Search Results

Search found 5104 results on 205 pages for 'evolutionary algorithm'.

Page 205/205 | < Previous Page | 201 202 203 204 205 

  • C++/boost generator module, feedback/critic please

    - by aaa
    hello. I wrote this generator, and I think to submit to boost people. Can you give me some feedback about it it basically allows to collapse multidimensional loops to flat multi-index queue. Loop can be boost lambda expressions. Main reason for doing this is to make parallel loops easier and separate algorithm from controlling structure (my fieldwork is computational chemistry where deep loops are common) 1 #ifndef _GENERATOR_HPP_ 2 #define _GENERATOR_HPP_ 3 4 #include <boost/array.hpp> 5 #include <boost/lambda/lambda.hpp> 6 #include <boost/noncopyable.hpp> 7 8 #include <boost/mpl/bool.hpp> 9 #include <boost/mpl/int.hpp> 10 #include <boost/mpl/for_each.hpp> 11 #include <boost/mpl/range_c.hpp> 12 #include <boost/mpl/vector.hpp> 13 #include <boost/mpl/transform.hpp> 14 #include <boost/mpl/erase.hpp> 15 16 #include <boost/fusion/include/vector.hpp> 17 #include <boost/fusion/include/for_each.hpp> 18 #include <boost/fusion/include/at_c.hpp> 19 #include <boost/fusion/mpl.hpp> 20 #include <boost/fusion/include/as_vector.hpp> 21 22 #include <memory> 23 24 /** 25 for loop generator which can use lambda expressions. 26 27 For example: 28 @code 29 using namespace generator; 30 using namespace boost::lambda; 31 make_for(N, N, range(bind(std::max<int>, _1, _2), N), range(_2, _3+1)); 32 // equivalent to pseudocode 33 // for l=0,N: for k=0,N: for j=max(l,k),N: for i=k,j 34 @endcode 35 36 If range is given as upper bound only, 37 lower bound is assumed to be default constructed 38 Lambda placeholders may only reference first three indices. 39 */ 40 41 namespace generator { 42 namespace detail { 43 44 using boost::lambda::constant_type; 45 using boost::lambda::constant; 46 47 /// lambda expression identity 48 template<class E, class enable = void> 49 struct lambda { 50 typedef E type; 51 }; 52 53 /// transform/construct constant lambda expression from non-lambda 54 template<class E> 55 struct lambda<E, typename boost::disable_if< 56 boost::lambda::is_lambda_functor<E> >::type> 57 { 58 struct constant : boost::lambda::constant_type<E>::type { 59 typedef typename boost::lambda::constant_type<E>::type base_type; 60 constant() : base_type(boost::lambda::constant(E())) {} 61 constant(const E &e) : base_type(boost::lambda::constant(e)) {} 62 }; 63 typedef constant type; 64 }; 65 66 /// range functor 67 template<class L, class U> 68 struct range_ { 69 typedef boost::array<int,4> index_type; 70 range_(U upper) : bounds_(typename lambda<L>::type(), upper) {} 71 range_(L lower, U upper) : bounds_(lower, upper) {} 72 73 template< typename T, size_t N> 74 T lower(const boost::array<T,N> &index) { 75 return bound<0>(index); 76 } 77 78 template< typename T, size_t N> 79 T upper(const boost::array<T,N> &index) { 80 return bound<1>(index); 81 } 82 83 private: 84 template<bool b, typename T> 85 T bound(const boost::array<T,1> &index) { 86 return (boost::fusion::at_c<b>(bounds_))(index[0]); 87 } 88 89 template<bool b, typename T> 90 T bound(const boost::array<T,2> &index) { 91 return (boost::fusion::at_c<b>(bounds_))(index[0], index[1]); 92 } 93 94 template<bool b, typename T, size_t N> 95 T bound(const boost::array<T,N> &index) { 96 using boost::fusion::at_c; 97 return (at_c<b>(bounds_))(index[0], index[1], index[2]); 98 } 99 100 boost::fusion::vector<typename lambda<L>::type, 101 typename lambda<U>::type> bounds_; 102 }; 103 104 template<typename T, size_t N> 105 struct for_base { 106 typedef boost::array<T,N> value_type; 107 virtual ~for_base() {} 108 virtual value_type next() = 0; 109 }; 110 111 /// N-index generator 112 template<typename T, size_t N, class R, class I> 113 struct for_ : for_base<T,N> { 114 typedef typename for_base<T,N>::value_type value_type; 115 typedef R range_tuple; 116 for_(const range_tuple &r) : r_(r), state_(true) { 117 boost::fusion::for_each(r_, initialize(index)); 118 } 119 /// @return new generator 120 for_* new_() { return new for_(r_); } 121 /// @return next index value and increment 122 value_type next() { 123 value_type next; 124 using namespace boost::lambda; 125 typename value_type::iterator n = next.begin(); 126 typename value_type::iterator i = index.begin(); 127 boost::mpl::for_each<I>(*(var(n))++ = var(i)[_1]); 128 129 state_ = advance<N>(r_, index); 130 return next; 131 } 132 /// @return false if out of bounds, true otherwise 133 operator bool() { return state_; } 134 135 private: 136 /// initialize indices 137 struct initialize { 138 value_type &index_; 139 mutable size_t i_; 140 initialize(value_type &index) : index_(index), i_(0) {} 141 template<class R_> void operator()(R_& r) const { 142 index_[i_++] = r.lower(index_); 143 } 144 }; 145 146 /// advance index[0:M) 147 template<size_t M> 148 struct advance { 149 /// stop recursion 150 struct stop { 151 stop(R r, value_type &index) {} 152 }; 153 /// advance index 154 /// @param r range tuple 155 /// @param index index array 156 advance(R &r, value_type &index) : index_(index), i_(0) { 157 namespace fusion = boost::fusion; 158 index[M-1] += 1; // increment index 159 fusion::for_each(r, *this); // update indices 160 state_ = index[M-1] >= fusion::at_c<M-1>(r).upper(index); 161 if (state_) { // out of bounds 162 typename boost::mpl::if_c<(M > 1), 163 advance<M-1>, stop>::type(r, index); 164 } 165 } 166 /// apply lower bound of range to index 167 template<typename R_> void operator()(R_& r) const { 168 if (i_ >= M) index_[i_] = r.lower(index_); 169 ++i_; 170 } 171 /// @return false if out of bounds, true otherwise 172 operator bool() { return state_; } 173 private: 174 value_type &index_; ///< index array reference 175 mutable size_t i_; ///< running index 176 bool state_; ///< out of bounds state 177 }; 178 179 value_type index; 180 range_tuple r_; 181 bool state_; 182 }; 183 184 185 /// polymorphic generator template base 186 template<typename T,size_t N> 187 struct For : boost::noncopyable { 188 typedef boost::array<T,N> value_type; 189 /// @return next index value and increment 190 value_type next() { return for_->next(); } 191 /// @return false if out of bounds, true otherwise 192 operator bool() const { return for_; } 193 protected: 194 /// reset smart pointer 195 void reset(for_base<T,N> *f) { for_.reset(f); } 196 std::auto_ptr<for_base<T,N> > for_; 197 }; 198 199 /// range [T,R) type 200 template<typename T, typename R> 201 struct range_type { 202 typedef range_<T,R> type; 203 }; 204 205 /// range identity specialization 206 template<typename T, class L, class U> 207 struct range_type<T, range_<L,U> > { 208 typedef range_<L,U> type; 209 }; 210 211 namespace fusion = boost::fusion; 212 namespace mpl = boost::mpl; 213 214 template<typename T, size_t N, class R1, class R2, class R3, class R4> 215 struct range_tuple { 216 // full range vector 217 typedef typename mpl::vector<R1,R2,R3,R4> v; 218 typedef typename mpl::end<v>::type end; 219 typedef typename mpl::advance_c<typename mpl::begin<v>::type, N>::type pos; 220 // [0:N) range vector 221 typedef typename mpl::erase<v, pos, end>::type t; 222 // transform into proper range fusion::vector 223 typedef typename fusion::result_of::as_vector< 224 typename mpl::transform<t,range_type<T, mpl::_1> >::type 225 >::type type; 226 }; 227 228 229 template<typename T, size_t N, 230 class R1, class R2, class R3, class R4, 231 class O> 232 struct for_type { 233 typedef typename range_tuple<T,N,R1,R2,R3,R4>::type range_tuple; 234 typedef for_<T, N, range_tuple, O> type; 235 }; 236 237 } // namespace detail 238 239 240 /// default index order, [0:N) 241 template<size_t N> 242 struct order { 243 typedef boost::mpl::range_c<size_t,0, N> type; 244 }; 245 246 /// N-loop generator, 0 < N <= 5 247 /// @tparam T index type 248 /// @tparam N number of indices/loops 249 /// @tparam R1,... range types 250 /// @tparam O index order 251 template<typename T, size_t N, 252 class R1, class R2 = void, class R3 = void, class R4 = void, 253 class O = typename order<N>::type> 254 struct for_ : detail::for_type<T, N, R1, R2, R3, R4, O>::type { 255 typedef typename detail::for_type<T, N, R1, R2, R3, R4, O>::type base_type; 256 typedef typename base_type::range_tuple range_tuple; 257 for_(const range_tuple &range) : base_type(range) {} 258 }; 259 260 /// loop range [L:U) 261 /// @tparam L lower bound type 262 /// @tparam U upper bound type 263 /// @return range 264 template<class L, class U> 265 detail::range_<L,U> range(L lower, U upper) { 266 return detail::range_<L,U>(lower, upper); 267 } 268 269 /// make 4-loop generator with specified index ordering 270 template<typename T, class R1, class R2, class R3, class R4, class O> 271 for_<T, 4, R1, R2, R3, R4, O> 272 make_for(R1 r1, R2 r2, R3 r3, R4 r4, const O&) { 273 typedef for_<T, 4, R1, R2, R3, R4, O> F; 274 return F(F::range_tuple(r1, r2, r3, r4)); 275 } 276 277 /// polymorphic generator template forward declaration 278 template<typename T,size_t N> 279 struct For; 280 281 /// polymorphic 4-loop generator 282 template<typename T> 283 struct For<T,4> : detail::For<T,4> { 284 /// generator with default index ordering 285 template<class R1, class R2, class R3, class R4> 286 For(R1 r1, R2 r2, R3 r3, R4 r4) { 287 this->reset(make_for<T>(r1, r2, r3, r4).new_()); 288 } 289 /// generator with specified index ordering 290 template<class R1, class R2, class R3, class R4, class O> 291 For(R1 r1, R2 r2, R3 r3, R4 r4, O o) { 292 this->reset(make_for<T>(r1, r2, r3, r4, o).new_()); 293 } 294 }; 295 296 } 297 298 299 #endif /* _GENERATOR_HPP_ */

    Read the article

  • Find out CRC or CHECKSUM of RS232 data

    - by Carlos Alloatti
    I need to communicate with a RS232 device, I have no specs or information available. I send a 16 byte command and get a 16 byte result back. The last byte looks like some kind of crc or checksum, I have tried using this http://miscel.dk/MiscEl/miscelCRCandChecksum.html with no luck. Anyone can reverse engineer the crc/checksum algorithm? here is some data captured with an RS-232 monitor program: 01 80 42 00 00 00 00 00 00 00 00 00 00 00 01 B3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 02 51 01 80 42 00 00 00 00 00 00 00 00 00 00 00 03 0F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 04 8C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 05 D2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 06 30 01 80 42 00 00 00 00 00 00 00 00 00 00 00 07 6E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 08 2F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 09 71 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0A 93 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0B CD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0C 4E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0D 10 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0E F2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 0F AC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 10 70 01 80 42 00 00 00 00 00 00 00 00 00 00 00 11 2E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 12 CC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 13 92 01 80 42 00 00 00 00 00 00 00 00 00 00 00 14 11 01 80 42 00 00 00 00 00 00 00 00 00 00 00 15 4F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 16 AD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 17 F3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 18 B2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 19 EC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1A 0E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1B 50 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1C D3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1D 8D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1E 6F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 1F 31 01 80 42 00 00 00 00 00 00 00 00 00 00 00 20 CE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 21 90 01 80 42 00 00 00 00 00 00 00 00 00 00 00 22 72 01 80 42 00 00 00 00 00 00 00 00 00 00 00 23 2C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 24 AF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 25 F1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 26 13 01 80 42 00 00 00 00 00 00 00 00 00 00 00 27 4D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 28 0C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 29 52 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2A B0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2B EE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2C 6D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2D 33 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2E D1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 2F 8F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 30 53 01 80 42 00 00 00 00 00 00 00 00 00 00 00 31 0D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 32 EF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 33 B1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 34 32 01 80 42 00 00 00 00 00 00 00 00 00 00 00 35 6C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 36 8E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 37 D0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 38 91 01 80 42 00 00 00 00 00 00 00 00 00 00 00 39 CF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3A 2D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3B 73 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3C F0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3D AE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3E 4C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 3F 12 01 80 42 00 00 00 00 00 00 00 00 00 00 00 40 AB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 41 F5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 42 17 01 80 42 00 00 00 00 00 00 00 00 00 00 00 43 49 01 80 42 00 00 00 00 00 00 00 00 00 00 00 44 CA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 45 94 01 80 42 00 00 00 00 00 00 00 00 00 00 00 46 76 01 80 42 00 00 00 00 00 00 00 00 00 00 00 47 28 01 80 42 00 00 00 00 00 00 00 00 00 00 00 48 69 01 80 42 00 00 00 00 00 00 00 00 00 00 00 49 37 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4A D5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4B 8B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4C 08 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4D 56 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4E B4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 4F EA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 50 36 01 80 42 00 00 00 00 00 00 00 00 00 00 00 51 68 01 80 42 00 00 00 00 00 00 00 00 00 00 00 52 8A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 53 D4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 54 57 01 80 42 00 00 00 00 00 00 00 00 00 00 00 55 09 01 80 42 00 00 00 00 00 00 00 00 00 00 00 56 EB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 57 B5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 58 F4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 59 AA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5A 48 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5B 16 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5C 95 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5D CB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5E 29 01 80 42 00 00 00 00 00 00 00 00 00 00 00 5F 77 01 80 42 00 00 00 00 00 00 00 00 00 00 00 60 88 01 80 42 00 00 00 00 00 00 00 00 00 00 00 61 D6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 62 34 01 80 42 00 00 00 00 00 00 00 00 00 00 00 63 6A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 64 E9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 65 B7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 66 55 01 80 42 00 00 00 00 00 00 00 00 00 00 00 67 0B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 68 4A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 69 14 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6A F6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6B A8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6C 2B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6D 75 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6E 97 01 80 42 00 00 00 00 00 00 00 00 00 00 00 6F C9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 70 15 01 80 42 00 00 00 00 00 00 00 00 00 00 00 71 4B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 72 A9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 73 F7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 74 74 01 80 42 00 00 00 00 00 00 00 00 00 00 00 75 2A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 76 C8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 77 96 01 80 42 00 00 00 00 00 00 00 00 00 00 00 78 D7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 79 89 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7A 6B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7B 35 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7C B6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7D E8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7E 0A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 7F 54 01 80 42 00 00 00 00 00 00 00 00 00 00 00 80 61 01 80 42 00 00 00 00 00 00 00 00 00 00 00 81 3F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 82 DD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 83 83 01 80 42 00 00 00 00 00 00 00 00 00 00 00 84 00 01 80 42 00 00 00 00 00 00 00 00 00 00 00 85 5E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 86 BC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 87 E2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 88 A3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 89 FD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8A 1F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8B 41 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8C C2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8D 9C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8E 7E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 8F 20 01 80 42 00 00 00 00 00 00 00 00 00 00 00 90 FC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 91 A2 01 80 42 00 00 00 00 00 00 00 00 00 00 00 92 40 01 80 42 00 00 00 00 00 00 00 00 00 00 00 93 1E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 94 9D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 95 C3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 96 21 01 80 42 00 00 00 00 00 00 00 00 00 00 00 97 7F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 98 3E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 99 60 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9A 82 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9B DC 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9C 5F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9D 01 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9E E3 01 80 42 00 00 00 00 00 00 00 00 00 00 00 9F BD 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A0 42 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A1 1C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A2 FE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A3 A0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A4 23 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A5 7D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A6 9F 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A7 C1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A8 80 01 80 42 00 00 00 00 00 00 00 00 00 00 00 A9 DE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AA 3C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AB 62 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AC E1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AD BF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AE 5D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 AF 03 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B0 DF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B1 81 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B2 63 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B3 3D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B4 BE 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B5 E0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B6 02 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B7 5C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B8 1D 01 80 42 00 00 00 00 00 00 00 00 00 00 00 B9 43 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BA A1 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BB FF 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BC 7C 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BD 22 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BE C0 01 80 42 00 00 00 00 00 00 00 00 00 00 00 BF 9E 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C0 27 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C1 79 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C2 9B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C3 C5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C4 46 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C5 18 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C6 FA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C7 A4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C8 E5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 C9 BB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CA 59 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CB 07 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CC 84 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CD DA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CE 38 01 80 42 00 00 00 00 00 00 00 00 00 00 00 CF 66 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D0 BA 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D1 E4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D2 06 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D3 58 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D4 DB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D5 85 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D6 67 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D7 39 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D8 78 01 80 42 00 00 00 00 00 00 00 00 00 00 00 D9 26 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DA C4 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DB 9A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DC 19 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DD 47 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DE A5 01 80 42 00 00 00 00 00 00 00 00 00 00 00 DF FB 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E0 04 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E1 5A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E2 B8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E3 E6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E4 65 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E5 3B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E6 D9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E7 87 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E8 C6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 E9 98 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EA 7A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EB 24 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EC A7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 ED F9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EE 1B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 EF 45 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F0 99 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F1 C7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F2 25 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F3 7B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F4 F8 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F5 A6 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F6 44 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F7 1A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F8 5B 01 80 42 00 00 00 00 00 00 00 00 00 00 00 F9 05 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FA E7 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FB B9 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FC 3A 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FD 64 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FE 86 01 80 42 00 00 00 00 00 00 00 00 00 00 00 FF D8 The second to last byte seems to be a sequential number that starts over at 00 when it reaches FF. I have included the whole range from 00 to FF to make it easier to guess the crc/checksum method.

    Read the article

  • Compile error C++: could not deduce template argument for 'T'

    - by OneShot
    I'm trying to read binary data to load structs back into memory so I can edit them and save them back to the .dat file. readVector() attempts to read the file, and return the vectors that were serialized. But i'm getting this compile error when I try and run it. What am I doing wrong with my templates? ***** EDIT ************** Code: // Project 5.cpp : main project file. #include "stdafx.h" #include <iostream> #include <fstream> #include <string> #include <vector> #include <algorithm> using namespace System; using namespace std; #pragma hdrstop int checkCommand (string line); template<typename T> void writeVector(ofstream &out, const vector<T> &vec); template<typename T> vector<T> readVector(ifstream &in); struct InventoryItem { string Item; string Description; int Quantity; int wholesaleCost; int retailCost; int dateAdded; } ; int main(void) { cout << "Welcome to the Inventory Manager extreme! [Version 1.0]" << endl; ifstream in("data.dat"); vector<InventoryItem> structList; readVector<InventoryItem>( in ); while (1) { string line = ""; cout << endl; cout << "Commands: " << endl; cout << "1: Add a new record " << endl; cout << "2: Display a record " << endl; cout << "3: Edit a current record " << endl; cout << "4: Exit the program " << endl; cout << endl; cout << "Enter a command 1-4: "; getline(cin , line); int rValue = checkCommand(line); if (rValue == 1) { cout << "You've entered a invalid command! Try Again." << endl; } else if (rValue == 2){ cout << "Error calling command!" << endl; } else if (!rValue) { break; } } system("pause"); return 0; } int checkCommand (string line) { int intReturn = atoi(line.c_str()); int status = 3; switch (intReturn) { case 1: break; case 2: break; case 3: break; case 4: status = 0; break; default: status = 1; break; } return status; } template<typename T> void writeVector(ofstream &out, const vector<T> &vec) { out << vec.size(); for(vector<T>::const_iterator i = vec.begin(); i != vec.end(); i++) { out << *i; } } ostream& operator<<(std::ostream &strm, const InventoryItem &i) { return strm << i.Item << " (" << i.Description << ")"; } template<typename T> vector<T> readVector(ifstream &in) { size_t size; in >> size; vector<T> vec; vec.reserve(size); for(int i = 0; i < size; i++) { T tmp; in >> tmp; vec.push_back(tmp); } return vec; } Compiler errors: 1>------ Build started: Project: Project 5, Configuration: Debug Win32 ------ 1>Compiling... 1>Project 5.cpp 1>.\Project 5.cpp(124) : warning C4018: '<' : signed/unsigned mismatch 1> .\Project 5.cpp(40) : see reference to function template instantiation 'std::vector<_Ty> readVector<InventoryItem>(std::ifstream &)' being compiled 1> with 1> [ 1> _Ty=InventoryItem 1> ] 1>.\Project 5.cpp(127) : error C2679: binary '>>' : no operator found which takes a right-hand operand of type 'InventoryItem' (or there is no acceptable conversion) 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(1144): could be 'std::basic_istream<_Elem,_Traits> &std::operator >><std::char_traits<char>>(std::basic_istream<_Elem,_Traits> &,signed char *)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(1146): or 'std::basic_istream<_Elem,_Traits> &std::operator >><std::char_traits<char>>(std::basic_istream<_Elem,_Traits> &,signed char &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(1148): or 'std::basic_istream<_Elem,_Traits> &std::operator >><std::char_traits<char>>(std::basic_istream<_Elem,_Traits> &,unsigned char *)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(1150): or 'std::basic_istream<_Elem,_Traits> &std::operator >><std::char_traits<char>>(std::basic_istream<_Elem,_Traits> &,unsigned char &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(155): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::basic_istream<_Elem,_Traits> &(__cdecl *)(std::basic_istream<_Elem,_Traits> &))' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(161): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::basic_ios<_Elem,_Traits> &(__cdecl *)(std::basic_ios<_Elem,_Traits> &))' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(168): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::ios_base &(__cdecl *)(std::ios_base &))' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(175): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::_Bool &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(194): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(short &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(228): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(unsigned short &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(247): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(int &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(273): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(unsigned int &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(291): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(long &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(309): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(__w64 unsigned long &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(329): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(__int64 &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(348): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(unsigned __int64 &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(367): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(float &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(386): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(double &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(404): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(long double &)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(422): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(void *&)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include\istream(441): or 'std::basic_istream<_Elem,_Traits> &std::basic_istream<_Elem,_Traits>::operator >>(std::basic_streambuf<_Elem,_Traits> *)' 1> with 1> [ 1> _Elem=char, 1> _Traits=std::char_traits<char> 1> ] 1> while trying to match the argument list '(std::ifstream, InventoryItem)' 1>Build log was saved at "file://c:\Users\Owner\Documents\Visual Studio 2008\Projects\Project 5\Project 5\Debug\BuildLog.htm" 1>Project 5 - 1 error(s), 1 warning(s) ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ========== Oh my god...I fixed that error I think and now I got another one. Will you PLEASE just help me on this one too! What the heck does this mean ??

    Read the article

  • Steganography Experiment - Trouble hiding message bits in DCT coefficients

    - by JohnHankinson
    I have an application requiring me to be able to embed loss-less data into an image. As such I've been experimenting with steganography, specifically via modification of DCT coefficients as the method I select, apart from being loss-less must also be relatively resilient against format conversion, scaling/DSP etc. From the research I've done thus far this method seems to be the best candidate. I've seen a number of papers on the subject which all seem to neglect specific details (some neglect to mention modification of 0 coefficients, or modification of AC coefficient etc). After combining the findings and making a few modifications of my own which include: 1) Using a more quantized version of the DCT matrix to ensure we only modify coefficients that would still be present should the image be JPEG'ed further or processed (I'm using this in place of simply following a zig-zag pattern). 2) I'm modifying bit 4 instead of the LSB and then based on what the original bit value was adjusting the lower bits to minimize the difference. 3) I'm only modifying the blue channel as it should be the least visible. This process must modify the actual image and not the DCT values stored in file (like jsteg) as there is no guarantee the file will be a JPEG, it may also be opened and re-saved at a later stage in a different format. For added robustness I've included the message multiple times and use the bits that occur most often, I had considered using a QR code as the message data or simply applying the reed-solomon error correction, but for this simple application and given that the "message" in question is usually going to be between 10-32 bytes I have plenty of room to repeat it which should provide sufficient redundancy to recover the true bits. No matter what I do I don't seem to be able to recover the bits at the decode stage. I've tried including / excluding various checks (even if it degrades image quality for the time being). I've tried using fixed point vs. double arithmetic, moving the bit to encode, I suspect that the message bits are being lost during the IDCT back to image. Any thoughts or suggestions on how to get this working would be hugely appreciated. (PS I am aware that the actual DCT/IDCT could be optimized from it's naive On4 operation using row column algorithm, or an FDCT like AAN, but for now it just needs to work :) ) Reference Papers: http://www.lokminglui.com/dct.pdf http://arxiv.org/ftp/arxiv/papers/1006/1006.1186.pdf Code for the Encode/Decode process in C# below: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Drawing.Imaging; using System.Drawing; namespace ImageKey { public class Encoder { public const int HIDE_BIT_POS = 3; // use bit position 4 (1 << 3). public const int HIDE_COUNT = 16; // Number of times to repeat the message to avoid error. // JPEG Standard Quantization Matrix. // (to get higher quality multiply by (100-quality)/50 .. // for lower than 50 multiply by 50/quality. Then round to integers and clip to ensure only positive integers. public static double[] Q = {16,11,10,16,24,40,51,61, 12,12,14,19,26,58,60,55, 14,13,16,24,40,57,69,56, 14,17,22,29,51,87,80,62, 18,22,37,56,68,109,103,77, 24,35,55,64,81,104,113,92, 49,64,78,87,103,121,120,101, 72,92,95,98,112,100,103,99}; // Maximum qauality quantization matrix (if all 1's doesn't modify coefficients at all). public static double[] Q2 = {1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1}; public static Bitmap Encode(Bitmap b, string key) { Bitmap response = new Bitmap(b.Width, b.Height, PixelFormat.Format32bppArgb); uint imgWidth = ((uint)b.Width) & ~((uint)7); // Maximum usable X resolution (divisible by 8). uint imgHeight = ((uint)b.Height) & ~((uint)7); // Maximum usable Y resolution (divisible by 8). // Start be transferring the unmodified image portions. // As we'll be using slightly less width/height for the encoding process we'll need the edges to be populated. for (int y = 0; y < b.Height; y++) for (int x = 0; x < b.Width; x++) { if( (x >= imgWidth && x < b.Width) || (y>=imgHeight && y < b.Height)) response.SetPixel(x, y, b.GetPixel(x, y)); } // Setup the counters and byte data for the message to encode. StringBuilder sb = new StringBuilder(); for(int i=0;i<HIDE_COUNT;i++) sb.Append(key); byte[] codeBytes = System.Text.Encoding.ASCII.GetBytes(sb.ToString()); int bitofs = 0; // Current bit position we've encoded too. int totalBits = (codeBytes.Length * 8); // Total number of bits to encode. for (int y = 0; y < imgHeight; y += 8) { for (int x = 0; x < imgWidth; x += 8) { int[] redData = GetRedChannelData(b, x, y); int[] greenData = GetGreenChannelData(b, x, y); int[] blueData = GetBlueChannelData(b, x, y); int[] newRedData; int[] newGreenData; int[] newBlueData; if (bitofs < totalBits) { double[] redDCT = DCT(ref redData); double[] greenDCT = DCT(ref greenData); double[] blueDCT = DCT(ref blueData); int[] redDCTI = Quantize(ref redDCT, ref Q2); int[] greenDCTI = Quantize(ref greenDCT, ref Q2); int[] blueDCTI = Quantize(ref blueDCT, ref Q2); int[] blueDCTC = Quantize(ref blueDCT, ref Q); HideBits(ref blueDCTI, ref blueDCTC, ref bitofs, ref totalBits, ref codeBytes); double[] redDCT2 = DeQuantize(ref redDCTI, ref Q2); double[] greenDCT2 = DeQuantize(ref greenDCTI, ref Q2); double[] blueDCT2 = DeQuantize(ref blueDCTI, ref Q2); newRedData = IDCT(ref redDCT2); newGreenData = IDCT(ref greenDCT2); newBlueData = IDCT(ref blueDCT2); } else { newRedData = redData; newGreenData = greenData; newBlueData = blueData; } MapToRGBRange(ref newRedData); MapToRGBRange(ref newGreenData); MapToRGBRange(ref newBlueData); for(int dy=0;dy<8;dy++) { for(int dx=0;dx<8;dx++) { int col = (0xff<<24) + (newRedData[dx+(dy*8)]<<16) + (newGreenData[dx+(dy*8)]<<8) + (newBlueData[dx+(dy*8)]); response.SetPixel(x+dx,y+dy,Color.FromArgb(col)); } } } } if (bitofs < totalBits) throw new Exception("Failed to encode data - insufficient cover image coefficients"); return (response); } public static void HideBits(ref int[] DCTMatrix, ref int[] CMatrix, ref int bitofs, ref int totalBits, ref byte[] codeBytes) { int tempValue = 0; for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { if ( (u != 0 || v != 0) && CMatrix[v+(u*8)] != 0 && DCTMatrix[v+(u*8)] != 0) { if (bitofs < totalBits) { tempValue = DCTMatrix[v + (u * 8)]; int bytePos = (bitofs) >> 3; int bitPos = (bitofs) % 8; byte mask = (byte)(1 << bitPos); byte value = (byte)((codeBytes[bytePos] & mask) >> bitPos); // 0 or 1. if (value == 0) { int a = DCTMatrix[v + (u * 8)] & (1 << HIDE_BIT_POS); if (a != 0) DCTMatrix[v + (u * 8)] |= (1 << HIDE_BIT_POS) - 1; DCTMatrix[v + (u * 8)] &= ~(1 << HIDE_BIT_POS); } else if (value == 1) { int a = DCTMatrix[v + (u * 8)] & (1 << HIDE_BIT_POS); if (a == 0) DCTMatrix[v + (u * 8)] &= ~((1 << HIDE_BIT_POS) - 1); DCTMatrix[v + (u * 8)] |= (1 << HIDE_BIT_POS); } if (DCTMatrix[v + (u * 8)] != 0) bitofs++; else DCTMatrix[v + (u * 8)] = tempValue; } } } } } public static void MapToRGBRange(ref int[] data) { for(int i=0;i<data.Length;i++) { data[i] += 128; if(data[i] < 0) data[i] = 0; else if(data[i] > 255) data[i] = 255; } } public static int[] GetRedChannelData(Bitmap b, int sx, int sy) { int[] data = new int[8 * 8]; for (int y = sy; y < (sy + 8); y++) { for (int x = sx; x < (sx + 8); x++) { uint col = (uint)b.GetPixel(x,y).ToArgb(); data[(x - sx) + ((y - sy) * 8)] = (int)((col >> 16) & 0xff) - 128; } } return (data); } public static int[] GetGreenChannelData(Bitmap b, int sx, int sy) { int[] data = new int[8 * 8]; for (int y = sy; y < (sy + 8); y++) { for (int x = sx; x < (sx + 8); x++) { uint col = (uint)b.GetPixel(x, y).ToArgb(); data[(x - sx) + ((y - sy) * 8)] = (int)((col >> 8) & 0xff) - 128; } } return (data); } public static int[] GetBlueChannelData(Bitmap b, int sx, int sy) { int[] data = new int[8 * 8]; for (int y = sy; y < (sy + 8); y++) { for (int x = sx; x < (sx + 8); x++) { uint col = (uint)b.GetPixel(x, y).ToArgb(); data[(x - sx) + ((y - sy) * 8)] = (int)((col >> 0) & 0xff) - 128; } } return (data); } public static int[] Quantize(ref double[] DCTMatrix, ref double[] Q) { int[] DCTMatrixOut = new int[8*8]; for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { DCTMatrixOut[v + (u * 8)] = (int)Math.Round(DCTMatrix[v + (u * 8)] / Q[v + (u * 8)]); } } return(DCTMatrixOut); } public static double[] DeQuantize(ref int[] DCTMatrix, ref double[] Q) { double[] DCTMatrixOut = new double[8*8]; for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { DCTMatrixOut[v + (u * 8)] = (double)DCTMatrix[v + (u * 8)] * Q[v + (u * 8)]; } } return(DCTMatrixOut); } public static double[] DCT(ref int[] data) { double[] DCTMatrix = new double[8 * 8]; for (int v = 0; v < 8; v++) { for (int u = 0; u < 8; u++) { double cu = 1; if (u == 0) cu = (1.0 / Math.Sqrt(2.0)); double cv = 1; if (v == 0) cv = (1.0 / Math.Sqrt(2.0)); double sum = 0.0; for (int y = 0; y < 8; y++) { for (int x = 0; x < 8; x++) { double s = data[x + (y * 8)]; double dctVal = Math.Cos((2 * y + 1) * v * Math.PI / 16) * Math.Cos((2 * x + 1) * u * Math.PI / 16); sum += s * dctVal; } } DCTMatrix[u + (v * 8)] = (0.25 * cu * cv * sum); } } return (DCTMatrix); } public static int[] IDCT(ref double[] DCTMatrix) { int[] Matrix = new int[8 * 8]; for (int y = 0; y < 8; y++) { for (int x = 0; x < 8; x++) { double sum = 0; for (int v = 0; v < 8; v++) { for (int u = 0; u < 8; u++) { double cu = 1; if (u == 0) cu = (1.0 / Math.Sqrt(2.0)); double cv = 1; if (v == 0) cv = (1.0 / Math.Sqrt(2.0)); double idctVal = (cu * cv) / 4.0 * Math.Cos((2 * y + 1) * v * Math.PI / 16) * Math.Cos((2 * x + 1) * u * Math.PI / 16); sum += (DCTMatrix[u + (v * 8)] * idctVal); } } Matrix[x + (y * 8)] = (int)Math.Round(sum); } } return (Matrix); } } public class Decoder { public static string Decode(Bitmap b, int expectedLength) { expectedLength *= Encoder.HIDE_COUNT; uint imgWidth = ((uint)b.Width) & ~((uint)7); // Maximum usable X resolution (divisible by 8). uint imgHeight = ((uint)b.Height) & ~((uint)7); // Maximum usable Y resolution (divisible by 8). // Setup the counters and byte data for the message to decode. byte[] codeBytes = new byte[expectedLength]; byte[] outBytes = new byte[expectedLength / Encoder.HIDE_COUNT]; int bitofs = 0; // Current bit position we've decoded too. int totalBits = (codeBytes.Length * 8); // Total number of bits to decode. for (int y = 0; y < imgHeight; y += 8) { for (int x = 0; x < imgWidth; x += 8) { int[] blueData = ImageKey.Encoder.GetBlueChannelData(b, x, y); double[] blueDCT = ImageKey.Encoder.DCT(ref blueData); int[] blueDCTI = ImageKey.Encoder.Quantize(ref blueDCT, ref Encoder.Q2); int[] blueDCTC = ImageKey.Encoder.Quantize(ref blueDCT, ref Encoder.Q); if (bitofs < totalBits) GetBits(ref blueDCTI, ref blueDCTC, ref bitofs, ref totalBits, ref codeBytes); } } bitofs = 0; for (int i = 0; i < (expectedLength / Encoder.HIDE_COUNT) * 8; i++) { int bytePos = (bitofs) >> 3; int bitPos = (bitofs) % 8; byte mask = (byte)(1 << bitPos); List<int> values = new List<int>(); int zeroCount = 0; int oneCount = 0; for (int j = 0; j < Encoder.HIDE_COUNT; j++) { int val = (codeBytes[bytePos + ((expectedLength / Encoder.HIDE_COUNT) * j)] & mask) >> bitPos; values.Add(val); if (val == 0) zeroCount++; else oneCount++; } if (oneCount >= zeroCount) outBytes[bytePos] |= mask; bitofs++; values.Clear(); } return (System.Text.Encoding.ASCII.GetString(outBytes)); } public static void GetBits(ref int[] DCTMatrix, ref int[] CMatrix, ref int bitofs, ref int totalBits, ref byte[] codeBytes) { for (int u = 0; u < 8; u++) { for (int v = 0; v < 8; v++) { if ((u != 0 || v != 0) && CMatrix[v + (u * 8)] != 0 && DCTMatrix[v + (u * 8)] != 0) { if (bitofs < totalBits) { int bytePos = (bitofs) >> 3; int bitPos = (bitofs) % 8; byte mask = (byte)(1 << bitPos); int value = DCTMatrix[v + (u * 8)] & (1 << Encoder.HIDE_BIT_POS); if (value != 0) codeBytes[bytePos] |= mask; bitofs++; } } } } } } } UPDATE: By switching to using a QR Code as the source message and swapping a pair of coefficients in each block instead of bit manipulation I've been able to get the message to survive the transform. However to get the message to come through without corruption I have to adjust both coefficients as well as swap them. For example swapping (3,4) and (4,3) in the DCT matrix and then respectively adding 8 and subtracting 8 as an arbitrary constant seems to work. This survives a re-JPEG'ing of 96 but any form of scaling/cropping destroys the message again. I was hoping that by operating on mid to low frequency values that the message would be preserved even under some light image manipulation.

    Read the article

< Previous Page | 201 202 203 204 205