Search Results

Search found 14797 results on 592 pages for 'gui testing'.

Page 201/592 | < Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >

  • Jquery failure after site went live

    - by Brandon Condrey
    I have been designing a site for weeks using JQuery. I don't have a local server or a testing server so I just created a directory through FTP, '/testing'. Everything was working great in the testing directory. I attempted to go live tonight by moving all the files in '/testing' to the root directory and I changed all file paths and script sources accordingly. The site loads, but everything related to JQuery is non-functional. Javascript console gives errors of (just as an example from a plugin): '$.os.name' is not a function I'm at loss for what to do. I changed the paths referencing the JQuery library, installed a fresh copy of JQuery (to a new directory), etc. There is a wordpress installation in a different directory '/blog'. I've read about some compatibility issues with wordpress, but that seems to be related to using JQuery inside wordpress, which I am not. I'm not sure if any code would be beneficial since it was all functional in a different directory. Your help is greatly appreciated.

    Read the article

  • C read X bytes from a file, padding if needed

    - by Hunter McMillen
    I am trying to read in an input file 64 bits at a time, then do some calculations on those 64 bits, the problem is I need to convert the ascii text to hexadecimal characters. I have searched around but none of the answers posted seem to work for my situation. Here is what I have: int main(int argc, int * argv) { char buffer[9]; FILE *f; unsigned long long test; if(f = fopen("input2.txt", "r")) { while( fread(buffer, 8, 1, f) != 0) //while not EOF read 8 bytes at a time { buffer[8] = '\0'; test = strtoull(buffer, NULL, 16); //interpret as hex printf("%llu\n", test); printf("%s\n", buffer); } fclose(f); } } For an input like this: "testing string to hex conversion" I get results like this: 0 testing 0 string t 0 o hex co 0 nversion Where I would expect: 74 65 73 74 69 6e 67 20 <- "testing" in hex testing 73 74 72 69 6e 67 20 74 <- "string t" in hex string t 6f 20 68 65 78 20 63 6f <- "o hex co" in hex o hex co 6e 76 65 72 73 69 6f 6e <- "nversion" in hex nversion Can anyone see where I misstepped?

    Read the article

  • Waterfall Model (SDLC) vs. Prototyping Model

    The characters in the fable of the Tortoise and the Hare can easily be used to demonstrate the similarities and differences between the Waterfall and Prototyping software development models. This children fable is about a race between a consistently slow moving but steadfast turtle and an extremely fast but unreliable rabbit. After closely comparing each character’s attributes in correlation with both software development models, a trend seems to appear in that the Waterfall closely resembles the Tortoise in that Waterfall Model is typically a slow moving process that is broken up in to multiple sequential steps that must be executed in a standard linear pattern. The Tortoise can be quoted several times in the story saying “Slow and steady wins the race.” This is the perfect mantra for the Waterfall Model in that this model is seen as a cumbersome and slow moving. Waterfall Model Phases Requirement Analysis & Definition This phase focuses on defining requirements for a project that is to be developed and determining if the project is even feasible. Requirements are collected by analyzing existing systems and functionality in correlation with the needs of the business and the desires of the end users. The desired output for this phase is a list of specific requirements from the business that are to be designed and implemented in the subsequent steps. In addition this phase is used to determine if any value will be gained by completing the project. System Design This phase focuses primarily on the actual architectural design of a system, and how it will interact within itself and with other existing applications. Projects at this level should be viewed at a high level so that actual implementation details are decided in the implementation phase. However major environmental decision like hardware and platform decision are typically decided in this phase. Furthermore the basic goal of this phase is to design an application at the system level in those classes, interfaces, and interactions are defined. Additionally decisions about scalability, distribution and reliability should also be considered for all decisions. The desired output for this phase is a functional  design document that states all of the architectural decisions that have been made in regards to the project as well as a diagrams like a sequence and class diagrams. Software Design This phase focuses primarily on the refining of the decisions found in the functional design document. Classes and interfaces are further broken down in to logical modules based on the interfaces and interactions previously indicated. The output of this phase is a formal design document. Implementation / Coding This phase focuses primarily on implementing the previously defined modules in to units of code. These units are developed independently are intergraded as the system is put together as part of a whole system. Software Integration & Verification This phase primarily focuses on testing each of the units of code developed as well as testing the system as a whole. There are basic types of testing at this phase and they include: Unit Test and Integration Test. Unit Test are built to test the functionality of a code unit to ensure that it preforms its desired task. Integration testing test the system as a whole because it focuses on results of combining specific units of code and validating it against expected results. The output of this phase is a test plan that includes test with expected results and actual results. System Verification This phase primarily focuses on testing the system as a whole in regards to the list of project requirements and desired operating environment. Operation & Maintenance his phase primarily focuses on handing off the competed project over to the customer so that they can verify that all of their requirements have been met based on their original requirements. This phase will also validate the correctness of their requirements and if any changed need to be made. In addition, any problems not resolved in the previous phase will be handled in this section. The Waterfall Model’s linear and sequential methodology does offer a project certain advantages and disadvantages. Advantages of the Waterfall Model Simplistic to implement and execute for projects and/or company wide Limited demand on resources Large emphasis on documentation Disadvantages of the Waterfall Model Completed phases cannot be revisited regardless if issues arise within a project Accurate requirement are never gather prior to the completion of the requirement phase due to the lack of clarification in regards to client’s desires. Small changes or errors that arise in applications may cause additional problems The client cannot change any requirements once the requirements phase has been completed leaving them no options for changes as they see their requirements changes as the customers desires change. Excess documentation Phases are cumbersome and slow moving Learn more about the Major Process in the Sofware Development Life Cycle and Waterfall Model. Conversely, the Hare shares similar traits with the prototyping software development model in that ideas are rapidly converted to basic working examples and subsequent changes are made to quickly align the project with customers desires as they are formulated and as software strays from the customers vision. The basic concept of prototyping is to eliminate the use of well-defined project requirements. Projects are allowed to grow as the customer needs and request grow. Projects are initially designed according to basic requirements and are refined as requirement become more refined. This process allows customer to feel their way around the application to ensure that they are developing exactly what they want in the application This model also works well for determining the feasibility of certain approaches in regards to an application. Prototypes allow for quickly developing examples of implementing specific functionality based on certain techniques. Advantages of Prototyping Active participation from users and customers Allows customers to change their mind in specifying requirements Customers get a better understanding of the system as it is developed Earlier bug/error detection Promotes communication with customers Prototype could be used as final production Reduced time needed to develop applications compared to the Waterfall method Disadvantages of Prototyping Promotes constantly redefining project requirements that cause major system rewrites Potential for increased complexity of a system as scope of the system expands Customer could believe the prototype as the working version. Implementation compromises could increase the complexity when applying updates and or application fixes When companies trying to decide between the Waterfall model and Prototype model they need to evaluate the benefits and disadvantages for both models. Typically smaller companies or projects that have major time constraints typically head for more of a Prototype model approach because it can reduce the time needed to complete the project because there is more of a focus on building a project and less on defining requirements and scope prior to the start of a project. On the other hand, Companies with well-defined requirements and time allowed to generate proper documentation should steer towards more of a waterfall model because they are in a position to obtain clarified requirements and have to design and optimal solution prior to the start of coding on a project.

    Read the article

  • Book Review: Brownfield Application Development in .NET

    - by DotNetBlues
    I recently finished reading the book Brownfield Application Development in .NET by Kyle Baley and Donald Belcham.  The book is available from Manning.  First off, let me say that I'm a huge fan of Manning as a publisher.  I've found their books to be top-quality, over all.  As a Kindle owner, I also appreciate getting an ebook copy along with the dead tree copy.  I find ebooks to be much more convenient to read, but hard-copies are easier to reference. The book covers, surprisingly enough, working with brownfield applications.  Which is well and good, if that term has meaning to you.  It didn't for me.  Without retreading a chunk of the first chapter, the authors break code bases into three broad categories: greenfield, brownfield, and legacy.  Greenfield is, essentially, new development that hasn't had time to rust and is (hopefully) being approached with some discipline.  Legacy applications are those that are more or less stable and functional, that do not expect to see a lot of work done to them, and are more likely to be replaced than reworked. Brownfield code is the gray (brown?) area between the two and the authors argue, quite effectively, that it is the most likely state for an application to be in.  Brownfield code has, in some way, been allowed to tarnish around the edges and can be difficult to work with.  Although I hadn't realized it, most of the code I've worked on has been brownfield.  Sometimes, there's talk of scrapping and starting over.  Sometimes, the team dismisses increased discipline as ivory tower nonsense.  And, sometimes, I've been the ignorant culprit vexing my future self. The book is broken into two major sections, plus an introduction chapter and an appendix.  The first section covers what the authors refer to as "The Ecosystem" which consists of version control, build and integration, testing, metrics, and defect management.  The second section is on actually writing code for brownfield applications and discusses object-oriented principles, architecture, external dependencies, and, of course, how to deal with these when coming into an existing code base. The ecosystem section is just shy of 140 pages long and brings some real meat to the matter.  The focus on "pain points" immediately sets the tone as problem-solution, rather than academic.  The authors also approach some of the topics from a different angle than some essays I've read on similar topics.  For example, the chapter on automated testing is on just that -- automated testing.  It's all well and good to criticize a project as conflating integration tests with unit tests, but it really doesn't make anyone's life better.  The discussion on testing is more focused on the "right" level of testing for existing projects.  Sometimes, an integration test is the best you can do without gutting a section of functional code.  Even if you can sell other developers and/or management on doing so, it doesn't actually provide benefit to your customers to rewrite code that works.  This isn't to say the authors encourage sloppy coding.  Far from it.  Just that they point out the wisdom of ignoring the sleeping bear until after you deal with the snarling wolf. The other sections take a similarly real-world, workable approach to the pain points they address.  As the section moves from technical solutions like version control and continuous integration (CI) to the softer, process issues of metrics and defect tracking, the authors begin to gently suggest moving toward a zero defect count.  While that really sounds like an unreasonable goal for a lot of ongoing projects, it's quite apparent that the authors have first-hand experience with taming some gruesome projects.  The suggestions are grounded and workable, and the difficulty of some situations is explicitly acknowledged. I have to admit that I started getting bored by the end of the ecosystem section.  No matter how valuable I think a good project manager or business analyst is to a successful ALM, at the end of the day, I'm a gear-head.  Also, while I agreed with a lot of the ecosystem ideas, in theory, I didn't necessarily feel that a lot of the single-developer projects that I'm often involved in really needed that level of rigor.  It's only after reading the sidebars and commentary in the coding section that I had the context for the arguments made in favor of a strong ecosystem supporting the development process.  That isn't to say that I didn't support good product management -- indeed, I've probably pushed too hard, on occasion, for a strong ALM outside of just development.  This book gave me deeper insight into why some corners shouldn't be cut and how damaging certain sins of omission can be. The code section, though, kept me engaged for its entirety.  Many technical books can be used as reference material from day one.  The authors were clear, however, that this book is not one of these.  The first chapter of the section (chapter seven, over all) addresses object oriented (OO) practices.  I've read any number of definitions, discussions, and treatises on OO.  None of the chapter was new to me, but it was a good review, and I'm of the opinion that it's good to review the foundations of what you do, from time to time, so I didn't mind. The remainder of the book is really just about how to apply OOP to existing code -- and, just because all your code exists in classes does not mean that it's object oriented.  That topic has the potential to be extremely condescending, but the authors miraculously managed to never once make me feel like a dolt or that they were wagging their finger at me for my prior sins.  Instead, they continue the "pain points" and problem-solution presentation to give concrete examples of how to apply some pretty academic-sounding ideas.  That's a point worth emphasizing, as my experience with most OO discussions is that they stay in the academic realm.  This book gives some very, very good explanations of why things like the Liskov Substitution Principle exist and why a corporate programmer should even care.  Even if you know, with absolute certainty, that you'll never have to work on an existing code-base, I would recommend this book just for the clarity it provides on OOP. This book goes beyond just theory, or even real-world application.  It presents some methods for fixing problems that any developer can, and probably will, encounter in the wild.  First, the authors address refactoring application layers and internal dependencies.  Then, they take you through those layers from the UI to the data access layer and external dependencies.  Finally, they come full circle to tie it all back to the overall process.  By the time the book is done, you're left with a lot of ideas, but also a reasonable plan to begin to improve an existing project structure. Throughout the book, it's apparent that the authors have their own preferred methodology (TDD and domain-driven design), as well as some preferred tools.  The "Our .NET Toolbox" is something of a neon sign pointing to that latter point.  They do not beat the reader over the head with anything resembling a "One True Way" mentality.  Even for the most emphatic points, the tone is quite congenial and helpful.  With some of the near-theological divides that exist within the tech community, I found this to be one of the more remarkable characteristics of the book.  Although the authors favor tools that might be considered Alt.NET, there is no reason the advice and techniques given couldn't be quite successful in a pure Microsoft shop with Team Foundation Server.  For that matter, even though the book specifically addresses .NET, it could be applied to a Java and Oracle shop, as well.

    Read the article

  • Why people don't patch and upgrade?!?

    - by Mike Dietrich
    Discussing the topic "Why Upgrade" or "Why not Upgrade" is not always fun. Actually the arguments repeat from customer to customer. Typically we hear things such as: A PSU or Patch Set introduces new bugs A new PSU or Patch Set introduces new features which lead to risk and require application verification  Patching means risk Patching changes the execution plans Patching requires too much testing Patching is too much work for our DBAs Patching costs a lot of money and doesn't pay out And to be very honest sometimes it's hard for me to stay calm in such discussions. Let's discuss some of these points a bit more in detail. A PSU or Patch Set introduces new bugsWell, yes, that is true as no software containing more than some lines of code is bug free. This applies to Oracle's code as well as too any application or operating system code. But first of all, does that mean you never patch your OS because the patch may introduce new flaws? And second, what is the point of saying "it introduces new bugs"? Does that mean you will never get rid of the mean issues we know about and we fixed already? Scroll down from MOS Note:161818.1 to the patch release you are on, no matter if it's 10.2.0.4 or 11.2.0.3 and check for the Known Issues And Alerts.Will you take responsibility to know about all these issues and refuse to upgrade to 11.2.0.4? I won't. A new PSU or Patch Set introduces new featuresOk, we can discuss that. Offering new functionality within a database patch set is a dubious thing. It has advantages such as in 11.2.0.4 where we backported Database Redaction to. But this is something you will only use once you have an Advanced Security license. I interpret that statement I've heard quite often from customers in a different way: People don't want to get surprises such as new behaviour. This certainly gives everybody a hard time. And we've had many examples in the past (SESSION_CACHED_CURSROS in 10.2.0.4,  _DATAFILE_WRITE_ERRORS_CRASH_INSTANCE in 11.2.0.2 and others) where those things weren't documented, not even in the README. Thanks to many friends out there I learned about those as well. So new behaviour is the topic people consider as risky - not really new features. And just to point this out: A PSU never brings in new features or new behaviour by definition! Patching means riskDoes it really mean risk? Yes, there were issues in the past (and sometimes in the present as well) where a patch didn't get installed correctly. But personally I consider it way more risky to not patch. Keep that in mind: The day Oracle publishes an PSU (or CPU) containing security fixes all the great security experts out there go public with their findings as well. So from that day on even my grandma can find out about those issues and try to attack somebody. Now a lot of people say: "My database does not face the internet." And I will answer: "The enemy is sitting already behind your firewalls. And knows potentially about these things." My statement: Not patching introduces way more risk to your environment than patching. Seriously! Patching changes the execution plansDo they really? I agree - there's a very small risk for this happening with Patch Sets. But not with PSUs or CPUs as they contain no optimizer fixes changing behaviour (but they may contain fixes curing wrong-query-result-bugs). But what's the point of a changing execution plan? In Oracle Database 11g it is so simple to be prepared. SQL Plan Management is a free EE feature - so once that occurs you'll put the plan into the Plan Baseline. Basta! Yes, you wouldn't like to get such surprises? Than please use the SQL Performance Analyzer (SPA) from Real Application Testing and you'll detect that easily upfront in minutes. And not to forget this, a plan change can also be very positive!Yes, there's a little risk with a database patchset - and we have many possibilites to detect this before patching. Patching requires too much testingWell, does it really? I have seen in the past 12 years how people test. There are very different efforts and approaches on this. I have seen people spending a hell of money on licenses or on project team staffing. And I have seen people sailing blindly without any tests just going the John-Wayne-approach.Proper tools will allow you to test easily without too much efforts. See the paragraph above. We have used Real Application Testing in so many customer projects reducing the amount of work spend on testing by over 50%. But apart from that at some point you will have to stop testing. If you don't you'll get lost and you'll burn money. There's no 100% guaranty. You will have to deal with a little risk as reaching the final 5% of certainty will cost you the same as it did cost to reach 95%. And doing this will lead to abnormal long product cycles that you'll run behind forever. And this will cost even more money. Patching is too much work for our DBAsPatching is a lot of work. I agree. And it's no fun work. It's boring, annoying. You don't learn much from that. That's why you should try to automate this task. Use the Database's Lifecycle Management Pack. And don't cry about the fact that it costs money. Yes it does. But it will ease the process and you'll save a lot of costs as you don't waste your valuable time with patching. Or use Oracle Database 12c Oracle Multitenant and patch either by unplug/plug or patch an entire container database with all PDBs with one patch in one task. We have customer reference cases proofing it saved them 75% of time, effort and cost since they've used Lifecycle Management Pack. So why don't you use it? Patching costs a lot of money and doesn't pay outWell, see my statements in the paragraph above. And it pays out as flying with a database with 100 known critical flaws in it which are already fixed by Oracle (such as in the Oct 2013 PSU for Oracle Database 12c) will cost ways more in case of failure or even data loss. Bet with me? Let me finally ask you some questions. What cell phone are you using and which OS does it run? Do you have an iPhone 5 and did you upgrade already to iOS 7.0.3? I've just encountered on mine that the alarm (which I rely on when traveling) has gotten now a dependency on the physical switch "sound on/off". If it is switched to "off" physically the alarm rings "silently". What a wonderful example of a behaviour change coming in with a patch set. Will this push you to stay with iOS5 or iOS6? No, because those have security flaws which won't be fixed anymore. What browser are you surfing with? Do you use Mozilla 3.6? Well, congratulations to all the hackers. It will be easy for them to attack you and harm your system. I'd guess you have the auto updater on.  Same for Google Chrome, Safari, IE. Right? -Mike The T.htmtableborders, .htmtableborders td, .htmtableborders th {border : 1px dashed lightgrey ! important;} html, body { border: 0px; } body { background-color: #ffffff; } img, hr { cursor: default }

    Read the article

  • Delight and Excite

    - by Applications User Experience
    Mick McGee, CEO & President, EchoUser Editor’s Note: EchoUser is a User Experience design firm in San Francisco and a member of the Oracle Usability Advisory Board. Mick and his staff regularly consult on Oracle Applications UX projects. Being part of a user experience design firm, we have the luxury of working with a lot of great people across many great companies. We get to help people solve their problems.  At least we used to. The basic design challenge is still the same; however, the goal is not necessarily to solve “problems” anymore; it is, “I want our products to delight and excite!” The question for us as UX professionals is how to design to those goals, and then how to assess them from a usability perspective. I’m not sure where I first heard “delight and excite” (A book? blog post? Facebook  status? Steve Jobs quote?), but now I hear these listed as user experience goals all the time. In particular, somewhat paradoxically, I routinely hear them in enterprise software conversations. And when asking these same enterprise companies what will make the project successful, we very often hear, “Make it like Apple.” In past days, it was “make it like Yahoo (or Amazon or Google“) but now Apple is the common benchmark. Steve Jobs and Apple were not secrets, but with Jobs’ passing and Apple becoming the world’s most valuable company in the last year, the impact of great design and experience is suddenly very widespread. In particular, users’ expectations have gone way up. Being an enterprise company is no shield to the general expectations that users now have, for all products. Designing a “Minimum Viable Product” The user experience challenge has historically been, to echo the words of Eric Ries (author of Lean Startup) , to create a “minimum viable product”: the proverbial, “make it good enough”. But, in our profession, the “minimum viable” part of that phrase has oftentimes, unfortunately, referred to the design and user experience. Technology typically dominated the focus of the biggest, most successful companies. Few have had the laser focus of Apple to also create and sell design and user experience alongside great technology. But now that Apple is the most valuable company in the world, copying their success is a common undertaking. Great design is now a premium offering that everyone wants, from the one-person startup to the largest companies, consumer and enterprise. This emerging business paradigm will have significant impact across the user experience design process and profession. One area that particularly interests me is, how are we going to evaluate these new emerging “delight and excite” experiences, which are further customized to each particular domain? How to Measure “Delight and Excite” Traditional usability measures of task completion rate, assists, time, and errors are still extremely useful in many situations; however, they are too blunt to offer much insight into emerging experiences “Satisfaction” is usually assessed in user testing, in roughly equivalent importance to the above objective metrics. Various surveys and scales have provided ways to measure satisfying UX, with whatever questions they include. However, to meet the demands of new business goals and keep users at the center of design and development processes, we have to explore new methods to better capture custom-experience goals and emotion-driven user responses. We have had success assessing custom experiences, including “delight and excite”, by employing a variety of user testing methods that tend to combine formative and summative techniques (formative being focused more on identifying usability issues and ways to improve design, and summative focused more on metrics). Our most successful tool has been one we’ve been using for a long time, Magnitude Estimation Technique (MET). But it’s not necessarily about MET as a measure, rather how it is created. Caption: For one client, EchoUser did two rounds of testing.  Each test was a mix of performing representative tasks and gathering qualitative impressions. Each user participated in an in-person moderated 1-on-1 session for 1 hour, using a testing set-up where they held the phone. The primary goal was to identify usability issues and recommend design improvements. MET is based on a definition of the desired experience, which users will then use to rate items of interest (usually tasks in a usability test). In other words, a custom experience definition needs to be created. This can then be used to measure satisfaction in accomplishing tasks; “delight and excite”; or anything else from strategic goals, user demands, or elsewhere. For reference, our standard MET definition in usability testing is: “User experience is your perception of how easy to use, well designed and productive an interface is to complete tasks.” Articulating the User Experience We’ve helped construct experience definitions for several clients to better match their business goals. One example is a modification of the above that was needed for a company that makes medical-related products: “User experience is your perception of how easy to use, well-designed, productive and safe an interface is for conducting tasks. ‘Safe’ is how free an environment (including devices, software, facilities, people, etc.) is from danger, risk, and injury.” Another example is from a company that is pushing hard to incorporate “delight” into their enterprise business line: “User experience is your perception of a product’s ease of use and learning, satisfaction and delight in design, and ability to accomplish objectives.” I find the last one particularly compelling in that there is little that identifies the experience as being for a highly technical enterprise application. That definition could easily be applied to any number of consumer products. We have gone further than the above, including “sexy” and “cool” where decision-makers insisted they were part of the desired experience. We also applied it to completely different experiences where the “interface” was, for example, riding public transit, the “tasks” were train rides, and we followed the participants through the train-riding journey and rated various aspects accordingly: “A good public transportation experience is a cost-effective way of reliably, conveniently, and safely getting me to my intended destination on time.” To construct these definitions, we’ve employed both bottom-up and top-down approaches, depending on circumstances. For bottom-up, user inputs help dictate the terms that best fit the desired experience (usually by way of cluster and factor analysis). Top-down depends on strategic, visionary goals expressed by upper management that we then attempt to integrate into product development (e.g., “delight and excite”). We like a combination of both approaches to push the innovation envelope, but still be mindful of current user concerns. Hopefully the idea of crafting your own custom experience, and a way to measure it, can provide you with some ideas how you can adapt your user experience needs to whatever company you are in. Whether product-development or service-oriented, nearly every company is ultimately providing a user experience. The Bottom Line Creating great experiences may have been popularized by Steve Jobs and Apple, but I’ll be honest, it’s a good feeling to be moving from “good enough” to “delight and excite,” despite the challenge that entails. In fact, it’s because of that challenge that we will expand what we do as UX professionals to help deliver and assess those experiences. I’m excited to see how we, Oracle, and the rest of the industry will live up to that challenge.

    Read the article

  • accessing a blob ; without using a webrole ?

    - by Egon
    I wanted to knw if there is way we can upload /download a blob; add remove view metadata without using a webrole ? If my application has a lot of gui, shud there be multiple webroles ? everywhere I see webrole's file default.aspx.cs has everything to do with the blob based on a event ; which is perfectly fine, but what if my gui is more complicated ?

    Read the article

  • WPF Databinding thread safety?

    - by Petoj
    Well lets say i have an object that i databind to, it implements INotifyPropertyChanged to tell the GUI when a value has changed... if i trigger this from a different thread than the GUI thread how would wpf behave? and will it make sure that it gets the value of the property from memory and not the cpu cache? more or less im asking if wpf does lock() on the object containing the property...

    Read the article

  • WinForms Menu Toolstrip Get Status

    - by Yeti
    So I have a project where there is some automatic initialization going on through some classes that are created automatically as global variables (yeah they are static instances). At a point inside this (it has no relation with the C# GUI for the user, so it isn't derived from any C# class) I need to see if a flag is set or not. I use toolstrip menu with checked and unchecked status in order to set or unset the flag. The problem is that I have difficulties to see if the flag is checked or not from this static class. My class is inside a different project/namespace and a DLL is created what later is linked to the GUI of the application. The GUI depends from this Manager class so making the Manager class to depend from the GUI is not an option. Nevertheless, I should be able to see its state knowing its name or through some other means. I have tried the following: if(Application.OpenForms[1].Owner.Controls["useLocalImageForInitToolStripMenuItem"].Enabled) { }; Now the problem is that on the upper code snippet I get a nasty error. So how do I do this? The toolstrip menu: The error: See the end of this message for details on invoking just-in-time (JIT) debugging instead of this dialog box. ***** Exception Text ******* System.ArgumentOutOfRangeException: Index was out of range. Must be non-negative and less than the size of the collection. Parameter name: index at System.Collections.ArrayList.get_Item(Int32 index) at System.Windows.Forms.FormCollection.get_Item(Int32 index) at Manager.MyMainManager.MyMainManager.RealTimeInit() in C:\Dropbox\My Dropbox\Public\Program Code\RoboCup\Manager\MyMainManager\MyMainManager.cs:line 494 at mainApp.MainForm.ButtonInitClick(Object sender, EventArgs e) in C:\Dropbox\My Dropbox\Public\Program Code\RoboCup\mainApp\MainForm.cs:line 389 at System.Windows.Forms.Control.OnClick(EventArgs e) at System.Windows.Forms.Button.OnClick(EventArgs e) at System.Windows.Forms.Button.OnMouseUp(MouseEventArgs mevent) at System.Windows.Forms.Control.WmMouseUp(Message& m, MouseButtons button, Int32 clicks) at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.ButtonBase.WndProc(Message& m) at System.Windows.Forms.Button.WndProc(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.OnMessage(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.WndProc(Message& m) at System.Windows.Forms.NativeWindow.Callback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam)

    Read the article

  • How to call JDialog with Netbeans

    - by Raptrex
    Yesterday I asked this question: Is this possible to make as an option dialog? and I learned it could be made with JDialog. I'm using Netbeans GUI editor and made a button that will call my custom JDialog I designed in the GUI editor. The JDialog is called jDialog1. How do I call the jDialog1 with the button? private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) { // TODO add your handling code here: }

    Read the article

  • Is there any WinSCP equivalent for linux?

    - by MiniQuark
    I love WinSCP for Windows. What are the best equivalent softwares for linux? I tried to use sshfs to mount the remote file system on my local machine, but it is not as user friendly as simply launching a GUI, plus it seems to require root access on the client machine, which is not very convenient. Of course command line tools such as scp are possible, but I am looking for a simple GUI. Thanks!

    Read the article

  • Could MacRuby / HotCocoa supplant the need to know Objective-C?

    - by frou
    I just discovered MacRuby / HotCocoa and really like the sound of what they're doing. I had essentially discounted the prospect of making Cocoa GUI applications myself because I have an aversion to spending time & effort learning yet another C-based language, Objective-C. I'm not saying it's bad, just not for me. Is it the case now, or in the probable future, that one will be able to make Cocoa GUI applications of substantial and first-class nature with MacRuby / HotCocoa alone while ignoring Objective-C completely?

    Read the article

  • ClassCastException when casting custom View subclass

    - by Jens Jacob
    Hi I've run into an early problem with developing for android. I've made my own custom View (which works well). In the beginning i just added it to the layout programmatically, but i figured i could try putting it into the XML layout instead (for consistency). So what i got is this: main.xml: [...] <sailmeter.gui.CompassView android:id="@+id/compassview1" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_below="@id/widget55" android:background="@color/white" /> [...] CompassView.java: public class CompassView extends View { } SailMeter.java (activity class): public class SailMeter extends Activity implements PropertyChangeListener { public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); compassview = (CompassView) findViewById(R.id.compassview1); [...] } } (Theres obviously more, but you get the point) Now, this is the stacktrace: 05-23 16:32:01.991: ERROR/AndroidRuntime(10742): Uncaught handler: thread main exiting due to uncaught exception 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): java.lang.RuntimeException: Unable to start activity ComponentInfo{sailmeter.gui/sailmeter.gui.SailMeter}: java.lang.ClassCastException: android.view.View 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2596) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2621) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at android.app.ActivityThread.access$2200(ActivityThread.java:126) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1932) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at android.os.Handler.dispatchMessage(Handler.java:99) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at android.os.Looper.loop(Looper.java:123) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at android.app.ActivityThread.main(ActivityThread.java:4595) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at java.lang.reflect.Method.invokeNative(Native Method) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at java.lang.reflect.Method.invoke(Method.java:521) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at dalvik.system.NativeStart.main(Native Method) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): Caused by: java.lang.ClassCastException: android.view.View 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at sailmeter.gui.SailMeter.onCreate(SailMeter.java:51) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1047) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2544) 05-23 16:32:02.051: ERROR/AndroidRuntime(10742): ... 11 more Why cant i cast my custom view? I need it to be that type since it has a few extra methods in it that i want to access. Should i restructure it and have another class handle the logic, and then just having the view being a view? Thanks for any help.

    Read the article

  • Conway's Game of Life - C++ and Qt

    - by Jeff Bridge
    I've done all of the layouts and have most of the code written even. But, I'm stuck in two places. 1) I'm not quite sure how to set up the timer. Am I using it correctly in the gridwindow class? And, am I used the timer functions/signals/slots correctly with the other gridwindow functions. 2) In GridWindow's timerFired() function, I'm having trouble checking/creating the vector-vectors. I wrote out in the comments in that function exactly what I am trying to do. Any help would be much appreciated. main.cpp // Main file for running the grid window application. #include <QApplication> #include "gridwindow.h" //#include "timerwindow.h" #include <stdexcept> #include <string> #include <fstream> #include <sstream> #include <iostream> void Welcome(); // Welcome Function - Prints upon running program; outputs program name, student name/id, class section. void Rules(); // Rules Function: Prints the rules for Conway's Game of Life. using namespace std; // A simple main method to create the window class and then pop it up on the screen. int main(int argc, char *argv[]) { Welcome(); // Calls Welcome function to print student/assignment info. Rules(); // Prints Conway's Game Rules. QApplication app(argc, argv); // Creates the overall windowed application. int rows = 25, cols = 35; //The number of rows & columns in the game grid. GridWindow widget(NULL,rows,cols); // Creates the actual window (for the grid). widget.show(); // Shows the window on the screen. return app.exec(); // Goes into visual loop; starts executing GUI. } // Welcome Function: Prints my name/id, my class number, the assignment, and the program name. void Welcome() { cout << endl; cout << "-------------------------------------------------------------------------------------------------" << endl; cout << "Name/ID - Gabe Audick #7681539807" << endl; cout << "Class/Assignment - CSCI-102 Disccusion 29915: Homework Assignment #4" << endl; cout << "-------------------------------------------------------------------------------------------------" << endl << endl; } // Rules Function: Prints the rules for Conway's Game of Life. void Rules() { cout << "Welcome to Conway's Game of Life." << endl; cout << "Game Rules:" << endl; cout << "\t 1) Any living cell with fewer than two living neighbours dies, as if caused by underpopulation." << endl; cout << "\t 2) Any live cell with more than three live neighbours dies, as if by overcrowding." << endl; cout << "\t 3) Any live cell with two or three live neighbours lives on to the next generation." << endl; cout << "\t 4) Any dead cell with exactly three live neighbours becomes a live cell." << endl << endl; cout << "Enjoy." << endl << endl; } gridcell.h // A header file for a class representing a single cell in a grid of cells. #ifndef GRIDCELL_H_ #define GRIDCELL_H_ #include <QPalette> #include <QColor> #include <QPushButton> #include <Qt> #include <QWidget> #include <QFrame> #include <QHBoxLayout> #include <iostream> // An enum representing the two different states a cell can have. enum CellType { DEAD, // DEAD = Dead Cell. --> Color = White. LIVE // LIVE = Living Cell. ---> Color = White. }; /* Class: GridCell. A class representing a single cell in a grid. Each cell is implemented as a QT QFrame that contains a single QPushButton. The button is sized so that it takes up the entire frame. Each cell also keeps track of what type of cell it is based on the CellType enum. */ class GridCell : public QFrame { Q_OBJECT // Macro allowing us to have signals & slots on this object. private: QPushButton* button; // The button inside the cell that gives its clickability. CellType type; // The type of cell (DEAD or LIVE.) public slots: void handleClick(); // Callback for handling a click on the current cell. void setType(CellType type); // Cell type mutator. Calls the "redrawCell" function. signals: void typeChanged(CellType type); // Signal to notify listeners when the cell type has changed. public: GridCell(QWidget *parent = NULL); // Constructor for creating a cell. Takes parent widget or default parent to NULL. virtual ~GridCell(); // Destructor. void redrawCell(); // Redraws cell: Sets new type/color. CellType getType() const; //Simple getter for the cell type. private: Qt::GlobalColor getColorForCellType(); // Helper method. Returns color that cell should be based from its value. }; #endif gridcell.cpp #include <iostream> #include "gridcell.h" #include "utility.h" using namespace std; // Constructor: Creates a grid cell. GridCell::GridCell(QWidget *parent) : QFrame(parent) { this->type = DEAD; // Default: Cell is DEAD (white). setFrameStyle(QFrame::Box); // Set the frame style. This is what gives each box its black border. this->button = new QPushButton(this); //Creates button that fills entirety of each grid cell. this->button->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); // Expands button to fill space. this->button->setMinimumSize(19,19); //width,height // Min height and width of button. QHBoxLayout *layout = new QHBoxLayout(); //Creates a simple layout to hold our button and add the button to it. layout->addWidget(this->button); setLayout(layout); layout->setStretchFactor(this->button,1); // Lets the buttons expand all the way to the edges of the current frame with no space leftover layout->setContentsMargins(0,0,0,0); layout->setSpacing(0); connect(this->button,SIGNAL(clicked()),this,SLOT(handleClick())); // Connects clicked signal with handleClick slot. redrawCell(); // Calls function to redraw (set new type for) the cell. } // Basic destructor. GridCell::~GridCell() { delete this->button; } // Accessor for the cell type. CellType GridCell::getType() const { return(this->type); } // Mutator for the cell type. Also has the side effect of causing the cell to be redrawn on the GUI. void GridCell::setType(CellType type) { this->type = type; redrawCell(); } // Handler slot for button clicks. This method is called whenever the user clicks on this cell in the grid. void GridCell::handleClick() { // When clicked on... if(this->type == DEAD) // If type is DEAD (white), change to LIVE (black). type = LIVE; else type = DEAD; // If type is LIVE (black), change to DEAD (white). setType(type); // Sets new type (color). setType Calls redrawCell() to recolor. } // Method to check cell type and return the color of that type. Qt::GlobalColor GridCell::getColorForCellType() { switch(this->type) { default: case DEAD: return Qt::white; case LIVE: return Qt::black; } } // Helper method. Forces current cell to be redrawn on the GUI. Called whenever the setType method is invoked. void GridCell::redrawCell() { Qt::GlobalColor gc = getColorForCellType(); //Find out what color this cell should be. this->button->setPalette(QPalette(gc,gc)); //Force the button in the cell to be the proper color. this->button->setAutoFillBackground(true); this->button->setFlat(true); //Force QT to NOT draw the borders on the button } gridwindow.h // A header file for a QT window that holds a grid of cells. #ifndef GRIDWINDOW_H_ #define GRIDWINDOW_H_ #include <vector> #include <QWidget> #include <QTimer> #include <QGridLayout> #include <QLabel> #include <QApplication> #include "gridcell.h" /* class GridWindow: This is the class representing the whole window that comes up when this program runs. It contains a header section with a title, a middle section of MxN cells and a bottom section with buttons. */ class GridWindow : public QWidget { Q_OBJECT // Macro to allow this object to have signals & slots. private: std::vector<std::vector<GridCell*> > cells; // A 2D vector containing pointers to all the cells in the grid. QLabel *title; // A pointer to the Title text on the window. QTimer *timer; // Creates timer object. public slots: void handleClear(); // Handler function for clicking the Clear button. void handleStart(); // Handler function for clicking the Start button. void handlePause(); // Handler function for clicking the Pause button. void timerFired(); // Method called whenever timer fires. public: GridWindow(QWidget *parent = NULL,int rows=3,int cols=3); // Constructor. virtual ~GridWindow(); // Destructor. std::vector<std::vector<GridCell*> >& getCells(); // Accessor for the array of grid cells. private: QHBoxLayout* setupHeader(); // Helper function to construct the GUI header. QGridLayout* setupGrid(int rows,int cols); // Helper function to constructor the GUI's grid. QHBoxLayout* setupButtonRow(); // Helper function to setup the row of buttons at the bottom. }; #endif gridwindow.cpp #include <iostream> #include "gridwindow.h" using namespace std; // Constructor for window. It constructs the three portions of the GUI and lays them out vertically. GridWindow::GridWindow(QWidget *parent,int rows,int cols) : QWidget(parent) { QHBoxLayout *header = setupHeader(); // Setup the title at the top. QGridLayout *grid = setupGrid(rows,cols); // Setup the grid of colored cells in the middle. QHBoxLayout *buttonRow = setupButtonRow(); // Setup the row of buttons across the bottom. QVBoxLayout *layout = new QVBoxLayout(); // Puts everything together. layout->addLayout(header); layout->addLayout(grid); layout->addLayout(buttonRow); setLayout(layout); } // Destructor. GridWindow::~GridWindow() { delete title; } // Builds header section of the GUI. QHBoxLayout* GridWindow::setupHeader() { QHBoxLayout *header = new QHBoxLayout(); // Creates horizontal box. header->setAlignment(Qt::AlignHCenter); this->title = new QLabel("CONWAY'S GAME OF LIFE",this); // Creates big, bold, centered label (title): "Conway's Game of Life." this->title->setAlignment(Qt::AlignHCenter); this->title->setFont(QFont("Arial", 32, QFont::Bold)); header->addWidget(this->title); // Adds widget to layout. return header; // Returns header to grid window. } // Builds the grid of cells. This method populates the grid's 2D array of GridCells with MxN cells. QGridLayout* GridWindow::setupGrid(int rows,int cols) { QGridLayout *grid = new QGridLayout(); // Creates grid layout. grid->setHorizontalSpacing(0); // No empty spaces. Cells should be contiguous. grid->setVerticalSpacing(0); grid->setSpacing(0); grid->setAlignment(Qt::AlignHCenter); for(int i=0; i < rows; i++) //Each row is a vector of grid cells. { std::vector<GridCell*> row; // Creates new vector for current row. cells.push_back(row); for(int j=0; j < cols; j++) { GridCell *cell = new GridCell(); // Creates and adds new cell to row. cells.at(i).push_back(cell); grid->addWidget(cell,i,j); // Adds to cell to grid layout. Column expands vertically. grid->setColumnStretch(j,1); } grid->setRowStretch(i,1); // Sets row expansion horizontally. } return grid; // Returns grid. } // Builds footer section of the GUI. QHBoxLayout* GridWindow::setupButtonRow() { QHBoxLayout *buttonRow = new QHBoxLayout(); // Creates horizontal box for buttons. buttonRow->setAlignment(Qt::AlignHCenter); // Clear Button - Clears cell; sets them all to DEAD/white. QPushButton *clearButton = new QPushButton("CLEAR"); clearButton->setFixedSize(100,25); connect(clearButton, SIGNAL(clicked()), this, SLOT(handleClear())); buttonRow->addWidget(clearButton); // Start Button - Starts game when user clicks. Or, resumes game after being paused. QPushButton *startButton = new QPushButton("START/RESUME"); startButton->setFixedSize(100,25); connect(startButton, SIGNAL(clicked()), this, SLOT(handleStart())); buttonRow->addWidget(startButton); // Pause Button - Pauses simulation of game. QPushButton *pauseButton = new QPushButton("PAUSE"); pauseButton->setFixedSize(100,25); connect(pauseButton, SIGNAL(clicked()), this, SLOT(handlePause())); buttonRow->addWidget(pauseButton); // Quit Button - Exits program. QPushButton *quitButton = new QPushButton("EXIT"); quitButton->setFixedSize(100,25); connect(quitButton, SIGNAL(clicked()), qApp, SLOT(quit())); buttonRow->addWidget(quitButton); return buttonRow; // Returns bottom of layout. } /* SLOT method for handling clicks on the "clear" button. Receives "clicked" signals on the "Clear" button and sets all cells to DEAD. */ void GridWindow::handleClear() { for(unsigned int row=0; row < cells.size(); row++) // Loops through current rows' cells. { for(unsigned int col=0; col < cells[row].size(); col++) { GridCell *cell = cells[row][col]; // Grab the current cell & set its value to dead. cell->setType(DEAD); } } } /* SLOT method for handling clicks on the "start" button. Receives "clicked" signals on the "start" button and begins game simulation. */ void GridWindow::handleStart() { this->timer = new QTimer(this); // Creates new timer. connect(this->timer, SIGNAL(timeout()), this, SLOT(timerFired())); // Connect "timerFired" method class to the "timeout" signal fired by the timer. this->timer->start(500); // Timer to fire every 500 milliseconds. } /* SLOT method for handling clicks on the "pause" button. Receives "clicked" signals on the "pause" button and stops the game simulation. */ void GridWindow::handlePause() { this->timer->stop(); // Stops the timer. delete this->timer; // Deletes timer. } // Accessor method - Gets the 2D vector of grid cells. std::vector<std::vector<GridCell*> >& GridWindow::getCells() { return this->cells; } void GridWindow::timerFired() { // I'm not sure how to write this code. // I want to take the original vector-vector, and also make a new, empty vector-vector of the same size. // I would then go through the code below with the original vector, and apply the rules to the new vector-vector. // Finally, I would make the new vector-vecotr the original vector-vector. (That would be one step in the simulation.) cout << cells[1][2]; /* for (unsigned int m = 0; m < original.size(); m++) { for (unsigned int n = 0; n < original.at(m).size(); n++) { unsigned int neighbors = 0; //Begin counting number of neighbors. if (original[m-1][n-1].getType() == LIVE) // If a cell next to [i][j] is LIVE, add one to the neighbor count. neighbors += 1; if (original[m-1][n].getType() == LIVE) neighbors += 1; if (original[m-1][n+1].getType() == LIVE) neighbors += 1; if (original[m][n-1].getType() == LIVE) neighbors += 1; if (original[m][n+1].getType() == LIVE) neighbors += 1; if (original[m+1][n-1].getType() == LIVE) neighbors += 1; if (original[m+1][n].getType() == LIVE) neighbors += 1; if (original[m+1][n+1].getType() == LIVE) neighbors += 1; if (original[m][n].getType() == LIVE && neighbors < 2) // Apply game rules to cells: Create new, updated grid with the roundtwo vector. roundtwo[m][n].setType(LIVE); else if (original[m][n].getType() == LIVE && neighbors > 3) roundtwo[m][n].setType(DEAD); else if (original[m][n].getType() == LIVE && (neighbors == 2 || neighbors == 3)) roundtwo[m][n].setType(LIVE); else if (original[m][n].getType() == DEAD && neighbors == 3) roundtwo[m][n].setType(LIVE); } }*/ }

    Read the article

  • Network communication for a turn based board game

    - by randooom
    Hi all, my first question here, so please don't be to harsh if something went wrong :) I'm currently a CS student (from Germany, if this info is of any use ;) ) and we got a, free selectable, programming assignment, which we have to write in a C++/CLI Windows Forms Application. My team, two others and me, decided to go for a network-compatible port of the board game Risk. We divided the work in 3 Parts, namely UI, game logic and network. Now we're on the part where we have to get everything working together and the big question mark is, how to get the clients synchronized with each other? Our approach so far is, that each client has all information necessary to calculate and/or execute all possible actions. Actually the clients have all information available at all, aside from the game-initializing phase (add players, select map, etc.), which needs one "super-client" with some extra stuff to control things. This is the standard scenario of our approach: player performs action, the action is valid and got executed on the players client action is sent over the network action is executed on the other clients The design (i.e. no or code so far) we came up with so far, is something like the following pseudo sequence diagram. Gui, Controller and Network implement all possible actions (i.e. all actions which change data) as methods from an interface. So each part can implement the method in a way to get their job done. Example with Action(): On the player side's Client: Player-->Gui.Action() Gui-->Controller.Action() Controller-->Logic.Action (Logic.Action() == NoError)? Controller-->Network.Action() Network-->Parser.ParseAction() Network.Send(msg) On all other clients: Network.Recv(msg) Network-->Parser.Deparse(msg) Parser-->Logic.Action() Logic-->Gui.Action() The questions: Is this a viable approach to our task? Any better/easier way to this? Recommendations, critique? Our knowledge (so you can better target your answer): We are on the beginner side, in regards to programming on a somewhat larger projects with a small team. All of us have some general programming experience and basic understanding of the .Net Libraries and Windows Forms. If you need any further information, please feel free to ask.

    Read the article

  • Serialization with Qt

    - by Narek
    I am programming a GUI with Qt. In my GUI I have a huge std::map. And "MyType" is a class that has different kinds of filds. So, in a word, I want to serialize the std::map. How can I do that? Does Qt provides us with neccesary features? P.S. I would like to use std::map, NOT QMap.

    Read the article

  • How to run qtestlib unit tests from QtCreator

    - by extropy
    I am developing a GUI application in Qt Creator and want to write some unit tests for it. I followed This guide to make some unit tests with QtTestlib and the program compiles fine. But how do I run them? I would like them to be run before the GUI app starts if debug buid and not run if release build.

    Read the article

  • Command prompt print dialog command

    - by wrongusername
    Is there any way a C++ commandline program on Windows can produce a graphical GUI print dialog for printing to a printer, just like usual GUI programs? I've combed through this webpage and it seems there are only commands that print files in the background to a pre-determined printer.

    Read the article

  • DLL administration

    - by carlos
    I build some dlls to be used in a big application, and have a team working in the dlls heart of the application and another team working in the gui, but i am having a problems in the deployment of the dll's when a change is done, because the gui team needs or copy the new dll to the project folder, or delete the old reference and add the new one. Is there a best practice to deal with this problem? I am using Visual Studio 2008 and devoloping int VB and C# Thanks !!!

    Read the article

  • WPF or Windows Forms

    - by Luminose
    I've been playing around with C# console applications for about a year and I want to move on to creating GUI applications. I have never done any GUI development besides basic Java applications, but I want to continue using C#. Should I start learning Windows Forms or jump straight to WPF? Is there a huge difference? Does WPF build on top of Windows Forms or are they totally different?

    Read the article

  • Java Log ==> JTextArea

    - by asmo
    Need: Output a Java application's log into a GUI component, such as a JTextArea. Concern: Need to log things from any class, in a static manner. However, the GUI logger component must not be static (obviously) as it's the member of a parent component. What should I do?

    Read the article

  • Using XAML + designer to edit Plain Old CLR Objects?

    - by Joe White
    I want to write a POCO in XAML, and use a DataTemplate to display that object in the GUI at runtime. So far, so good; I know how to do all that. Since I'll already have a DataTemplate that can transform my POCO into a WPF visual tree, is there any way to get the Visual Studio designer to play along, and have the Design View show me the POCO+DataTemplate's resulting GUI, as I edit the POCO's XAML? (Obviously the designer wouldn't know how to edit the "design view"; I wouldn't expect the Toolbox or click-and-drag to work on the design surface. That's fine -- I just want to see a preview as I edit.) If you're curious, the POCOs in question would be level maps for a game. (At this point, I'm not planning to ship an end-user map editor, so I'll be doing all the editing myself in Visual Studio.) So the XAML isn't WPF GUI objects like Window and UserControl, but it's still not something where I would want to blindly bang out some XAML and hope for the best. I want to see what I'm doing (the GUI map) as I'm doing it. If I try to make a XAML file whose root is my map object, the designer shows "Intentionally Left Blank - The document root element is not supported by the visual designer." It does this even if I've defined a DataTemplate in App.xaml's <Application.Resources>. But I know the designer can show my POCO, when it's inside a WPF object. One possible way of accomplishing what I want would be to have a ScratchUserControl that just contains a ContentPresenter, and write my POCO XAML inside that ContentPresenter's Content property, e.g.: <UserControl ...> <ContentPresenter> <ContentPresenter.Content> <Maps:Map .../> </ContentPresenter.Content> </ContentPresenter> </UserControl> But then I would have to be sure to copy the content back out into its own file when I was done editing, which seems tedious and error-prone, and I don't like tedious and error-prone. And since I can preview my XAML this way, isn't there some way to do it without the UserControl?

    Read the article

  • RAD Visual Web Application Creator/ Builder/ Designer for PHP

    - by inhoue
    Hi all, I want to see if any of you know a (free and open source will be ideal) tool/ app that can help build a php web application very quickly without investing too much time on writing codes, preferring drag and drop/ point and click work-flow designer for logic design (see Agile from Outsystems below). Plus, visual designer for the business logic is great since it can help a developer visualize the logic better. There are a lot of GUI builders, form builders out there, but I am looking for one app for the entire web application development process. My goal is to find an application that a team of developers can use together and use the build-in code of the app as much as possible. E.g. the app will provide a modular just for handle user login or a shopping cart; a developer just need to drag and drop the modular to the logic designer and the code will be generated. This way the functionality will be in a module and code will always be standard across developers. So if a new developer get on-board, he will just need to use the system and get up and running quickly. To explain this better: there is a lot php frameworks, e.g. cakephp, CodeIgniter, etc which I can use to help coding, but still I need to create (code) the GUI, writing quite a bit of codes. I am looking for a tool/ app that is a little more high level than those frameworks. Here is 2 examples apps I found during my google search which they have visual logic designer and gui builder in one single app. Also a single click deployment (but I need it to be php apps or at least I can deploy the (php) code to a LAMP/ WAMP server): Wavemaker: for JAVA Agile from Outsystems: for JAVA or .net (This one is really good, with work-flow drag and drop logic designer!) Talend: it is just an ETL tool, but the concept is what I want to bring up. Drag and drop, point and click logic design. Custom code can be added if it is needed, but the drag and drop process already finished the structure and most of the coding of the web app one needs to build. I want to list Adobe Flex, but it is more like a GUI designer + IDE, not exactly what I want to describe here. The drag and drop/ work-flow logic designer is a key for the app. I could go for the CMS route by learning how to extend them, but it is not that flexible for me and is a long learning curve. Anybody came across this type of app before? Or any idea of how can I find those apps? I googled them for long time, I don't see any of them for php and just few (just 2) for Java. Thanks in advance!

    Read the article

  • File comparison utility

    - by Night Walker
    Hello all I am looking for compare utility similar for "win merge" or "beyond compare" . That in addition for gui comparison will have api that i will be able to run on my files via my code and see if the files are the same or not and also use it in gui mode to show graphically the differences . Any recommendations ? thanks

    Read the article

  • Inter process communication C# <--> C++ for game debugging engine.

    - by Andy
    I am working on a debugger project for a game's scripting engine. I'm hoping to write the debugger's GUI in C#. The actual debugging engine, however, is embedded in the game itself and is written in a mixture of C, C++, and assembly patches. What's the best way to handle communication between the debugger GUI and the debugging engine? The two will be running in separate processes. Thanks! Andy

    Read the article

< Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >