Search Results

Search found 25852 results on 1035 pages for 'linq query syntax'.

Page 202/1035 | < Previous Page | 198 199 200 201 202 203 204 205 206 207 208 209  | Next Page >

  • Why is Python 3.1 throwing a SyntaxError when printing after loop? [resolved]

    - by bubersson
    Hi, I'm trying to run this snippet in Python 3.1 console and I'm getting SyntaxError: >>> while True: ... a=5 ... if a<6: ... break ... print("hello") File "<stdin>", line 5 print("hello") ^ SyntaxError: invalid syntax >>> (This is just shortened code to make a point.) Am I missing something? Is there some other Magic I don't know about? Thanks for your help (since this is my first StackOverflow question and I'm not a native English speaker)

    Read the article

  • Use of 'standalone parentheses'

    - by zaf
    I just answered a question where I advised removing parentheses around a statement and was asked why, to which I had no answer when I realised that it caused no errors/warnings. I could only cite bad practice. But maybe I'm the one missing something... I did my own tests: (print('!')); // Outputs '!' ((print('!!'))); // Outputs '!!' (1); // No output (qwerty); // No output (1==2); // No output (1=2); // Syntax error // etc... Can someone shed some light on whats going on and of what use are 'standalone parentheses'?

    Read the article

  • correct mysql syntax error

    - by user2981651
    please could someone tell me the problem with this syntax because mysql 5.5.32 keeps tell me about an error CREATE TABLE `clients` ( `ID` tinyint(11) NOT NULL auto_increment, `title` varchar(10) NOT NULL default '', `firstName` varchar(30) NOT NULL default '', `lastName` varchar(30) NOT NULL default '', `address1` varchar(100) NOT NULL default '', `address2` varchar(100) NOT NULL default '', `town` varchar(100) NOT NULL default '', `province` varchar(100) NOT NULL default '', `country` varchar(40) NOT NULL default '', `postCode` varchar(20) NOT NULL default '', `telephone` varchar(20) NOT NULL default '', `email` varchar(100) NOT NULL default '', `cardNo` varchar(16) NOT NULL default '0000-00-00', `expiryDate` date NOT NULL default '0000-00-00', PRIMARY KEY (`ID`) ) TYPE=MyISAM COMMENT='customer table' AUTO_INCREMENT=1 ;

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Installing vim7.2 on Solaris Sparc 10 as non-root

    - by Tobbe
    I'm trying to install vim to $HOME/bin by compiling the sources. ./configure --prefix=$home/bin seems to work, but when running make I get: > make Starting make in the src directory. If there are problems, cd to the src directory and run make there cd src && make first gcc -c -I. -Iproto -DHAVE_CONFIG_H -DFEAT_GUI_GTK -I/usr/include/gtk-2.0 -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0 -I/usr/include/pango-1.0 -I/usr/openwin/include -I/usr/sfw/include -I/usr/sfw/include/freetype2 -I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -g -O2 -I/usr/openwin/include -o objects/buffer.o buffer.c In file included from buffer.c:28: vim.h:41: error: syntax error before ':' token In file included from os_unix.h:29, from vim.h:245, from buffer.c:28: /usr/include/sys/stat.h:251: error: syntax error before "blksize_t" /usr/include/sys/stat.h:255: error: syntax error before '}' token /usr/include/sys/stat.h:309: error: syntax error before "blksize_t" /usr/include/sys/stat.h:310: error: conflicting types for 'st_blocks' /usr/include/sys/stat.h:252: error: previous declaration of 'st_blocks' was here /usr/include/sys/stat.h:313: error: syntax error before '}' token In file included from /opt/local/bin/../lib/gcc/sparc-sun-solaris2.6/3.4.6/include/sys/signal.h:132, from /usr/include/signal.h:26, from os_unix.h:163, from vim.h:245, from buffer.c:28: /usr/include/sys/siginfo.h:259: error: syntax error before "ctid_t" /usr/include/sys/siginfo.h:292: error: syntax error before '}' token /usr/include/sys/siginfo.h:294: error: syntax error before '}' token /usr/include/sys/siginfo.h:390: error: syntax error before "ctid_t" /usr/include/sys/siginfo.h:398: error: conflicting types for '__fault' /usr/include/sys/siginfo.h:267: error: previous declaration of '__fault' was here /usr/include/sys/siginfo.h:404: error: conflicting types for '__file' /usr/include/sys/siginfo.h:273: error: previous declaration of '__file' was here /usr/include/sys/siginfo.h:420: error: conflicting types for '__prof' /usr/include/sys/siginfo.h:287: error: previous declaration of '__prof' was here /usr/include/sys/siginfo.h:424: error: conflicting types for '__rctl' /usr/include/sys/siginfo.h:291: error: previous declaration of '__rctl' was here /usr/include/sys/siginfo.h:426: error: syntax error before '}' token /usr/include/sys/siginfo.h:428: error: syntax error before '}' token /usr/include/sys/siginfo.h:432: error: syntax error before "k_siginfo_t" /usr/include/sys/siginfo.h:437: error: syntax error before '}' token In file included from /usr/include/signal.h:26, from os_unix.h:163, from vim.h:245, from buffer.c:28: /opt/local/bin/../lib/gcc/sparc-sun-solaris2.6/3.4.6/include/sys/signal.h:173: error: syntax error before "siginfo_t" In file included from os_unix.h:163, from vim.h:245, from buffer.c:28: /usr/include/signal.h:111: error: syntax error before "siginfo_t" /usr/include/signal.h:113: error: syntax error before "siginfo_t" buffer.c: In function `buflist_new': buffer.c:1502: error: storage size of 'st' isn't known buffer.c: In function `buflist_findname': buffer.c:1989: error: storage size of 'st' isn't known buffer.c: In function `setfname': buffer.c:2578: error: storage size of 'st' isn't known buffer.c: In function `otherfile_buf': buffer.c:2836: error: storage size of 'st' isn't known buffer.c: In function `buf_setino': buffer.c:2874: error: storage size of 'st' isn't known buffer.c: In function `buf_same_ino': buffer.c:2894: error: dereferencing pointer to incomplete type buffer.c:2895: error: dereferencing pointer to incomplete type *** Error code 1 make: Fatal error: Command failed for target `objects/buffer.o' Current working directory /home/xluntor/vim72/src *** Error code 1 make: Fatal error: Command failed for target `first' How do I fix the make errors? Or is there another way to install vim as non-root? Thanks in advance EDIT: I took a look at the google groups link Sarah posted. The "Compiling Vim" page linked from there was for Linux, so the commands doesn't even work on Solars. But it did hint at logging the output of ./configure to a file, so I did that. Here it is: ./configure output removed. New version further down. Does anyone spot anything critical missing? EDIT 2: So I downloaded the vim package from sunfreeware. I couldn't just install it, since I don't have root privileges, but I was able to extract the package file. This was the file structure in it: `-- SMCvim `-- reloc |-- bin |-- doc | `-- vim `-- share |-- man | `-- man1 `-- vim `-- vim72 |-- autoload | `-- xml |-- colors |-- compiler |-- doc |-- ftplugin |-- indent |-- keymap |-- lang |-- macros | |-- hanoi | |-- life | |-- maze | `-- urm |-- plugin |-- print |-- spell |-- syntax |-- tools `-- tutor I moved the three files (vim, vimtutor, xdd) in SMCvim/reloc/bin to $HOME/bin, so now I can finally run $HOME/bin/vim! But where do I put the "share" directory and its content? EDIT 3: It might also be worth noting that there already exists an install of vim on the system, but it is broken. When I try to run it I get: ld.so.1: vim: fatal: libgtk-1.2.so.0: open failed: No such file or directory "which vim" outputs /opt/local/bin/vim EDIT 4: Trying to compile this on Solaris 10. uname -a SunOS ws005-22 5.10 Generic_141414-10 sun4u sparc SUNW,SPARC-Enterprise New ./configure output: ./configure --prefix=$home/bin ac_cv_sizeof_int=8 --enable-rubyinterp configure: loading cache auto/config.cache checking whether make sets $(MAKE)... yes checking for gcc... gcc checking for C compiler default output file name... a.out checking whether the C compiler works... yes checking whether we are cross compiling... no checking for suffix of executables... checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ISO C89... unsupported checking how to run the C preprocessor... gcc -E checking for grep that handles long lines and -e... /usr/sfw/bin/ggrep checking for egrep... /usr/sfw/bin/ggrep -E checking for library containing strerror... none required checking for gawk... gawk checking for strip... strip checking for ANSI C header files... yes checking for sys/wait.h that is POSIX.1 compatible... no configure: checking for buggy tools... checking for BeOS... no checking for QNX... no checking for Darwin (Mac OS X)... no checking --with-local-dir argument... Defaulting to /usr/local checking --with-vim-name argument... Defaulting to vim checking --with-ex-name argument... Defaulting to ex checking --with-view-name argument... Defaulting to view checking --with-global-runtime argument... no checking --with-modified-by argument... no checking if character set is EBCDIC... no checking --disable-selinux argument... no checking for is_selinux_enabled in -lselinux... no checking --with-features argument... Defaulting to normal checking --with-compiledby argument... no checking --disable-xsmp argument... no checking --disable-xsmp-interact argument... no checking --enable-mzschemeinterp argument... no checking --enable-perlinterp argument... no checking --enable-pythoninterp argument... no checking --enable-tclinterp argument... no checking --enable-rubyinterp argument... yes checking for ruby... /opt/sfw/bin/ruby checking Ruby version... OK checking Ruby header files... /opt/sfw/lib/ruby/1.6/sparc-solaris2.10 checking --enable-cscope argument... no checking --enable-workshop argument... no checking --disable-netbeans argument... no checking for socket in -lsocket... yes checking for gethostbyname in -lnsl... yes checking whether compiling netbeans integration is possible... no checking --enable-sniff argument... no checking --enable-multibyte argument... no checking --enable-hangulinput argument... no checking --enable-xim argument... defaulting to auto checking --enable-fontset argument... no checking for xmkmf... /usr/openwin/bin/xmkmf checking for X... libraries /usr/openwin/lib, headers /usr/openwin/include checking whether -R must be followed by a space... no checking for gethostbyname... yes checking for connect... yes checking for remove... yes checking for shmat... yes checking for IceConnectionNumber in -lICE... yes checking if X11 header files can be found... yes checking for _XdmcpAuthDoIt in -lXdmcp... no checking for IceOpenConnection in -lICE... yes checking for XpmCreatePixmapFromData in -lXpm... yes checking if X11 header files implicitly declare return values... no checking --enable-gui argument... yes/auto - automatic GUI support checking whether or not to look for GTK... yes checking whether or not to look for GTK+ 2... yes checking whether or not to look for GNOME... no checking whether or not to look for Motif... yes checking whether or not to look for Athena... yes checking whether or not to look for neXtaw... yes checking whether or not to look for Carbon... yes checking --with-gtk-prefix argument... no checking --with-gtk-exec-prefix argument... no checking --disable-gtktest argument... gtk test enabled checking for gtk-config... /opt/local/bin/gtk-config checking for pkg-config... /usr/bin/pkg-config checking for GTK - version = 2.2.0... yes; found version 2.4.9 checking X11/SM/SMlib.h usability... yes checking X11/SM/SMlib.h presence... yes checking for X11/SM/SMlib.h... yes checking X11/xpm.h usability... yes checking X11/xpm.h presence... yes checking for X11/xpm.h... yes checking X11/Sunkeysym.h usability... yes checking X11/Sunkeysym.h presence... yes checking for X11/Sunkeysym.h... yes checking for XIMText in X11/Xlib.h... yes X GUI selected; xim has been enabled checking whether toupper is broken... no checking whether __DATE__ and __TIME__ work... yes checking elf.h usability... yes checking elf.h presence... yes checking for elf.h... yes checking for main in -lelf... yes checking for dirent.h that defines DIR... yes checking for library containing opendir... none required checking for sys/wait.h that defines union wait... no checking stdarg.h usability... yes checking stdarg.h presence... yes checking for stdarg.h... yes checking stdlib.h usability... yes checking stdlib.h presence... yes checking for stdlib.h... yes checking string.h usability... yes checking string.h presence... yes checking for string.h... yes checking sys/select.h usability... yes checking sys/select.h presence... yes checking for sys/select.h... yes checking sys/utsname.h usability... yes checking sys/utsname.h presence... yes checking for sys/utsname.h... yes checking termcap.h usability... yes checking termcap.h presence... yes checking for termcap.h... yes checking fcntl.h usability... yes checking fcntl.h presence... yes checking for fcntl.h... yes checking sgtty.h usability... yes checking sgtty.h presence... yes checking for sgtty.h... yes checking sys/ioctl.h usability... yes checking sys/ioctl.h presence... yes checking for sys/ioctl.h... yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking sys/types.h usability... yes checking sys/types.h presence... yes checking for sys/types.h... yes checking termio.h usability... yes checking termio.h presence... yes checking for termio.h... yes checking iconv.h usability... yes checking iconv.h presence... yes checking for iconv.h... yes checking langinfo.h usability... yes checking langinfo.h presence... yes checking for langinfo.h... yes checking math.h usability... yes checking math.h presence... yes checking for math.h... yes checking unistd.h usability... yes checking unistd.h presence... yes checking for unistd.h... yes checking stropts.h usability... no checking stropts.h presence... yes configure: WARNING: stropts.h: present but cannot be compiled configure: WARNING: stropts.h: check for missing prerequisite headers? configure: WARNING: stropts.h: see the Autoconf documentation configure: WARNING: stropts.h: section "Present But Cannot Be Compiled" configure: WARNING: stropts.h: proceeding with the preprocessor's result configure: WARNING: stropts.h: in the future, the compiler will take precedence checking for stropts.h... yes checking errno.h usability... yes checking errno.h presence... yes checking for errno.h... yes checking sys/resource.h usability... yes checking sys/resource.h presence... yes checking for sys/resource.h... yes checking sys/systeminfo.h usability... yes checking sys/systeminfo.h presence... yes checking for sys/systeminfo.h... yes checking locale.h usability... yes checking locale.h presence... yes checking for locale.h... yes checking sys/stream.h usability... no checking sys/stream.h presence... yes configure: WARNING: sys/stream.h: present but cannot be compiled configure: WARNING: sys/stream.h: check for missing prerequisite headers? configure: WARNING: sys/stream.h: see the Autoconf documentation configure: WARNING: sys/stream.h: section "Present But Cannot Be Compiled" configure: WARNING: sys/stream.h: proceeding with the preprocessor's result configure: WARNING: sys/stream.h: in the future, the compiler will take precedence checking for sys/stream.h... yes checking termios.h usability... yes checking termios.h presence... yes checking for termios.h... yes checking libc.h usability... no checking libc.h presence... no checking for libc.h... no checking sys/statfs.h usability... yes checking sys/statfs.h presence... yes checking for sys/statfs.h... yes checking poll.h usability... yes checking poll.h presence... yes checking for poll.h... yes checking sys/poll.h usability... yes checking sys/poll.h presence... yes checking for sys/poll.h... yes checking pwd.h usability... yes checking pwd.h presence... yes checking for pwd.h... yes checking utime.h usability... yes checking utime.h presence... yes checking for utime.h... yes checking sys/param.h usability... yes checking sys/param.h presence... yes checking for sys/param.h... yes checking libintl.h usability... yes checking libintl.h presence... yes checking for libintl.h... yes checking libgen.h usability... yes checking libgen.h presence... yes checking for libgen.h... yes checking util/debug.h usability... no checking util/debug.h presence... no checking for util/debug.h... no checking util/msg18n.h usability... no checking util/msg18n.h presence... no checking for util/msg18n.h... no checking frame.h usability... no checking frame.h presence... no checking for frame.h... no checking sys/acl.h usability... yes checking sys/acl.h presence... yes checking for sys/acl.h... yes checking sys/access.h usability... no checking sys/access.h presence... no checking for sys/access.h... no checking sys/sysctl.h usability... no checking sys/sysctl.h presence... no checking for sys/sysctl.h... no checking sys/sysinfo.h usability... yes checking sys/sysinfo.h presence... yes checking for sys/sysinfo.h... yes checking wchar.h usability... yes checking wchar.h presence... yes checking for wchar.h... yes checking wctype.h usability... yes checking wctype.h presence... yes checking for wctype.h... yes checking for sys/ptem.h... no checking for pthread_np.h... no checking strings.h usability... yes checking strings.h presence... yes checking for strings.h... yes checking if strings.h can be included after string.h... yes checking whether gcc needs -traditional... no checking for an ANSI C-conforming const... yes checking for mode_t... yes checking for off_t... yes checking for pid_t... yes checking for size_t... yes checking for uid_t in sys/types.h... yes checking whether time.h and sys/time.h may both be included... yes checking for ino_t... yes checking for dev_t... yes checking for rlim_t... yes checking for stack_t... yes checking whether stack_t has an ss_base field... no checking --with-tlib argument... empty: automatic terminal library selection checking for tgetent in -lncurses... yes checking whether we talk terminfo... yes checking what tgetent() returns for an unknown terminal... zero checking whether termcap.h contains ospeed... yes checking whether termcap.h contains UP, BC and PC... yes checking whether tputs() uses outfuntype... no checking whether sys/select.h and sys/time.h may both be included... yes checking for /dev/ptc... no checking for SVR4 ptys... yes checking for ptyranges... don't know checking default tty permissions/group... can't determine - assume ptys are world accessable world checking return type of signal handlers... void checking for struct sigcontext... no checking getcwd implementation is broken... no checking for bcmp... yes checking for fchdir... yes checking for fchown... yes checking for fseeko... yes checking for fsync... yes checking for ftello... yes checking for getcwd... yes checking for getpseudotty... no checking for getpwnam... yes checking for getpwuid... yes checking for getrlimit... yes checking for gettimeofday... yes checking for getwd... yes checking for lstat... yes checking for memcmp... yes checking for memset... yes checking for nanosleep... no checking for opendir... yes checking for putenv... yes checking for qsort... yes checking for readlink... yes checking for select... yes checking for setenv... yes checking for setpgid... yes checking for setsid... yes checking for sigaltstack... yes checking for sigstack... yes checking for sigset... yes checking for sigsetjmp... yes checking for sigaction... yes checking for sigvec... no checking for strcasecmp... yes checking for strerror... yes checking for strftime... yes checking for stricmp... no checking for strncasecmp... yes checking for strnicmp... no checking for strpbrk... yes checking for strtol... yes checking for tgetent... yes checking for towlower... yes checking for towupper... yes checking for iswupper... yes checking for usleep... yes checking for utime... yes checking for utimes... yes checking for st_blksize... no checking whether stat() ignores a trailing slash... no checking for iconv_open()... yes; with -liconv checking for nl_langinfo(CODESET)... yes checking for strtod in -lm... yes checking for strtod() and other floating point functions... yes checking --disable-acl argument... no checking for acl_get_file in -lposix1e... no checking for acl_get_file in -lacl... no checking for POSIX ACL support... no checking for Solaris ACL support... yes checking for AIX ACL support... no checking --disable-gpm argument... no checking for gpm... no checking --disable-sysmouse argument... no checking for sysmouse... no checking for rename... yes checking for sysctl... not usable checking for sysinfo... not usable checking for sysinfo.mem_unit... no checking for sysconf... yes checking size of int... (cached) 8 checking whether memmove handles overlaps... yes checking for _xpg4_setrunelocale in -lxpg4... no checking how to create tags... ctags -t checking how to run man with a section nr... man -s checking --disable-nls argument... no checking for msgfmt... msgfmt checking for NLS... no "po/Makefile" - disabled checking dlfcn.h usability... yes checking dlfcn.h presence... yes checking for dlfcn.h... yes checking for dlopen()... yes checking for dlsym()... yes checking setjmp.h usability... yes checking setjmp.h presence... yes checking for setjmp.h... yes checking for GCC 3 or later... yes configure: updating cache auto/config.cache configure: creating auto/config.status config.status: creating auto/config.mk config.status: creating auto/config.h Make: make Starting make in the src directory. If there are problems, cd to the src directory and run make there cd src && make first mkdir objects CC="gcc -Iproto -DHAVE_CONFIG_H -DFEAT_GUI_GTK -I/usr/include/gtk-2.0 -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0 -I/usr/include/pango-1.0 -I/usr/openwin/include -I/usr/sfw/include -I/usr/sfw/include/freetype2 -I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -I/usr/openwin/include -I/opt/sfw/lib/ruby/1.6/sparc-solaris2.10 " srcdir=. sh ./osdef.sh gcc -c -I. -Iproto -DHAVE_CONFIG_H -DFEAT_GUI_GTK -I/usr/include/gtk-2.0 -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0 -I/usr/include/pango-1.0 -I/usr/openwin/include -I/usr/sfw/include -I/usr/sfw/include/freetype2 -I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -g -O2 -I/usr/openwin/include -I/opt/sfw/lib/ruby/1.6/sparc-solaris2.10 -o objects/buffer.o buffer.c In file included from os_unix.h:29, from vim.h:245, from buffer.c:28: /usr/include/sys/stat.h:251: error: syntax error before "blksize_t" /usr/include/sys/stat.h:255: error: syntax error before '}' token /usr/include/sys/stat.h:309: error: syntax error before "blksize_t" /usr/include/sys/stat.h:310: error: conflicting types for 'st_blocks' /usr/include/sys/stat.h:252: error: previous declaration of 'st_blocks' was here /usr/include/sys/stat.h:313: error: syntax error before '}' token In file included from /opt/local/bin/../lib/gcc/sparc-sun-solaris2.6/3.4.6/include/sys/signal.h:132, from /usr/include/signal.h:26, from os_unix.h:163, from vim.h:245, from buffer.c:28: /usr/include/sys/siginfo.h:259: error: syntax error before "ctid_t" /usr/include/sys/siginfo.h:292: error: syntax error before '}' token /usr/include/sys/siginfo.h:294: error: syntax error before '}' token /usr/include/sys/siginfo.h:390: error: syntax error before "ctid_t" /usr/include/sys/siginfo.h:398: error: conflicting types for '__fault' /usr/include/sys/siginfo.h:267: error: previous declaration of '__fault' was here /usr/include/sys/siginfo.h:404: error: conflicting types for '__file' /usr/include/sys/siginfo.h:273: error: previous declaration of '__file' was here /usr/include/sys/siginfo.h:420: error: conflicting types for '__prof' /usr/include/sys/siginfo.h:287: error: previous declaration of '__prof' was here /usr/include/sys/siginfo.h:424: error: conflicting types for '__rctl' /usr/include/sys/siginfo.h:291: error: previous declaration of '__rctl' was here /usr/include/sys/siginfo.h:426: error: syntax error before '}' token /usr/include/sys/siginfo.h:428: error: syntax error before '}' token /usr/include/sys/siginfo.h:432: error: syntax error before "k_siginfo_t" /usr/include/sys/siginfo.h:437: error: syntax error before '}' token In file included from /usr/include/signal.h:26, from os_unix.h:163, from vim.h:245, from buffer.c:28: /opt/local/bin/../lib/gcc/sparc-sun-solaris2.6/3.4.6/include/sys/signal.h:173: error: syntax error before "siginfo_t" In file included from os_unix.h:163, from vim.h:245, from buffer.c:28: /usr/include/signal.h:111: error: syntax error before "siginfo_t" /usr/include/signal.h:113: error: syntax error before "siginfo_t" buffer.c: In function `buflist_new': buffer.c:1502: error: storage size of 'st' isn't known buffer.c: In function `buflist_findname': buffer.c:1989: error: storage size of 'st' isn't known buffer.c: In function `setfname': buffer.c:2578: error: storage size of 'st' isn't known buffer.c: In function `otherfile_buf': buffer.c:2836: error: storage size of 'st' isn't known buffer.c: In function `buf_setino': buffer.c:2874: error: storage size of 'st' isn't known buffer.c: In function `buf_same_ino': buffer.c:2894: error: dereferencing pointer to incomplete type buffer.c:2895: error: dereferencing pointer to incomplete type *** Error code 1 make: Fatal error: Command failed for target `objects/buffer.o' Current working directory /home/xluntor/vim72/src *** Error code 1 make: Fatal error: Command failed for target `first'

    Read the article

  • MySQL & PHP Parameter 1 as Resource

    - by Nik
    Alright, PHP is throwing this error at me (in the log) when I run the code mentioned below: Error mysql_num_rows() expects parameter 1 to be resource, string given in (place) on line 10 Line 9-11 $queryFP = ("SELECT * FROM db"); $countFP = mysql_num_rows($queryFP); $aID = rand(1, $countFP); I think it has something to do with the $queryFP's syntax, but I'm not completely sure how to fix it since $queryFP's syntax is the simplest query I've ever seen.

    Read the article

  • mysql real escape string error

    - by user547995
    Code mysql_query("INSERT INTO Account(User, Pw, email) VALUES('mysql_real_escape_string($_POST[user])', '$pw','mysql_real_escape_string($_POST[email]) ) ") or die(mysql_error()); Error: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ''mysql_real_escape_string(123) )' at line 1 Please help

    Read the article

  • Mysql syntax using IN help!

    - by Axel
    Hi, i have a pictures table : pictures(articleid,pictureurl) And an articles table : articles(id,title,category) So, briefly, every article has a picture, and i link pictures with article using articleid column. now i want to select 5 pictures of articles in politic category. i think that can be done using IN but i can't figure out how to do it. Note: Please only one query, because i can do it by selecting articles firstly then getting the pictures. Thanks

    Read the article

  • hibernate bulkupdate: update query syntax

    - by QuanNH
    when i update a table using hibernate getHibernateTemplate().bulkUpdate("UPDATE Channel SET number = 40 AND active = 0"); i get error: ERROR [PARSER]: unexpected token: AND evething run well if i remove AND active = 0 i dont know how to correct this query. help me pls, thanks :)

    Read the article

  • Why cant i use the field user in SQL Server 8?

    - by acidzombie24
    Maybe not literally but the query below gets an error near user. If i change it to userZ it works. WHY can i not use that name? Is there a way to specific its a field instead of a keyword? (or whatever it is) create table Post2 ( id INTEGER PRIMARY KEY NOT NULL, title nvarchar(max) NOT NULL, body nvarchar(max) NOT NULL, user integer REFERENCES Post1(id));

    Read the article

  • insert Query is not executing, help me in tracking the problem

    - by Parth
    I tried the below query but it didnt executed giving error as : 1064 - You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')' at line 1 INSERT INTO `jos_menu` SET params = 'orderby= show_noauth= show_title= link_titles= show_intro= show_section= link_section= show_category= link_category= show_author= show_create_date= show_modify_date= show_item_navigation= show_readmore= show_vote= show_icons= show_pdf_icon= show_print_icon= show_email_icon= show_hits= feed_summary= page_title= show_page_title=1 pageclass_sfx= menu_image=-1 secure=0 ', checked_out_time = '0000-00-00 00:00:00', ordering = '13', componentid = '20', published = '1', id = '152', menutype = 'accmenu', name = 'IPL', alias = 'ipl', link = 'index.php?option=com_content&view=archive', type = 'component') then i used mysql_real_escape_string() on the query containing variable which gives me the query as : INSERT INTO `jos_menu` SET params = \'orderby=\nshow_noauth=\nshow_title=\nlink_titles=\nshow_intro=\nshow_section=\nlink_section=\nshow_category=\nlink_category=\nshow_author=\nshow_create_date=\nshow_modify_date=\nshow_item_navigation=\nshow_readmore=\nshow_vote=\nshow_icons=\nshow_pdf_icon=\nshow_print_icon=\nshow_email_icon=\nshow_hits=\nfeed_summary=\npage_title=\nshow_page_title=1\npageclass_sfx=\nmenu_image=-1\nsecure=0\n\n\', checked_out_time = \'0000-00-00 00:00:00\', ordering = \'13\', componentid = \'20\', published = \'1\', id = \'152\', menutype = \'accmenu\', name = \'IPL\', alias = \'ipl\', link = \'index.php?option=com_content&view=archive\', type = \'component\') And on executing the above query I get an error as : 1064 - You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '\'orderby=\nshow_noauth=\nshow_title=\nlink_titles=\nshow_intro=\nshow_section=\' at line 1 Can Someone guide me to track the problem in it? Thanks In Advance....

    Read the article

  • Entity Framework many-to-many using VB.Net Lambda

    - by bgs264
    Hello, I'm a newbie to StackOverflow so please be kind ;) I'm using Entity Framework in Visual Studio 2010 Beta 2 (.NET framework 4.0 Beta 2). I have created an entity framework .edmx model from my database and I have a handful of many-to-many relationships. A trivial example of my database schema is Roles (ID, Name, Active) Members (ID, DateOfBirth, DateCreated) RoleMembership(RoleID, MemberID) I am now writing the custom role provider (Inheriting System.Configuration.Provider.RoleProvider) and have come to write the implementation of IsUserInRole(username, roleName). The LINQ-to-Entity queries which I wrote, when SQL-Profiled, all produced CROSS JOIN statements when what I want is for them to INNER JOIN. Dim query = From m In dc.Members From r In dc.Roles Where m.ID = 100 And r.Name = "Member" Select m My problem is almost exactly described here: http://stackoverflow.com/questions/553918/entity-framework-and-many-to-many-queries-unusable I'm sure that the solution presented there works well, but whilst I studied Java at uni and I can mostly understand C# I cannot understand this Lambda syntax provided and I need to get a similar example in VB. I've looked around the web for the best part of half a day but I'm not closer to my answer. So please can somebody advise how, in VB, I can construct a LINQ statement which would do this equivalent in SQL: SELECT rm.RoleID FROM RoleMembership rm INNER JOIN Roles r ON r.ID = rm.RoleID INNER JOIN Members m ON m.ID = rm.MemberID WHERE r.Name = 'Member' AND m.ID = 101 I would use this query to see if Member 101 is in Role 3. (I appreciate I probably don't need the join to the Members table in SQL but I imagine in LINQ I'd need to bring in the Member object?) UPDATE: I'm a bit closer by using multiple methods: Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load Dim count As Integer Using dc As New CBLModel.CBLEntities Dim persons = dc.Members.Where(AddressOf myTest) count = persons.Count End Using System.Diagnostics.Debugger.Break() End Sub Function myTest(ByVal m As Member) As Boolean Return m.ID = "100" AndAlso m.Roles.Select(AddressOf myRoleTest).Count > 0 End Function Function myRoleTest(ByVal r As Role) As Boolean Return r.Name = "Member" End Function SQL Profiler shows this: SQL:BatchStarting SELECT [Extent1].[ID] AS [ID], ... (all columns from Members snipped for brevity) ... FROM [dbo].[Members] AS [Extent1] RPC:Completed exec sp_executesql N'SELECT [Extent2].[ID] AS [ID], [Extent2].[Name] AS [Name], [Extent2].[Active] AS [Active] FROM [dbo].[RoleMembership] AS [Extent1] INNER JOIN [dbo].[Roles] AS [Extent2] ON [Extent1].[RoleID] = [Extent2].[ID] WHERE [Extent1].[MemberID] = @EntityKeyValue1',N'@EntityKeyValue1 int',@EntityKeyValue1=100 SQL:BatchCompleted SELECT [Extent1].[ID] AS [ID], ... (all columns from Members snipped for brevity) ... FROM [dbo].[Members] AS [Extent1] I'm not certain why it is using sp_execsql for the inner join statement and why it's still running a select to select ALL members though. Thanks. UPDATE 2 I've written it by turning the above "multiple methods" into lambda expressions then all into one query, like this: Dim allIDs As String = String.Empty Using dc As New CBLModel.CBLEntities For Each retM In dc.Members.Where(Function(m As Member) m.ID = 100 AndAlso m.Roles.Select(Function(r As Role) r.Name = "Doctor").Count > 0) allIDs &= retM.ID.ToString & ";" Next End Using But it doesn't seem to work: "Doctor" is not a role that exists, I just put it in there for testing purposes, yet "allIDs" still gets set to "100;" The SQL in SQL Profiler this time looks like this: SELECT [Project1].* FROM ( SELECT [Extent1].*, (SELECT COUNT(1) AS [A1] FROM [dbo].[RoleMembership] AS [Extent2] WHERE [Extent1].[ID] = [Extent2].[MemberID]) AS [C1] FROM [dbo].[Members] AS [Extent1] ) AS [Project1] WHERE (100 = [Project1].[ID]) AND ([Project1].[C1] > 0) For brevity I turned the list of all the columns from the Members table into * As you can see it's just ignoring the "Role" query... :/

    Read the article

  • AspxGridView Specified method is not supported. problem

    - by shamim
    Bellow is my .aspx aspxGridview syntax <dx:ASPxGridView ID="ASPxGridView1" runat="server" AutoGenerateColumns="False" KeyFieldName="intProductCode" onrowinserted="ASPxGridView1_RowInserted"> <Columns> <dx:GridViewCommandColumn VisibleIndex="0"> <EditButton Visible="True"> </EditButton> <NewButton Visible="True"> </NewButton> <DeleteButton Visible="True"> </DeleteButton> </dx:GridViewCommandColumn> <dx:GridViewDataTextColumn Caption="intProductCode" FieldName="intProductCode" VisibleIndex="1"> </dx:GridViewDataTextColumn> <dx:GridViewDataTextColumn Caption="strProductName" FieldName="strProductName" VisibleIndex="2"> </dx:GridViewDataTextColumn> <dx:GridViewDataTextColumn Caption="SKU" FieldName="SKU" VisibleIndex="3"> </dx:GridViewDataTextColumn> <dx:GridViewDataTextColumn Caption="PACK" FieldName="PACK" VisibleIndex="4"> </dx:GridViewDataTextColumn> <dx:GridViewDataTextColumn Caption="intQtyPerCase" FieldName="intQtyPerCase" VisibleIndex="5"> </dx:GridViewDataTextColumn> <dx:GridViewDataTextColumn Caption="mnyCasePrice" FieldName="mnyCasePrice" VisibleIndex="6"> </dx:GridViewDataTextColumn> <dx:GridViewDataTextColumn Caption="intTBQtyPerCase" FieldName="intTBQtyPerCase" VisibleIndex="7"> </dx:GridViewDataTextColumn> <dx:GridViewDataCheckColumn Caption="bIsActive" FieldName="bIsActive" VisibleIndex="8"> </dx:GridViewDataCheckColumn> <dx:GridViewDataTextColumn Caption="intSortingOrder" FieldName="intSortingOrder" VisibleIndex="9"> </dx:GridViewDataTextColumn> <dx:GridViewDataTextColumn Caption="strProductAccCode" FieldName="strProductAccCode" VisibleIndex="10"> </dx:GridViewDataTextColumn> </Columns> </dx:ASPxGridView> Bellow is my C# syntax : protected void Page_Load(object sender, EventArgs e) { if (this.IsPostBack != true) { BindGridView(); } } private void BindGridView() { DB_OrderV2DataContext db = new DB_OrderV2DataContext(); var r = from p in db.tblProductInfos select p; ASPxGridView1.DataSource = r; ASPxGridView1.DataBind(); } protected void LinqServerModeDataSource1_Selecting(object sender, DevExpress.Data.Linq.LinqServerModeDataSourceSelectEventArgs e) { DB_OrderV2DataContext db = new DB_OrderV2DataContext(); var r= from p in db.tblProductInfos select p; e.QueryableSource = r; } protected void ASPxGridView1_RowInserted(object sender, DevExpress.Web.Data.ASPxDataInsertedEventArgs e) { DB_OrderV2DataContext db = new DB_OrderV2DataContext(); tblProductInfo otblProductInfo = new tblProductInfo (); otblProductInfo.intProductCode = (db.tblProductInfos.Max(p => (int?)p.intProductCode) ?? 0) + 1;//oProductController.GenerateProductCode(); otblProductInfo.strProductName = Convert.ToString(e.NewValues["strProductName"]); otblProductInfo.SKU = Convert.ToString(e.NewValues["SKU"]); otblProductInfo.PACK = Convert.ToString(e.NewValues["PACK"]); otblProductInfo.intQtyPerCase = Convert.ToInt32(e.NewValues["intQtyPerCase"]); otblProductInfo.mnyCasePrice = Convert.ToDecimal(e.NewValues["mnyCasePrice"]); otblProductInfo.intTBQtyPerCase = Convert.ToInt32(e.NewValues["intTBQtyPerCase"]); otblProductInfo.bIsActive = Convert.ToBoolean(e.NewValues["bIsActive"]); otblProductInfo.intSortingOrder = (db.tblProductInfos.Max(p => (int?)p.intSortingOrder) ?? 0) + 1;//oProductController.GenerateSortingOrder(); db.tblProductInfos.InsertOnSubmit(otblProductInfo);//the InsertOnSubmit method called in the preceding code was named Add and the DeleteOnSubmit method was named Remove. db.SubmitChanges(); BindGridView(); //oProductController.InsertAndSubmit(); // ASPxGridView1.DataBind(); } My SQL syntax CREATE TABLE [dbo].[tblProductInfo]( [intProductCode] [int] NOT NULL, [strProductName] [varchar](100) NULL, [SKU] [varchar](50) NULL, [PACK] [varchar](50) NULL, [intQtyPerCase] [int] NULL, [mnyCasePrice] [money] NULL, [intTBQtyPerCase] [int] NULL, [bIsActive] [bit] NULL, [intSortingOrder] [int] NULL, [strProductAccCode] [varchar](max) NULL, CONSTRAINT [PK_tblProductInfo] PRIMARY KEY CLUSTERED ( [intProductCode] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] When i want to insert ,show me error message Specified method is not supported. How to solve it.

    Read the article

  • C# LINQ Where Predicate Type Arguments

    - by blu
    I have an XElement with values for mock data. I have an expression to query the xml: Expression<Func<XElement, bool>> simpleXmlFunction = b => int.Parse(b.Element("FooId").Value) == 12; used in: var simpleXml = xml.Elements("Foo").Where(simpleXmlFunction).First(); The design time error is: The type arguments for method 'System.Linq.Enumerable.Where(System.Collections.Generic.IEnumerable, System.Func)' cannot be inferred from the usage. Try specifying the type arguments explicitly' The delegate supplied to Where should take in an XElement and return a bool, marking if the item matches the query, I am not sure how to add anything more to the delegate or the where clause to mark the type. Also, the parallel method for the real function against the Entity Framework does not have this issue. What is not correct with the LINQ-to-XML version?

    Read the article

  • How to pass a Lambda Expression as method parameter with EF

    - by Registered User
    How do I pass an EF expression as a method argument? To illustrate my question I have created a pseudo code example: The first example is my method today. The example utilizes EF and a Fancy Retry Logic. What I need to do is to encapsulate the Fancy Retry Logic so that it becomes more generic and does not duplicate. In the second example is how I want it to be, with a helper method that accepts the EF expression as an argument. This would be a trivial thing to do with SQL, but I want to do it with EF so that I can benefit from the strongly typed objects. First Example: public static User GetUser(String userEmail) { using (MyEntities dataModel = new MyEntities ()) { var query = FancyRetryLogic(() => { (dataModel.Users.FirstOrDefault<User>(x => x.UserEmail == userEmail))); }); return query; } } Second Example: T RetryHelper<T>(Expression<Func<T, TValue>> expression) { using (MyEntities dataModel = new (MyEntities ()) { var query = FancyRetryLogic(() => { return dataModel.expression }); } } public User GetUser(String userEmail) { return RetryHelper<User>(<User>.FirstOrDefault<User>(x => x.UserEmail == userEmail)) }

    Read the article

  • Is it possible to load an entire SQL Server CE database into RAM?

    - by DanM
    I'm using LinqToSql to query a small SQL Server CE database. I've noticed that any operations involving sub-properties are disappointingly slow. For example, if I have a Customer table that is referenced by an Order table via a foreign key, LinqToSql will automatically create an EntitySet<Order> property. This is a nice convenience, allowing me to do things like Customer.Order.Where(o => o.ProductName = "Stopwatch"), but for some reason, SQL Server CE hangs up pretty bad when I try to do stuff like this. One of my queries, which isn't really that complicated takes 3-4 seconds to complete. I can get the speed up to acceptable, even fast, if I just grab the two tables individually and convert them to List<Customer> and List<Order>, then join then manually with my own query, but this is throwing out a lot of the appeal of LinqToSql. So, I'm wondering if I can somehow get the whole database into RAM and just query that way, then occasionally save it. Is this possible? How? If not, is there anything else I can do to boost the performance? Note: My database in its initial state is about 250K and I don't expect it to grow to more than 1-2Mb. So, loading the data into RAM certainly wouldn't be a problem from a memory point of view.

    Read the article

  • What is the term(s) used to describe programming language syntax?

    - by Mr Roys
    Is there an exact/correct term to describe this difference between the syntax/constructs of programming langauges e.g VB6 with its (if ... else ... endif) and C# with its curly braces for conditional statements. I'm using VB6 syntax and C# as examples since I'm more familiar with their syntax. For example, Visual Basic 6's syntax uses a more verbose, natural language like structure. If (id = 0) Then id = MyObject.Add(Me) Else Call MyObject.Update(Me) End If while C# has more concise syntax like: if (id == 0) { id = MyObject.Add(this); } else { MyObject.Update(this); } Conciseness? Natural languageness? Or is there a more "scientific" word for describing syntax?

    Read the article

  • count of last item of the day

    - by frenchie
    I have a query in which one of the fields contains the count of status. The status can change several times a day and the count should be based on the final status of the day. For instance, this is what I have for Status1. CountStatus1 = (from status in MyDataContext.StatusHistories where status.UserID == TheUserID where status.StatusDateTime.Month == TheMonth.Month where status.StatusDateTime.Year == TheMonth.Year where status.NewStatus == 1 // where the LAST STATUS OF THE DAY == 1 select status.StatusID).Count() The problem is that I want to select the last status of the day to be equal to 1, and count those. The status for a day can change from 1 to 4 to 2 to 5 to 3 and then to finally to 1; if I write the query like this, the count will include 2 1's and then the 4,2,5 and 3 will also be counted in CountStatus4, CountStatus3, CountStatus"n". The return data is a monthly report grouped by day, where each day is a row. The structure of the query looks like this: var OutputStatusReport = from w in MyDataContext.WorkHistory where w.UserID == TheUserID where w.WorkDatetime.Month == TheMonth.Month where w.WorkDatetime.Year == TheMonth.Year group w by w.Datetime.Date into daygroups select new MyObjectModel { CountStatus1 = ...., CountStatus2 = ...., CountStatus3 =...... }; So I need the day of the count to match the day of daygroups. I'm struggling to figure this one out and any help is very welcome. Thanks.

    Read the article

  • Would you use WCF Linq and JSON for an API

    - by Rico
    Ok Im building AN API but also wanting to have that API used by my own Application. I am pondering WCF, LinQ and JSON for my Webservices and Data and Silverlight for my application. I have a few questions. 1) would you recommend XML over JSON or Json over XML? a) is Json going to transfer and deserialize faster natively or is XML going to transfer and deserialize faster? 2) would Using LINQ hinder anyone connecting to my Service form PHP? 3) Would you recommend something different?

    Read the article

  • I just started learning the syntax of c++. What now? [closed]

    - by user73924
    I more or less know the syntax of C++, but when I start to write a program, I have nothing to write, I am blank. The thing is I knew the syntax of C as well and I didn't know how to write programs in that either. Though I could understand the written answers of almost anything. So, my question here is how do I start writing my own programs or how do I put my thoughts on any program using any programming language?

    Read the article

  • Query specific logs from event log using nxlog

    - by user170899
    Below is my nxlog configuration define ROOT C:\Program Files (x86)\nxlog Moduledir %ROOT%\modules CacheDir %ROOT%\data Pidfile %ROOT%\data\nxlog.pid SpoolDir %ROOT%\data LogFile %ROOT%\data\nxlog.log <Extension json> Module xm_json </Extension> <Input internal> Module im_internal </Input> <Input eventlog> Module im_msvistalog Query <QueryList>\ <Query Id="0">\ <Select Path="Security">*</Select>\ </Query>\ </QueryList> </Input> <Output out> Module om_tcp Host localhost Port 3515 Exec $EventReceivedTime = integer($EventReceivedTime) / 1000000; \ to_json(); </Output> <Route 1> Path eventlog, internal => out </Route> <Select Path="Security">*</Select>\ - * gets everything from the Security log, but my requirement is to get specific logs starting with EventId - 4663. How do i do this? Please help. Thanks.

    Read the article

< Previous Page | 198 199 200 201 202 203 204 205 206 207 208 209  | Next Page >