Search Results

Search found 23271 results on 931 pages for 'static classes'.

Page 202/931 | < Previous Page | 198 199 200 201 202 203 204 205 206 207 208 209  | Next Page >

  • Restrict type of method parameter with two or more class names?

    - by Kirzilla
    Hello, We can restrict type of method parameters; for example, we should say that function parameter should be an instance of object described in class with name "Some Class". function some_function(Some_Class $object) { } Is there any php native posibilities to restrict method parameter with two or more classes? For examle, "Some Class" or "Some Class2" or "Some Class3". Or maybe there is any way to restrict method parameter with classes which implements interface with name "Some_Interface"? Thank you.

    Read the article

  • Program that edits string and prints each word individually with C

    - by Michael_19
    I keep getting the error segmentation fault (core dumped) when I run my progam. #include<stdio.h> #include<stdlib.h> int nextword(char *str); int main(void) { char str[] = "Hello! Today is a beautiful day!!\t\n"; int i = nextword(str); while(i != -1) { printf("%s\n",&(str[i])); i = nextword(NULL); } return 0; } int nextword(char *str) { // create two static variables - these stay around across calls static char *s; static int nextindex; int thisindex; // reset the static variables if (str != NULL) { s = str; thisindex = 0; // TODO: advance this index past any leading spaces while (s[thisindex]=='\n' || s[thisindex]=='\t' || s[thisindex]==' ' ) thisindex++; } else { // set the return value to be the nextindex thisindex = nextindex; } // if we aren't done with the string... if (thisindex != -1) { nextindex = thisindex; // TODO: two things // 1: place a '\0' after the current word // 2: advance nextindex to the beginning // of the next word while (s[nextindex] != ' ' && s[nextindex] != '\0') nextindex++; str[nextindex] = '\0'; nextindex++; } return thisindex; } The goal of the program is to print each word in the string str[] to the console on a new line. I am a beginning programmer and this is an assignment so I must use this type of format (no string library allowed). I just would like to know where I went wrong and how I can fix it.

    Read the article

  • HttpContext.Items and Server.Transfer/Execute

    - by Rick Strahl
    A few days ago my buddy Ben Jones pointed out that he ran into a bug in the ScriptContainer control in the West Wind Web and Ajax Toolkit. The problem was basically that when a Server.Transfer call was applied the script container (and also various ClientScriptProxy script embedding routines) would potentially fail to load up the specified scripts. It turns out the problem is due to the fact that the various components in the toolkit use request specific singletons via a Current property. I use a static Current property tied to a Context.Items[] entry to handle this type of operation which looks something like this: /// <summary> /// Current instance of this class which should always be used to /// access this object. There are no public constructors to /// ensure the reference is used as a Singleton to further /// ensure that all scripts are written to the same clientscript /// manager. /// </summary> public static ClientScriptProxy Current { get { if (HttpContext.Current == null) return new ClientScriptProxy(); ClientScriptProxy proxy = null; if (HttpContext.Current.Items.Contains(STR_CONTEXTID)) proxy = HttpContext.Current.Items[STR_CONTEXTID] as ClientScriptProxy; else { proxy = new ClientScriptProxy(); HttpContext.Current.Items[STR_CONTEXTID] = proxy; } return proxy; } } The proxy is attached to a Context.Items[] item which makes the instance Request specific. This works perfectly fine in most situations EXCEPT when you’re dealing with Server.Transfer/Execute requests. Server.Transfer doesn’t cause Context.Items to be cleared so both the current transferred request and the original request’s Context.Items collection apply. For the ClientScriptProxy this causes a problem because script references are tracked on a per request basis in Context.Items to check for script duplication. Once a script is rendered an ID is written into the Context collection and so considered ‘rendered’: // No dupes - ref script include only once if (HttpContext.Current.Items.Contains( STR_SCRIPTITEM_IDENTITIFIER + fileId ) ) return; HttpContext.Current.Items.Add(STR_SCRIPTITEM_IDENTITIFIER + fileId, string.Empty); where the fileId is the script name or unique identifier. The problem is on the Transferred page the item will already exist in Context and so fail to render because it thinks the script has already rendered based on the Context item. Bummer. The workaround for this is simple once you know what’s going on, but in this case it was a bitch to track down because the context items are used in many places throughout this class. The trick is to determine when a request is transferred and then removing the specific keys. The first issue is to determine if a script is in a Trransfer or Execute call: if (HttpContext.Current.CurrentHandler != HttpContext.Current.Handler) Context.Handler is the original handler and CurrentHandler is the actual currently executing handler that is running when a Transfer/Execute is active. You can also use Context.PreviousHandler to get the last handler and chain through the whole list of handlers applied if Transfer calls are nested (dog help us all for the person debugging that). For the ClientScriptProxy the full logic to check for a transfer and remove the code looks like this: /// <summary> /// Clears all the request specific context items which are script references /// and the script placement index. /// </summary> public void ClearContextItemsOnTransfer() { if (HttpContext.Current != null) { // Check for Server.Transfer/Execute calls - we need to clear out Context.Items if (HttpContext.Current.CurrentHandler != HttpContext.Current.Handler) { List<string> Keys = HttpContext.Current.Items.Keys.Cast<string>().Where(s => s.StartsWith(STR_SCRIPTITEM_IDENTITIFIER) || s == STR_ScriptResourceIndex).ToList(); foreach (string key in Keys) { HttpContext.Current.Items.Remove(key); } } } } along with a small update to the Current property getter that sets a global flag to indicate whether the request was transferred: if (!proxy.IsTransferred && HttpContext.Current.Handler != HttpContext.Current.CurrentHandler) { proxy.ClearContextItemsOnTransfer(); proxy.IsTransferred = true; } return proxy; I know this is pretty ugly, but it works and it’s actually minimal fuss without affecting the behavior of the rest of the class. Ben had a different solution that involved explicitly clearing out the Context items and replacing the collection with a manually maintained list of items which also works, but required changes through the code to make this work. In hindsight, it would have been better to use a single object that encapsulates all the ‘persisted’ values and store that object in Context instead of all these individual small morsels. Hindsight is always 20/20 though :-}. If possible use Page.Items ClientScriptProxy is a generic component that can be used from anywhere in ASP.NET, so there are various methods that are not Page specific on this component which is why I used Context.Items, rather than the Page.Items collection.Page.Items would be a better choice since it will sidestep the above Server.Transfer nightmares as the Page is reloaded completely and so any new Page gets a new Items collection. No fuss there. So for the ScriptContainer control, which has to live on the page the behavior is a little different. It is attached to Page.Items (since it’s a control): /// <summary> /// Returns a current instance of this control if an instance /// is already loaded on the page. Otherwise a new instance is /// created, added to the Form and returned. /// /// It's important this function is not called too early in the /// page cycle - it should not be called before Page.OnInit(). /// /// This property is the preferred way to get a reference to a /// ScriptContainer control that is either already on a page /// or needs to be created. Controls in particular should always /// use this property. /// </summary> public static ScriptContainer Current { get { // We need a context for this to work! if (HttpContext.Current == null) return null; Page page = HttpContext.Current.CurrentHandler as Page; if (page == null) throw new InvalidOperationException(Resources.ERROR_ScriptContainer_OnlyWorks_With_PageBasedHandlers); ScriptContainer ctl = null; // Retrieve the current instance ctl = page.Items[STR_CONTEXTID] as ScriptContainer; if (ctl != null) return ctl; ctl = new ScriptContainer(); page.Form.Controls.Add(ctl); return ctl; } } The biggest issue with this approach is that you have to explicitly retrieve the page in the static Current property. Notice again the use of CurrentHandler (rather than Handler which was my original implementation) to ensure you get the latest page including the one that Server.Transfer fired. Server.Transfer and Server.Execute are Evil All that said – this fix is probably for the 2 people who are crazy enough to rely on Server.Transfer/Execute. :-} There are so many weird behavior problems with these commands that I avoid them at all costs. I don’t think I have a single application that uses either of these commands… Related Resources Full source of ClientScriptProxy.cs (repository) Part of the West Wind Web Toolkit Static Singletons for ASP.NET Controls Post © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Preserving Permalinks

    - by Daniel Moth
    One of the things that gets me on a rant is websites that break permalinks. If you have posted something somewhere and there is a public URL pointing to it, that URL should never ever return a 404. You are breaking all websites that ever linked to you and you are breaking all search engine links to your content (that others will try and follow). It is a pet peeve of mine. So when I had to move my blog, obviously I would preserve the root URL (www.danielmoth.com/Blog/), but I also wanted to preserve every URL my blog has generated over the years. To be clear, our focus here is on the URL formatting, not the content migration which I'll talk about in my next post. In this post, I'll describe my solution first and then what it solves. 1. The IIS7 Rewrite Module and web.config There are a few ways you can map an old URL to a new one (so when requests to the old URL come in, they get redirected to the new one). The new blog engine I use (dasBlog) has built-in functionality to do that (Scott refers to it here). Instead, the way I chose to address the issue was to use the IIS7 rewrite module. The IIS7 rewrite module allows redirecting URLs based on pattern matching, regular expressions and, of course, hardcoded full URLs for things that don't fall into any pattern. You can configure it visually from IIS Manager using a handy dialog that allows testing patterns against input URLs. Here is what mine looked like after configuring a few rules: To learn more about this technology check out this video, the reference page and this overview blog post; all 3 pages have a collection of related resources at the bottom worth checking out too. All the visual configuration ends up in a web.config file at the root folder of your website. If you are on a shared hosting service, probably the only way you can use the Rewrite Module is by directly editing the web.config file. Next, I'll describe the URLs I had to map and how that manifested itself in the web.config file. What I did was create the rules locally using the GUI, and then took the generated web.config file and uploaded it to my live site. You can view my web.config here. 2. Monthly Archives Observe the difference between the way the two blog engines generate this type of URL Blogger: /Blog/2004_07_01_mothblog_archive.html dasBlog: /Blog/default,month,2004-07.aspx In my web.config file, the rule that deals with this is the one named "monthlyarchive_redirect". 3. Categories Observe the difference between the way the two blog engines generate this type of URL Blogger: /Blog/labels/Personal.html dasBlog: /Blog/CategoryView,category,Personal.aspx In my web.config file the rule that deals with this is the one named "category_redirect". 4. Posts Observe the difference between the way the two blog engines generate this type of URL Blogger: /Blog/2004/07/hello-world.html dasBlog: /Blog/Hello-World.aspx In my web.config file the rule that deals with this is the one named "post_redirect". Note: The decision is taken to use dasBlog URLs that do not include the date info (see the description of my Appearance settings). If we included the date info then it would have to include the day part, which blogger did not generate. This makes it impossible to redirect correctly and to have a single permalink for blog posts moving forward. An implication of this decision, is that no two blog posts can have the same title. The tool I will describe in my next post (inelegantly) deals with duplicates, but not with triplicates or higher. 5. Unhandled by a generic rule Unfortunately, the two blog engines use different rules for generating URLs for blog posts. Most of the time the conversion is as simple as the example of the previous section where a post titled "Hello World" generates a URL with the words separated by a hyphen. Some times that is not the case, for example: /Blog/2006/05/medc-wrap-up.html /Blog/MEDC-Wrapup.aspx or /Blog/2005/01/best-of-moth-2004.html /Blog/Best-Of-The-Moth-2004.aspx or /Blog/2004/11/more-windows-mobile-2005-details.html /Blog/More-Windows-Mobile-2005-Details-Emerge.aspx In short, blogger does not add words to the title beyond ~39 characters, it drops some words from the title generation (e.g. a, an, on, the), and it preserve hyphens that appear in the title. For this reason, we need to detect these and explicitly list them for redirects (no regular expression can help here because the full set of rules is not listed anywhere). In my web.config file the rule that deals with this is the one named "Redirect rule1 for FullRedirects" combined with the rewriteMap named "StaticRedirects". Note: The tool I describe in my next post will detect all the URLs that need to be explicitly redirected and will list them in a file ready for you to copy them to your web.config rewriteMap. 6. C# code doing the same as the web.config I wrote some naive code that does the same thing as the web.config: given a string it will return a new string converted according to the 3 rules above. It does not take into account the 4th case where an explicit hard-coded conversion is needed (the tool I present in the next post does take that into account). static string REGEX_post_redirect = "[0-9]{4}/[0-9]{2}/([0-9a-z-]+).html"; static string REGEX_category_redirect = "labels/([_0-9a-z-% ]+).html"; static string REGEX_monthlyarchive_redirect = "([0-9]{4})_([0-9]{2})_[0-9]{2}_mothblog_archive.html"; static string Redirect(string oldUrl) { GroupCollection g; if (RunRegExOnIt(oldUrl, REGEX_post_redirect, 2, out g)) return string.Concat(g[1].Value, ".aspx"); if (RunRegExOnIt(oldUrl, REGEX_category_redirect, 2, out g)) return string.Concat("CategoryView,category,", g[1].Value, ".aspx"); if (RunRegExOnIt(oldUrl, REGEX_monthlyarchive_redirect, 3, out g)) return string.Concat("default,month,", g[1].Value, "-", g[2], ".aspx"); return string.Empty; } static bool RunRegExOnIt(string toRegEx, string pattern, int groupCount, out GroupCollection g) { if (pattern.Length == 0) { g = null; return false; } g = new Regex(pattern, RegexOptions.IgnoreCase | RegexOptions.Compiled).Match(toRegEx).Groups; return (g.Count == groupCount); } Comments about this post welcome at the original blog.

    Read the article

  • C#: LINQ vs foreach - Round 1.

    - by James Michael Hare
    So I was reading Peter Kellner's blog entry on Resharper 5.0 and its LINQ refactoring and thought that was very cool.  But that raised a point I had always been curious about in my head -- which is a better choice: manual foreach loops or LINQ?    The answer is not really clear-cut.  There are two sides to any code cost arguments: performance and maintainability.  The first of these is obvious and quantifiable.  Given any two pieces of code that perform the same function, you can run them side-by-side and see which piece of code performs better.   Unfortunately, this is not always a good measure.  Well written assembly language outperforms well written C++ code, but you lose a lot in maintainability which creates a big techncial debt load that is hard to offset as the application ages.  In contrast, higher level constructs make the code more brief and easier to understand, hence reducing technical cost.   Now, obviously in this case we're not talking two separate languages, we're comparing doing something manually in the language versus using a higher-order set of IEnumerable extensions that are in the System.Linq library.   Well, before we discuss any further, let's look at some sample code and the numbers.  First, let's take a look at the for loop and the LINQ expression.  This is just a simple find comparison:       // find implemented via LINQ     public static bool FindViaLinq(IEnumerable<int> list, int target)     {         return list.Any(item => item == target);     }         // find implemented via standard iteration     public static bool FindViaIteration(IEnumerable<int> list, int target)     {         foreach (var i in list)         {             if (i == target)             {                 return true;             }         }           return false;     }   Okay, looking at this from a maintainability point of view, the Linq expression is definitely more concise (8 lines down to 1) and is very readable in intention.  You don't have to actually analyze the behavior of the loop to determine what it's doing.   So let's take a look at performance metrics from 100,000 iterations of these methods on a List<int> of varying sizes filled with random data.  For this test, we fill a target array with 100,000 random integers and then run the exact same pseudo-random targets through both searches.                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     Any         10       26          0.00046             30.00%     Iteration   10       20          0.00023             -     Any         100      116         0.00201             18.37%     Iteration   100      98          0.00118             -     Any         1000     1058        0.01853             16.78%     Iteration   1000     906         0.01155             -     Any         10,000   10,383      0.18189             17.41%     Iteration   10,000   8843        0.11362             -     Any         100,000  104,004     1.8297              18.27%     Iteration   100,000  87,941      1.13163             -   The LINQ expression is running about 17% slower for average size collections and worse for smaller collections.  Presumably, this is due to the overhead of the state machine used to track the iterators for the yield returns in the LINQ expressions, which seems about right in a tight loop such as this.   So what about other LINQ expressions?  After all, Any() is one of the more trivial ones.  I decided to try the TakeWhile() algorithm using a Count() to get the position stopped like the sample Pete was using in his blog that Resharper refactored for him into LINQ:       // Linq form     public static int GetTargetPosition1(IEnumerable<int> list, int target)     {         return list.TakeWhile(item => item != target).Count();     }       // traditionally iterative form     public static int GetTargetPosition2(IEnumerable<int> list, int target)     {         int count = 0;           foreach (var i in list)         {             if(i == target)             {                 break;             }               ++count;         }           return count;     }   Once again, the LINQ expression is much shorter, easier to read, and should be easier to maintain over time, reducing the cost of technical debt.  So I ran these through the same test data:                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile   10       41          0.00041             128%     Iteration   10       18          0.00018             -     TakeWhile   100      171         0.00171             88%     Iteration   100      91          0.00091             -     TakeWhile   1000     1604        0.01604             94%     Iteration   1000     825         0.00825             -     TakeWhile   10,000   15765       0.15765             92%     Iteration   10,000   8204        0.08204             -     TakeWhile   100,000  156950      1.5695              92%     Iteration   100,000  81635       0.81635             -     Wow!  I expected some overhead due to the state machines iterators produce, but 90% slower?  That seems a little heavy to me.  So then I thought, well, what if TakeWhile() is not the right tool for the job?  The problem is TakeWhile returns each item for processing using yield return, whereas our for-loop really doesn't care about the item beyond using it as a stop condition to evaluate. So what if that back and forth with the iterator state machine is the problem?  Well, we can quickly create an (albeit ugly) lambda that uses the Any() along with a count in a closure (if a LINQ guru knows a better way PLEASE let me know!), after all , this is more consistent with what we're trying to do, we're trying to find the first occurence of an item and halt once we find it, we just happen to be counting on the way.  This mostly matches Any().       // a new method that uses linq but evaluates the count in a closure.     public static int TakeWhileViaLinq2(IEnumerable<int> list, int target)     {         int count = 0;         list.Any(item =>             {                 if(item == target)                 {                     return true;                 }                   ++count;                 return false;             });         return count;     }     Now how does this one compare?                         List<T> On 100,000 Iterations     Method         Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile      10       41          0.00041             128%     Any w/Closure  10       23          0.00023             28%     Iteration      10       18          0.00018             -     TakeWhile      100      171         0.00171             88%     Any w/Closure  100      116         0.00116             27%     Iteration      100      91          0.00091             -     TakeWhile      1000     1604        0.01604             94%     Any w/Closure  1000     1101        0.01101             33%     Iteration      1000     825         0.00825             -     TakeWhile      10,000   15765       0.15765             92%     Any w/Closure  10,000   10802       0.10802             32%     Iteration      10,000   8204        0.08204             -     TakeWhile      100,000  156950      1.5695              92%     Any w/Closure  100,000  108378      1.08378             33%     Iteration      100,000  81635       0.81635             -     Much better!  It seems that the overhead of TakeAny() returning each item and updating the state in the state machine is drastically reduced by using Any() since Any() iterates forward until it finds the value we're looking for -- for the task we're attempting to do.   So the lesson there is, make sure when you use a LINQ expression you're choosing the best expression for the job, because if you're doing more work than you really need, you'll have a slower algorithm.  But this is true of any choice of algorithm or collection in general.     Even with the Any() with the count in the closure it is still about 30% slower, but let's consider that angle carefully.  For a list of 100,000 items, it was the difference between 1.01 ms and 0.82 ms roughly in a List<T>.  That's really not that bad at all in the grand scheme of things.  Even running at 90% slower with TakeWhile(), for the vast majority of my projects, an extra millisecond to save potential errors in the long term and improve maintainability is a small price to pay.  And if your typical list is 1000 items or less we're talking only microseconds worth of difference.   It's like they say: 90% of your performance bottlenecks are in 2% of your code, so over-optimizing almost never pays off.  So personally, I'll take the LINQ expression wherever I can because they will be easier to read and maintain (thus reducing technical debt) and I can rely on Microsoft's development to have coded and unit tested those algorithm fully for me instead of relying on a developer to code the loop logic correctly.   If something's 90% slower, yes, it's worth keeping in mind, but it's really not until you start get magnitudes-of-order slower (10x, 100x, 1000x) that alarm bells should really go off.  And if I ever do need that last millisecond of performance?  Well then I'll optimize JUST THAT problem spot.  To me it's worth it for the readability, speed-to-market, and maintainability.

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Given an XML which contains a representation of a graph, how to apply it DFS algorithm? [on hold]

    - by winston smith
    Given the followin XML which is a directed graph: <?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE graph PUBLIC "-//FC//DTD red//EN" "../dtd/graph.dtd"> <graph direct="1"> <vertex label="V0"/> <vertex label="V1"/> <vertex label="V2"/> <vertex label="V3"/> <vertex label="V4"/> <vertex label="V5"/> <edge source="V0" target="V1" weight="1"/> <edge source="V0" target="V4" weight="1"/> <edge source="V5" target="V2" weight="1"/> <edge source="V5" target="V4" weight="1"/> <edge source="V1" target="V2" weight="1"/> <edge source="V1" target="V3" weight="1"/> <edge source="V1" target="V4" weight="1"/> <edge source="V2" target="V3" weight="1"/> </graph> With this classes i parsed the graph and give it an adjacency list representation: import java.io.IOException; import java.util.HashSet; import java.util.LinkedList; import java.util.Collection; import java.util.Iterator; import java.util.logging.Level; import java.util.logging.Logger; import practica3.util.Disc; public class ParsingXML { public static void main(String[] args) { try { // TODO code application logic here Collection<Vertex> sources = new HashSet<Vertex>(); LinkedList<String> lines = Disc.readFile("xml/directed.xml"); for (String lin : lines) { int i = Disc.find(lin, "source=\""); String data = ""; if (i > 0 && i < lin.length()) { while (lin.charAt(i + 1) != '"') { data += lin.charAt(i + 1); i++; } Vertex v = new Vertex(); v.setName(data); v.setAdy(new HashSet<Vertex>()); sources.add(v); } } Iterator it = sources.iterator(); while (it.hasNext()) { Vertex ver = (Vertex) it.next(); Collection<Vertex> adyacencias = ver.getAdy(); LinkedList<String> ls = Disc.readFile("xml/graphs.xml"); for (String lin : ls) { int i = Disc.find(lin, "target=\""); String data = ""; if (lin.contains("source=\""+ver.getName())) { Vertex v = new Vertex(); if (i > 0 && i < lin.length()) { while (lin.charAt(i + 1) != '"') { data += lin.charAt(i + 1); i++; } v.setName(data); } i = Disc.find(lin, "weight=\""); data = ""; if (i > 0 && i < lin.length()) { while (lin.charAt(i + 1) != '"') { data += lin.charAt(i + 1); i++; } v.setWeight(Integer.parseInt(data)); } if (v.getName() != null) { adyacencias.add(v); } } } } for (Vertex vert : sources) { System.out.println(vert); System.out.println("adyacencias: " + vert.getAdy()); } } catch (IOException ex) { Logger.getLogger(ParsingXML.class.getName()).log(Level.SEVERE, null, ex); } } } This is another class: import java.util.Collection; import java.util.Objects; public class Vertex { private String name; private int weight; private Collection ady; public Collection getAdy() { return ady; } public void setAdy(Collection adyacencias) { this.ady = adyacencias; } public String getName() { return name; } public void setName(String nombre) { this.name = nombre; } public int getWeight() { return weight; } public void setWeight(int weight) { this.weight = weight; } @Override public int hashCode() { int hash = 7; hash = 43 * hash + Objects.hashCode(this.name); hash = 43 * hash + this.weight; return hash; } @Override public boolean equals(Object obj) { if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final Vertex other = (Vertex) obj; if (!Objects.equals(this.name, other.name)) { return false; } if (this.weight != other.weight) { return false; } return true; } @Override public String toString() { return "Vertice{" + "name=" + name + ", weight=" + weight + '}'; } } And finally: /** * * @author user */ /* -*-jde-*- */ /* <Disc.java> Contains the main argument*/ import java.io.*; import java.util.LinkedList; /** * Lectura y escritura de archivos en listas de cadenas * Ideal para el uso de las clases para gráficas. * * @author Peralta Santa Anna Victor Miguel * @since Julio 2011 */ public class Disc { /** * Metodo para lectura de un archivo * * @param fileName archivo que se va a leer * @return El archivo en representacion de lista de cadenas */ public static LinkedList<String> readFile(String fileName) throws IOException { BufferedReader file = new BufferedReader(new FileReader(fileName)); LinkedList<String> textlist = new LinkedList<String>(); while (file.ready()) { textlist.add(file.readLine().trim()); } file.close(); /* for(String linea:textlist){ if(linea.contains("source")){ //String generado = linea.replaceAll("<\\w+\\s+\"", ""); //System.out.println(generado); } }*/ return textlist; }//readFile public static int find(String linea,String palabra){ int i,j; boolean found = false; for(i=0,j=0;i<linea.length();i++){ if(linea.charAt(i)==palabra.charAt(j)){ j++; if(j==palabra.length()){ found = true; return i; } }else{ continue; } } if(!found){ i= -1; } return i; } /** * Metodo para la escritura de un archivo * * @param fileName archivo que se va a escribir * @param tofile la lista de cadenas que quedaran en el archivo * @param append el bit que dira si se anexa el contenido o se empieza de cero */ public static void writeFile(String fileName, LinkedList<String> tofile, boolean append) throws IOException { FileWriter file = new FileWriter(fileName, append); for (int i = 0; i < tofile.size(); i++) { file.write(tofile.get(i) + "\n"); } file.close(); }//writeFile /** * Metodo para escritura de un archivo * @param msg archivo que se va a escribir * @param tofile la cadena que quedaran en el archivo * @param append el bit que dira si se anexa el contenido o se empieza de cero */ public static void writeFile(String msg, String tofile, boolean append) throws IOException { FileWriter file = new FileWriter(msg, append); file.write(tofile); file.close(); }//writeFile }// I'm stuck on what can be the best way to given an adjacency list representation of the graph how to apply it Depth-first search algorithm. Any idea of how to aproach to complete the task?

    Read the article

  • The Clocks on USACO

    - by philip
    I submitted my code for a question on USACO titled "The Clocks". This is the link to the question: http://ace.delos.com/usacoprob2?a=wj7UqN4l7zk&S=clocks This is the output: Compiling... Compile: OK Executing... Test 1: TEST OK [0.173 secs, 13928 KB] Test 2: TEST OK [0.130 secs, 13928 KB] Test 3: TEST OK [0.583 secs, 13928 KB] Test 4: TEST OK [0.965 secs, 13928 KB] Run 5: Execution error: Your program (`clocks') used more than the allotted runtime of 1 seconds (it ended or was stopped at 1.584 seconds) when presented with test case 5. It used 13928 KB of memory. ------ Data for Run 5 ------ 6 12 12 12 12 12 12 12 12 ---------------------------- Your program printed data to stdout. Here is the data: ------------------- time:_0.40928452 ------------------- Test 5: RUNTIME 1.5841 (13928 KB) I wrote my program so that it will print out the time taken (in seconds) for the program to complete before it exits. As can be seen, it took 0.40928452 seconds before exiting. So how the heck did the runtime end up to be 1.584 seconds? What should I do about it? This is the code if it helps: import java.io.; import java.util.; class clocks { public static void main(String[] args) throws IOException { long start = System.nanoTime(); // Use BufferedReader rather than RandomAccessFile; it's much faster BufferedReader f = new BufferedReader(new FileReader("clocks.in")); // input file name goes above PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("clocks.out"))); // Use StringTokenizer vs. readLine/split -- lots faster int[] clock = new int[9]; for (int i = 0; i < 3; i++) { StringTokenizer st = new StringTokenizer(f.readLine()); // Get line, break into tokens clock[i * 3] = Integer.parseInt(st.nextToken()); clock[i * 3 + 1] = Integer.parseInt(st.nextToken()); clock[i * 3 + 2] = Integer.parseInt(st.nextToken()); } ArrayList validCombination = new ArrayList();; for (int i = 1; true; i++) { ArrayList combination = getPossibleCombinations(i); for (int j = 0; j < combination.size(); j++) { if (tryCombination(clock, (int[]) combination.get(j))) { validCombination.add(combination.get(j)); } } if (validCombination.size() > 0) { break; } } int [] min = (int[])validCombination.get(0); if (validCombination.size() > 1){ String minS = ""; for (int i=0; i<min.length; i++) minS += min[i]; for (int i=1; i<validCombination.size(); i++){ String tempS = ""; int [] temp = (int[])validCombination.get(i); for (int j=0; j<temp.length; j++) tempS += temp[j]; if (tempS.compareTo(minS) < 0){ minS = tempS; min = temp; } } } for (int i=0; i<min.length-1; i++) out.print(min[i] + " "); out.println(min[min.length-1]); out.close(); // close the output file long end = System.nanoTime(); System.out.println("time: " + (end-start)/1000000000.0); System.exit(0); // don't omit this! } static boolean tryCombination(int[] clock, int[] steps) { int[] temp = Arrays.copyOf(clock, clock.length); for (int i = 0; i < steps.length; i++) transform(temp, steps[i]); for (int i=0; i<temp.length; i++) if (temp[i] != 12) return false; return true; } static void transform(int[] clock, int n) { if (n == 1) { int[] clocksToChange = {0, 1, 3, 4}; add3(clock, clocksToChange); } else if (n == 2) { int[] clocksToChange = {0, 1, 2}; add3(clock, clocksToChange); } else if (n == 3) { int[] clocksToChange = {1, 2, 4, 5}; add3(clock, clocksToChange); } else if (n == 4) { int[] clocksToChange = {0, 3, 6}; add3(clock, clocksToChange); } else if (n == 5) { int[] clocksToChange = {1, 3, 4, 5, 7}; add3(clock, clocksToChange); } else if (n == 6) { int[] clocksToChange = {2, 5, 8}; add3(clock, clocksToChange); } else if (n == 7) { int[] clocksToChange = {3, 4, 6, 7}; add3(clock, clocksToChange); } else if (n == 8) { int[] clocksToChange = {6, 7, 8}; add3(clock, clocksToChange); } else if (n == 9) { int[] clocksToChange = {4, 5, 7, 8}; add3(clock, clocksToChange); } } static void add3(int[] clock, int[] position) { for (int i = 0; i < position.length; i++) { if (clock[position[i]] != 12) { clock[position[i]] += 3; } else { clock[position[i]] = 3; } } } static ArrayList getPossibleCombinations(int size) { ArrayList l = new ArrayList(); int[] current = new int[size]; for (int i = 0; i < current.length; i++) { current[i] = 1; } int[] end = new int[size]; for (int i = 0; i < end.length; i++) { end[i] = 9; } l.add(Arrays.copyOf(current, size)); while (!Arrays.equals(current, end)) { incrementWithoutRepetition(current, current.length - 1); l.add(Arrays.copyOf(current, size)); } int [][] combination = new int[l.size()][size]; for (int i=0; i<l.size(); i++) combination[i] = (int[])l.get(i); return l; } static int incrementWithoutRepetition(int[] n, int index) { if (n[index] != 9) { n[index]++; return n[index]; } else { n[index] = incrementWithoutRepetition(n, index - 1); return n[index]; } } static void p(int[] n) { for (int i = 0; i < n.length; i++) { System.out.print(n[i] + " "); } System.out.println(""); } }

    Read the article

  • How can I get the following compiled on UVA?

    - by Michael Tsang
    Note the comment below. It cannot compiled on UVA because of a bug in GCC. #include <cstdio> #include <cstring> #include <cctype> #include <map> #include <stdexcept> class Board { public: bool read(FILE *); enum Colour {none, white, black}; Colour check() const; private: struct Index { size_t x; size_t y; Index &operator+=(const Index &) throw(std::range_error); Index operator+(const Index &) const throw(std::range_error); }; const static std::size_t size = 8; char data[size][size]; // Cannot be compiled on GCC 4.1.2 due to GCC bug 29993 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=29993 typedef bool CheckFunction(Colour, const Index &) const; CheckFunction pawn, knight, bishop, king, rook; bool queen(const Colour c, const Index &location) const { return rook(c, location) || bishop(c, location); } static char get_king(Colour c) { return c == white ? 'k' : 'K'; } template<std::size_t n> bool check_consecutive(Colour c, const Index &location, const Index (&offsets)[n]) const { for(const Index *p = offsets; p != (&offsets)[1]; ++p) { try { Index target = location + *p; for(; data[target.x][target.y] == '.'; target += *p) { } if(data[target.x][target.y] == get_king(c)) return true; } catch(std::range_error &) { } } return false; } template<std::size_t n> bool check_distinct(Colour c, const Index &location, const Index (&offsets)[n]) const { for(const Index *p = offsets; p != (&offsets)[1]; ++p) { try { Index target = location + *p; if(data[target.x][target.y] == get_king(c)) return true; } catch(std::range_error &) { } } return false; } }; int main() { Board board; for(int d = 1; board.read(stdin); ++d) { Board::Colour c = board.check(); const char *sp; switch(c) { case Board::black: sp = "white"; break; case Board::white: sp = "black"; break; case Board::none: sp = "no"; break; } std::printf("Game #%d: %s king is in check.\n", d, sp); std::getchar(); // discard empty line } } bool Board::read(FILE *f) { static const char empty[] = "........" "........" "........" "........" "........" "........" "........" "........"; // 64 dots for(char (*p)[size] = data; p != (&data)[1]; ++p) { std::fread(*p, size, 1, f); std::fgetc(f); // discard new-line } return std::memcmp(empty, data, sizeof data); } Board::Colour Board::check() const { std::map<char, CheckFunction Board::*> fp; fp['P'] = &Board::pawn; fp['N'] = &Board::knight; fp['B'] = &Board::bishop; fp['Q'] = &Board::queen; fp['K'] = &Board::king; fp['R'] = &Board::rook; for(std::size_t i = 0; i != size; ++i) { for(std::size_t j = 0; j != size; ++j) { CheckFunction Board::* p = fp[std::toupper(data[i][j])]; if(p) { Colour ret; if(std::isupper(data[i][j])) ret = white; else ret = black; if((this->*p)(ret, (Index){i, j}/* C99 extension */)) return ret; } } } return none; } bool Board::pawn(const Colour c, const Index &location) const { const std::ptrdiff_t sh = c == white ? -1 : 1; const Index offsets[] = { {sh, 1}, {sh, -1} }; return check_distinct(c, location, offsets); } bool Board::knight(const Colour c, const Index &location) const { static const Index offsets[] = { {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}, {-2, 1}, {-1, 2} }; return check_distinct(c, location, offsets); } bool Board::bishop(const Colour c, const Index &location) const { static const Index offsets[] = { {1, 1}, {1, -1}, {-1, -1}, {-1, 1} }; return check_consecutive(c, location, offsets); } bool Board::rook(const Colour c, const Index &location) const { static const Index offsets[] = { {1, 0}, {0, -1}, {0, 1}, {-1, 0} }; return check_consecutive(c, location, offsets); } bool Board::king(const Colour c, const Index &location) const { static const Index offsets[] = { {-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1} }; return check_distinct(c, location, offsets); } Board::Index &Board::Index::operator+=(const Index &rhs) throw(std::range_error) { if(x + rhs.x >= size || y + rhs.y >= size) throw std::range_error("result is larger than size"); x += rhs.x; y += rhs.y; return *this; } Board::Index Board::Index::operator+(const Index &rhs) const throw(std::range_error) { Index ret = *this; return ret += rhs; }

    Read the article

  • Odd behavior when recursively building a return type for variadic functions

    - by Dennis Zickefoose
    This is probably going to be a really simple explanation, but I'm going to give as much backstory as possible in case I'm wrong. Advanced apologies for being so verbose. I'm using gcc4.5, and I realize the c++0x support is still somewhat experimental, but I'm going to act on the assumption that there's a non-bug related reason for the behavior I'm seeing. I'm experimenting with variadic function templates. The end goal was to build a cons-list out of std::pair. It wasn't meant to be a custom type, just a string of pair objects. The function that constructs the list would have to be in some way recursive, with the ultimate return value being dependent on the result of the recursive calls. As an added twist, successive parameters are added together before being inserted into the list. So if I pass [1, 2, 3, 4, 5, 6] the end result should be {1+2, {3+4, 5+6}}. My initial attempt was fairly naive. A function, Build, with two overloads. One took two identical parameters and simply returned their sum. The other took two parameters and a parameter pack. The return value was a pair consisting of the sum of the two set parameters, and the recursive call. In retrospect, this was obviously a flawed strategy, because the function isn't declared when I try to figure out its return type, so it has no choice but to resolve to the non-recursive version. That I understand. Where I got confused was the second iteration. I decided to make those functions static members of a template class. The function calls themselves are not parameterized, but instead the entire class is. My assumption was that when the recursive function attempts to generate its return type, it would instantiate a whole new version of the structure with its own static function, and everything would work itself out. The result was: "error: no matching function for call to BuildStruct<double, double, char, char>::Go(const char&, const char&)" The offending code: static auto Go(const Type& t0, const Type& t1, const Types&... rest) -> std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> My confusion comes from the fact that the parameters to BuildStruct should always be the same types as the arguments sent to BuildStruct::Go, but in the error code Go is missing the initial two double parameters. What am I missing here? If my initial assumption about how the static functions would be chosen was incorrect, why is it trying to call the wrong function rather than just not finding a function at all? It seems to just be mixing types willy-nilly, and I just can't come up with an explanation as to why. If I add additional parameters to the initial call, it always burrows down to that last step before failing, so presumably the recursion itself is at least partially working. This is in direct contrast to the initial attempt, which always failed to find a function call right away. Ultimately, I've gotten past the problem, with a fairly elegant solution that hardly resembles either of the first two attempts. So I know how to do what I want to do. I'm looking for an explanation for the failure I saw. Full code to follow since I'm sure my verbal description was insufficient. First some boilerplate, if you feel compelled to execute the code and see it for yourself. Then the initial attempt, which failed reasonably, then the second attempt, which did not. #include <iostream> using std::cout; using std::endl; #include <utility> template<typename T1, typename T2> std::ostream& operator <<(std::ostream& str, const std::pair<T1, T2>& p) { return str << "[" << p.first << ", " << p.second << "]"; } //Insert code here int main() { Execute(5, 6, 4.3, 2.2, 'c', 'd'); Execute(5, 6, 4.3, 2.2); Execute(5, 6); return 0; } Non-struct solution: template<typename Type> Type BuildFunction(const Type& t0, const Type& t1) { return t0 + t1; } template<typename Type, typename... Rest> auto BuildFunction(const Type& t0, const Type& t1, const Rest&... rest) -> std::pair<Type, decltype(BuildFunction(rest...))> { return std::pair<Type, decltype(BuildFunction(rest...))> (t0 + t1, BuildFunction(rest...)); } template<typename... Types> void Execute(const Types&... t) { cout << BuildFunction(t...) << endl; } Resulting errors: test.cpp: In function 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]': test.cpp:33:35: instantiated from here test.cpp:28:3: error: no matching function for call to 'BuildFunction(const int&, const int&, const double&, const double&, const char&, const char&)' Struct solution: template<typename... Types> struct BuildStruct; template<typename Type> struct BuildStruct<Type, Type> { static Type Go(const Type& t0, const Type& t1) { return t0 + t1; } }; template<typename Type, typename... Types> struct BuildStruct<Type, Type, Types...> { static auto Go(const Type& t0, const Type& t1, const Types&... rest) -> std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> { return std::pair<Type, decltype(BuildStruct<Types...>::Go(rest...))> (t0 + t1, BuildStruct<Types...>::Go(rest...)); } }; template<typename... Types> void Execute(const Types&... t) { cout << BuildStruct<Types...>::Go(t...) << endl; } Resulting errors: test.cpp: In instantiation of 'BuildStruct<int, int, double, double, char, char>': test.cpp:33:3: instantiated from 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]' test.cpp:38:41: instantiated from here test.cpp:24:15: error: no matching function for call to 'BuildStruct<double, double, char, char>::Go(const char&, const char&)' test.cpp:24:15: note: candidate is: static std::pair<Type, decltype (BuildStruct<Types ...>::Go(BuildStruct<Type, Type, Types ...>::Go::rest ...))> BuildStruct<Type, Type, Types ...>::Go(const Type&, const Type&, const Types& ...) [with Type = double, Types = {char, char}, decltype (BuildStruct<Types ...>::Go(BuildStruct<Type, Type, Types ...>::Go::rest ...)) = char] test.cpp: In function 'void Execute(const Types& ...) [with Types = {int, int, double, double, char, char}]': test.cpp:38:41: instantiated from here test.cpp:33:3: error: 'Go' is not a member of 'BuildStruct<int, int, double, double, char, char>'

    Read the article

  • login form with java/sqlite

    - by tuxou
    hi I would like to create a login form for my application with the possibility to add or remove users for an sqlite database, i have created the table users(nam, pass) but i can't unclud it in my login form, it someone could help me this is my login code: import java.awt.*; import java.awt.event.*; import javax.swing.*; public class login extends JFrame{ // Variables declaration private JLabel jLabel1; private JLabel jLabel2; private JTextField jTextField1; private JPasswordField jPasswordField1; private JButton jButton1; private JPanel contentPane; // End of variables declaration public login(){ super(); create(); this.setVisible(true); } private void create(){ jLabel1 = new JLabel(); jLabel2 = new JLabel(); jTextField1 = new JTextField(); jPasswordField1 = new JPasswordField(); jButton1 = new JButton(); contentPane = (JPanel)this.getContentPane(); // // jLabel1 // jLabel1.setHorizontalAlignment(SwingConstants.LEFT); jLabel1.setForeground(new Color(0, 0, 255)); jLabel1.setText("username:"); // // jLabel2 // jLabel2.setHorizontalAlignment(SwingConstants.LEFT); jLabel2.setForeground(new Color(0, 0, 255)); jLabel2.setText("password:"); // // jTextField1 // jTextField1.setForeground(new Color(0, 0, 255)); jTextField1.setSelectedTextColor(new Color(0, 0, 255)); jTextField1.setToolTipText("Enter your username"); jTextField1.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e){ jTextField1_actionPerformed(e); } }); // // jPasswordField1 // jPasswordField1.setForeground(new Color(0, 0, 255)); jPasswordField1.setToolTipText("Enter your password"); jPasswordField1.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e){ jPasswordField1_actionPerformed(e); } }); // // jButton1 // jButton1.setBackground(new Color(204, 204, 204)); jButton1.setForeground(new Color(0, 0, 255)); jButton1.setText("Login"); jButton1.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e){ jButton1_actionPerformed(e); } }); // // contentPane // contentPane.setLayout(null); contentPane.setBorder(BorderFactory.createEtchedBorder()); contentPane.setBackground(new Color(204, 204, 204)); addComponent(contentPane, jLabel1, 5,10,106,18); addComponent(contentPane, jLabel2, 5,47,97,18); addComponent(contentPane, jTextField1, 110,10,183,22); addComponent(contentPane, jPasswordField1, 110,45,183,22); addComponent(contentPane, jButton1, 150,75,83,28); // // login // this.setTitle("Login To Members Area"); this.setLocation(new Point(76, 182)); this.setSize(new Dimension(335, 141)); this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE); this.setResizable(false); } /** Add Component Without a Layout Manager (Absolute Positioning) */ private void addComponent(Container container,Component c,int x,int y,int width,int height){ c.setBounds(x,y,width,height); container.add(c); } private void jTextField1_actionPerformed(ActionEvent e){ } private void jPasswordField1_actionPerformed(ActionEvent e){ } private void jButton1_actionPerformed(ActionEvent e){ System.out.println("\njButton1_actionPerformed(ActionEvent e) called."); String username = new String(jTextField1.getText()); String password = new String(jPasswordField1.getText()); if(username.equals("") || password.equals("")){// If password and username is empty > Do this >>> jButton1.setEnabled(false); JLabel errorFields = new JLabel("<HTML><FONT COLOR = Blue>You must enter a username and password to login.</FONT></HTML>"); JOptionPane.showMessageDialog(null,errorFields); jTextField1.setText(""); jPasswordField1.setText(""); jButton1.setEnabled(true); this.setVisible(true); } else{ JLabel optionLabel = new JLabel("<HTML><FONT COLOR = Blue>You entered</FONT><FONT COLOR = RED> <B>"+username+"</B></FONT> <FONT COLOR = Blue>as your username.<BR> Is this correct?</FONT></HTML>"); int confirm =JOptionPane.showConfirmDialog(null,optionLabel); switch(confirm){ // Switch > Case case JOptionPane.YES_OPTION: // Attempt to Login user jButton1.setEnabled(false); // Set button enable to false to prevent 2 login attempts break; case JOptionPane.NO_OPTION: // No Case.(Go back. Set text to 0) jButton1.setEnabled(false); jTextField1.setText(""); jPasswordField1.setText(""); jButton1.setEnabled(true); break; case JOptionPane.CANCEL_OPTION: // Cancel Case.(Go back. Set text to 0) jButton1.setEnabled(false); jTextField1.setText(""); jPasswordField1.setText(""); jButton1.setEnabled(true); break; } // End Switch > Case } } public static void main(String[] args){ JFrame.setDefaultLookAndFeelDecorated(true); JDialog.setDefaultLookAndFeelDecorated(true); try{ UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel"); }catch (Exception ex){ System.out.println("Failed loading L&F: "); System.out.println(ex); } new login(); }; } my connectDb class : public class Connectdb { private static Connection connect; private static String url ="jdbc:sqlite:data.db"; private static Statement st; private static ResultSet rs; /** * Constructeur privé d'une connection à la bd unique */ private ConnectionBd(){ try { Class.forName("org.sqlite.JDBC"); connect = DriverManager.getConnection(url); } catch (ClassNotFoundException ex) { Logger.getLogger(ex.getName()).log(Level.SEVERE, null, ex); } catch (SQLException e) { System.exit(e.getErrorCode()); } } public static Connection getInstance(){ if(connect == null){ new Connectdb(); }else{ } return connect; } /** * @return */ public static void initTable(String query){ try { Statement state = getInstance().createStatement(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY); ResultSet res = state.executeQuery(query); res.close(); state.close(); } catch (SQLException e) { JOptionPane.showMessageDialog(null, e.getMessage(), "ERROR ! ", JOptionPane.ERROR_MESSAGE); } }

    Read the article

  • getting Null pointer exception

    - by Abhijeet
    Hi I am getting this message on emulator when I run my android project: The application MediaPlayerDemo_Video.java (process com.android.MediaPlayerDemo_Video) has stopped unexpectedly. Please try again I am trying to run the MediaPlayerDemo_Video.java given in ApiDemos in the Samples given on developer.android.com. The code is : package com.android.MediaPlayerDemo_Video; import android.app.Activity; import android.media.AudioManager; import android.media.MediaPlayer; import android.media.MediaPlayer.OnBufferingUpdateListener; import android.media.MediaPlayer.OnCompletionListener; import android.media.MediaPlayer.OnPreparedListener; import android.media.MediaPlayer.OnVideoSizeChangedListener; import android.os.Bundle; import android.util.Log; import android.view.SurfaceHolder; import android.view.SurfaceView; import android.widget.Toast; public class MediaPlayerDemo_Video extends Activity implements OnBufferingUpdateListener, OnCompletionListener, OnPreparedListener, OnVideoSizeChangedListener, SurfaceHolder.Callback { private static final String TAG = "MediaPlayerDemo"; private int mVideoWidth; private int mVideoHeight; private MediaPlayer mMediaPlayer; private SurfaceView mPreview; private SurfaceHolder holder; private String path; private Bundle extras; private static final String MEDIA = "media"; // private static final int LOCAL_AUDIO = 1; // private static final int STREAM_AUDIO = 2; // private static final int RESOURCES_AUDIO = 3; private static final int LOCAL_VIDEO = 4; private static final int STREAM_VIDEO = 5; private boolean mIsVideoSizeKnown = false; private boolean mIsVideoReadyToBePlayed = false; /** * * Called when the activity is first created. */ @Override public void onCreate(Bundle icicle) { super.onCreate(icicle); setContentView(R.layout.mediaplayer_2); mPreview = (SurfaceView) findViewById(R.id.surface); holder = mPreview.getHolder(); holder.addCallback(this); holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS); extras = getIntent().getExtras(); } private void playVideo(Integer Media) { doCleanUp(); try { switch (Media) { case LOCAL_VIDEO: // Set the path variable to a local media file path. path = ""; if (path == "") { // Tell the user to provide a media file URL. Toast .makeText( MediaPlayerDemo_Video.this, "Please edit MediaPlayerDemo_Video Activity, " + "and set the path variable to your media file path." + " Your media file must be stored on sdcard.", Toast.LENGTH_LONG).show(); } break; case STREAM_VIDEO: /* * Set path variable to progressive streamable mp4 or * 3gpp format URL. Http protocol should be used. * Mediaplayer can only play "progressive streamable * contents" which basically means: 1. the movie atom has to * precede all the media data atoms. 2. The clip has to be * reasonably interleaved. * */ path = ""; if (path == "") { // Tell the user to provide a media file URL. Toast .makeText( MediaPlayerDemo_Video.this, "Please edit MediaPlayerDemo_Video Activity," + " and set the path variable to your media file URL.", Toast.LENGTH_LONG).show(); } break; } // Create a new media player and set the listeners mMediaPlayer = new MediaPlayer(); mMediaPlayer.setDataSource(path); mMediaPlayer.setDisplay(holder); mMediaPlayer.prepare(); mMediaPlayer.setOnBufferingUpdateListener(this); mMediaPlayer.setOnCompletionListener(this); mMediaPlayer.setOnPreparedListener(this); mMediaPlayer.setOnVideoSizeChangedListener(this); mMediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC); } catch (Exception e) { Log.e(TAG, "error: " + e.getMessage(), e); } } public void onBufferingUpdate(MediaPlayer arg0, int percent) { Log.d(TAG, "onBufferingUpdate percent:" + percent); } public void onCompletion(MediaPlayer arg0) { Log.d(TAG, "onCompletion called"); } public void onVideoSizeChanged(MediaPlayer mp, int width, int height) { Log.v(TAG, "onVideoSizeChanged called"); if (width == 0 || height == 0) { Log.e(TAG, "invalid video width(" + width + ") or height(" + height + ")"); return; } mIsVideoSizeKnown = true; mVideoWidth = width; mVideoHeight = height; if (mIsVideoReadyToBePlayed && mIsVideoSizeKnown) { startVideoPlayback(); } } public void onPrepared(MediaPlayer mediaplayer) { Log.d(TAG, "onPrepared called"); mIsVideoReadyToBePlayed = true; if (mIsVideoReadyToBePlayed && mIsVideoSizeKnown) { startVideoPlayback(); } } public void surfaceChanged(SurfaceHolder surfaceholder, int i, int j, int k) { Log.d(TAG, "surfaceChanged called"); } public void surfaceDestroyed(SurfaceHolder surfaceholder) { Log.d(TAG, "surfaceDestroyed called"); } public void surfaceCreated(SurfaceHolder holder) { Log.d(TAG, "surfaceCreated called"); playVideo(extras.getInt(MEDIA)); } @Override protected void onPause() { super.onPause(); releaseMediaPlayer(); doCleanUp(); } @Override protected void onDestroy() { super.onDestroy(); releaseMediaPlayer(); doCleanUp(); } private void releaseMediaPlayer() { if (mMediaPlayer != null) { mMediaPlayer.release(); mMediaPlayer = null; } } private void doCleanUp() { mVideoWidth = 0; mVideoHeight = 0; mIsVideoReadyToBePlayed = false; mIsVideoSizeKnown = false; } private void startVideoPlayback() { Log.v(TAG, "startVideoPlayback"); holder.setFixedSize(mVideoWidth, mVideoHeight); mMediaPlayer.start(); } } I think the above message is due to Null pointer exception , however I may be false. I am unable to find where the error is . So , Please someone help me out .

    Read the article

  • how to display bitmaps in listview?

    - by mary
    hi i want to show images downloaded in listview.images downloaded with function DownloadImage and are as bitmap.how to show in listview . name photoes with book_id in tabel book are aqual.i want each book has its own image. i can show in listview book_name and book_price just the problem with image book please help me class: package bookstore.category; import java.io.IOException; import java.io.InputStream; import java.net.HttpURLConnection; import java.net.URL; import java.net.URLConnection; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import org.apache.http.NameValuePair; import org.json.JSONArray; import org.json.JSONException; import org.json.JSONObject; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.graphics.Typeface; import android.os.AsyncTask; import android.os.Bundle; import android.util.Log; import android.widget.ImageView; import android.widget.ListAdapter; import android.widget.ListView; import android.widget.SimpleAdapter; import bookstore.pack.JSONParser; import bookstore.pack.R; import android.app.Activity; import android.app.ProgressDialog; public class Computer extends Activity { Bitmap bm = null; // progress dialog private ProgressDialog pDialog; // Creating JSON Parser object JSONParser jParser = new JSONParser(); ArrayList<HashMap<String, String>> computerBookList; private static String url_books = "http://10.0.2.2/project/computer.php"; // JSON Node names private static final String TAG_SUCCESS = "success"; private static final String TAG_BOOK = "book"; private static final String TAG_BOOK_NAME = "book_name"; private static final String TAG_BOOK_PRICE = "book_price"; private static final String TAG_BOOK_ID = "book_id"; private static final String TAG_MESSAGE = "massage"; // category JSONArray JSONArray book = null; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.category); Typeface font1 = Typeface.createFromAsset(getAssets(), "font/bnazanin.TTF"); // Hashmap for ListView computerBookList = new ArrayList<HashMap<String, String>>(); new LoadBook().execute(); } class LoadBook extends AsyncTask<String, String, String> { /** * Before starting background thread Show Progress Dialog * */ @Override protected void onPreExecute() { super.onPreExecute(); pDialog = new ProgressDialog(Computer.this); pDialog.setMessage("Please wait..."); pDialog.setIndeterminate(false); pDialog.setCancelable(false); pDialog.show(); } protected String doInBackground(String... args) { // Building Parameters List<NameValuePair> params = new ArrayList<NameValuePair>(); // getting JSON string from URL JSONObject json = jParser.makeHttpRequest(url_books, "GET", params); // Check your log cat for JSON reponse Log.d("book:", json.toString()); try { // Checking for SUCCESS TAG int success = json.getInt(TAG_SUCCESS); if (success == 1) { DownloadImage("10.0.2.2/project/images/100.png"); DownloadImage("10.0.2.2/project/images/101.png"); DownloadImage("10.0.2.2/project/images/102.png"); DownloadImage("10.0.2.2/project/images/103.png"); DownloadImage("10.0.2.2/project/images/104.png"); DownloadImage("10.0.2.2/project/images/105.png"); DownloadImage("10.0.2.2/project/images/106.png"); DownloadImage("10.0.2.2/project/images/107.png"); DownloadImage("10.0.2.2/project/images/108.png"); DownloadImage("10.0.2.2/project/images/109.png"); DownloadImage("10.0.2.2/project/images/110.png"); // books found book = json.getJSONArray(TAG_BOOK); for (int i = 0; i < book.length(); i++) { JSONObject c = book.getJSONObject(i); // Storing each json item in variable String book_name = c.getString(TAG_BOOK_NAME); String book_price = c.getString(TAG_BOOK_PRICE); String book_id = c.getString(TAG_BOOK_ID); // creating new HashMap HashMap<String, String> map = new HashMap<String, String>(); // adding each child node to HashMap key => value map.put(TAG_BOOK_NAME, book_name); map.put(TAG_BOOK_PRICE, book_price); // map.put(TAG_AUTHOR_NAME, author_name); // adding HashList to ArrayList computerBookList.add(map); } return json.getString(TAG_MESSAGE); } else { System.out.println("no book found"); } } catch (JSONException e) { e.printStackTrace(); } return null; } /** * After completing background task Dismiss the progress dialog * **/ protected void onPostExecute(String file_url) { pDialog.dismiss(); // updating UI from Background Thread runOnUiThread(new Runnable() { ListView view1 = (ListView) findViewById(R.id.list_view); public void run() { ImageView iv = (ImageView) findViewById(R.id.list_image); // bm=BitmapFactory.decodeResource(getResources(), resId); //bm=BitmapFactory.decodeResource(null,R.id.list_image); // iv.setImageBitmap(bm); /* * */ /** * Updating parsed JSON data into ListView * */ ListAdapter adapter = new SimpleAdapter(Computer.this, computerBookList, R.layout.search_item, new String[] { TAG_BOOK_NAME, TAG_BOOK_PRICE }, new int[] { R.id.book_name, R.id.book_price }); view1.setAdapter(adapter); } }); } } private Bitmap DownloadImage(String URL) { Bitmap bitmap = null; InputStream in = null; try { in = OpenHttpConnection(URL); bitmap = BitmapFactory.decodeStream(in); in.close(); } catch (IOException e1) { e1.printStackTrace(); } return bitmap; } private InputStream OpenHttpConnection(String urlString) throws IOException { InputStream in = null; int response = -1; URL url = new URL(urlString); URLConnection conn = url.openConnection(); if (!(conn instanceof HttpURLConnection)) throw new IOException("Not an HTTP connection"); try { HttpURLConnection httpConn = (HttpURLConnection) conn; httpConn.setAllowUserInteraction(false); httpConn.setInstanceFollowRedirects(true); httpConn.setRequestMethod("GET"); httpConn.connect(); response = httpConn.getResponseCode(); if (response == HttpURLConnection.HTTP_OK) { in = httpConn.getInputStream(); } } catch (Exception ex) { throw new IOException("Error connecting"); } return in; } }

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • CodePlex Daily Summary for Friday, November 19, 2010

    CodePlex Daily Summary for Friday, November 19, 2010Popular ReleasesSQL Server CLR Function for Address Correction and Geocoding: Release 2.0: Release 2.0. New User Defined Function fields added.MiniTwitter: 1.58: MiniTwitter 1.58 ???? ?? ??????????????????、????????????????????????LateBindingApi.Excel: LateBindingApi.Excel Release 0.7d: Release+Samples V0.7: - Enthält Laufzeit DLL und Beispielprojekte Beispielprojekte: COMAddinExample - Demonstriert ein versionslos angebundenes COMAddin Example01 - Background Colors und Borders für Cells Example02 - Font Attributes undAlignment für Cells Example03 - Numberformats Example04 - Shapes, WordArts, Pictures, 3D-Effects Example05 - Charts Example06 - Dialoge in Excel Example07 - Einem Workbook VBA Code hinzufügen Example08 - Events Example09 - Eigene Gui Elemente erstellen und Ere...Free Silverlight & WPF Chart Control - Visifire: Visifire SL and WPF Charts v3.6.4 Released: Hi, Today we are releasing Visifire 3.6.4 with few bug fixes: * Multi-line Labels were getting clipped while exploding last DataPoint in Funnel and Pyramid chart. * ClosestPlotDistance property in Axis was not behaving as expected. * In DateTime Axis, Chart threw exception on mouse click over PlotArea if there were no DataPoints present in Chart. * ToolTip was not disappearing while changing the DataSource property of the DataSeries at real-time. * Chart threw exception ...Opalis Community Releases: Opalis Architecture and Workflow Deployment Docs: Opalis Architecture & Workflow Deployment Process Documentation The Opalis Architecture & Workflow Deployment Process Documentation includes two documents (for presentation purposes only, one is a DOCX with and embedded Visio diagram and the other is a PDF). The documentation is here as a "Best Practice Guide". The phrase "Best Practice Guide" is in quotes because this is an UNOFFICIAL example of an Opalis Architecture as well as an UNOFFICIAL example of a Workflow Deployment Process. The int...Sexy Select: sexyselect.0.2: Review index.html inside the source code for a working demoMicrosoft SQL Server Product Samples: Database: AdventureWorks 2008R2 SR1: Sample Databases for Microsoft SQL Server 2008R2 (SR1)This release is dedicated to the sample databases that ship for Microsoft SQL Server 2008R2. See Database Prerequisites for SQL Server 2008R2 for feature configurations required for installing the sample databases. See Installing SQL Server 2008R2 Databases for step by step installation instructions. The SR1 release contains minor bug fixes to the installer used to create the sample databases. There are no changes to the databases them...VidCoder: 0.7.2: Fixed duplicated subtitles when running multiple encodes off of the same title.Razor Templating Engine: Razor Template Engine v1.1: Release 1.1 Changes: ADDED: Signed assemblies with strong name to allow assemblies to be referenced by other strongly-named assemblies. FIX: Filter out dynamic assemblies which causes failures in template compilation. FIX: Changed ASCII to UTF8 encoding to support UTF-8 encoded string templates. FIX: Corrected implementation of TemplateBase adding ITemplate interface.Prism Training Kit: Prism Training Kit - 1.1: This is an updated version of the Prism training Kit that targets Prism 4.0 and fixes the bugs reported in the version 1.0. This release consists of a Training Kit with Labs on the following topics Modularity Dependency Injection Bootstrapper UI Composition Communication Note: Take into account that this is a Beta version. If you find any bugs please report them in the Issue Tracker PrerequisitesVisual Studio 2010 Microsoft Word 2007/2010 Microsoft Silverlight 4 Microsoft S...Craig's Utility Library: Craig's Utility Library Code 2.0: This update contains a number of changes, added functionality, and bug fixes: Added transaction support to SQLHelper. Added linked/embedded resource ability to EmailSender. Updated List to take into account new functions. Added better support for MAC address in WMI classes. Fixed Parsing in Reflection class when dealing with sub classes. Fixed bug in SQLHelper when replacing the Command that is a select after doing a select. Fixed issue in SQL Server helper with regard to generati...MFCMAPI: November 2010 Release: Build: 6.0.0.1023 Full release notes at SGriffin's blog. If you just want to run the tool, get the executable. If you want to debug it, get the symbol file and the source. The 64 bit build will only work on a machine with Outlook 2010 64 bit installed. All other machines should use the 32 bit build, regardless of the operating system. Facebook BadgeDotNetNuke® Community Edition: 05.06.00: Major HighlightsAdded automatic portal alias creation for single portal installs Updated the file manager upload page to allow user to upload multiple files without returning to the file manager page. Fixed issue with Event Log Email Notifications. Fixed issue where Telerik HTML Editor was unable to upload files to secure or database folder. Fixed issue where registration page is not set correctly during an upgrade. Fixed issue where Sendmail stripped HTML and Links from emails...mVu Mobile Viewer: mVu Mobile Viewer 0.7.10.0: Tube8 fix.EPPlus-Create advanced Excel 2007 spreadsheets on the server: EPPlus 2.8.0.1: EPPlus-Create advanced Excel 2007 spreadsheets on the serverNew Features Improved chart support Different chart-types series on the same chart Support for secondary axis and a lot of new properties Better styling Encryption and Workbook protection Table support Import csv files Array formulas ...and a lot of bugfixesAutoLoL: AutoLoL v1.4.2: Added support for more clients (French and Russian) Settings are now stored sepperatly for each user on a computer Auto Login is much faster now Auto Login detects and handles caps lock state properly nowTailspinSpyworks - WebForms Sample Application: TailspinSpyworks-v0.9: Contains a number of bug fixes and additional tutorial steps as well as complete database implementation details.ASP.NET MVC Project Awesome (rich jQuery AJAX helpers): 1.3 and demos: a library with mvc helpers and a demo project that demonstrates an awesome way of doing asp.net mvc. tested on mozilla, safari, chrome, opera, ie 9b/8/7/6 new stuff in 1.3 Autocomplete helper Autocomplete and AjaxDropdown can have parentId and be filled with data depending on the value of the parent PopupForm besides Content("ok") on success can also return Json(data) and use 'data' in a client side function Awesome demo improved (cruder, builder, added service layer)UltimateJB: UltimateJB 2.01 PL3 KakaRoto + PSNYes by EvilSperm: Voici une version attendu avec impatience pour beaucoup : - La Version PSNYes pour pouvoir jouer sur le PSN avec une PS3 Jailbreaker. - Pour l'instant le PSNYes n'est disponible qu'avec les PS3 en firmwares 3.41 !!! - La version PL3 KAKAROTO intégre ses dernières modification et prépare a l'intégration du Firmware 3.30 !!! Conclusion : - UltimateJB PSNYes => Valide l'utilisation du PSN : Uniquement compatible avec les 3.41 - ultimateJB DEFAULT => Pas de PSN mais disponible pour les PS3 sui...Fluent Ribbon Control Suite: Fluent Ribbon Control Suite 2.0: Fluent Ribbon Control Suite 2.0(supports .NET 4.0 RTM and .NET 3.5) Includes: Fluent.dll (with .pdb and .xml) Showcase Application Samples (only for .NET 4.0) Foundation (Tabs, Groups, Contextual Tabs, Quick Access Toolbar, Backstage) Resizing (ribbon reducing & enlarging principles) Galleries (Gallery in ContextMenu, InRibbonGallery) MVVM (shows how to use this library with Model-View-ViewModel pattern) KeyTips ScreenTips Toolbars ColorGallery NEW! *Walkthrough (documenta...New ProjectsALARM - ALert Application for Resource Managers: ALert Application for Resource ManagersAmino: Amino coming soon. A very dynamic MVVM application environment. More details to follow.ASDF-CRM: A Cleanly Designed CRM system based on .Net4 technologies with Silverlight GUI.Auto Slideshow with description: Auto Slideshow with image description targeted for webpage banners or website introduction. This is developed in XAML and C# using stroryboard and defining the timelines. This is a Silverlight 4 application. Can be resized depending on your requirements. Base De Datos: proyecto de base de datosBesteam Developments Safe Driving: School project developed with Visual Studio 2010, C# 4.0 and .NET 4.0BizTalk Mapper Extensions UtilityPack: BizTalk Mapper Extensions UtilityPack is a set of libraries with several useful functoids to include and use it in a map, which will provide an extension of BizTalk Mapper capabilities.BlogEngine Additions (Widgets,Extensions,Custom Code): Additions and custom code for BlogEngine. Widgets Extensions Custom code that can't be use in Widgets or Extenstions Equals Verifier .Net: Equals Verifier .Net is a small library to verify if classes implement Equals according to msdn guidelines.ERPSia: Proyecto de SIA TecFalafel Solution Rename Script: The Falafel Software Solution Rename PowerShell Script makes it easy to reuse an existing solution/project by performing a global rename. If you have a solution named ExampleSolution and want to reuse it as WidgetSolution, this script will rename everything for you.fOrganiz: This application allows you to automatically organize by date in specific subdirectories your picturesGEChecker: GEChecker makes it easier for you to view your RuneScape Grand Exchange offers whilst offline. It's developed in VB.NetHBUIMIS: HBUIMISHospital Management: 3 -tier architectinterpool: proyecto interpool - pis 2010 loud tweets: loud tweetsLuminous: Luminous library consists of various .NET components, controls and classes which make programming easier: WPF and Windows Forms TaskDialog (previously VDialog), Simple Popup Control, Glass Button, Linq to CSS, Linq to XHTML and various useful classes and extension methods.MailMonitr: MailMonitr helps improve email push notifications to your iPhone by using Prowl to deliver notifications, instead of the default "ding." Prowl has the ability to set "quiet hours." Also, a summery of unread messages is displayed on the lock screen for each push notification.MemoryGames: TODOMiko Ling's Open Source Projects: Open SourceMSCRM - Duplicate Checker - Plugin: Plugin to handle real-time Duplicate Checking and Constraining on any Int attribute specified. I use this to prevent service calls that are creating entities from creating duplicates. The external systems making the service calls use int as the primary key.MyTestProject: Test net projectNellen.dk: Det kan blive meget vildere....Orange Library: Orange LibraryRateIt: Rating plugin for jQuery RTL support, Progressive enhancement, Unobtrusive javascript (using HTML5 data-* attributes), supports as many stars as you'd like, and also any step size.RDPAddins .NET: With RDPAddins .NET framework you can build rdp channel addins in your favourite .NET languageREMS - Real State Management System based on ASP.NET 4.0: real state management system based on ASP.NET 4.0Repository of pan: My source code repository. record my idea and test code here. SharePoint Log Investigation Tool (SPLIT): SPLIT makes searching SharePoint logs easy. SQL Monitor: monitor sql server processes and jobs, view executing sql query, kill process / stop jobTestCodePlexForMe: TestCodePlexForMeweibo wp7 client: It's a project to create a windows phone 7 client for sina weibo, which is http://t.sina.com.cnWM2Day: WM2Day is a Windows Mobile (both Smartphone and PDA) client for Me2day.net, the Korean micro-blogging service.X10Dispatcher: Interface for automating x10 cm15a home automation powerline control unit. Requires physical cm15a control unit connected to computer running this program. Extends remote monitoring and automation of computer activities based on sensors and events.XNA 2D Particle Engine: XNA 2D Particle Engine is a flexible, extensible particle engine written in XNA Game Studio 4.0. The engine can emit texture-based particles in almost anyway you like and can easily be integrated as a (drawable) Game component in your XNA Game Studio 4.0 projects.

    Read the article

  • Change the default Icon on your jQuery UI Accordion

    - by hajan
    I've got this question in one of my previous blogs posted here (the same blog is posted on codeasp.net too), dealing with jQuery UI Accordion and I thought it's nice to recap this in a blog post so that I will have it documented for further reference. In the previous blog, I'm creating tabs content navigation using jQuery UI Accordion. So, it's quite simple code and all I do there is calling accordion() function. <script language="javascript" type="text/javascript">     $(function() {         $("#products").accordion();     }); </script> The default image icons for each item is the arrow. The accordion uses the right arrow and down arrow images. So, what we should do in order to change them? JQuery UI Accordion contains option with name icons that has header and headerSelected properties. We can override them with either the existing classes from jQuery UI themes or with our own. 1. Using existing jQuery UI Theme classes - Open the follownig link: http://jqueryui.com/themeroller/#icons You will see the icons available in the jQuery UI theme. Mouse over on each icon and you will see the class name for each icon. As you can see, each icon has class name constructed in the following way: ui-icon-<name> All icons in one image - In our example, I will use ui-icon-circle-plus  and ui-icon-circle-minus (plus and minus icons). - Lets set the icons <script language="javascript" type="text/javascript">     $(function() {         //initialize accordion                 $("#products").accordion();         //set accordion header options         $("#products").accordion("option", "icons",         { 'header': 'ui-icon-circle-plus', 'headerSelected': 'ui-icon-circle-minus' });     }); </script> From the code above, you can see that I first intialize the accordion plugin, and after I override the default icons with the ui-icon-circle-plyus for header and ui-icon-circle-minus for headerSelected. Here is the end result: So, now you see we have the plus/minus circle icons for the default header state and the selected header state.   2. Add my own icons - If you want to add your own icons, you can do that by creating your own custom css classes. - Lets create classes for both, the header default state and header selected state <style type="text/css">     .defaultIcon     {         background-image: url(images/icons/defaultIcon.png) !important;         width: 25px;         height: 25px;     }     .selectedIcon     {         background-image: url(images/icons/selectedIcon.png) !important;         width: 25px;         height: 25px;     } </style> As you can see, I use my own images placed in images/icons/ folder - default icon - selected icon One very important thing to note here is the !important key added on each background-image property. It's like that in order to give highest importancy to our image so that the default jQuery UI theme icon images will have less importancy and won't be used. And the jQuery code is: <script language="javascript" type="text/javascript">     $(function() {         //initialize accordion                 $("#products").accordion();         //set accordion header options         $("#products").accordion("option", "icons",         { 'header': 'defaultIcon', 'headerSelected': 'selectedIcon' });     }); </script> Note: For both #1 and #2 cases, we use the class names without adding . (dot) at the beginning of the name (as we do with selectors). That's because the the header and headerSelected properties accept classes only as a value, so the rest is done by the plugin itself. The complete code with my own custom images is: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head id="Head1" runat="server">     <title>jQuery Accordion</title>     <link type="text/css" href="http://ajax.microsoft.com/ajax/jquery.ui/1.8.5/themes/blitzer/jquery-ui.css"         rel="Stylesheet" />     <style type="text/css">         .defaultIcon         {             background-image: url(images/icons/defaultIcon.png) !important;             width: 25px;             height: 25px;         }         .selectedIcon         {             background-image: url(images/icons/selectedIcon.png) !important;             width: 25px;             height: 25px;         }     </style>     <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.4.4.js"></script>     <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.ui/1.8.6/jquery-ui.js"></script>     <script language="javascript" type="text/javascript">         $(function() {             //initialize accordion                         $("#products").accordion();             //set accordion header options             $("#products").accordion("option", "icons",             { 'header': 'defaultIcon', 'headerSelected': 'selectedIcon' });         });             </script> </head> <body>     <form id="form1" runat="server">     <div id="products" style="width: 500px;">         <h3>             <a href="#">                 Product 1</a></h3>         <div>             <p>                 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus in tortor metus,                 a aliquam dui. Mauris euismod lorem eget nulla semper semper. Vestibulum pretium                 rhoncus cursus. Vestibulum rhoncus, magna sit amet fermentum fringilla, nunc nisl                 pellentesque libero, nec commodo libero ipsum a tellus. Maecenas sed varius est.                 Sed vel risus at nisi imperdiet sollicitudin eget ac orci. Duis ac tristique sem.             </p>         </div>         <h3>             <a href="#">                 Product 2</a></h3>         <div>             <p>                 Aliquam pretium scelerisque nisl in malesuada. Proin dictum elementum rutrum. Etiam                 eleifend massa id dui porta tincidunt. Integer sodales nisi nec ligula lacinia tincidunt                 vel in purus. Mauris ultrices velit quis massa dignissim rhoncus. Proin posuere                 convallis euismod. Vestibulum convallis sagittis arcu id faucibus.             </p>         </div>         <h3>             <a href="#">                 Product 3</a></h3>         <div>             <p>                 Quisque quis magna id nibh laoreet condimentum a sed nisl. In hac habitasse platea                 dictumst. Proin sem eros, dignissim sed consequat sit amet, interdum id ante. Ut                 id nisi in ante fermentum accumsan vitae ut est. Morbi tellus enim, convallis ac                 rutrum a, condimentum ut turpis. Proin sit amet pretium felis.             </p>             <ul>                 <li>List item one</li>                 <li>List item two</li>                 <li>List item three</li>             </ul>         </div>     </div>     </form> </body> </html> The end result is: Hope this was helpful. Regards,Hajan

    Read the article

  • How to maintain encapsulation with composition in C++?

    - by iFreilicht
    I am designing a class Master that is composed from multiple other classes, A, Base, C and D. These four classes have absolutely no use outside of Master and are meant to split up its functionality into manageable and logically divided packages. They also provide extensible functionality as in the case of Base, which can be inherited from by clients. But, how do I maintain encapsulation of Master with this design? So far, I've got two approaches, which are both far from perfect: 1. Replicate all accessors: Just write accessor-methods for all accessor-methods of all classes that Master is composed of. This leads to perfect encapsulation, because no implementation detail of Master is visible, but is extremely tedious and makes the class definition monstrous, which is exactly what the composition should prevent. Also, adding functionality to one of the composees (is that even a word?) would require to re-write all those methods in Master. An additional problem is that inheritors of Base could only alter, but not add functionality. 2. Use non-assignable, non-copyable member-accessors: Having a class accessor<T> that can not be copied, moved or assigned to, but overrides the operator-> to access an underlying shared_ptr, so that calls like Master->A()->niceFunction(); are made possible. My problem with this is that it kind of breaks encapsulation as I would now be unable to change my implementation of Master to use a different class for the functionality of niceFunction(). Still, it is the closest I've gotten without using the ugly first approach. It also fixes the inheritance issue quite nicely. A small side question would be if such a class already existed in std or boost. EDIT: Wall of code I will now post the code of the header files of the classes discussed. It may be a bit hard to understand, but I'll give my best in explaining all of it. 1. GameTree.h The foundation of it all. This basically is a doubly-linked tree, holding GameObject-instances, which we'll later get to. It also has it's own custom iterator GTIterator, but I left that out for brevity. WResult is an enum with the values SUCCESS and FAILED, but it's not really important. class GameTree { public: //Static methods for the root. Only one root is allowed to exist at a time! static void ConstructRoot(seed_type seed, unsigned int depth); inline static bool rootExists(){ return static_cast<bool>(rootObject_); } inline static weak_ptr<GameTree> root(){ return rootObject_; } //delta is in ms, this is used for velocity, collision and such void tick(unsigned int delta); //Interaction with the tree inline weak_ptr<GameTree> parent() const { return parent_; } inline unsigned int numChildren() const{ return static_cast<unsigned int>(children_.size()); } weak_ptr<GameTree> getChild(unsigned int index) const; template<typename GOType> weak_ptr<GameTree> addChild(seed_type seed, unsigned int depth = 9001){ GOType object{ new GOType(seed) }; return addChildObject(unique_ptr<GameTree>(new GameTree(std::move(object), depth))); } WResult moveTo(weak_ptr<GameTree> newParent); WResult erase(); //Iterators for for( : ) loop GTIterator& begin(){ return *(beginIter_ = std::move(make_unique<GTIterator>(children_.begin()))); } GTIterator& end(){ return *(endIter_ = std::move(make_unique<GTIterator>(children_.end()))); } //unloading should be used when objects are far away WResult unloadChildren(unsigned int newDepth = 0); WResult loadChildren(unsigned int newDepth = 1); inline const RenderObject& renderObject() const{ return gameObject_->renderObject(); } //Getter for the underlying GameObject (I have not tested the template version) weak_ptr<GameObject> gameObject(){ return gameObject_; } template<typename GOType> weak_ptr<GOType> gameObject(){ return dynamic_cast<weak_ptr<GOType>>(gameObject_); } weak_ptr<PhysicsObject> physicsObject() { return gameObject_->physicsObject(); } private: GameTree(const GameTree&); //copying is only allowed internally GameTree(shared_ptr<GameObject> object, unsigned int depth = 9001); //pointer to root static shared_ptr<GameTree> rootObject_; //internal management of a child weak_ptr<GameTree> addChildObject(shared_ptr<GameTree>); WResult removeChild(unsigned int index); //private members shared_ptr<GameObject> gameObject_; shared_ptr<GTIterator> beginIter_; shared_ptr<GTIterator> endIter_; //tree stuff vector<shared_ptr<GameTree>> children_; weak_ptr<GameTree> parent_; unsigned int selfIndex_; //used for deletion, this isn't necessary void initChildren(unsigned int depth); //constructs children }; 2. GameObject.h This is a bit hard to grasp, but GameObject basically works like this: When constructing a GameObject, you construct its basic attributes and a CResult-instance, which contains a vector<unique_ptr<Construction>>. The Construction-struct contains all information that is needed to construct a GameObject, which is a seed and a function-object that is applied at construction by a factory. This enables dynamic loading and unloading of GameObjects as done by GameTree. It also means that you have to define that factory if you inherit GameObject. This inheritance is also the reason why GameTree has a template-function gameObject<GOType>. GameObject can contain a RenderObject and a PhysicsObject, which we'll later get to. Anyway, here's the code. class GameObject; typedef unsigned long seed_type; //this declaration magic means that all GameObjectFactorys inherit from GameObjectFactory<GameObject> template<typename GOType> struct GameObjectFactory; template<> struct GameObjectFactory<GameObject>{ virtual unique_ptr<GameObject> construct(seed_type seed) const = 0; }; template<typename GOType> struct GameObjectFactory : GameObjectFactory<GameObject>{ GameObjectFactory() : GameObjectFactory<GameObject>(){} unique_ptr<GameObject> construct(seed_type seed) const{ return unique_ptr<GOType>(new GOType(seed)); } }; //same as with the factories. this is important for storing them in vectors template<typename GOType> struct Construction; template<> struct Construction<GameObject>{ virtual unique_ptr<GameObject> construct() const = 0; }; template<typename GOType> struct Construction : Construction<GameObject>{ Construction(seed_type seed, function<void(GOType*)> func = [](GOType* null){}) : Construction<GameObject>(), seed_(seed), func_(func) {} unique_ptr<GameObject> construct() const{ unique_ptr<GameObject> gameObject{ GOType::factory.construct(seed_) }; func_(dynamic_cast<GOType*>(gameObject.get())); return std::move(gameObject); } seed_type seed_; function<void(GOType*)> func_; }; typedef struct CResult { CResult() : constructions{} {} CResult(CResult && o) : constructions(std::move(o.constructions)) {} CResult& operator= (CResult& other){ if (this != &other){ for (unique_ptr<Construction<GameObject>>& child : other.constructions){ constructions.push_back(std::move(child)); } } return *this; } template<typename GOType> void push_back(seed_type seed, function<void(GOType*)> func = [](GOType* null){}){ constructions.push_back(make_unique<Construction<GOType>>(seed, func)); } vector<unique_ptr<Construction<GameObject>>> constructions; } CResult; //finally, the GameObject class GameObject { public: GameObject(seed_type seed); GameObject(const GameObject&); virtual void tick(unsigned int delta); inline Matrix4f trafoMatrix(){ return physicsObject_->transformationMatrix(); } //getter inline seed_type seed() const{ return seed_; } inline CResult& properties(){ return properties_; } inline const RenderObject& renderObject() const{ return *renderObject_; } inline weak_ptr<PhysicsObject> physicsObject() { return physicsObject_; } protected: virtual CResult construct_(seed_type seed) = 0; CResult properties_; shared_ptr<RenderObject> renderObject_; shared_ptr<PhysicsObject> physicsObject_; seed_type seed_; }; 3. PhysicsObject That's a bit easier. It is responsible for position, velocity and acceleration. It will also handle collisions in the future. It contains three Transformation objects, two of which are optional. I'm not going to include the accessors on the PhysicsObject class because I tried my first approach on it and it's just pure madness (way over 30 functions). Also missing: the named constructors that construct PhysicsObjects with different behaviour. class Transformation{ Vector3f translation_; Vector3f rotation_; Vector3f scaling_; public: Transformation() : translation_{ 0, 0, 0 }, rotation_{ 0, 0, 0 }, scaling_{ 1, 1, 1 } {}; Transformation(Vector3f translation, Vector3f rotation, Vector3f scaling); inline Vector3f translation(){ return translation_; } inline void translation(float x, float y, float z){ translation(Vector3f(x, y, z)); } inline void translation(Vector3f newTranslation){ translation_ = newTranslation; } inline void translate(float x, float y, float z){ translate(Vector3f(x, y, z)); } inline void translate(Vector3f summand){ translation_ += summand; } inline Vector3f rotation(){ return rotation_; } inline void rotation(float pitch, float yaw, float roll){ rotation(Vector3f(pitch, yaw, roll)); } inline void rotation(Vector3f newRotation){ rotation_ = newRotation; } inline void rotate(float pitch, float yaw, float roll){ rotate(Vector3f(pitch, yaw, roll)); } inline void rotate(Vector3f summand){ rotation_ += summand; } inline Vector3f scaling(){ return scaling_; } inline void scaling(float x, float y, float z){ scaling(Vector3f(x, y, z)); } inline void scaling(Vector3f newScaling){ scaling_ = newScaling; } inline void scale(float x, float y, float z){ scale(Vector3f(x, y, z)); } void scale(Vector3f factor){ scaling_(0) *= factor(0); scaling_(1) *= factor(1); scaling_(2) *= factor(2); } Matrix4f matrix(){ return WMatrix::Translation(translation_) * WMatrix::Rotation(rotation_) * WMatrix::Scale(scaling_); } }; class PhysicsObject; typedef void tickFunction(PhysicsObject& self, unsigned int delta); class PhysicsObject{ PhysicsObject(const Transformation& trafo) : transformation_(trafo), transformationVelocity_(nullptr), transformationAcceleration_(nullptr), tick_(nullptr) {} PhysicsObject(PhysicsObject&& other) : transformation_(other.transformation_), transformationVelocity_(std::move(other.transformationVelocity_)), transformationAcceleration_(std::move(other.transformationAcceleration_)), tick_(other.tick_) {} Transformation transformation_; unique_ptr<Transformation> transformationVelocity_; unique_ptr<Transformation> transformationAcceleration_; tickFunction* tick_; public: void tick(unsigned int delta){ tick_ ? tick_(*this, delta) : 0; } inline Matrix4f transformationMatrix(){ return transformation_.matrix(); } } 4. RenderObject RenderObject is a base class for different types of things that could be rendered, i.e. Meshes, Light Sources or Sprites. DISCLAIMER: I did not write this code, I'm working on this project with someone else. class RenderObject { public: RenderObject(float renderDistance); virtual ~RenderObject(); float renderDistance() const { return renderDistance_; } void setRenderDistance(float rD) { renderDistance_ = rD; } protected: float renderDistance_; }; struct NullRenderObject : public RenderObject{ NullRenderObject() : RenderObject(0.f){}; }; class Light : public RenderObject{ public: Light() : RenderObject(30.f){}; }; class Mesh : public RenderObject{ public: Mesh(unsigned int seed) : RenderObject(20.f) { meshID_ = 0; textureID_ = 0; if (seed == 1) meshID_ = Model::getMeshID("EM-208_heavy"); else meshID_ = Model::getMeshID("cube"); }; unsigned int getMeshID() const { return meshID_; } unsigned int getTextureID() const { return textureID_; } private: unsigned int meshID_; unsigned int textureID_; }; I guess this shows my issue quite nicely: You see a few accessors in GameObject which return weak_ptrs to access members of members, but that is not really what I want. Also please keep in mind that this is NOT, by any means, finished or production code! It is merely a prototype and there may be inconsistencies, unnecessary public parts of classes and such.

    Read the article

  • while running mvn jetty:run showing the following error ..

    - by munna
    C:\source\myprojectmvn jetty:run [INFO] Scanning for projects... [INFO] ------------------------------------------------------------------------ [INFO] Building AppFuse Spring MVC Application [INFO] task-segment: [jetty:run] [INFO] ------------------------------------------------------------------------ [INFO] Preparing jetty:run [WARNING] POM for 'xfire:xfire-jsr181-api:pom:1.0-M1:compile' is invalid. Its dependencies (if any) will NOT be available to the current build. [INFO] [warpath:add-classes {execution: default}] [INFO] [aspectj:compile {execution: default}] [INFO] [native2ascii:native2ascii {execution: native2ascii-utf8}] [INFO] [native2ascii:native2ascii {execution: native2ascii-8859_1}] [INFO] [resources:resources {execution: default-resources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b uild is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 12 resources [INFO] Copying 1 resource [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] [compiler:compile {execution: default-compile}] [INFO] Nothing to compile - all classes are up to date [INFO] [resources:testResources {execution: default-testResources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b uild is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 4 resources [INFO] Copying 9 resources [INFO] Preparing hibernate3:hbm2ddl [WARNING] Removing: hbm2ddl from forked lifecycle, to prevent recursive invocati on. [INFO] [warpath:add-classes {execution: default}] [INFO] [aspectj:compile {execution: default}] [INFO] [native2ascii:native2ascii {execution: native2ascii-utf8}] [INFO] [native2ascii:native2ascii {execution: native2ascii-8859_1}] [INFO] [resources:resources {execution: default-resources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b uild is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 12 resources [INFO] Copying 1 resource [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] [hibernate3:hbm2ddl {execution: default}] [INFO] Configuration XML file loaded: file:/C:/source/myproject/src/main/resourc es/hibernate.cfg.xml [INFO] Configuration XML file loaded: file:/C:/source/myproject/src/main/resourc es/hibernate.cfg.xml [INFO] Configuration Properties file loaded: C:\source\myproject\target\classes\ jdbc.properties alter table user_role drop foreign key FK143BF46A4FD90D75; alter table user_role drop foreign key FK143BF46AF503D155; drop table if exists app_user; drop table if exists role; drop table if exists user_role; create table app_user (id bigint not null auto_increment, account_expired bit no t null, account_locked bit not null, address varchar(150), city varchar(50) not null, country varchar(100), postal_code varchar(15) not null, province varchar(1 00), credentials_expired bit not null, email varchar(255) not null unique, accou nt_enabled bit, first_name varchar(50) not null, last_name varchar(50) not null, password varchar(255) not null, password_hint varchar(255), phone_number varcha r(255), username varchar(50) not null unique, version integer, website varchar(2 55), primary key (id)) ENGINE=InnoDB; create table role (id bigint not null auto_increment, description varchar(64), n ame varchar(20), primary key (id)) ENGINE=InnoDB; create table user_role (user_id bigint not null, role_id bigint not null, primar y key (user_id, role_id)) ENGINE=InnoDB; alter table user_role add index FK143BF46A4FD90D75 (role_id), add constraint FK1 43BF46A4FD90D75 foreign key (role_id) references role (id); alter table user_role add index FK143BF46AF503D155 (user_id), add constraint FK1 43BF46AF503D155 foreign key (user_id) references app_user (id); [INFO] [compiler:testCompile {execution: default-testCompile}] [INFO] Nothing to compile - all classes are up to date [INFO] [dbunit:operation {execution: test-compile}] [INFO] [jetty:run {execution: default-cli}] [INFO] Configuring Jetty for project: AppFuse Spring MVC Application [INFO] Webapp source directory = C:\source\myproject\src\main\webapp [INFO] web.xml file = C:\source\myproject\src\main\webapp\WEB-INF\web.xml [INFO] Classes = C:\source\myproject\target\classes [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\applicationContext-validation.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\applicationContext.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\dispatcher-servlet.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\menu-config.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\urlrewrite.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\validation.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\validator-rules-custom.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\validator-rules.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\web.xml 2010-06-02 15:13:28.921::INFO: Logging to STDERR via org.mortbay.log.StdErrLog [INFO] Context path = / [INFO] Tmp directory = determined at runtime [INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml [INFO] Web overrides = none [INFO] Webapp directory = C:\source\myproject\src\main\webapp [INFO] Starting jetty 6.1.9 ... 2010-06-02 15:13:28.983::INFO: jetty-6.1.9 2010-06-02 15:13:28.248::INFO: No Transaction manager found - if your webapp re quires one, please configure one. 2010-06-02 15:13:28.482:/:INFO: Initializing Spring root WebApplicationContext [myproject] ERROR [main] ContextLoader.initWebApplicationContext(215) | Context initialization failed org.springframework.beans.factory.BeanDefinitionStoreException: IOException pars ing XML document from ServletContext resource [/WEB-INF/xfire-servlet.xml]; nest ed exception is java.io.FileNotFoundException: Could not open ServletContext res ource [/WEB-INF/xfire-servlet.xml] at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:349) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:310) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:143) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:178) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:149) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationCon text.refreshBeanFactory(AbstractRefreshableApplicationContext.java:123) at org.springframework.context.support.AbstractApplicationContext.obtain FreshBeanFactory(AbstractApplicationContext.java:423) at org.springframework.context.support.AbstractApplicationContext.refres h(AbstractApplicationContext.java:353) at org.springframework.web.context.ContextLoader.createWebApplicationCon text(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationConte xt(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitiali zed(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler. java:540) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.jav a:1220) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java: 510) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448 ) at org.mortbay.jetty.plugin.Jetty6PluginWebAppContext.doStart(Jetty6Plug inWebAppContext.java:110) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHan dlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java: 130) at org.mortbay.jetty.Server.doStart(Server.java:222) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.plugin.Jetty6PluginServer.start(Jetty6PluginServer. java:132) at org.mortbay.jetty.plugin.AbstractJettyMojo.startJetty(AbstractJettyMo jo.java:357) at org.mortbay.jetty.plugin.AbstractJettyMojo.execute(AbstractJettyMojo. java:293) at org.mortbay.jetty.plugin.AbstractJettyRunMojo.execute(AbstractJettyRu nMojo.java:203) at org.mortbay.jetty.plugin.Jetty6RunMojo.execute(Jetty6RunMojo.java:184 ) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPlugi nManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Defa ultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandalone Goal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(Defau ltLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHan dleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegmen ts(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLi fecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:6 0) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) Caused by: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/xfire-servlet.xml] at org.springframework.web.context.support.ServletContextResource.getInp utStream(ServletContextResource.java:116) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:336) ... 51 more 2010-06-02 15:13:29.919::WARN: Failed startup of context org.mortbay.jetty.plug in.Jetty6PluginWebAppContext@1ba4806{/,C:\source\myproject\src\main\webapp} org.springframework.beans.factory.BeanDefinitionStoreException: IOException pars ing XML document from ServletContext resource [/WEB-INF/xfire-servlet.xml]; nest ed exception is java.io.FileNotFoundException: Could not open ServletContext res ource [/WEB-INF/xfire-servlet.xml] at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:349) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:310) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:143) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:178) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:149) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationCon text.refreshBeanFactory(AbstractRefreshableApplicationContext.java:123) at org.springframework.context.support.AbstractApplicationContext.obtain FreshBeanFactory(AbstractApplicationContext.java:423) at org.springframework.context.support.AbstractApplicationContext.refres h(AbstractApplicationContext.java:353) at org.springframework.web.context.ContextLoader.createWebApplicationCon text(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationConte xt(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitiali zed(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler. java:540) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.jav a:1220) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java: 510) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448 ) at org.mortbay.jetty.plugin.Jetty6PluginWebAppContext.doStart(Jetty6Plug inWebAppContext.java:110) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHan dlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java: 130) at org.mortbay.jetty.Server.doStart(Server.java:222) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.plugin.Jetty6PluginServer.start(Jetty6PluginServer. java:132) at org.mortbay.jetty.plugin.AbstractJettyMojo.startJetty(AbstractJettyMo jo.java:357) at org.mortbay.jetty.plugin.AbstractJettyMojo.execute(AbstractJettyMojo. java:293) at org.mortbay.jetty.plugin.AbstractJettyRunMojo.execute(AbstractJettyRu nMojo.java:203) at org.mortbay.jetty.plugin.Jetty6RunMojo.execute(Jetty6RunMojo.java:184 ) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPlugi nManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Defa ultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandalone Goal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(Defau ltLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHan dleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegmen ts(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLi fecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:6 0) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) Caused by: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/xfire-servlet.xml] at org.springframework.web.context.support.ServletContextResource.getInp utStream(ServletContextResource.java:116) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:336) ... 51 more 2010-06-02 15:13:29.152::WARN: Nested in org.springframework.beans.factory.Bean DefinitionStoreException: IOException parsing XML document from ServletContext r esource [/WEB-INF/xfire-servlet.xml]; nested exception is java.io.FileNotFoundEx ception: Could not open ServletContext resource [/WEB-INF/xfire-servlet.xml]: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/ xfire-servlet.xml] at org.springframework.web.context.support.ServletContextResource.getInp utStream(ServletContextResource.java:116) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:336) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:310) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:143) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:178) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:149) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationCon text.refreshBeanFactory(AbstractRefreshableApplicationContext.java:123) at org.springframework.context.support.AbstractApplicationContext.obtain FreshBeanFactory(AbstractApplicationContext.java:423) at org.springframework.context.support.AbstractApplicationContext.refres h(AbstractApplicationContext.java:353) at org.springframework.web.context.ContextLoader.createWebApplicationCon text(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationConte xt(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitiali zed(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler. java:540) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.jav a:1220) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java: 510) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448 ) at org.mortbay.jetty.plugin.Jetty6PluginWebAppContext.doStart(Jetty6Plug inWebAppContext.java:110) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHan dlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java: 130) at org.mortbay.jetty.Server.doStart(Server.java:222) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.plugin.Jetty6PluginServer.start(Jetty6PluginServer. java:132) at org.mortbay.jetty.plugin.AbstractJettyMojo.startJetty(AbstractJettyMo jo.java:357) at org.mortbay.jetty.plugin.AbstractJettyMojo.execute(AbstractJettyMojo. java:293) at org.mortbay.jetty.plugin.AbstractJettyRunMojo.execute(AbstractJettyRu nMojo.java:203) at org.mortbay.jetty.plugin.Jetty6RunMojo.execute(Jetty6RunMojo.java:184 ) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPlugi nManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Defa ultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandalone Goal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(Defau ltLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHan dleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegmen ts(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLi fecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:6 0) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) 2010-06-02 15:13:29.417::INFO: Started [email protected]:8080 [INFO] Started Jetty Server [INFO] Starting scanner at interval of 3 seconds.

    Read the article

  • How to deny the web access to some files?

    - by Strae
    I need to do an operation a bit strange. First, i run on Debian, apache2 (which 'runs' as user www-data) So, I have simple text file with .txt ot .ini, or whatever extension, doesnt matter. These files are located in subfolders with a structure like this: www.example.com/folder1/car/foobar.txt www.example.com/folder1/cycle/foobar.txt www.example.com/folder1/fish/foobar.txt www.example.com/folder1/fruit/foobar.txt therefore, the file name always the same, ditto for the 'hierarchy', just change the name of the folder: /folder-name-static/folder-name-dinamyc/file-name-static.txt What I should do is (I think) relatively simple: I must be able to read that file by programs on the server (python, php for example), but if I try to retrieve the file contents by broswer (digiting the url www.example.com/folder1/car/foobar.txt, or via cUrl, etc..) I must get a forbidden error, or whatever, but not access the file. It would also be nice that even accessing those files via FTP are 'hidden', or anyway couldnt be downloaded (at least that I use with the ftp root and user data) How can I do? I found this online, be put in the file .htaccess: <Files File.txt> Order allow, deny Deny from all </ Files> It seems to work, but only if the file is in the web root (www.example.com / myfile.txt), and not in subfolders. Moreover, the folders in the second level (www.example.com/folder1/fruit/foobar.txt) will be dinamycally created.. I would like to avoid having to change .htaccess file from time to time. It is possible to create a rule, something like that, that goes for all files with given name, which is on www.example.com/folder-name-static/folder-name-dinamyc/file-name-static.txt, where those parts are allways the same, just that one change ? EDIT: As Dave Drager said, i could semplify this keeping those file outside the web accessible directory. But those directory's will contain others files too, images, and stuff used by my users, so i'm simply try to not have a duplicate folders system, like: /var/www/vhosts/example.com/httpdocs/folder1/car/[other folders and files here] /var/www/vhosts/example.com/httpdocs/folder1/cycle/[other folders and files here] /var/www/vhosts/example.com/httpdocs/folder1/fish/[other folders and files here] //and, then for the 'secrets' files: /folder1/data/car/foobar.txt /folder1/data/cycle/foobar.txt /folder1/data/fish/foobar.txt

    Read the article

  • 6to4 tunnel: cannot ping6 to ipv6.google.com?

    - by quanta
    Hi folks, Follow the Setup of 6to4 tunnel guide, I want to test ipv6 connectivity, but I cannot ping6 to ipv6.google.com. Details below: # traceroute 192.88.99.1 traceroute to 192.88.99.1 (192.88.99.1), 30 hops max, 40 byte packets 1 static.vdc.vn (123.30.53.1) 1.514 ms 2.622 ms 3.760 ms 2 static.vdc.vn (123.30.63.117) 0.608 ms 0.696 ms 0.735 ms 3 static.vdc.vn (123.30.63.101) 0.474 ms 0.477 ms 0.506 ms 4 203.162.231.214 (203.162.231.214) 11.327 ms 11.320 ms 11.312 ms 5 static.vdc.vn (222.255.165.34) 11.546 ms 11.684 ms 11.768 ms 6 203.162.217.26 (203.162.217.26) 42.460 ms 42.424 ms 42.401 ms 7 218.188.104.173 (218.188.104.173) 42.489 ms 42.462 ms 42.415 ms 8 218.189.5.10 (218.189.5.10) 42.613 ms 218.189.5.42 (218.189.5.42) 42.273 ms 42.300 ms 9 d1-26-224-143-118-on-nets.com (118.143.224.26) 205.752 ms d1-18-224-143-118-on-nets.com (118.143.224.18) 207.130 ms d1-14-224-143-118-on-nets.com (118.143.224.14) 206.970 ms 10 218.189.5.150 (218.189.5.150) 207.456 ms 206.349 ms 206.941 ms 11 * * * 12 10gigabitethernet2-1.core1.lax1.he.net (72.52.92.121) 214.087 ms 214.426 ms 214.818 ms 13 192.88.99.1 (192.88.99.1) 207.215 ms 199.270 ms 209.391 ms # ifconfig tun6to4 tun6to4 Link encap:IPv6-in-IPv4 inet6 addr: 2002:x:x::/16 Scope:Global inet6 addr: ::x.x.x.x/128 Scope:Compat UP RUNNING NOARP MTU:1480 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:11 dropped:0 overruns:0 carrier:11 collisions:0 txqueuelen:0 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) # iptunnel sit0: ipv6/ip remote any local any ttl 64 nopmtudisc tun6to4: ipv6/ip remote any local x.x.x.x ttl 64 # ip -6 route show ::/96 via :: dev tun6to4 metric 256 expires 21332777sec mtu 1480 advmss 1420 hoplimit 4294967295 2002::/16 dev tun6to4 metric 256 expires 21332794sec mtu 1480 advmss 1420 hoplimit 4294967295 fe80::/64 dev eth0 metric 256 expires 15674592sec mtu 1500 advmss 1440 hoplimit 4294967295 fe80::/64 dev eth1 metric 256 expires 15674597sec mtu 1500 advmss 1440 hoplimit 4294967295 fe80::/64 dev tun6to4 metric 256 expires 21332794sec mtu 1480 advmss 1420 hoplimit 4294967295 default via ::192.88.99.1 dev tun6to4 metric 1 expires 21332861sec mtu 1480 advmss 1420 hoplimit 4294967295 # ping6 -n -c 4 ipv6.google.com PING ipv6.google.com(2404:6800:8005::68) 56 data bytes From 2002:x:x:: icmp_seq=0 Destination unreachable: Address unreachable From 2002:x:x:: icmp_seq=1 Destination unreachable: Address unreachable From 2002:x:x:: icmp_seq=2 Destination unreachable: Address unreachable From 2002:x:x:: icmp_seq=3 Destination unreachable: Address unreachable --- ipv6.google.com ping statistics --- 4 packets transmitted, 0 received, +4 errors, 100% packet loss, time 2999ms What is my problem? Thanks,

    Read the article

< Previous Page | 198 199 200 201 202 203 204 205 206 207 208 209  | Next Page >