Search Results

Search found 5842 results on 234 pages for 'compiler warnings'.

Page 201/234 | < Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >

  • help understanding differences between #define, const and enum in C and C++ on assembly level.

    - by martin
    recently, i am looking into assembly codes for #define, const and enum: C codes(#define): 3 #define pi 3 4 int main(void) 5 { 6 int a,r=1; 7 a=2*pi*r; 8 return 0; 9 } assembly codes(for line 6 and 7 in c codes) generated by GCC: 6 mov $0x1, -0x4(%ebp) 7 mov -0x4(%ebp), %edx 7 mov %edx, %eax 7 add %eax, %eax 7 add %edx, %eax 7 add %eax, %eax 7 mov %eax, -0x8(%ebp) C codes(enum): 2 int main(void) 3 { 4 int a,r=1; 5 enum{pi=3}; 6 a=2*pi*r; 7 return 0; 8 } assembly codes(for line 4 and 6 in c codes) generated by GCC: 6 mov $0x1, -0x4(%ebp) 7 mov -0x4(%ebp), %edx 7 mov %edx, %eax 7 add %eax, %eax 7 add %edx, %eax 7 add %eax, %eax 7 mov %eax, -0x8(%ebp) C codes(const): 4 int main(void) 5 { 6 int a,r=1; 7 const int pi=3; 8 a=2*pi*r; 9 return 0; 10 } assembly codes(for line 7 and 8 in c codes) generated by GCC: 6 movl $0x3, -0x8(%ebp) 7 movl $0x3, -0x4(%ebp) 8 mov -0x4(%ebp), %eax 8 add %eax, %eax 8 imul -0x8(%ebp), %eax 8 mov %eax, 0xc(%ebp) i found that use #define and enum, the assembly codes are the same. The compiler use 3 add instructions to perform multiplication. However, when use const, imul instruction is used. Anyone knows the reason behind that?

    Read the article

  • Case class copy() method abstraction.

    - by Joa Ebert
    I would like to know if it is possible to abstract the copy method of case classes. Basically I have something like sealed trait Op and then something like case class Push(value: Int) extends Op and case class Pop() extends Op. The first problem: A case class without arguments/members does not define a copy method. You can try this in the REPL. scala> case class Foo() defined class Foo scala> Foo().copy() <console>:8: error: value copy is not a member of Foo Foo().copy() ^ scala> case class Foo(x: Int) defined class Foo scala> Foo(0).copy() res1: Foo = Foo(0) Is there a reason why the compiler makes this exception? I think it is rather unituitive and I would expect every case class to define a copy method. The second problem: I have a method def ops: List[Op] and I would like to copy all ops like ops map { _.copy() }. How would I define the copy method in the Op trait? I get a "too many arguments" error if I say def copy(): this.type. However, since all copy() methods have only optional arguments: why is this incorrect? And, how do I do that correct? By making another method named def clone(): this.type and write everywhere def clone() = copy() for all the case classes? I hope not.

    Read the article

  • Stack usage with MMX intrinsics and Microsoft C++

    - by arik-funke
    I have an inline assembler loop that cumulatively adds elements from an int32 data array with MMX instructions. In particular, it uses the fact that the MMX registers can accommodate 16 int32s to calculate 16 different cumulative sums in parallel. I would now like to convert this piece of code to MMX intrinsics but I am afraid that I will suffer a performance penalty because one cannot explicitly intruct the compiler to use the 8 MMX registers to accomulate 16 independent sums. Can anybody comment on this and maybe propose a solution on how to convert the piece of code below to use intrinsics? == inline assembler (only part within the loop) == paddd mm0, [esi+edx+8*0] ; add first & second pair of int32 elements paddd mm1, [esi+edx+8*1] ; add third & fourth pair of int32 elements ... paddd mm2, [esi+edx+8*2] paddd mm3, [esi+edx+8*3] paddd mm4, [esi+edx+8*4] paddd mm5, [esi+edx+8*5] paddd mm6, [esi+edx+8*6] paddd mm7, [esi+edx+8*7] ; add 15th & 16th pair of int32 elements esi points to the beginning of the data array edx provides the offset in the data array for the current loop iteration the data array is arranged such that the elements for the 16 independent sums are interleaved.

    Read the article

  • Compiling Objective-C project on Linux (Ubuntu)

    - by Alex
    How to make an Objective-C project work on Ubuntu? My files are: Fraction.h #import <Foundation/NSObject.h> @interface Fraction: NSObject { int numerator; int denominator; } -(void) print; -(void) setNumerator: (int) n; -(void) setDenominator: (int) d; -(int) numerator; -(int) denominator; @end Fraction.m #import "Fraction.h" #import <stdio.h> @implementation Fraction -(void) print { printf( "%i/%i", numerator, denominator ); } -(void) setNumerator: (int) n { numerator = n; } -(void) setDenominator: (int) d { denominator = d; } -(int) denominator { return denominator; } -(int) numerator { return numerator; } @end main.m #import <stdio.h> #import "Fraction.h" int main( int argc, const char *argv[] ) { // create a new instance Fraction *frac = [[Fraction alloc] init]; // set the values [frac setNumerator: 1]; [frac setDenominator: 3]; // print it printf( "The fraction is: " ); [frac print]; printf( "\n" ); // free memory [frac release]; return 0; } I've tried two approaches to compile it: Pure gcc: $ sudo apt-get install gobjc gnustep gnustep-devel $ gcc `gnustep-config --objc-flags` -o main main.m -lobjc -lgnustep-base /tmp/ccIQKhfH.o:(.data.rel+0x0): undefined reference to `__objc_class_name_Fraction' I created a GNUmakefile Makefile: include ${GNUSTEP_MAKEFILES}/common.make TOOL_NAME = main main_OBJC_FILES = main.m include ${GNUSTEP_MAKEFILES}/tool.make ... and ran: $ source /usr/share/GNUstep/Makefiles/GNUstep.sh $ make Making all for tool main... Linking tool main ... ./obj/main.o:(.data.rel+0x0): undefined reference to `__objc_class_name_Fraction' So in both cases compiler gets stuck at undefined reference to `__objc_class_name_Fraction' Do you have and idea how to resolve this issue?

    Read the article

  • Converting Generic Type into reference type after checking its type using GetType(). How ?

    - by Shantanu Gupta
    i am trying to call a function that is defined in a class RFIDeas_Wrapper(dll being used). But when i checked for type of reader and after that i used it to call function it shows me error Cannot convert type T to RFIDeas_Wrapper. EDIT private List<string> GetTagCollection<T>(T Reader) { TagCollection = new List<string>(); if (Reader.GetType() == typeof(RFIDeas_Wrapper)) { ((RFIDeas_Wrapper)Reader).OpenDevice(); // here Reader is of type RFIDeas_Wrapper //, but i m not able to convert Reader into its datatype. string Tag_Id = ((RFIDeas_Wrapper)Reader).TagID(); //Adds Valid Tag Ids into the collection if(Tag_Id!="0") TagCollection.Add(Tag_Id); } else if (Reader.GetType() == typeof(AlienReader)) TagCollection = ((AlienReader)Reader).TagCollection; return TagCollection; } ((RFIDeas_Wrapper)Reader).OpenDevice(); , ((AlienReader)Reader).TagCollection; I want this line to be executed without any issue. As Reader will always be of the type i m specifying. How to make compiler understand the same thing.

    Read the article

  • gcc compilation without using system defined header locations

    - by bogertron
    I am attempting to compile a c++ class using gcc. Due to the nature of the build, I need to invoke gcc from a non-standard location and include non-system defined headers, only to add a set from a different location. However, when I do this, I run into an issue where I cannot find some base symbols (suprise suprise). So i am basically running this command to compile my code: -->(PARENT_DIR)/usr/bin/gcc # invoke compiler -B$(PARENT_DIR)/usr/lib64/gcc/suselinux-x8664 -B$(PARENT_DIR)/usr/lib64 #C/C++ flags -fPIC -fvisibility=default -g -c -Wall -m64 -nostdinc # source files -I$(SRC_DIR_ONE)/ -I$(SRC_DIR_TWO) -I../include # 'Mock' include the system header files -I$(PARENT_DIR)/usr/include/c++/$(GCC_VERSION) -I$(PARENT_DIR)/usr/include/c++/$(GCC_VERSION)/backward -I$(PARENT_DIR)/usr/include/c++/$(GCC_VERSION)/x86_64-suse-linux -I$(PARENT_DIR)/usr/lib64/x86_64-suse-linux/$(GCC_VERSION)/include -I$(PARENT_DIR)/usr/lib64/gcc/x86_64-suse-linux/$(GCC_VERSION)/include -I$(PARENT_DIR)/usr/lib64/gcc/x86_64-suse-linux/$(GCC_VERSION)/include-fixed -I$(PARENT_DIR)/usr/src/linux/include -I$(PARENT_DIR)/usr/x86_64-suse-linux/include -I$(PARENT_DIR)/usr/include/suselinux-x8664 -I$(PARENT_DIR)/usr/suselinux-x8664/include -I$(PARENT_DIR)/usr/include -I$(PARENT_DIR)/usr/include/linux file.cpp I am getting several errors which indicate that the base headers are not being included: such as: $(PARENT_DIR)/usr/include/c++/$(GCC_VERSION)/cstddef ::prtdiff_t has not been declared $(PARENT_DIR)/usr/include/c++/$(GCC_VERSION)/cstddef ::size_t has not bee declared. Is there something that I am doing wrong when I include the header file directories? Or am I looking in the wrong place?

    Read the article

  • How can I marshal JSON to/from a POJO for BlackBerry Java?

    - by sowbug
    I'm writing a RIM BlackBerry client app. BlackBerry uses a simplified version of Java (no generics, no annotations, limited collections support, etc.; roughly a Java 1.3 dialect). My client will be speaking JSON to a server. We have a bunch of JAXB-generated POJOs, but they're heavily annotated, and they use various classes that aren't available on this platform (ArrayList, BigDecimal, XMLGregorianCalendar). We also have the XSD used by the JAXB-XJC compiler to generate those source files. Being the lazy programmer that I am, I'd really rather not manually translate the existing source files to Java 1.3-compatible JSON-marshalling classes. I already tried JAXB 1.0.6 xjc. Unfortunately, it doesn't understand the XSD file well enough to emit proper classes. Do you know of a tool that will take JAXB 2.0 XSD files and emit Java 1.3 classes? And do you know of a JSON marshalling library that works with old Java? I think I am doomed because JSON arrived around 2006, and Java 5 was released in late 2004, meaning that people probably wouldn't be writing JSON-parsing code for old versions of Java. However, it seems that there must be good JSON libraries for J2ME, which is why I'm holding out hope.

    Read the article

  • Dynamic stack allocation in C++

    - by Poni
    I want to allocate memory on the stack. Heard of _alloca / alloca and I understand that these are compiler-specific stuff, which I don't like. So, I came-up with my own solution (which might have it's own flaws) and I want you to review/improve it so for once and for all we'll have this code working: /*#define allocate_on_stack(pointer, size) \ __asm \ { \ mov [pointer], esp; \ sub esp, [size]; \ }*/ /*#define deallocate_from_stack(size) \ __asm \ { \ add esp, [size]; \ }*/ void test() { int buff_size = 4 * 2; char *buff = 0; __asm { // allocate mov [buff], esp; sub esp, [buff_size]; } // playing with the stack-allocated memory for(int i = 0; i < buff_size; i++) buff[i] = 0x11; __asm { // deallocate add esp, [buff_size]; } } void main() { __asm int 3h; test(); } Compiled with VC9. What flaws do you see in it? Me for example, not sure that subtracting from ESP is the solution for "any kind of CPU". Also, I'd like to make the commented-out macros work but for some reason I can't.

    Read the article

  • Is a call to the following method considered late binding?

    - by AspOnMyNet
    1) Assume: • B1 defines methods virtualM() and nonvirtualM(), where former method is virtual while the latter is non-virtual • B2 derives from B1 • B2 overrides virtualM() • B2 is defined inside assembly A • Application app doesn’t have a reference to assembly A In the following code application app dynamically loads an assembly A, creates an instance of a type B2 and calls methods virtualM() and nonvirtualM(): Assembly a=Assembly.Load(“A”); Type t= a.GetType(“B2”); B1 a = ( B1 ) Activator.CreateInstance ( “t” ); a.virtualM(); a.nonvirtualM(); a) Is call to a.virtualM() considered early binding or late binding? b) I assume a call to a.nonvirtualM() is resolved during compilation time? 2) Does the term late binding refer only to looking up the target method at run time or does it also refer to creating an instance of given type at runtime? thanx EDIT: 1) A a=new A(); a.M(); As far as I know, it is not known at compile time where on the heap (thus at which memory address ) will instance a be created during runtime. Now, with early binding the function calls are replaced with memory addresses during compilation process. But how can compiler replace function call with memory address, if it doesn’t know where on the heap will object a be created during runtime ( here I’m assuming the address of method a.M will also be at same memory location as a )? 2) The method slot is determined at compile time I assume that by method slot you’re referring to the entry point in V-table?

    Read the article

  • Writing a VM - well formed bytecode?

    - by David Titarenco
    Hi, I'm writing a virtual machine in C just for fun. Lame, I know, but luckily I'm on SO so hopefully no one will make fun :) I wrote a really quick'n'dirty VM that reads lines of (my own) ASM and does stuff. Right now, I only have 3 instructions: add, jmp, end. All is well and it's actually pretty cool being able to feed lines (doing it something like write_line(&prog[1], "jmp", regA, regB, 0); and then running the program: while (machine.code_pointer <= BOUNDS && DONE != true) { run_line(&prog[machine.cp]); } I'm using an opcode lookup table (which may not be efficient but it's elegant) in C and everything seems to be working OK. My question is more of a "best practices" question but I do think there's a correct answer to it. I'm making the VM able to read binary files (storing bytes in unsigned char[]) and execute bytecode. My question is: is it the VM's job to make sure the bytecode is well formed or is it just the compiler's job to make sure the binary file it spits out is well formed? I only ask this because what would happen if someone would edit a binary file and screw stuff up (delete arbitrary parts of it, etc). Clearly, the program would be buggy and probably not functional. Is this even the VM's problem? I'm sure that people much smarter than me have figured out solutions to these problems, I'm just curious what they are!

    Read the article

  • Is there any reason to use C instead of C++ for embedded development?

    - by Piotr Czapla
    Question I have two compilers on my hardware C++ and C89 I'm thinking about using C++ with classes but without polymorphism (to avoid vtables). The main reasons I’d like to use C++ are: I prefer to use “inline” functions instead of macro definitions. I’d like to use namespaces as I prefixes clutter the code. I see C++ a bit type safer mainly because of templates, and verbose casting. I really like overloaded functions and constructors (used for automatic casting). Do you see any reason to stick with C89 when developing for very limited hardware (4kb of RAM)? Conclusion Thank you for your answers, they were really helpful! I though the subject through and I will stick with C mainly because: It is easier to predict actual code in C and this is really important if you have only 4kb of ram. My team consists of C developers mainly so advance features of C++ won't be frequently used. I've found a way to inline functions in my C compiler (C89). It is hard to accept one answer as you provided so many good answers. Unfortunately I can't create a wiki and accept it so I will choose one answer that made me think most.

    Read the article

  • Visibility of reintroduced constructor

    - by avenmore
    I have reintroduced the form constructor in a base form, but if I override the original constructor in a descendant form, the reintroduced constructor is no longer visible. type TfrmA = class(TForm) private FWndParent: HWnd; public constructor Create(AOwner: TComponent; const AWndParent: Hwnd); reintroduce; overload; virtual; end; constructor TfrmA.Create(AOwner: TComponent; const AWndParent: Hwnd); begin FWndParent := AWndParent; inherited Create(AOwner); end; type TfrmB = class(TfrmA) private public end; type TfrmC = class(TfrmB) private public constructor Create(AOwner: TComponent); override; end; constructor TfrmC.Create(AOwner: TComponent); begin inherited Create(AOwner); end; When creating: frmA := TfrmA.Create(nil, 0); frmB := TfrmB.Create(nil, 0); frmC := TfrmC.Create(nil, 0); // Compiler error My work-around is to override the reintroduced constructor or to declare the original constructor overloaded, but I'd like to understand the reason for this behavior. type TfrmA = class(TForm) private FWndParent: HWnd; public constructor Create(AOwner: TComponent); overload; override; constructor Create(AOwner: TComponent; const AWndParent: Hwnd); reintroduce; overload; virtual; end; type TfrmC = class(TfrmB) private public constructor Create(AOwner: TComponent; const AWndParent: Hwnd); override; end;

    Read the article

  • Strange inheritance behaviour in Objective-C

    - by Smikey
    Hi all, I've created a class called SelectableObject like so: #define kNumberKey @"Object" #define kNameKey @"Name" #define kThumbStringKey @"Thumb" #define kMainStringKey @"Main" #import <Foundation/Foundation.h> @interface SelectableObject : NSObject <NSCoding> { int number; NSString *name; NSString *thumbString; NSString *mainString; } @property (nonatomic, assign) int number; @property (nonatomic, retain) NSString *name; @property (nonatomic, retain) NSString *thumbString; @property (nonatomic, retain) NSString *mainString; @end So far so good. And the implementation section conforms to the NSCoding protocol as expected. HOWEVER, when I add a new class which inherits from this class, i.e. #import <Foundation/Foundation.h> #import "SelectableObject.h" @interface Pet : SelectableObject <NSCoding> { } @end I suddenly get the following compiler error in the Selectable object class! SelectableObject.h:16: error: expected '=', ',', ';', 'asm' or '__attribute__' before 'interface' This makes no sense to me. Why is the interface declaration for the SelectableObject class suddenly broken? I also import it in a couple of other classes I've written... Any help would be very much appreciated. Thanks! Michael

    Read the article

  • Strange Behaviour in Swift: constant defined with LET but behaving like a variable defined with VAR

    - by Sam
    Stuck on the below for a day! Any insight would be greatly appreciated. The constant in the first block match0 behaves as expected. The constant defined in the second block does not behave as nicely in the face of a change to its "source": var str = "+y+z*1.0*sum(A1:A3)" if let range0 = str.rangeOfString("^\\+|^\\-|^\\*|^\\/", options: NSStringCompareOptions.RegularExpressionSearch){ let match0 = str[range0] println(match0) //yields "+" - as expexted str.removeRange(range0) println(match0) //yields "+" - as expected str.removeRange(range0) println(match0) //yields "+" - as expected } if let range1 = str.rangeOfString("^\\+|^\\-|^\\*|^\\/", options: NSStringCompareOptions.RegularExpressionSearch){ let match1 = str[range1] println(match1) //yields "+" as expected str.removeRange(range1) println(match1) //!@#$ OMG!!!!!!!!!!! a constant variable has changed! This prints "z" } The following are the options I can see: match1 has somehow obtained a reference to its source instead of being copied by value [Problem: Strings are value types in Swift] match1 has somehow obtained a closure to its source instead of just being a normal constant/variable? [Problem: sounds like science fiction & then why does match0 behave so well?] Could there be a bug in the Swift compiler? [Problem: Experience has taught me that this is very very very rarely the solution to your problem...but it is still in beta]

    Read the article

  • Safe and polymorphic toEnum

    - by jetxee
    I'd like to write a safe version of toEnum: safeToEnum :: (Enum t, Bounded t) => Int -> Maybe t A naive implementation: safeToEnum :: (Enum t, Bounded t) => Int -> Maybe t safeToEnum i = if (i >= fromEnum (minBound :: t)) && (i <= fromEnum (maxBound :: t)) then Just . toEnum $ i else Nothing main = do print $ (safeToEnum 1 :: Maybe Bool) print $ (safeToEnum 2 :: Maybe Bool) And it doesn't work: safeToEnum.hs:3:21: Could not deduce (Bounded t1) from the context () arising from a use of `minBound' at safeToEnum.hs:3:21-28 Possible fix: add (Bounded t1) to the context of an expression type signature In the first argument of `fromEnum', namely `(minBound :: t)' In the second argument of `(>=)', namely `fromEnum (minBound :: t)' In the first argument of `(&&)', namely `(i >= fromEnum (minBound :: t))' safeToEnum.hs:3:56: Could not deduce (Bounded t1) from the context () arising from a use of `maxBound' at safeToEnum.hs:3:56-63 Possible fix: add (Bounded t1) to the context of an expression type signature In the first argument of `fromEnum', namely `(maxBound :: t)' In the second argument of `(<=)', namely `fromEnum (maxBound :: t)' In the second argument of `(&&)', namely `(i <= fromEnum (maxBound :: t))' As well as I understand the message, the compiler does not recognize that minBound and maxBound should produce exactly the same type as in the result type of safeToEnum inspite of the explicit type declaration (:: t). Any idea how to fix it?

    Read the article

  • Is it possible to defer member initialization to the constructor body?

    - by Kjir
    I have a class with an object as a member which doesn't have a default constructor. I'd like to initialize this member in the constructor, but it seems that in C++ I can't do that. Here is the class: #include <boost/asio.hpp> #include <boost/array.hpp> using boost::asio::ip::udp; template<class T> class udp_sock { public: udp_sock(std::string host, unsigned short port); private: boost::asio::io_service _io_service; udp::socket _sock; boost::array<T,256> _buf; }; template<class T> udp_sock<T>::udp_sock(std::string host = "localhost", unsigned short port = 50000) { udp::resolver res(_io_service); udp::resolver::query query(udp::v4(), host, "spec"); udp::endpoint ep = *res.resolve(query); ep.port(port); _sock(_io_service, ep); } The compiler tells me basically that it can't find a default constructor for udp::socket and by my research I understood that C++ implicitly initializes every member before calling the constructor. Is there any way to do it the way I wanted to do it, or is it too "Java-oriented" and not feasible in C++? I worked around the problem by defining my constructor like this: template<class T> udp_sock<T>::udp_sock(std::string host = "localhost", unsigned short port = 50000) : _sock(_io_service) { udp::resolver res(_io_service); udp::resolver::query query(udp::v4(), host, "spec"); udp::endpoint ep = *res.resolve(query); ep.port(port); _sock.bind(ep); } So my question is more out of curiosity and to better understand OOP in C++

    Read the article

  • Why my object sees variables which were not given to it in the constructor?

    - by Roman
    I have the following code. Which is "correct" and which I do not understand: private static void updateGUI(final int i, final JLabel label) { SwingUtilities.invokeLater( new Runnable() { public void run() { label.setText("You have " + i + " seconds."); } } ); } I create a new instance of the Runnable class and then in the run method of this instance I use variables label and i. It works, but I do not understand why it work. Why the considered object sees values of these variables. According to my understanding the code should look like that (and its wrong): private static void updateGUI(final int i, final JLabel label) { SwingUtilities.invokeLater(new Runnable(i,label) { public Runnable(int i, JLabel label) { this.i = i; this.label = label; } public void run() { label.setText("You have " + i + " seconds."); } }); } So, I would give the i and label variables to the constructor so the object can access them... By the way, in the updateGUI I use final before the i and label. I think I used final because compiler wanted that. But I do not understand why.

    Read the article

  • C# - Referencing a type in a dynamically generated assembly

    - by Ashley
    I'm trying to figure out if it's possible when you are dynamically generating assemblies, to reference a type in a previously dynamically generated assembly. For example: using System; using System.CodeDom.Compiler; using System.Reflection; using Microsoft.CSharp; CodeDomProvider provider = new CSharpCodeProvider(); CompilerParameters parameters = new CompilerParameters(); parameters.GenerateInMemory = true; CompilerResults results = provider.CompileAssemblyFromSource(parameters, @" namespace Dynamic { public class A { } } "); Assembly assem = results.CompiledAssembly; CodeDomProvider provider2 = new CSharpCodeProvider(); CompilerParameters parameters2 = new CompilerParameters(); parameters2.ReferencedAssemblies.Add(assem.FullName); parameters2.GenerateInMemory = true; CompilerResults results2 = provider2.CompileAssemblyFromSource(parameters, @" namespace Dynamic { public class B : A { } } "); if (results2.Errors.HasErrors) { foreach (CompilerError error in results2.Errors) { Console.WriteLine(error.ErrorText); } } else { Assembly assem2 = results2.CompiledAssembly; } This code prints the following on the console: The type or namespace name 'A' could not be found (are you missing a using directive or an assembly reference?) I've tried it lots of different ways, but nothing seems to be working. Am I missing something? Is this even possible?

    Read the article

  • Qt4Dotnet on Mac OS X

    - by Tony
    Hello everyone. I'm using Qt4Dotnet project in order to port application originally written in C# on Linux and Mac. Port to Linux hasn't taken much efforts and works fine. But Mac (10.4 Tiger) is a bit more stubborn. The problem is: when I try to start my application it throws an exception. Exception states that com.trolltech.qt.QtJambi_LibraryInitializer is unable to find all necessary ibraries. QtJambi library initializer uses java.library.path VM environment variable. This variable includes current working directory. I put all necessary libraries in a working directory. When I try to run the application from MonoDevelop IDE, initializer is able to load one library, but the other libraries are 'missing': An exception was thrown by the type initializer for com.trolltech.qt.QtJambi_LibraryInitializer --- java.lang.RuntimeException: Loading library failed, progress so far: No 'qtjambi-deployment.xml' found in classpath, loading libraries via 'java.library.path' Loading library: 'libQtCore.4.dylib'... - using 'java.library.path' - ok, path was: /Users/chin/test/bin/Debug/libQtCore.4.dylib Loading library: 'libqtjambi.jnilib'... - using 'java.library.path' Both libQtCore.4.dylib and libqtjambi.jnilib are in the same directory. When I try to run it from the command prompt, the initializer is unable to load even libQtCore.4.dylib. I'm using Qt4Dotnet v4.5.0 (currently the latest) with QtJambi v4.5.2 libraries. This might be the source of the problem, but I'm neither able to compile Qt4Dotnet v4.5.2 by myself nor to find QtJambi v4.5.0 libraries. Project's page states that some sort of patch should be applied to QtJambi's source code in order to be compatible with Mono framework, but this patch hasn't been released yet. Without this patch application crashes in a strange manner (other than library seek fault). I must note that original QtJambi loads all necessary libraries perfectly, so it might be issues of IKVM compiler used to translate QtJambi into .Net library. Any suggestions how can I overcome this problem?

    Read the article

  • Why Does Private Access Remain Non-Private in .NET Within a Class?

    - by AMissico
    While cleaning some code today written by someone else, I changed the access modifier from Public to Private on a class variable/member/field. I expected a long list of compiler errors that I use to "refactor/rework/review" the code that used this variable. Imagine my surprise when I didn't get any errors. After reviewing, it turns out that another instance of the Class can access the private members of another instance declared within the Class. Totally unexcepted. Is this normal? I been coding in .NET since the beginning and never ran into this issue, nor read about it. I may have stumbled onto it before, but only "vaguely noticed" and move on. Can anyone explain this behavoir to me? Am I doing something wrong? I found this behavior in both C# and VB.NET. The code seems to take advantage of the ability to access private variables. Sincerely, Totally Confused Class Foo Private _int As Integer Private _foo As Foo Private _jack As Jack Private _fred As Fred Public Sub SetPrivate() _foo = New Foo _foo._int = 3 'TOTALLY UNEXPECTED _jack = New Jack '_jack._int = 3 'expected compile error because Foo doesn't know Jack _fred = New Fred '_fred._int = 3 'expected compile error because Fred hides from Foo End Sub Private Class Fred Private _int As Integer End Class End Class Class Jack Private _int As Integer End Class

    Read the article

  • How are you using C++0x today? [closed]

    - by Roger Pate
    This is a question in two parts, the first is the most important and concerns now: Are you following the design and evolution of C++0x? What blogs, newsgroups, committee papers, and other resources do you follow? Even where you're not using any new features, how have they affected your current choices? What new features are you using now, either in production or otherwise? The second part is a follow-up, concerning the new standard once it is final: Do you expect to use it immediately? What are you doing to prepare for C++0x, other than as listed for the previous questions? Obviously, compiler support must be there, but there's still co-workers, ancillary tools, and other factors to consider. What will most affect your adoption? Edit: The original really was too argumentative; however, I'm still interested in the underlying question, so I've tried to clean it up and hopefully make it acceptable. This seems a much better avenue than duplicating—even though some answers responded to the argumentative tone, they still apply to the extent that they addressed the questions, and all answers are community property to be cleaned up as appropriate, too.

    Read the article

  • C++ Beginner Delete Question

    - by Pooch
    Hi all, This is my first year learning C++ so bear with me. I am attempting to dynamically allocate memory to the heap and then delete the allocated memory. Below is the code that is giving me a hard time: // String.cpp #include "String.h" String::String() {} String::String(char* source) { this->Size = this->GetSize(source); this->CharArray = new char[this->Size + 1]; int i = 0; for (; i < this->Size; i++) this->CharArray[i] = source[i]; this->CharArray[i] = '\0'; } int String::GetSize(const char * source) { int i = 0; for (; source[i] != '\0'; i++); return i; } String::~String() { delete[] this->CharArray; } Here is the error I get when the compiler tries to delete the CharArray: 0xC0000005: Access violation reading location 0xccccccc0. And here is the last call on the stack: msvcr100d.dll!operator delete(void * pUserData) Line 52 + 0x3 bytes C++ I am fairly certain the error exists within this piece of code but will provide you with any other information needed. Oh yeah, using VS 2010 for XP. Thanks for any and all help!

    Read the article

  • C++0x rvalue references and temporaries

    - by Doug
    (I asked a variation of this question on comp.std.c++ but didn't get an answer.) Why does the call to f(arg) in this code call the const ref overload of f? void f(const std::string &); //less efficient void f(std::string &&); //more efficient void g(const char * arg) { f(arg); } My intuition says that the f(string &&) overload should be chosen, because arg needs to be converted to a temporary no matter what, and the temporary matches the rvalue reference better than the lvalue reference. This is not what happens in GCC and MSVC. In at least G++ and MSVC, any lvalue does not bind to an rvalue reference argument, even if there is an intermediate temporary created. Indeed, if the const ref overload isn't present, the compilers diagnose an error. However, writing f(arg + 0) or f(std::string(arg)) does choose the rvalue reference overload as you would expect. From my reading of the C++0x standard, it seems like the implicit conversion of a const char * to a string should be considered when considering if f(string &&) is viable, just as when passing a const lvalue ref arguments. Section 13.3 (overload resolution) doesn't differentiate between rvalue refs and const references in too many places. Also, it seems that the rule that prevents lvalues from binding to rvalue references (13.3.3.1.4/3) shouldn't apply if there's an intermediate temporary - after all, it's perfectly safe to move from the temporary. Is this: Me misreading/misunderstand the standard, where the implemented behavior is the intended behavior, and there's some good reason why my example should behave the way it does? A mistake that the compiler vendors have somehow all made? Or a mistake based on common implementation strategies? Or a mistake in e.g. GCC (where this lvalue/rvalue reference binding rule was first implemented), that was copied by other vendors? A defect in the standard, or an unintended consequence, or something that should be clarified?

    Read the article

  • How is it legal to reference an undefined type inside a structure?

    - by paxdiablo
    As part of answering another question, I came across a piece of code like this, which gcc compiles without complaint. typedef struct { struct xyz *z; } xyz; int main (void) { return 0; } This is the means I've always used to construct types that point to themselves (e.g., linked lists) but I've always thought you had to name the struct so you could use self-reference. In other words, you couldn't use xyz *z within the structure because the typedef is not yet complete at that point. But this particular sample does not name the structure and it still compiles. I thought originally there was some black magic going on in the compiler that automatically translated the above code because the structure and typedef names were the same. But this little beauty works as well: typedef struct { struct NOTHING_LIKE_xyz *z; } xyz; What am I missing here? This seems a clear violation since there is no struct NOTHING_LIKE_xyz type defined anywhere. When I change it from a pointer to an actual type, I get the expected error: typedef struct { struct NOTHING_LIKE_xyz z; } xyz; qqq.c:2: error: field `z' has incomplete type Also, when I remove the struct, I get an error (parse error before "NOTHING ...). Is this allowed in ISO C?

    Read the article

  • How do I mock a method with an open array parameter in PascalMock?

    - by Oliver Giesen
    I'm currently in the process of getting started with unit testing and mocking for good and I stumbled over the following method that I can't seem to fabricate a working mock implementation for: function GetInstance(const AIID: TGUID; out AInstance; const AArgs: array of const; const AContextID: TImplContextID = CID_DEFAULT): Boolean; (TImplContextID is just an alias for Integer) I thought it would have to look something like this: function TImplementationProviderMock.GetInstance( const AIID: TGUID; out AInstance; const AArgs: array of const; const AContextID: TImplContextID): Boolean; begin Result := AddCall('GetInstance') .WithParams([@AIID, AContextID]) .ReturnsOutParams([AInstance]) .ReturnValue; end; But the compiler complains about the .ReturnsOutParams([AInstance]) saying "Bad argument type in variable type array constructor.". Also I haven't found a way to specify the open array parameter AArgs at all. Also, is using the @-notation for the TGUID-typed parameter the right way to go? Is it possible to mock this method with the current version of PascalMock at all? Update: I now realize I got the purpose of ReturnsOutParams completely wrong: It's intended to be used for populating the values to be returned when defining the expectations rather than for mocking the call itself. I now think the correct syntax for mocking the out parameter would probably have to look more like this: function TImplementationProviderMock.GetInstance( const AIID: TGUID; out AInstance; const AArgs: array of const; const AContextID: TImplContextID): Boolean; var lCall: TMockMethod; begin lCall := AddCall('GetInstance').WithParams([@AIID, AContextID]); Pointer(AInstance) := lCall.OutParams[0]; Result := lCall.ReturnValue; end; The questions that remain are how to mock the open array parameter AArgs and whether passing the TGUID argument (i.e. a value type) by address will work out...

    Read the article

< Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >