, jedoch nur zwei im Synchronen Commit Modus. Während dies zwar einen Vorteil gegenüber dem stringenten 1:1 Modell unter Database Mirroring darstellt, fällt der SQL Server 2012 damit immer noch weiter zurück hinter Oracle Data Guard mit bis zu 30 direkten Stanbdy Zielen - und vielen weiteren durch kaskadierende Ziele möglichen. Damit eignet sich Oracle Active Data Guard auch für die Bereitstellung einer Reader-Farm Skalierbarkeit für Internet-basierende Unternehmen. Mit AwaysOn Verfügbarkeitsgruppen ist dies nicht möglich. 5. Availability Groups (Verfügbarkeitsgruppen) - kein asynchrones Switchover  Die Technologie der Verfügbarkeitsgruppen wird auch als geeignetes Mittel für administrative Aufgaben positioniert - wie Upgrades oder Wartungsarbeiten. Man muss sich jedoch einem gravierendem Defizit bewusst sein: Im asynchronen Verfügbarkeitsmodus besteht die einzige Möglichkeit für Role Transition im Forced Failover mit Datenverlust! Um den Verlust von Daten durch geplante Wartungsarbeiten zu vermeiden, muss man den synchronen Verfügbarkeitsmodus konfigurieren, was jedoch ernstzunehmende Auswirkungen auf WAN Deployments nach sich zieht. Spinnt man diesen Gedanken zu Ende, kommt man zu dem Schluss, dass die Technologie der Verfügbarkeitsgruppen für geplante Wartungsarbeiten in einem derartigen Umfeld nicht effektiv genutzt werden kann. 6. Automatisches Failover - Nicht immer möglich Sowohl die SQL Server FCI, als auch Verfügbarkeitsgruppen unterstützen automatisches Failover. Möchte man diese jedoch kombinieren, wird das Ergebnis kein automatisches Failover sein. Denn ihr Zusammentreffen im Failover-Fall führt zu Race Conditions (Wettlaufsituationen), weshalb diese Konfiguration nicht länger das automatische Failover zu einem Replikat in einer Verfügbarkeitsgruppe erlaubt. Auch hier bestätigt sich wieder die tiefere Problematik von AlwaysOn, mit einer Zusammensetzung aus unterschiedlichen Technologien und der Abhängigkeit zu Windows. 7. Problematische RTO (Recovery Time Objective) Microsoft postioniert die SQL Server Multi-Subnet Clustering Architektur als brauchbare HA/DR Architektur. Bedenkt man jedoch die Problematik im Zusammenhang mit DNS Replikation und den möglichen langen Wartezeiten auf Client-Seite von bis zu 16 Minuten, sind strenge RTO Anforderungen (Recovery Time Objectives) nicht erfüllbar. Im Gegensatz zu Oracle besitzt der SQL Server keine Datenbank-integrierten Technologien, wie Oracle Fast Application Notification (FAN) oder Oracle Fast Connection Failover (FCF). 8. Problematische RPO (Recovery Point Objective) SQL Server ermöglicht Forced Failover (erzwungenes Failover), bietet jedoch keine Möglichkeit zur automatischen Übertragung der letzten Datenbits von einem alten zu einem neuen primären Replikat, wenn der Verfügbarkeitsmodus asynchron war. Oracle Data Guard hingegen bietet diese Unterstützung durch das Flush Redo Feature. Dies sichert "Zero Data Loss" und beste RPO auch in erzwungenen Failover-Situationen. 9. Lesbare Sekundäre Replikate mit Einschränkungen Aufgrund des Snapshot Isolation Transaction Level für lesbare sekundäre Replikate, besitzen diese Einschränkungen mit Auswirkung auf die primäre Datenbank. Die Bereinigung von Ghost Records auf der primären Datenbank, wird beeinflusst von lang laufenden Abfragen auf der lesabaren sekundären Datenbank. Die lesbare sekundäre Datenbank kann nicht in die Verfügbarkeitsgruppe aufgenommen werden, wenn es aktive Transaktionen auf der primären Datenbank gibt. Zusätzlich können DLL Änderungen auf der primären Datenbank durch Abfragen auf der sekundären blockiert werden. Und imkrementelle Backups werden hier nicht unterstützt.   Keine dieser Restriktionen existiert unter Oracle Data Guard.

    Read the article

  • Is DataRow thread safe? How to update a single datarow in a datatable using multiple threads? - .net

    - by NLV
    Hello all I want to update a single datarow in a datatable using multiple threads. Is this actually possible? I've written the following code implementing a simple multi-threading to update a single datarow. I get different results each time. Why is it so? public partial class Form1 : Form { private static DataTable dtMain; private static string threadMsg = string.Empty; public Form1() { InitializeComponent(); } private void Form1_Load(object sender, EventArgs e) { Thread[] thArr = new Thread[5]; dtMain = new DataTable(); dtMain.Columns.Add("SNo"); DataRow dRow; dRow = dtMain.NewRow(); dRow["SNo"] = 5; dtMain.Rows.Add(dRow); dtMain.AcceptChanges(); ThreadStart ts = new ThreadStart(delegate { dtUpdate(); }); thArr[0] = new Thread(ts); thArr[1] = new Thread(ts); thArr[2] = new Thread(ts); thArr[3] = new Thread(ts); thArr[4] = new Thread(ts); thArr[0].Start(); thArr[1].Start(); thArr[2].Start(); thArr[3].Start(); thArr[4].Start(); while (!WaitTillAllThreadsStopped(thArr)) { Thread.Sleep(500); } foreach (Thread thread in thArr) { if (thread != null && thread.IsAlive) { thread.Abort(); } } dgvMain.DataSource = dtMain; } private void dtUpdate() { for (int i = 0; i < 1000; i++) { try { dtMain.Rows[0][0] = Convert.ToInt32(dtMain.Rows[0][0]) + 1; dtMain.AcceptChanges(); } catch { continue; } } } private bool WaitTillAllThreadsStopped(Thread[] threads) { foreach (Thread thread in threads) { if (thread != null && thread.ThreadState == ThreadState.Running) { return false; } } return true; } } Any thoughts on this? Thank you NLV

    Read the article

  • Help to edit the Recent Posts Wordpress widget to diplay in all 3 languages at once

    - by CreativEliza
    Site link: http://nuestrafrontera.org/wordpress/ I want the feed of recent post titles to show in the sidebar for all 3 languages, separated by language. So, for example, under Recent Posts the sidebar would have "English" and then the latest 3 posts in English, then "Español" and the latest 3 in Spanish and then French. All in a list in the column and appearing on all pages with the sidebar in all languages. I am using the most current version of Wordpress with the WPML plugin. I believe the Wordpress widget for Recent Posts needs to be tweaked to do this. Here is the code (from wp-includes/default-widgets.php): class WP_Widget_Recent_Posts extends WP_Widget { function WP_Widget_Recent_Posts() { $widget_ops = array('classname' => 'widget_recent_entries', 'description' => __( "The most recent posts on your blog") ); $this->WP_Widget('recent-posts', __('Recent Posts'), $widget_ops); $this->alt_option_name = 'widget_recent_entries'; add_action( 'save_post', array(&$this, 'flush_widget_cache') ); add_action( 'deleted_post', array(&$this, 'flush_widget_cache') ); add_action( 'switch_theme', array(&$this, 'flush_widget_cache') ); } function widget($args, $instance) { $cache = wp_cache_get('widget_recent_posts', 'widget'); if ( !is_array($cache) ) $cache = array(); if ( isset($cache[$args['widget_id']]) ) { echo $cache[$args['widget_id']]; return; } ob_start(); extract($args); $title = apply_filters('widget_title', empty($instance['title']) ? __('Recent Posts') : $instance['title']); if ( !$number = (int) $instance['number'] ) $number = 10; else if ( $number < 1 ) $number = 1; else if ( $number > 15 ) $number = 15; $r = new WP_Query(array('showposts' => $number, 'nopaging' => 0, 'post_status' => 'publish', 'caller_get_posts' => 1)); if ($r->have_posts()) : ?> <?php echo $before_widget; ?> <?php if ( $title ) echo $before_title . $title . $after_title; ?> <ul> <?php while ($r->have_posts()) : $r->the_post(); ?> <li><a href="<?php the_permalink() ?>" title="<?php echo esc_attr(get_the_title() ? get_the_title() : get_the_ID()); ?>"><?php if ( get_the_title() ) the_title(); else the_ID(); ?> </a></li> <?php endwhile; ?> </ul> <?php echo $after_widget; ?> <?php wp_reset_query(); // Restore global post data stomped by the_post(). endif; $cache[$args['widget_id']] = ob_get_flush(); wp_cache_add('widget_recent_posts', $cache, 'widget'); } function update( $new_instance, $old_instance ) { $instance = $old_instance; $instance['title'] = strip_tags($new_instance['title']); $instance['number'] = (int) $new_instance['number']; $this->flush_widget_cache(); $alloptions = wp_cache_get( 'alloptions', 'options' ); if ( isset($alloptions['widget_recent_entries']) ) delete_option('widget_recent_entries'); return $instance; } function flush_widget_cache() { wp_cache_delete('widget_recent_posts', 'widget'); } function form( $instance ) { $title = esc_attr($instance['title']); if ( !$number = (int) $instance['number'] ) $number = 5; ?> <p><label for="<?php echo $this->get_field_id('title'); ?>"><?php _e('Title:'); ?></label> <input class="widefat" id="<?php echo $this->get_field_id('title'); ?>" name="<?php echo $this->get_field_name('title'); ?>" type="text" value="<?php echo $title; ?>" /></p> <p><label for="<?php echo $this->get_field_id('number'); ?>"><?php _e('Number of posts to show:'); ?></label> <input id="<?php echo $this->get_field_id('number'); ?>" name="<?php echo $this->get_field_name('number'); ?>" type="text" value="<?php echo $number; ?>" size="3" /><br /> <small><?php _e('(at most 15)'); ?></small></p> <?php } }

    Read the article

  • Why does decorating a class break the descriptor protocol, thus preventing staticmethod objects from behaving as expected?

    - by Robru
    I need a little bit of help understanding the subtleties of the descriptor protocol in Python, as it relates specifically to the behavior of staticmethod objects. I'll start with a trivial example, and then iteratively expand it, examining it's behavior at each step: class Stub: @staticmethod def do_things(): """Call this like Stub.do_things(), with no arguments or instance.""" print "Doing things!" At this point, this behaves as expected, but what's going on here is a bit subtle: When you call Stub.do_things(), you are not invoking do_things directly. Instead, Stub.do_things refers to a staticmethod instance, which has wrapped the function we want up inside it's own descriptor protocol such that you are actually invoking staticmethod.__get__, which first returns the function that we want, and then gets called afterwards. >>> Stub <class __main__.Stub at 0x...> >>> Stub.do_things <function do_things at 0x...> >>> Stub.__dict__['do_things'] <staticmethod object at 0x...> >>> Stub.do_things() Doing things! So far so good. Next, I need to wrap the class in a decorator that will be used to customize class instantiation -- the decorator will determine whether to allow new instantiations or provide cached instances: def deco(cls): def factory(*args, **kwargs): # pretend there is some logic here determining # whether to make a new instance or not return cls(*args, **kwargs) return factory @deco class Stub: @staticmethod def do_things(): """Call this like Stub.do_things(), with no arguments or instance.""" print "Doing things!" Now, naturally this part as-is would be expected to break staticmethods, because the class is now hidden behind it's decorator, ie, Stub not a class at all, but an instance of factory that is able to produce instances of Stub when you call it. Indeed: >>> Stub <function factory at 0x...> >>> Stub.do_things Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'function' object has no attribute 'do_things' >>> Stub() <__main__.Stub instance at 0x...> >>> Stub().do_things <function do_things at 0x...> >>> Stub().do_things() Doing things! So far I understand what's happening here. My goal is to restore the ability for staticmethods to function as you would expect them to, even though the class is wrapped. As luck would have it, the Python stdlib includes something called functools, which provides some tools just for this purpose, ie, making functions behave more like other functions that they wrap. So I change my decorator to look like this: def deco(cls): @functools.wraps(cls) def factory(*args, **kwargs): # pretend there is some logic here determining # whether to make a new instance or not return cls(*args, **kwargs) return factory Now, things start to get interesting: >>> Stub <function Stub at 0x...> >>> Stub.do_things <staticmethod object at 0x...> >>> Stub.do_things() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: 'staticmethod' object is not callable >>> Stub() <__main__.Stub instance at 0x...> >>> Stub().do_things <function do_things at 0x...> >>> Stub().do_things() Doing things! Wait.... what? functools copies the staticmethod over to the wrapping function, but it's not callable? Why not? What did I miss here? I was playing around with this for a bit and I actually came up with my own reimplementation of staticmethod that allows it to function in this situation, but I don't really understand why it was necessary or if this is even the best solution to this problem. Here's the complete example: class staticmethod(object): """Make @staticmethods play nice with decorated classes.""" def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): """Provide the expected behavior inside decorated classes.""" return self.func(*args, **kwargs) def __get__(self, obj, objtype=None): """Re-implement the standard behavior for undecorated classes.""" return self.func def deco(cls): @functools.wraps(cls) def factory(*args, **kwargs): # pretend there is some logic here determining # whether to make a new instance or not return cls(*args, **kwargs) return factory @deco class Stub: @staticmethod def do_things(): """Call this like Stub.do_things(), with no arguments or instance.""" print "Doing things!" Indeed it works exactly as expected: >>> Stub <function Stub at 0x...> >>> Stub.do_things <__main__.staticmethod object at 0x...> >>> Stub.do_things() Doing things! >>> Stub() <__main__.Stub instance at 0x...> >>> Stub().do_things <function do_things at 0x...> >>> Stub().do_things() Doing things! What approach would you take to make a staticmethod behave as expected inside a decorated class? Is this the best way? Why doesn't the builtin staticmethod implement __call__ on it's own in order for this to just work without any fuss? Thanks.

    Read the article

< Previous Page | 196 197 198 199 200 201 202 203 204 205 206 207  | Next Page >