Search Results

Search found 28818 results on 1153 pages for 'main loop'.

Page 206/1153 | < Previous Page | 202 203 204 205 206 207 208 209 210 211 212 213  | Next Page >

  • Automatically rebuild external cmake project after edit_cache

    - by arunkd13
    I have a main cmake project which has a PROJECT_INCLUDE_PATH which is a cached variable. I pass this variable as a CMAKE_ARGS parameter to an external project that I add using ExternalProject_Add(). The problem is, when I change the value of the PROJECT_INCLUDE_PATH using 'make edit_cache' the external project is not reconfigured. Is there any way make the external project to be reconfigured and built automatically when the cached variable is changed in the main project?

    Read the article

  • Make qwidget in new window in PyQt4

    - by matt
    I'm trying to make a class that extends qwidget, that pops up a new window, I must be missing something fundamental, class NewQuery(QtGui.QWidget): def __init__(self, parent): QtGui.QMainWindow.__init__(self,parent) self.setWindowTitle('Add New Query') grid = QtGui.QGridLayout() label = QtGui.QLabel('blah') grid.addWidget(label,0,0) self.setLayout(grid) self.resize(300,200) when a new instance of this is made in main window's class, and show() called, the content is overlaid on the main window, how can I make it display in a new window?

    Read the article

  • UIView fine for iPhone 4in, but squashed in iPhone 3.5in

    - by coopersita
    I started a new project in the new Xcode, and I see that my default the main window is set to 320x548. I'm fine with that, but when I test my app, a view I added to my main xib, which is supposed to be 280x280, looks more like 280x200 when testing on 3.5in devices. I've tried changing the settings for that view in the xib, but nothing seems to affect it. How do I ensure background compatibility so that in older devices the view is the same size?

    Read the article

  • C# Strange Behavior

    - by Betamoo
    I have a custom struct : struct A { public int y; } a custom class with empty constuctor: class B { public A a; public B() { } } and here is the main: static void Main(string[] args) { B b = new B(); b.a.y = 5;//No runtime errors! Console.WriteLine(b.a.y); } When I run the above program, it does not give me any errors, although I did not initialize struct A in class B constructor..'a=new A();'

    Read the article

  • Check Form for child Forms - C#

    - by dimanyuk
    I have main form and some other forms, that can be shown by controls, using ShowDialog(control). Also I have event handler on the main form, that can be handled anytime. How can I check inside it, is there any other dialog forms?

    Read the article

  • Cancel the calculation if input-mismatch was found

    - by Lert Pianapitham
    Hallo everybody, i have programmed a sub procedure, that will be called in the main procedure (called by event of mainForm), to valid the inputs before the main calculation. now i'm searching for a method, how can i cancel the calculation and refocus the mainForm if some inputs mismatch. i think, it's unnecessary to use the Try-Catch statment to trap the error from calculation because i know what is its source and it should be prevented due to the code preformance. Has someone an idea to due with this? best regards Lert Pianapitham

    Read the article

  • Mef, passing parameters to a module

    - by Flex_Addicted
    Hi guys, I'm studying MEF and I'm not able to resolve a problem. I have a main application, called MainMEF, and a simple module, called SimpleModule. This one consists of a single UserControl which is loaded dinamically. When MainMEF starts up, I would be able to pass to the module a reference to main application contained into MainMEF. How could I fix this? Thanks in advance.

    Read the article

  • Cocos2d for this?

    - by Marins
    Hi everyone, I just finished my concept for an iphone app. I have a main program and in that program I want to start a game. MAIN PROGRAM (BUTTON 1 / BUTTON 2 / START GAME) | | Cocos2d Game Is this possible? To use cocos2D in a normal "iphone app"??? Thanks so much!!!

    Read the article

  • Starting a seperate process

    - by jacquesb
    I want a script to start a new process, such that the new process continues running after the initial script exits. I expected that I could use multiprocessing.Process to start a new process, and set daemon=True so that the main script may exit while the created process continues running. But it seems that the second process is silently terminated when the main script exits. Is this expected behavior, or am I doing something wrong?

    Read the article

  • Accessing variables in other classes (Java)

    - by George
    Why doesn't the following program return 0, since I am accessing p from a new A(), which has not had main called on it? public class A { public int p = 0; public static void main(String[] args) { p = Integer.parseInt(args[0]); new B().go(); } } class B { public void go() { System.out.println(new A().p); } }

    Read the article

  • CMake with include and source paths - basic setup

    - by user912403
    I'm trying to set up a test project looking like my own project just to get things working first and it looks like this: /MainProject/inc/main.h /MainProject/src/main.cpp /LibProject/inc/test.h /LibProject/src/test.cpp I've found some tutorials, but I cant find out how to set up this when I have the inc and src folder? How would the CMakeLists.txt files look? Would I have one in /, one in each of the project folders? It seems like I dont need to have one in the inc and src folders?

    Read the article

  • Rails: i have a class method and i want to modify something of the instance

    - by Totty
    Rails: i have a class method and i want to modify something of the instance something like this: class Test < Main template :box def test # here I want to access the template name, that is box end end class Main def initialize end def self.template(name) # here I have to save somehow the template name # remember is not an instance. end end that is similar to the model classes: # in the model has_many :projects How do I do it?

    Read the article

  • Why does Application_Deactivated not get called on a pivot page?

    - by willmel
    For my Windows Phone 7 app, I have a main panorama page which opens up into a pivot control. The main panorama page correctly calls Activated/Deactivated, and restores correctly. But after visiting the pivot page, pressing the Windows key doesn't call Deactivated. When the app is relaunched with the back button, it goes right to how the page looked before tombstoning, but Activated is not called, and the page is not usable, and the back key doesn't work. Has anyone else experienced this problem before?

    Read the article

  • C++/boost generator module, feedback/critic please

    - by aaa
    hello. I wrote this generator, and I think to submit to boost people. Can you give me some feedback about it it basically allows to collapse multidimensional loops to flat multi-index queue. Loop can be boost lambda expressions. Main reason for doing this is to make parallel loops easier and separate algorithm from controlling structure (my fieldwork is computational chemistry where deep loops are common) 1 #ifndef _GENERATOR_HPP_ 2 #define _GENERATOR_HPP_ 3 4 #include <boost/array.hpp> 5 #include <boost/lambda/lambda.hpp> 6 #include <boost/noncopyable.hpp> 7 8 #include <boost/mpl/bool.hpp> 9 #include <boost/mpl/int.hpp> 10 #include <boost/mpl/for_each.hpp> 11 #include <boost/mpl/range_c.hpp> 12 #include <boost/mpl/vector.hpp> 13 #include <boost/mpl/transform.hpp> 14 #include <boost/mpl/erase.hpp> 15 16 #include <boost/fusion/include/vector.hpp> 17 #include <boost/fusion/include/for_each.hpp> 18 #include <boost/fusion/include/at_c.hpp> 19 #include <boost/fusion/mpl.hpp> 20 #include <boost/fusion/include/as_vector.hpp> 21 22 #include <memory> 23 24 /** 25 for loop generator which can use lambda expressions. 26 27 For example: 28 @code 29 using namespace generator; 30 using namespace boost::lambda; 31 make_for(N, N, range(bind(std::max<int>, _1, _2), N), range(_2, _3+1)); 32 // equivalent to pseudocode 33 // for l=0,N: for k=0,N: for j=max(l,k),N: for i=k,j 34 @endcode 35 36 If range is given as upper bound only, 37 lower bound is assumed to be default constructed 38 Lambda placeholders may only reference first three indices. 39 */ 40 41 namespace generator { 42 namespace detail { 43 44 using boost::lambda::constant_type; 45 using boost::lambda::constant; 46 47 /// lambda expression identity 48 template<class E, class enable = void> 49 struct lambda { 50 typedef E type; 51 }; 52 53 /// transform/construct constant lambda expression from non-lambda 54 template<class E> 55 struct lambda<E, typename boost::disable_if< 56 boost::lambda::is_lambda_functor<E> >::type> 57 { 58 struct constant : boost::lambda::constant_type<E>::type { 59 typedef typename boost::lambda::constant_type<E>::type base_type; 60 constant() : base_type(boost::lambda::constant(E())) {} 61 constant(const E &e) : base_type(boost::lambda::constant(e)) {} 62 }; 63 typedef constant type; 64 }; 65 66 /// range functor 67 template<class L, class U> 68 struct range_ { 69 typedef boost::array<int,4> index_type; 70 range_(U upper) : bounds_(typename lambda<L>::type(), upper) {} 71 range_(L lower, U upper) : bounds_(lower, upper) {} 72 73 template< typename T, size_t N> 74 T lower(const boost::array<T,N> &index) { 75 return bound<0>(index); 76 } 77 78 template< typename T, size_t N> 79 T upper(const boost::array<T,N> &index) { 80 return bound<1>(index); 81 } 82 83 private: 84 template<bool b, typename T> 85 T bound(const boost::array<T,1> &index) { 86 return (boost::fusion::at_c<b>(bounds_))(index[0]); 87 } 88 89 template<bool b, typename T> 90 T bound(const boost::array<T,2> &index) { 91 return (boost::fusion::at_c<b>(bounds_))(index[0], index[1]); 92 } 93 94 template<bool b, typename T, size_t N> 95 T bound(const boost::array<T,N> &index) { 96 using boost::fusion::at_c; 97 return (at_c<b>(bounds_))(index[0], index[1], index[2]); 98 } 99 100 boost::fusion::vector<typename lambda<L>::type, 101 typename lambda<U>::type> bounds_; 102 }; 103 104 template<typename T, size_t N> 105 struct for_base { 106 typedef boost::array<T,N> value_type; 107 virtual ~for_base() {} 108 virtual value_type next() = 0; 109 }; 110 111 /// N-index generator 112 template<typename T, size_t N, class R, class I> 113 struct for_ : for_base<T,N> { 114 typedef typename for_base<T,N>::value_type value_type; 115 typedef R range_tuple; 116 for_(const range_tuple &r) : r_(r), state_(true) { 117 boost::fusion::for_each(r_, initialize(index)); 118 } 119 /// @return new generator 120 for_* new_() { return new for_(r_); } 121 /// @return next index value and increment 122 value_type next() { 123 value_type next; 124 using namespace boost::lambda; 125 typename value_type::iterator n = next.begin(); 126 typename value_type::iterator i = index.begin(); 127 boost::mpl::for_each<I>(*(var(n))++ = var(i)[_1]); 128 129 state_ = advance<N>(r_, index); 130 return next; 131 } 132 /// @return false if out of bounds, true otherwise 133 operator bool() { return state_; } 134 135 private: 136 /// initialize indices 137 struct initialize { 138 value_type &index_; 139 mutable size_t i_; 140 initialize(value_type &index) : index_(index), i_(0) {} 141 template<class R_> void operator()(R_& r) const { 142 index_[i_++] = r.lower(index_); 143 } 144 }; 145 146 /// advance index[0:M) 147 template<size_t M> 148 struct advance { 149 /// stop recursion 150 struct stop { 151 stop(R r, value_type &index) {} 152 }; 153 /// advance index 154 /// @param r range tuple 155 /// @param index index array 156 advance(R &r, value_type &index) : index_(index), i_(0) { 157 namespace fusion = boost::fusion; 158 index[M-1] += 1; // increment index 159 fusion::for_each(r, *this); // update indices 160 state_ = index[M-1] >= fusion::at_c<M-1>(r).upper(index); 161 if (state_) { // out of bounds 162 typename boost::mpl::if_c<(M > 1), 163 advance<M-1>, stop>::type(r, index); 164 } 165 } 166 /// apply lower bound of range to index 167 template<typename R_> void operator()(R_& r) const { 168 if (i_ >= M) index_[i_] = r.lower(index_); 169 ++i_; 170 } 171 /// @return false if out of bounds, true otherwise 172 operator bool() { return state_; } 173 private: 174 value_type &index_; ///< index array reference 175 mutable size_t i_; ///< running index 176 bool state_; ///< out of bounds state 177 }; 178 179 value_type index; 180 range_tuple r_; 181 bool state_; 182 }; 183 184 185 /// polymorphic generator template base 186 template<typename T,size_t N> 187 struct For : boost::noncopyable { 188 typedef boost::array<T,N> value_type; 189 /// @return next index value and increment 190 value_type next() { return for_->next(); } 191 /// @return false if out of bounds, true otherwise 192 operator bool() const { return for_; } 193 protected: 194 /// reset smart pointer 195 void reset(for_base<T,N> *f) { for_.reset(f); } 196 std::auto_ptr<for_base<T,N> > for_; 197 }; 198 199 /// range [T,R) type 200 template<typename T, typename R> 201 struct range_type { 202 typedef range_<T,R> type; 203 }; 204 205 /// range identity specialization 206 template<typename T, class L, class U> 207 struct range_type<T, range_<L,U> > { 208 typedef range_<L,U> type; 209 }; 210 211 namespace fusion = boost::fusion; 212 namespace mpl = boost::mpl; 213 214 template<typename T, size_t N, class R1, class R2, class R3, class R4> 215 struct range_tuple { 216 // full range vector 217 typedef typename mpl::vector<R1,R2,R3,R4> v; 218 typedef typename mpl::end<v>::type end; 219 typedef typename mpl::advance_c<typename mpl::begin<v>::type, N>::type pos; 220 // [0:N) range vector 221 typedef typename mpl::erase<v, pos, end>::type t; 222 // transform into proper range fusion::vector 223 typedef typename fusion::result_of::as_vector< 224 typename mpl::transform<t,range_type<T, mpl::_1> >::type 225 >::type type; 226 }; 227 228 229 template<typename T, size_t N, 230 class R1, class R2, class R3, class R4, 231 class O> 232 struct for_type { 233 typedef typename range_tuple<T,N,R1,R2,R3,R4>::type range_tuple; 234 typedef for_<T, N, range_tuple, O> type; 235 }; 236 237 } // namespace detail 238 239 240 /// default index order, [0:N) 241 template<size_t N> 242 struct order { 243 typedef boost::mpl::range_c<size_t,0, N> type; 244 }; 245 246 /// N-loop generator, 0 < N <= 5 247 /// @tparam T index type 248 /// @tparam N number of indices/loops 249 /// @tparam R1,... range types 250 /// @tparam O index order 251 template<typename T, size_t N, 252 class R1, class R2 = void, class R3 = void, class R4 = void, 253 class O = typename order<N>::type> 254 struct for_ : detail::for_type<T, N, R1, R2, R3, R4, O>::type { 255 typedef typename detail::for_type<T, N, R1, R2, R3, R4, O>::type base_type; 256 typedef typename base_type::range_tuple range_tuple; 257 for_(const range_tuple &range) : base_type(range) {} 258 }; 259 260 /// loop range [L:U) 261 /// @tparam L lower bound type 262 /// @tparam U upper bound type 263 /// @return range 264 template<class L, class U> 265 detail::range_<L,U> range(L lower, U upper) { 266 return detail::range_<L,U>(lower, upper); 267 } 268 269 /// make 4-loop generator with specified index ordering 270 template<typename T, class R1, class R2, class R3, class R4, class O> 271 for_<T, 4, R1, R2, R3, R4, O> 272 make_for(R1 r1, R2 r2, R3 r3, R4 r4, const O&) { 273 typedef for_<T, 4, R1, R2, R3, R4, O> F; 274 return F(F::range_tuple(r1, r2, r3, r4)); 275 } 276 277 /// polymorphic generator template forward declaration 278 template<typename T,size_t N> 279 struct For; 280 281 /// polymorphic 4-loop generator 282 template<typename T> 283 struct For<T,4> : detail::For<T,4> { 284 /// generator with default index ordering 285 template<class R1, class R2, class R3, class R4> 286 For(R1 r1, R2 r2, R3 r3, R4 r4) { 287 this->reset(make_for<T>(r1, r2, r3, r4).new_()); 288 } 289 /// generator with specified index ordering 290 template<class R1, class R2, class R3, class R4, class O> 291 For(R1 r1, R2 r2, R3 r3, R4 r4, O o) { 292 this->reset(make_for<T>(r1, r2, r3, r4, o).new_()); 293 } 294 }; 295 296 } 297 298 299 #endif /* _GENERATOR_HPP_ */

    Read the article

  • Threading across multiple files

    - by Zach M.
    My program is reading in files and using thread to compute the highest prime number, when I put a print statement into the getNum() function my numbers are printing out. However, it seems to just lag no matter how many threads I input. Each file has 1 million integers in it. Does anyone see something apparently wrong with my code? Basically the code is giving each thread 1000 integers to check before assigning a new thread. I am still a C noobie and am just learning the ropes of threading. My code is a mess right now because I have been switching things around constantly. #include <stdio.h> #include <stdlib.h> #include <time.h> #include <string.h> #include <pthread.h> #include <math.h> #include <semaphore.h> //Global variable declaration char *file1 = "primes1.txt"; char *file2 = "primes2.txt"; char *file3 = "primes3.txt"; char *file4 = "primes4.txt"; char *file5 = "primes5.txt"; char *file6 = "primes6.txt"; char *file7 = "primes7.txt"; char *file8 = "primes8.txt"; char *file9 = "primes9.txt"; char *file10 = "primes10.txt"; char **fn; //file name variable int numberOfThreads; int *highestPrime = NULL; int fileArrayNum = 0; int loop = 0; int currentFile = 0; sem_t semAccess; sem_t semAssign; int prime(int n)//check for prime number, return 1 for prime 0 for nonprime { int i; for(i = 2; i <= sqrt(n); i++) if(n % i == 0) return(0); return(1); } int getNum(FILE* file) { int number; char* tempS = malloc(20 *sizeof(char)); fgets(tempS, 20, file); tempS[strlen(tempS)-1] = '\0'; number = atoi(tempS); free(tempS);//free memory for later call return(number); } void* findPrimality(void *threadnum) //main thread function to find primes { int tNum = (int)threadnum; int checkNum; char *inUseFile = NULL; int x=1; FILE* file; while(currentFile < 10){ if(inUseFile == NULL){//inUseFIle being used to check if a file is still being read sem_wait(&semAccess);//critical section inUseFile = fn[currentFile]; sem_post(&semAssign); file = fopen(inUseFile, "r"); while(!feof(file)){ if(x % 1000 == 0 && tNum !=1){ //go for 1000 integers and then wait sem_wait(&semAssign); } checkNum = getNum(file); /* * * * * I think the issue is here * * * */ if(checkNum > highestPrime[tNum]){ if(prime(checkNum)){ highestPrime[tNum] = checkNum; } } x++; } fclose(file); inUseFile = NULL; } currentFile++; } } int main(int argc, char* argv[]) { if(argc != 2){ //checks for number of arguements being passed printf("To many ARGS\n"); return(-1); } else{//Sets thread cound to user input checking for correct number of threads numberOfThreads = atoi(argv[1]); if(numberOfThreads < 1 || numberOfThreads > 10){ printf("To many threads entered\n"); return(-1); } time_t preTime, postTime; //creating time variables int i; fn = malloc(10 * sizeof(char*)); //create file array and initialize fn[0] = file1; fn[1] = file2; fn[2] = file3; fn[3] = file4; fn[4] = file5; fn[5] = file6; fn[6] = file7; fn[7] = file8; fn[8] = file9; fn[9] = file10; sem_init(&semAccess, 0, 1); //initialize semaphores sem_init(&semAssign, 0, numberOfThreads); highestPrime = malloc(numberOfThreads * sizeof(int)); //create an array to store each threads highest number for(loop = 0; loop < numberOfThreads; loop++){//set initial values to 0 highestPrime[loop] = 0; } pthread_t calculationThread[numberOfThreads]; //thread to do the work preTime = time(NULL); //start the clock for(i = 0; i < numberOfThreads; i++){ pthread_create(&calculationThread[i], NULL, findPrimality, (void *)i); } for(i = 0; i < numberOfThreads; i++){ pthread_join(calculationThread[i], NULL); } for(i = 0; i < numberOfThreads; i++){ printf("this is a prime number: %d \n", highestPrime[i]); } postTime= time(NULL); printf("Wall time: %ld seconds\n", (long)(postTime - preTime)); } } Yes I am trying to find the highest number over all. So I have made some head way the last few hours, rescucturing the program as spudd said, currently I am getting a segmentation fault due to my use of structures, I am trying to save the largest individual primes in the struct while giving them the right indices. This is the revised code. So in short what the first thread is doing is creating all the threads and giving them access points to a very large integer array which they will go through and find prime numbers, I want to implement semaphores around the while loop so that while they are executing every 2000 lines or the end they update a global prime number. #include <stdio.h> #include <stdlib.h> #include <time.h> #include <string.h> #include <pthread.h> #include <math.h> #include <semaphore.h> //Global variable declaration char *file1 = "primes1.txt"; char *file2 = "primes2.txt"; char *file3 = "primes3.txt"; char *file4 = "primes4.txt"; char *file5 = "primes5.txt"; char *file6 = "primes6.txt"; char *file7 = "primes7.txt"; char *file8 = "primes8.txt"; char *file9 = "primes9.txt"; char *file10 = "primes10.txt"; int numberOfThreads; int entries[10000000]; int entryIndex = 0; int fileCount = 0; char** fileName; int largestPrimeNumber = 0; //Register functions int prime(int n); int getNum(FILE* file); void* findPrimality(void *threadNum); void* assign(void *num); typedef struct package{ int largestPrime; int startingIndex; int numberCount; }pack; //Beging main code block int main(int argc, char* argv[]) { if(argc != 2){ //checks for number of arguements being passed printf("To many threads!!\n"); return(-1); } else{ //Sets thread cound to user input checking for correct number of threads numberOfThreads = atoi(argv[1]); if(numberOfThreads < 1 || numberOfThreads > 10){ printf("To many threads entered\n"); return(-1); } int threadPointer[numberOfThreads]; //Pointer array to point to entries time_t preTime, postTime; //creating time variables int i; fileName = malloc(10 * sizeof(char*)); //create file array and initialize fileName[0] = file1; fileName[1] = file2; fileName[2] = file3; fileName[3] = file4; fileName[4] = file5; fileName[5] = file6; fileName[6] = file7; fileName[7] = file8; fileName[8] = file9; fileName[9] = file10; FILE* filereader; int currentNum; for(i = 0; i < 10; i++){ filereader = fopen(fileName[i], "r"); while(!feof(filereader)){ char* tempString = malloc(20 *sizeof(char)); fgets(tempString, 20, filereader); tempString[strlen(tempString)-1] = '\0'; entries[entryIndex] = atoi(tempString); entryIndex++; free(tempString); } } //sem_init(&semAccess, 0, 1); //initialize semaphores //sem_init(&semAssign, 0, numberOfThreads); time_t tPre, tPost; pthread_t coordinate; tPre = time(NULL); pthread_create(&coordinate, NULL, assign, (void**)numberOfThreads); pthread_join(coordinate, NULL); tPost = time(NULL); } } void* findPrime(void* pack_array) { pack* currentPack= pack_array; int lp = currentPack->largestPrime; int si = currentPack->startingIndex; int nc = currentPack->numberCount; int i; int j = 0; for(i = si; i < nc; i++){ while(j < 2000 || i == (nc-1)){ if(prime(entries[i])){ if(entries[i] > lp) lp = entries[i]; } j++; } } return (void*)currentPack; } void* assign(void* num) { int y = (int)num; int i; int count = 10000000/y; int finalCount = count + (10000000%y); int sIndex = 0; pack pack_array[(int)num]; pthread_t workers[numberOfThreads]; //thread to do the workers for(i = 0; i < y; i++){ if(i == (y-1)){ pack_array[i].largestPrime = 0; pack_array[i].startingIndex = sIndex; pack_array[i].numberCount = finalCount; } pack_array[i].largestPrime = 0; pack_array[i].startingIndex = sIndex; pack_array[i].numberCount = count; pthread_create(&workers[i], NULL, findPrime, (void *)&pack_array[i]); sIndex += count; } for(i = 0; i< y; i++) pthread_join(workers[i], NULL); } //Functions int prime(int n)//check for prime number, return 1 for prime 0 for nonprime { int i; for(i = 2; i <= sqrt(n); i++) if(n % i == 0) return(0); return(1); }

    Read the article

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • pecl-ssh2-0.11 Freebsd Compile error after upgrading to php 5.3.2

    - by penfold45
    Hi I've been looking for answers for this all day and can find nothing to solve my issue. I also came across a question about this port on serverfault that I just answered and will hopefully help someone else. however my problem is this. While running "make" in /usr/ports/security/pecl-ssh2 I get this error === Building for pecl-ssh2-0.11 /bin/sh /usr/ports/security/pecl-ssh2/work/ssh2-0.11/libtool --mode=compile cc -I. -I/usr/ports/security/pecl-ssh2/work/ssh2-0.11 -DPHP_ATOM_INC -I/usr/ports/security/pecl-ssh2/work/ssh2-0.11/include -I/usr/ports/security/pecl-ssh2/work/ssh2-0.11/main -I/usr/ports/security/pecl-ssh2/work/ssh2-0.11 -I/usr/local/include/php -I/usr/local/include/php/main -I/usr/local/include/php/TSRM -I/usr/local/include/php/Zend -I/usr/local/include/php/ext -I/usr/local/include/php/ext/date/lib -I/usr/local/include -I/usr/local/include -DHAVE_CONFIG_H -O2 -pipe -fno-strict-aliasing -c /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c -o ssh2.lo cc -I. -I/usr/ports/security/pecl-ssh2/work/ssh2-0.11 -DPHP_ATOM_INC -I/usr/ports/security/pecl-ssh2/work/ssh2-0.11/include -I/usr/ports/security/pecl-ssh2/work/ssh2-0.11/main -I/usr/ports/security/pecl-ssh2/work/ssh2-0.11 -I/usr/local/include/php -I/usr/local/include/php/main -I/usr/local/include/php/TSRM -I/usr/local/include/php/Zend -I/usr/local/include/php/ext -I/usr/local/include/php/ext/date/lib -I/usr/local/include -I/usr/local/include -DHAVE_CONFIG_H -O2 -pipe -fno-strict-aliasing -c /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c -fPIC -DPIC -o .libs/ssh2.o /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c: In function 'zif_ssh2_methods_negotiated': /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:502: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:503: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:507: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:508: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:509: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:510: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:515: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:516: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:517: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:518: warning: passing argument 4 of 'add_assoc_string_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c: In function 'zif_ssh2_poll': /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:891: error: 'zval' has no member named 'is_ref' /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:891: error: 'zval' has no member named 'refcount' /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:901: error: 'zval' has no member named 'is_ref' /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:902: error: 'zval' has no member named 'refcount' /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c: In function 'zif_ssh2_publickey_add': /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:1011: error: 'zval' has no member named 'is_ref' /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:1012: error: 'zval' has no member named 'refcount' /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:1044: warning: passing argument 1 of '_efree' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c: In function 'zif_ssh2_publickey_list': /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:1103: warning: passing argument 4 of 'add_assoc_stringl_ex' discards qualifiers from pointer target type /usr/ports/security/pecl-ssh2/work/ssh2-0.11/ssh2.c:1104: warning: passing argument 4 of 'add_assoc_stringl_ex' discards qualifiers from pointer target type *** Error code 1 Stop in /usr/ports/security/pecl-ssh2/work/ssh2-0.11. *** Error code 1 Stop in /usr/ports/security/pecl-ssh2. I am trying to recompile this port after upgrading from php 5.2.12 to php 5.3.2 which was released on freebsd over the weekend. I have run out of ideas and steam with this so if anyone has any ideas on what this might be I would be truly grateful.

    Read the article

  • Why won't xattr PECL extension build on 12.10?

    - by Dan Jones
    I was using the xattr pecl extension in 12.04 (in fact, I think since 10.04) without problem. Not surprisingly, I had to reinstall it after upgrading to 12.10 because of the new version of PHP. But now it fails to build, and I can't figure out why. Other PECL extensions have built fine. And I have libattr1 and libattr1-dev installed. Here's the output from the build: downloading xattr-1.1.0.tgz ... Starting to download xattr-1.1.0.tgz (5,204 bytes) .....done: 5,204 bytes 3 source files, building running: phpize Configuring for: PHP Api Version: 20100412 Zend Module Api No: 20100525 Zend Extension Api No: 220100525 libattr library installation dir? [autodetect] : building in /tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0 running: /tmp/pear/temp/xattr/configure --with-xattr checking for grep that handles long lines and -e... /bin/grep checking for egrep... /bin/grep -E checking for a sed that does not truncate output... /bin/sed checking for cc... cc checking whether the C compiler works... yes checking for C compiler default output file name... a.out checking for suffix of executables... checking whether we are cross compiling... no checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether cc accepts -g... yes checking for cc option to accept ISO C89... none needed checking how to run the C preprocessor... cc -E checking for icc... no checking for suncc... no checking whether cc understands -c and -o together... yes checking for system library directory... lib checking if compiler supports -R... no checking if compiler supports -Wl,-rpath,... yes checking build system type... x86_64-unknown-linux-gnu checking host system type... x86_64-unknown-linux-gnu checking target system type... x86_64-unknown-linux-gnu checking for PHP prefix... /usr checking for PHP includes... -I/usr/include/php5 -I/usr/include/php5/main -I/usr/include/php5/TSRM -I/usr/include/php5/Zend -I/usr/include/php5/ext -I/usr/include/php5/ext/date/lib checking for PHP extension directory... /usr/lib/php5/20100525 checking for PHP installed headers prefix... /usr/include/php5 checking if debug is enabled... no checking if zts is enabled... no checking for re2c... re2c checking for re2c version... 0.13.5 (ok) checking for gawk... gawk checking for xattr support... yes, shared checking for xattr files in default path... found in /usr checking for attr_get in -lattr... yes checking how to print strings... printf checking for a sed that does not truncate output... (cached) /bin/sed checking for fgrep... /bin/grep -F checking for ld used by cc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for BSD- or MS-compatible name lister (nm)... /usr/bin/nm -B checking the name lister (/usr/bin/nm -B) interface... BSD nm checking whether ln -s works... yes checking the maximum length of command line arguments... 1572864 checking whether the shell understands some XSI constructs... yes checking whether the shell understands "+="... yes checking how to convert x86_64-unknown-linux-gnu file names to x86_64-unknown-linux-gnu format... func_convert_file_noop checking how to convert x86_64-unknown-linux-gnu file names to toolchain format... func_convert_file_noop checking for /usr/bin/ld option to reload object files... -r checking for objdump... objdump checking how to recognize dependent libraries... pass_all checking for dlltool... no checking how to associate runtime and link libraries... printf %s\n checking for ar... ar checking for archiver @FILE support... @ checking for strip... strip checking for ranlib... ranlib checking for gawk... (cached) gawk checking command to parse /usr/bin/nm -B output from cc object... ok checking for sysroot... no checking for mt... mt checking if mt is a manifest tool... no checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking for dlfcn.h... yes checking for objdir... .libs checking if cc supports -fno-rtti -fno-exceptions... no checking for cc option to produce PIC... -fPIC -DPIC checking if cc PIC flag -fPIC -DPIC works... yes checking if cc static flag -static works... yes checking if cc supports -c -o file.o... yes checking if cc supports -c -o file.o... (cached) yes checking whether the cc linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... no configure: creating ./config.status config.status: creating config.h config.status: executing libtool commands running: make /bin/bash /tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/libtool --mode=compile cc -I. -I/tmp/pear/temp/xattr -DPHP_ATOM_INC -I/tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/include -I/tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/main -I/tmp/pear/temp/xattr -I/usr/include/php5 -I/usr/include/php5/main -I/usr/include/php5/TSRM -I/usr/include/php5/Zend -I/usr/include/php5/ext -I/usr/include/php5/ext/date/lib -DHAVE_CONFIG_H -g -O2 -c /tmp/pear/temp/xattr/xattr.c -o xattr.lo libtool: compile: cc -I. -I/tmp/pear/temp/xattr -DPHP_ATOM_INC -I/tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/include -I/tmp/pear/temp/pear-build-rootdSMx0G/xattr-1.1.0/main -I/tmp/pear/temp/xattr -I/usr/include/php5 -I/usr/include/php5/main -I/usr/include/php5/TSRM -I/usr/include/php5/Zend -I/usr/include/php5/ext -I/usr/include/php5/ext/date/lib -DHAVE_CONFIG_H -g -O2 -c /tmp/pear/temp/xattr/xattr.c -fPIC -DPIC -o .libs/xattr.o /tmp/pear/temp/xattr/xattr.c:50:1: error: unknown type name 'function_entry' /tmp/pear/temp/xattr/xattr.c:51:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:51:2: error: (near initialization for 'xattr_functions[0]') /tmp/pear/temp/xattr/xattr.c:51:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:51:2: warning: (near initialization for 'xattr_functions[0]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:52:2: error: (near initialization for 'xattr_functions[1]') /tmp/pear/temp/xattr/xattr.c:52:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:52:2: warning: (near initialization for 'xattr_functions[1]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:53:2: error: (near initialization for 'xattr_functions[2]') /tmp/pear/temp/xattr/xattr.c:53:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:53:2: warning: (near initialization for 'xattr_functions[2]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:54:2: error: (near initialization for 'xattr_functions[3]') /tmp/pear/temp/xattr/xattr.c:54:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:54:2: warning: (near initialization for 'xattr_functions[3]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: error: initializer element is not computable at load time /tmp/pear/temp/xattr/xattr.c:55:2: error: (near initialization for 'xattr_functions[4]') /tmp/pear/temp/xattr/xattr.c:55:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:55:2: warning: (near initialization for 'xattr_functions[4]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: braces around scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: (near initialization for 'xattr_functions[5]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: initialization makes integer from pointer without a cast [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: (near initialization for 'xattr_functions[5]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: (near initialization for 'xattr_functions[5]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: excess elements in scalar initializer [enabled by default] /tmp/pear/temp/xattr/xattr.c:56:2: warning: (near initialization for 'xattr_functions[5]') [enabled by default] /tmp/pear/temp/xattr/xattr.c:67:2: warning: initialization from incompatible pointer type [enabled by default] /tmp/pear/temp/xattr/xattr.c:67:2: warning: (near initialization for 'xattr_module_entry.functions') [enabled by default] /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_set': /tmp/pear/temp/xattr/xattr.c:122:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:122:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) /tmp/pear/temp/xattr/xattr.c:122:92: note: each undeclared identifier is reported only once for each function it appears in /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_get': /tmp/pear/temp/xattr/xattr.c:171:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:171:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) /tmp/pear/temp/xattr/xattr.c:187:2: warning: passing argument 4 of 'attr_get' from incompatible pointer type [enabled by default] In file included from /tmp/pear/temp/xattr/xattr.c:37:0: /usr/include/attr/attributes.h:122:12: note: expected 'int *' but argument is of type 'size_t *' /tmp/pear/temp/xattr/xattr.c:198:3: warning: passing argument 4 of 'attr_get' from incompatible pointer type [enabled by default] In file included from /tmp/pear/temp/xattr/xattr.c:37:0: /usr/include/attr/attributes.h:122:12: note: expected 'int *' but argument is of type 'size_t *' /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_supported': /tmp/pear/temp/xattr/xattr.c:243:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:243:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_remove': /tmp/pear/temp/xattr/xattr.c:288:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:288:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) /tmp/pear/temp/xattr/xattr.c: In function 'zif_xattr_list': /tmp/pear/temp/xattr/xattr.c:337:49: error: 'struct _php_core_globals' has no member named 'safe_mode' /tmp/pear/temp/xattr/xattr.c:337:92: error: 'CHECKUID_DISALLOW_FILE_NOT_EXISTS' undeclared (first use in this function) make: *** [xattr.lo] Error 1 ERROR: `make' failed There seem to be a few errors, but I can't make heads or tails of them. Does this just not work properly in 12.10? That would be a big problem for me.

    Read the article

  • The Inkremental Architect&acute;s Napkin - #4 - Make increments tangible

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/12/the-inkremental-architectacutes-napkin---4---make-increments-tangible.aspxThe driver of software development are increments, small increments, tiny increments. With an increment being a slice of the overall requirement scope thin enough to implement and get feedback from a product owner within 2 days max. Such an increment might concern Functionality or Quality.[1] To make such high frequency delivery of increments possible, the transition from talking to coding needs to be as easy as possible. A user story or some other documentation of what´s supposed to get implemented until tomorrow evening at latest is one side of the medal. The other is where to put the logic in all of the code base. To implement an increment, only logic statements are needed. Functionality like Quality are just about expressions and control flow statements. Think of Assembler code without the CALL/RET instructions. That´s all is needed. Forget about functions, forget about classes. To make a user happy none of that is really needed. It´s just about the right expressions and conditional executions paths plus some memory allocation. Automatic function inlining of compilers which makes it clear how unimportant functions are for delivering value to users at runtime. But why then are there functions? Because they were invented for optimization purposes. We need them for better Evolvability and Production Efficiency. Nothing more, nothing less. No software has become faster, more secure, more scalable, more functional because we gathered logic under the roof of a function or two or a thousand. Functions make logic easier to understand. Functions make us faster in producing logic. Functions make it easier to keep logic consistent. Functions help to conserve memory. That said, functions are important. They are even the pivotal element of software development. We can´t code without them - whether you write a function yourself or not. Because there´s always at least one function in play: the Entry Point of a program. In Ruby the simplest program looks like this:puts "Hello, world!" In C# more is necessary:class Program { public static void Main () { System.Console.Write("Hello, world!"); } } C# makes the Entry Point function explicit, not so Ruby. But still it´s there. So you can think of logic always running in some function. Which brings me back to increments: In order to make the transition from talking to code as easy as possible, it has to be crystal clear into which function you should put the logic. Product owners might be content once there is a sticky note a user story on the Scrum or Kanban board. But developers need an idea of what that sticky note means in term of functions. Because with a function in hand, with a signature to run tests against, they have something to focus on. All´s well once there is a function behind whose signature logic can be piled up. Then testing frameworks can be used to check if the logic is correct. Then practices like TDD can help to drive the implementation. That´s why most code katas define exactly how the API of a solution should look like. It´s a function, maybe two or three, not more. A requirement like “Write a function f which takes this as parameters and produces such and such output by doing x” makes a developer comfortable. Yes, there are all kinds of details to think about, like which algorithm or technology to use, or what kind of state and side effects to consider. Even a single function not only must deliver on Functionality, but also on Quality and Evolvability. Nevertheless, once it´s clear which function to put logic in, you have a tangible starting point. So, yes, what I´m suggesting is to find a single function to put all the logic in that´s necessary to deliver on a the requirements of an increment. Or to put it the other way around: Slice requirements in a way that each increment´s logic can be located under the roof of a single function. Entry points Of course, the logic of a software will always be spread across many, many functions. But there´s always an Entry Point. That´s the most important function for each increment, because that´s the root to put integration or even acceptance tests on. A batch program like the above hello-world application only has a single Entry Point. All logic is reached from there, regardless how deep it´s nested in classes. But a program with a user interface like this has at least two Entry Points: One is the main function called upon startup. The other is the button click event handler for “Show my score”. But maybe there are even more, like another Entry Point being a handler for the event fired when one of the choices gets selected; because then some logic could check if the button should be enabled because all questions got answered. Or another Entry Point for the logic to be executed when the program is close; because then the choices made should be persisted. You see, an Entry Point to me is a function which gets triggered by the user of a software. With batch programs that´s the main function. With GUI programs on the desktop that´s event handlers. With web programs that´s handlers for URL routes. And my basic suggestion to help you with slicing requirements for Spinning is: Slice them in a way so that each increment is related to only one Entry Point function.[2] Entry Points are the “outer functions” of a program. That´s where the environment triggers behavior. That´s where hardware meets software. Entry points always get called because something happened to hardware state, e.g. a key was pressed, a mouse button clicked, the system timer ticked, data arrived over a wire.[3] Viewed from the outside, software is just a collection of Entry Point functions made accessible via buttons to press, menu items to click, gestures, URLs to open, keys to enter. Collections of batch processors I´d thus say, we haven´t moved forward since the early days of software development. We´re still writing batch programs. Forget about “event-driven programming” with its fancy GUI applications. Software is just a collection of batch processors. Earlier it was just one per program, today it´s hundreds we bundle up into applications. Each batch processor is represented by an Entry Point as its root that works on a number of resources from which it reads data to process and to which it writes results. These resources can be the keyboard or main memory or a hard disk or a communication line or a display. Together many batch processors - large and small - form applications the user perceives as a single whole: Software development that way becomes quite simple: just implement one batch processor after another. Well, at least in principle ;-) Features Each batch processor entered through an Entry Point delivers value to the user. It´s an increment. Sometimes its logic is trivial, sometimes it´s very complex. Regardless, each Entry Point represents an increment. An Entry Point implemented thus is a step forward in terms of Agility. At the same time it´s a tangible unit for developers. Therefore, identifying the more or less numerous batch processors in a software system is a rewarding task for product owners and developers alike. That´s where user stories meet code. In this example the user story translates to the Entry Point triggered by clicking the login button on a dialog like this: The batch then retrieves what has been entered via keyboard, loads data from a user store, and finally outputs some kind of response on the screen, e.g. by displaying an error message or showing the next dialog. This is all very simple, but you see, there is not just one thing happening, but several. Get input (email address, password) Load user for email address If user not found report error Check password Hash password Compare hash to hash stored in user Show next dialog Viewed from 10,000 feet it´s all done by the Entry Point function. And of course that´s technically possible. It´s just a bunch of logic and calling a couple of API functions. However, I suggest to take these steps as distinct aspects of the overall requirement described by the user story. Such aspects of requirements I call Features. Features too are increments. Each provides some (small) value of its own to the user. Each can be checked individually by a product owner. Instead of implementing all the logic behind the Login() entry point at once you can move forward increment by increment, e.g. First implement the dialog, let the user enter any credentials, and log him/her in without any checks. Features 1 and 4. Then hard code a single user and check the email address. Features 2 and 2.1. Then check password without hashing it (or use a very simple hash like the length of the password). Features 3. and 3.2 Replace hard coded user with a persistent user directoy, but a very simple one, e.g. a CSV file. Refinement of feature 2. Calculate the real hash for the password. Feature 3.1. Switch to the final user directory technology. Each feature provides an opportunity to deliver results in a short amount of time and get feedback. If you´re in doubt whether you can implement the whole entry point function until tomorrow night, then just go for a couple of features or even just one. That´s also why I think, you should strive for wrapping feature logic into a function of its own. It´s a matter of Evolvability and Production Efficiency. A function per feature makes the code more readable, since the language of requirements analysis and design is carried over into implementation. It makes it easier to apply changes to features because it´s clear where their logic is located. And finally, of course, it lets you re-use features in different context (read: increments). Feature functions make it easier for you to think of features as Spinning increments, to implement them independently, to let the product owner check them for acceptance individually. Increments consist of features, entry point functions consist of feature functions. So you can view software as a hierarchy of requirements from broad to thin which map to a hierarchy of functions - with entry points at the top.   I like this image of software as a self-similar structure on many levels of abstraction where requirements and code match each other. That to me is true agile design: the core tenet of Agility to move forward in increments is carried over into implementation. Increments on paper are retained in code. This way developers can easily relate to product owners. Elusive and fuzzy requirements are not tangible. Software production is moving forward through requirements one increment at a time, and one function at a time. In closing Product owners and developers are different - but they need to work together towards a shared goal: working software. So their notions of software need to be made compatible, they need to be connected. The increments of the product owner - user stories and features - need to be mapped straightforwardly to something which is relevant to developers. To me that´s functions. Yes, functions, not classes nor components nor micro services. We´re talking about behavior, actions, activities, processes. Their natural representation is a function. Something has to be done. Logic has to be executed. That´s the purpose of functions. Later, classes and other containers are needed to stay on top of a growing amount of logic. But to connect developers and product owners functions are the appropriate glue. Functions which represent increments. Can there always be such a small increment be found to deliver until tomorrow evening? I boldly say yes. Yes, it´s always possible. But maybe you´ve to start thinking differently. Maybe the product owner needs to start thinking differently. Completion is not the goal anymore. Neither is checking the delivery of an increment through the user interface of a software. Product owners need to become comfortable using test beds for certain features. If it´s hard to slice requirements thin enough for Spinning the reason is too little knowledge of something. Maybe you don´t yet understand the problem domain well enough? Maybe you don´t yet feel comfortable with some tool or technology? Then it´s time to acknowledge this fact. Be honest about your not knowing. And instead of trying to deliver as a craftsman officially become a researcher. Research an check back with the product owner every day - until your understanding has grown to a level where you are able to define the next Spinning increment. ? Sometimes even thin requirement slices will cover several Entry Points, like “Add validation of email addresses to all relevant dialogs.” Validation then will it put into a dozen functons. Still, though, it´s important to determine which Entry Points exactly get affected. That´s much easier, if strive for keeping the number of Entry Points per increment to 1. ? If you like call Entry Point functions event handlers, because that´s what they are. They all handle events of some kind, whether that´s palpable in your code or note. A public void btnSave_Click(object sender, EventArgs e) {…} might look like an event handler to you, but public static void Main() {…} is one also - for then event “program started”. ?

    Read the article

  • Can't logging in file from tomcat6 with log4j

    - by Ivan Nakov
    I have one stupid problem, which is killing me from hours. I'm trying to configure loggin to my project. I started with a simple Spring MVC project generated by STS, then added org.apache.log4j.RollingFileAppender to the existing log4j.xml file. <?xml version="1.0" encoding="UTF-8"?> <!-- Appenders --> <appender name="console" class="org.apache.log4j.ConsoleAppender"> <param name="Target" value="System.out" /> <layout class="org.apache.log4j.PatternLayout"> <param name="ConversionPattern" value="%-5p: %c - %m%n" /> </layout> </appender> <appender name="FilleAppender" class="org.apache.log4j.RollingFileAppender"> <param name="maxFileSize" value="100KB" /> <param name="maxBackupIndex" value="2" /> <param name="File" value="/home/ivan/Desktop/app.log" /> <layout class="org.apache.log4j.PatternLayout"> <param name="ConversionPattern" value="%d{ABSOLUTE} %5p %c{1}: %m%n " /> </layout> </appender> <!-- Application Loggers --> <logger name="org.elsys.logger"> <level value="debug" /> </logger> <!-- 3rdparty Loggers --> <logger name="org.springframework.core"> <level value="info" /> </logger> <logger name="org.springframework.beans"> <level value="info" /> </logger> <logger name="org.springframework.context"> <level value="info" /> </logger> <logger name="org.springframework.web"> <level value="info" /> </logger> <!-- Root Logger --> <root> <priority value="debug" /> <appender-ref ref="FilleAppender" /> </root> When I deploy project to tomcat6 server and open the url, logger doesn't generate log file. I'm trying to log from this controller: @Controller public class HomeController { private static final Logger logger = LoggerFactory.getLogger(HomeController.class); /** * Simply selects the home view to render by returning its name. */ @RequestMapping(value = "/", method = RequestMethod.GET) public String home(Locale locale, Model model) { logger.info("Welcome home! the client locale is "+ locale.toString()); Date date = new Date(); DateFormat dateFormat = DateFormat.getDateTimeInstance(DateFormat.LONG, DateFormat.LONG, locale); String formattedDate = dateFormat.format(date); logger.debug("send view"); model.addAttribute("serverTime", formattedDate ); return "home"; } } When I log from this simple Main.class, it works correct. public class Main { public static void main(String[] args) { Logger log = LoggerFactory.getLogger(Main.class); log.debug("Test"); } } I'm using tomcat6 and Ubuntu 11.10. I made a research in net and i found various options to fix this problem, but they don't help me. Please if someone have ideas how to fix it, help me.

    Read the article

< Previous Page | 202 203 204 205 206 207 208 209 210 211 212 213  | Next Page >