Search Results

Search found 25461 results on 1019 pages for 'common language runtime'.

Page 21/1019 | < Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >

  • Could anyone tell me something about Scheme Common-Lisp and FASL File.

    - by Joe
    Does anyone could tell something about these file? As I know: 1. Common-Lisp and Scheme are both some lisp programming langue. 2. common-Lisp source file *.lisp can be compiled into binary file *.fasl which can be load faster than the source file. Q:Can the Scheme source code *.scm be compiled into some binary file that will be load faster than the source code? Thanks in advance joe

    Read the article

  • Writing a mini-language with haskell, trouble with "while" statements and blocks { }

    - by Nibirue
    EDIT: problem partially solved, skip to the bottom for update. I'm writing a small language using haskell, and I've made a lot of progress, but I am having trouble implementing statements that use blocks, like "{ ... }". I've implemented support for If statements like so in my parser file: stmt = skip +++ ifstmt +++ assignment +++ whilestmt ifstmt = symbol "if" >> parens expr >>= \c -> stmt >>= \t -> symbol "else" >> stmt >>= \e -> return $ If c t e whilestmt = symbol "while" >> parens expr >>= \c -> symbol "\n" >> symbol "{" >> stmt >>= \t -> symbol "}" >> return $ While c t expr = composite +++ atomic And in the Syntax file: class PP a where pp :: Int -> a -> String instance PP Stmt where pp ind (If c t e) = indent ind ++ "if (" ++ show c ++ ") \n" ++ pp (ind + 2) t ++ indent ind ++ "else\n" ++ pp (ind + 2) e pp ind (While c t) = indent ind ++ "while (" ++ show c ++") \n" ++ "{" ++ pp (ind + 2) t ++ "}" ++ indent ind Something is wrong with the while statement, and I don't understand what. The logic seems correct, but when I run the code I get the following error: EDIT: Fixed the first problem based on the first reply, now it is not recognizing my while statment which I assume comes from this: exec :: Env -> Stmt -> Env exec env (If c t e) = exec env ( if eval env c == BoolLit True then t else e ) exec env (While c t) = exec env ( if eval env c == BoolLit True then t ) The file being read from looks like this: x = 1; c = 0; if (x < 2) c = c + 1; else ; -- SEPARATE FILES FOR EACH x = 1; c = 1; while (x < 10) { c = c * x; x = x + 1; } c I've tried to understand the error report but nothing I've tried solves the problem.

    Read the article

  • Are There Any Other Web Programming Languages That Can Be Used Without A Framework Aside From PHP?

    - by Ygam
    Python needs a framework, so does Java (for the web). I don't know much about Ruby or Coldfusion. But is there another language out there for the web that can stand alone as it is without a need for a framework or without strict adherence to a design pattern (MVC and the likes) aside from PHP? BTW, the statement that Python and Java needs a framework to work with the web came purely from my readings on articles and books; I might be mistaken.

    Read the article

  • Building a common syntax and scoping framework.

    - by Ben DeMott
    Hello fellow programmers, I was discussing a project the other day with a colleague of mine and I was curious to see what others had to say or if such a thing already existed. Background There are many programming languages. There are many IDE's and source editors that highlight and edit source code. Following perfectly and exactly the rules of a language to present auto-complete options and understand scopes in the code is rather complex. This task is complex enough that most IDE's implement different source-editors as plugins that often re-implement the same features over and over but in a different way (netbeans). From what I can tell most IDE's and source editors re-implement parsers that use regular expressions, or some meta-syntax Naur Form to describe the languages grammer generically. These parsers are implemented over and over and over again. Question Has anyone attempted to unify or describe a set of features through an API and have a consistent interface to parsing various programming languages and dialects. I'm not describing an IDE - but a consistent API for any program to use to parse and obtain meta-information from the source code. I realize various programming languages offer many different features which are difficult to 'abstract' into a set of features, but I feel this would be a worthwhile venture. It seems to me that this could possibly allow the authors of interpreters to help maintain a central grammer intepreter for their language. the Python foundation could maintain the Python grammer api, ANSI the C grammer api, Oracle the Java grammer API, etc Example usage If this was API existed code documentation generators could theoretically work across all dialects and languages to some level. It wouldn't matter if your project used 5 different languages a single application could document all of them and the comments and doc-tags within. Has anyone attempted this comprehensively?

    Read the article

  • MRP/SCP (Not ASCP) Common Issues

    - by Annemarie Provisero
    ADVISOR WEBCAST: MRP/SCP (Not ASCP) Common Issues PRODUCT FAMILY: Manufacturing - Value Chain Planning   March 9, 2010 at 8 am PT, 9 am MT, 11 am ET   This session is intended for System Administrators, Database Administrator's (DBA), Functional Users, and Technical Users. We will discuss issues that are fairly common and will provide the general solutions to same. We will not only review power point information but review some of the application setups/checks as well. TOPICS WILL INCLUDE: Gig data memory limitation Setup Requirements for MRP Manager, Planning Manager, and Standard Manager Why components are not planned Sales Order Flow to MRP Calendars Patching Miscellaneous Forecast Consumption - only if we have time A short, live demonstration (only if applicable) and question and answer period will be included. Oracle Advisor Webcasts are dedicated to building your awareness around our products and services. This session does not replace offerings from Oracle Global Support Services. Click here to register for this session ------------------------------------------------------------------------------------------------------------- The above webcast is a service of the E-Business Suite Communities in My Oracle Support. For more information on other webcasts, please reference the Oracle Advisor Webcast Schedule.Click here to visit the E-Business Communities in My Oracle Support Note that all links require access to My Oracle Support.

    Read the article

  • General List of Common Programming Errors

    - by javamonkey79
    As one journey's from apprentice to journeyman to master I've noticed that one accumulates a list of best practices for things they've been bitten by. Personally, I write most of my stuff in java & SQL so my list tends to be slated towards them. I've accumulated the following: When doing list removal, always reverse iterate Avoid adding items to a list you are currently iterating on Watch out for NullPointerExceptions Now, I know there are language specific "common errors" links out there like this one. And I'm also aware of the pragmatic programmer tips, Martin Fowler's "code smells". Does anyone know of any good lists out there of things like I've listed above (re: list removal, adding items, etc). My guess is that there are some good QA folks out there that can probably throw me a bone here. I'm not looking for things the compiler can catch - I'm looking for common things that cause bugs. In the event that there isn't a list out there already then I welcome posting your own findings here. Thanks in advance!

    Read the article

  • Common way to store model transformations

    - by redreggae
    I ask myself what's the best way to store the transformations in a model class. What I came up with is to store the translation and scaling in a Vector3 and the rotation in a Matrix4. On each update (frame) I multiply the 3 matrices (first build a Translation and Scaling Matrix) to get the world matrix. In this way I have no accumulated error. world = translation * scaling * rotation Another way would be to store the rotation in a quaternion but then I would have a high cost to convert to a matrix every time step. If I lerp the model I convert the rotation matrix to quaternion and then back to matrix. For speed optimization I have a dirty flag for each transformation so that I only do a matrix multiplication if necessary. world = translation if (isScaled) { world *= scaling } if (isRotated) { world *= rotation } Is this a common way or is it more common to have only one Matrix4 for all transformations? And is it better to store the rotation only as quaternion? For info: Currently I'm building a CSS3D engine in Javascript but these questions are relevant for every 3D engine.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    Using a static language like C# tends to work with hard assembly bindings for everything. But what if you want only want to provide an assembly optionally, if the functionality is actually used by the user? In this article I discuss a scenario where dynamic loading and activation made sense for me and show the code required to activate and use components loaded at runtime using Reflection and dynamic in combination.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Generating FileUpload at runtime

    How to create multiple FileUploads at runtime and access their values using ASP.net...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Interesting or unique types encountered?

    - by user318904
    What is the most strange or unique type you have seen in a programming language? I was thinking the other day about a "random variable", ie whenever it is evaluated it yields a random value from some domain. It would require some runtime trickery. Also I bet there can be some interesting mapping of regular expressions into a type system. It does not necessarily have to be a built in or primitive type, but some random class that implements a domain specific type won't really be interesting just unique.

    Read the article

  • Tip/Trick: Fix Common SEO Problems Using the URL Rewrite Extension

    - by ScottGu
    Search engine optimization (SEO) is important for any publically facing web-site.  A large % of traffic to sites now comes directly from search engines, and improving your site’s search relevancy will lead to more users visiting your site from search engine queries.  This can directly or indirectly increase the money you make through your site. This blog post covers how you can use the free Microsoft URL Rewrite Extension to fix a bunch of common SEO problems that your site might have.  It takes less than 15 minutes (and no code changes) to apply 4 simple URL Rewrite rules to your site, and in doing so cause search engines to drive more visitors and traffic to your site.  The techniques below work equally well with both ASP.NET Web Forms and ASP.NET MVC based sites.  They also works with all versions of ASP.NET (and even work with non-ASP.NET content). [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Measuring the SEO of your website with the Microsoft SEO Toolkit A few months ago I blogged about the free SEO Toolkit that we’ve shipped.  This useful tool enables you to automatically crawl/scan your site for SEO correctness, and it then flags any SEO issues it finds.  I highly recommend downloading and using the tool against any public site you work on.  It makes it easy to spot SEO issues you might have in your site, and pinpoint ways to optimize it further. Below is a simple example of a report I ran against one of my sites (www.scottgu.com) prior to applying the URL Rewrite rules I’ll cover later in this blog post:   Search Relevancy and URL Splitting Two of the important things that search engines evaluate when assessing your site’s “search relevancy” are: How many other sites link to your content.  Search engines assume that if a lot of people around the web are linking to your content, then it is likely useful and so weight it higher in relevancy. The uniqueness of the content it finds on your site.  If search engines find that the content is duplicated in multiple places around the Internet (or on multiple URLs on your site) then it is likely to drop the relevancy of the content. One of the things you want to be very careful to avoid when building public facing sites is to not allow different URLs to retrieve the same content within your site.  Doing so will hurt with both of the situations above.  In particular, allowing external sites to link to the same content with multiple URLs will cause your link-count and page-ranking to be split up across those different URLs (and so give you a smaller page rank than what it would otherwise be if it was just one URL).  Not allowing external sites to link to you in different ways sounds easy in theory – but you might wonder what exactly this means in practice and how you avoid it. 4 Really Common SEO Problems Your Sites Might Have Below are 4 really common scenarios that can cause your site to inadvertently expose multiple URLs for the same content.  When this happens external sites linking to yours will end up splitting their page links across multiple URLs - and as a result cause you to have a lower page ranking with search engines than you deserve. SEO Problem #1: Default Document IIS (and other web servers) supports the concept of a “default document”.  This allows you to avoid having to explicitly specify the page you want to serve at either the root of the web-site/application, or within a sub-directory.  This is convenient – but means that by default this content is available via two different publically exposed URLs (which is bad).  For example: http://scottgu.com/ http://scottgu.com/default.aspx SEO Problem #2: Different URL Casings Web developers often don’t realize URLs are case sensitive to search engines on the web.  This means that search engines will treat the following links as two completely different URLs: http://scottgu.com/Albums.aspx http://scottgu.com/albums.aspx SEO Problem #3: Trailing Slashes Consider the below two URLs – they might look the same at first, but they are subtly different. The trailing slash creates yet another situation that causes search engines to treat the URLs as different and so split search rankings: http://scottgu.com http://scottgu.com/ SEO Problem #4: Canonical Host Names Sometimes sites support scenarios where they support a web-site with both a leading “www” hostname prefix as well as just the hostname itself.  This causes search engines to treat the URLs as different and split search rankling: http://scottgu.com/albums.aspx/ http://www.scottgu.com/albums.aspx/ How to Easily Fix these SEO Problems in 10 minutes (or less) using IIS Rewrite If you haven’t been careful when coding your sites, chances are you are suffering from one (or more) of the above SEO problems.  Addressing these issues will improve your search engine relevancy ranking and drive more traffic to your site. The “good news” is that fixing the above 4 issues is really easy using the URL Rewrite Extension.  This is a completely free Microsoft extension available for IIS 7.x (on Windows Server 2008, Windows Server 2008 R2, Windows 7 and Windows Vista).  The great thing about using the IIS Rewrite extension is that it allows you to fix the above problems *without* having to change any code within your applications.  You can easily install the URL Rewrite Extension in under 3 minutes using the Microsoft Web Platform Installer (a free tool we ship that automates setting up web servers and development machines).  Just click the green “Install Now” button on the URL Rewrite Spotlight page to install it on your Windows Server 2008, Windows 7 or Windows Vista machine: Once installed you’ll find that a new “URL Rewrite” icon is available within the IIS 7 Admin Tool: Double-clicking the icon will open up the URL Rewrite admin panel – which will display the list of URL Rewrite rules configured for a particular application or site: Notice that our rewrite rule list above is currently empty (which is the default when you first install the extension).  We can click the “Add Rule…” link button in the top-right of the panel to add and enable new URL Rewriting logic for our site.  Scenario 1: Handling Default Document Scenarios One of the SEO problems I discussed earlier in this post was the scenario where the “default document” feature of IIS causes you to inadvertently expose two URLs for the same content on your site.  For example: http://scottgu.com/ http://scottgu.com/default.aspx We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the second URL to instead go to the first one.  We will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve.  Let’s look at how we can create such a rule.  We’ll begin by clicking the “Add Rule” link in the screenshot above.  This will cause the below dialog to display: We’ll select the “Blank Rule” template within the “Inbound rules” section to create a new custom URL Rewriting rule.  This will display an empty pane like below: Don’t worry – setting up the above rule is easy.  The following 4 steps explain how to do so: Step 1: Name the Rule Our first step will be to name the rule we are creating.  Naming it with a descriptive name will make it easier to find and understand later.  Let’s name this rule our “Default Document URL Rewrite” rule: Step 2: Setup the Regular Expression that Matches this Rule Our second step will be to specify a regular expression filter that will cause this rule to execute when an incoming URL matches the regex pattern.   Don’t worry if you aren’t good with regular expressions - I suck at them too. The trick is to know someone who is good at them or copy/paste them from a web-site.  Below we are going to specify the following regular expression as our pattern rule: (.*?)/?Default\.aspx$ This pattern will match any URL string that ends with Default.aspx. The "(.*?)" matches any preceding character zero or more times. The "/?" part says to match the slash symbol zero or one times. The "$" symbol at the end will ensure that the pattern will only match strings that end with Default.aspx.  Combining all these regex elements allows this rule to work not only for the root of your web site (e.g. http://scottgu.com/default.aspx) but also for any application or subdirectory within the site (e.g. http://scottgu.com/photos/default.aspx.  Because the “ignore case” checkbox is selected it will match both “Default.aspx” as well as “default.aspx” within the URL.   One nice feature built-into the rule editor is a “Test pattern” button that you can click to bring up a dialog that allows you to test out a few URLs with the rule you are configuring: Above I've added a “products/default.aspx” URL and clicked the “Test” button.  This will give me immediate feedback on whether the rule will execute for it.  Step 3: Setup a Permanent Redirect Action We’ll then setup an action to occur when our regular expression pattern matches the incoming URL: In the dialog above I’ve changed the “Action Type” drop down to be a “Redirect” action.  The “Redirect Type” will be a HTTP 301 Permanent redirect – which means search engines will follow it. I’ve also set the “Redirect URL” property to be: {R:1}/ This indicates that we want to redirect the web client requesting the original URL to a new URL that has the originally requested URL path - minus the "Default.aspx" in it.  For example, requests for http://scottgu.com/default.aspx will be redirected to http://scottgu.com/, and requests for http://scottgu.com/photos/default.aspx will be redirected to http://scottgu.com/photos/ The "{R:N}" regex construct, where N >= 0, is called a back-reference and N is the back-reference index. In the case of our pattern "(.*?)/?Default\.aspx$", if the input URL is "products/Default.aspx" then {R:0} will contain "products/Default.aspx" and {R:1} will contain "products".  We are going to use this {R:1}/ value to be the URL we redirect users to.  Step 4: Apply and Save the Rule Our final step is to click the “Apply” button in the top right hand of the IIS admin tool – which will cause the tool to persist the URL Rewrite rule into our application’s root web.config file (under a <system.webServer/rewrite> configuration section): <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Because IIS 7.x and ASP.NET share the same web.config files, you can actually just copy/paste the above code into your web.config files using Visual Studio and skip the need to run the admin tool entirely.  This also makes adding/deploying URL Rewrite rules with your ASP.NET applications really easy. Step 5: Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://scottgu.com/ http://scottgu.com/default.aspx Notice that the second URL automatically redirects to the first one.  Because it is a permanent redirect, search engines will follow the URL and should update the page ranking of http://scottgu.com to include links to http://scottgu.com/default.aspx as well. Scenario 2: Different URL Casing Another common SEO problem I discussed earlier in this post is that URLs are case sensitive to search engines on the web.  This means that search engines will treat the following links as two completely different URLs: http://scottgu.com/Albums.aspx http://scottgu.com/albums.aspx We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the first URL to instead go to the second (all lower-case) one.  Like before, we will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve. To create such a rule we’ll click the “Add Rule” link in the URL Rewrite admin tool again.  This will cause the “Add Rule” dialog to appear again: Unlike the previous scenario (where we created a “Blank Rule”), with this scenario we can take advantage of a built-in “Enforce lowercase URLs” rule template.  When we click the “ok” button we’ll see the following dialog which asks us if we want to create a rule that enforces the use of lowercase letters in URLs: When we click the “Yes” button we’ll get a pre-written rule that automatically performs a permanent redirect if an incoming URL has upper-case characters in it – and automatically send users to a lower-case version of the URL: We can click the “Apply” button to use this rule “as-is” and have it apply to all incoming URLs to our site.  Because my www.scottgu.com site uses ASP.NET Web Forms, I’m going to make one small change to the rule we generated above – which is to add a condition that will ensure that URLs to ASP.NET’s built-in “WebResource.axd” handler are excluded from our case-sensitivity URL Rewrite logic.  URLs to the WebResource.axd handler will only come from server-controls emitted from my pages – and will never be linked to from external sites.  While my site will continue to function fine if we redirect these URLs to automatically be lower-case – doing so isn’t necessary and will add an extra HTTP redirect to many of my pages.  The good news is that adding a condition that prevents my URL Rewriting rule from happening with certain URLs is easy.  We simply need to expand the “Conditions” section of the form above We can then click the “Add” button to add a condition clause.  This will bring up the “Add Condition” dialog: Above I’ve entered {URL} as the Condition input – and said that this rule should only execute if the URL does not match a regex pattern which contains the string “WebResource.axd”.  This will ensure that WebResource.axd URLs to my site will be allowed to execute just fine without having the URL be re-written to be all lower-case. Note: If you have static resources (like references to .jpg, .css, and .js files) within your site that currently use upper-case characters you’ll probably want to add additional condition filter clauses so that URLs to them also don’t get redirected to be lower-case (just add rules for patterns like .jpg, .gif, .js, etc).  Your site will continue to work fine if these URLs get redirected to be lower case (meaning the site won’t break) – but it will cause an extra HTTP redirect to happen on your site for URLs that don’t need to be redirected for SEO reasons.  So setting up a condition clause makes sense to add. When I click the “ok” button above and apply our lower-case rewriting rule the admin tool will save the following additional rule to our web.config file: <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>                 <rule name="Lower Case URLs" stopProcessing="true">                     <match url="[A-Z]" ignoreCase="false" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{ToLower:{URL}}" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://scottgu.com/Albums.aspx http://scottgu.com/albums.aspx Notice that the first URL (which has a capital “A”) automatically does a redirect to a lower-case version of the URL.  Scenario 3: Trailing Slashes Another common SEO problem I discussed earlier in this post is the scenario of trailing slashes within URLs.  The trailing slash creates yet another situation that causes search engines to treat the URLs as different and so split search rankings: http://scottgu.com http://scottgu.com/ We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the first URL (that does not have a trailing slash) to instead go to the second one that does.  Like before, we will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve.  To create such a rule we’ll click the “Add Rule” link in the URL Rewrite admin tool again.  This will cause the “Add Rule” dialog to appear again: The URL Rewrite admin tool has a built-in “Append or remove the trailing slash symbol” rule template.  When we select it and click the “ok” button we’ll see the following dialog which asks us if we want to create a rule that automatically redirects users to a URL with a trailing slash if one isn’t present: Like within our previous lower-casing rewrite rule we’ll add one additional condition clause that will exclude WebResource.axd URLs from being processed by this rule.  This will avoid an unnecessary redirect for happening for those URLs. When we click the “OK” button we’ll get a pre-written rule that automatically performs a permanent redirect if the URL doesn’t have a trailing slash – and if the URL is not processed by either a directory or a file.  This will save the following additional rule to our web.config file: <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>                 <rule name="Lower Case URLs" stopProcessing="true">                     <match url="[A-Z]" ignoreCase="false" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{ToLower:{URL}}" />                 </rule>                 <rule name="Trailing Slash" stopProcessing="true">                     <match url="(.*[^/])$" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />                         <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{R:1}/" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://scottgu.com http://scottgu.com/ Notice that the first URL (which has no trailing slash) automatically does a redirect to a URL with the trailing slash.  Because it is a permanent redirect, search engines will follow the URL and update the page ranking. Scenario 4: Canonical Host Names The final SEO problem I discussed earlier are scenarios where a site works with both a leading “www” hostname prefix as well as just the hostname itself.  This causes search engines to treat the URLs as different and split search rankling: http://www.scottgu.com/albums.aspx http://scottgu.com/albums.aspx We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the first URL (that has a www prefix) to instead go to the second URL.  Like before, we will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve.  To create such a rule we’ll click the “Add Rule” link in the URL Rewrite admin tool again.  This will cause the “Add Rule” dialog to appear again: The URL Rewrite admin tool has a built-in “Canonical domain name” rule template.  When we select it and click the “ok” button we’ll see the following dialog which asks us if we want to create a redirect rule that automatically redirects users to a primary host name URL: Above I’m entering the primary URL address I want to expose to the web: scottgu.com.  When we click the “OK” button we’ll get a pre-written rule that automatically performs a permanent redirect if the URL has another leading domain name prefix.  This will save the following additional rule to our web.config file: <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Cannonical Hostname">                     <match url="(.*)" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{HTTP_HOST}" pattern="^scottgu\.com$" negate="true" />                     </conditions>                     <action type="Redirect" url="http://scottgu.com/{R:1}" />                 </rule>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>                 <rule name="Lower Case URLs" stopProcessing="true">                     <match url="[A-Z]" ignoreCase="false" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{ToLower:{URL}}" />                 </rule>                 <rule name="Trailing Slash" stopProcessing="true">                     <match url="(.*[^/])$" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />                         <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{R:1}/" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://www.scottgu.com/albums.aspx http://scottgu.com/albums.aspx Notice that the first URL (which has the “www” prefix) now automatically does a redirect to the second URL which does not have the www prefix.  Because it is a permanent redirect, search engines will follow the URL and update the page ranking. 4 Simple Rules for Improved SEO The above 4 rules are pretty easy to setup and should take less than 15 minutes to configure on existing sites you already have.  The beauty of using a solution like the URL Rewrite Extension is that you can take advantage of it without having to change code within your web-site – and without having to break any existing links already pointing at your site.  Users who follow existing links will be automatically redirected to the new URLs you wish to publish.  And search engines will start to give your site a higher search relevancy ranking – which will list your site higher in search results and drive more traffic to it. Customizing your URL Rewriting rules further is easy to-do either by editing the web.config file directly, or alternatively, just double click the URL Rewrite icon within the IIS 7.x admin tool and it will list all the active rules for your web-site or application: Clicking any of the rules above will open the rules editor back up and allow you to tweak/customize/save them further. Summary Measuring and improving SEO is something every developer building a public-facing web-site needs to think about and focus on.  If you haven’t already, download and use the SEO Toolkit to analyze the SEO of your sites today. New URL Routing features in ASP.NET MVC and ASP.NET Web Forms 4 make it much easier to build applications that have more control over the URLs that are published.  Tools like the URL Rewrite Extension that I’ve talked about in this blog post make it much easier to improve the URLs that are published from sites you already have built today – without requiring you to change a lot of code. The URL Rewrite Extension provides a bunch of additional great capabilities – far beyond just SEO - as well.  I’ll be covering these additional capabilities more in future blog posts. Hope this helps, Scott

    Read the article

  • Yii urlManager language in URL

    - by TaMeR
    I am trying to add a language to the url with following syntax: http://www.example.com/en/site/page/view/about What I have so far works with short urls like: http://www.example.com/en/site/contact but not with long once as in my first example Here is what I have so far: /config/main.php 'urlManager'=>array( 'class'=>'application.components.MyCUrlManager', 'urlFormat'=>'path', 'showScriptName'=>false, 'rules'=>array( '<language:\w+>/<controller:\w+>/<id:\d+>'=>'<controller>/view', '<language:\w+>/<controller:\w+>/<action:\w+>/<id:\d+>'=>'<controller>/<action>', '<language:\w+>/<controller:\w+>/<action:\w+>'=>'<controller>/<action>', ), ), <?php // components/MyCUrlManager.php class MyCUrlManager extends CUrlManager { public function createUrl($route,$params=array(),$ampersand='&') { if(isset($_POST['_lang'])){ Yii::app()->language = $_POST['_lang']; }elseif (!isset($route['language']) && $controller != 'srbac'){ $route['language']=Yii::app()->language; }else{ Yii::app()->language = $route['language']; } return parent::createUrl($route, $params, $ampersand); } } ?> class Controller extends CController: { /// ..... function init() { parent::init(); if (isset($_POST['_lang'])) { Yii::app()->setLanguage($_POST['_lang']); Yii::app()->session['_lang'] = Yii::app()->language; }elseif (isset(Yii::app()->session['_lang'])) { Yii::app()->setLanguage(Yii::app()->session['_lang']); } } } class LangBox extends CWidget { public function run() { $currentLang = Yii::app()->language; require_once 'Zend/Locale.php'; $locale = new Zend_Locale(); //$siteLanguages = $this->getLang(); $siteLanguages = array('en','de','tr'); foreach($siteLanguages as $value){ $list[$value] = $locale->getTranslation($value, 'Language', $value); } asort($list); $this->render('langBox', array('currentLang' => $currentLang, 'list'=>$list)); } }

    Read the article

  • Why is using a common-lookup table to restrict the status of entity wrong?

    - by FreshCode
    According to Five Simple Database Design Errors You Should Avoid by Anith Sen, using a common-lookup table to store the possible statuses for an entity is a common mistake. Why is this wrong? I disagree that it's wrong, citing the example of jobs at a repair service with many possible statuses that generally have a natural flow, eg.: Booked In Assigned to Technician Diagnosing problem Waiting for Client Confirmation Repaired & Ready for Pickup Repaired & Couriered Irreparable & Ready for Pickup Quote Rejected Arguably, some of these statuses can be normalised to tables like Couriered Items, Completed Jobs and Quotes (with Pending/Accepted/Rejected statuses), but that feels like unnecessary schema complication. Another common example would be order statuses that restrict the status of an order, eg: Pending Completed Shipped Cancelled Refunded The status titles and descriptions are in one place for editing and are easy to scaffold as a drop-down with a foreign key for dynamic data applications. This has worked well for me in the past. If the business rules dictate the creation of a new order status, I can just add it to OrderStatus table, without rebuilding my code.

    Read the article

  • How do you replace a method of a Moose object at runtime?

    - by xxxxxxx
    Is it possible to replace a method of a Moose object at runtime ? By looking at the source code of Class::MOP::Method (which Moose::Meta::Method inherits from) I concluded that by doing $method->{body} = sub{ my stuff } I would be able to replace at runtime a method of an object. I can get the method using $object->meta->find_method_by_name(<method_name>); However, this didn't quite work out. Is it conceivable to modify methods at run time? And, what is the way to do it with Moose?

    Read the article

  • ASP-style tags for Perl web development?

    - by Alex R
    I feel like I'm traveling 10 years back in time by asking this, but... Are there any modules, patches, or any "new" version of Perl (released in the last 10 years) to enable writing web-oriented Perl scripts using ASP-style tags? e.g. from ASP/JSP some html <% some code %> more HTML e.g. from PHP some html <? some code ?> more HTML Please don't worry about "why" I'm asking this... It's related to programming language research.

    Read the article

  • Design a GUI browser to view a tree

    - by iamrohitbanga
    I have a large tree. I want to be able to visualize it using a GUI tool. I want the ability to pan and zoom the tree image so that i can focus on part of the tree. Is there an existing tool to achieve this? If not i would like to write a small tool for myself to be able to do this. what is the simplest way of doing this? what computer language should i use? the image should look something like http://upload.wikimedia.org/wikipedia/commons/d/df/Binary_tree.png I should be able to zoom and pan the image.

    Read the article

  • translate by replacing words inside existing text

    - by Berry Tsakala
    What are common approaches for translating certain words (or expressions) inside a given text, when the text must be reconstructed (with punctuations and everythin.) ? The translation comes from a lookup table, and covers words, collocations, and emoticons like L33t, CUL8R, :-), etc. Simple string search-and-replace is not enough since it can replace part of longer words (cat dog ? caterpillar dogerpillar). Assume the following input: s = "dogbert, started a dilbert dilbertion proces cat-bert :-)" after translation, i should receive something like: result = "anna, started a george dilbertion process cat-bert smiley" I can't simply tokenize, since i loose punctuations and word positions. Regular expressions, works for normal words, but don't catch special expressions like the smiley :-) but it does . re.sub(r'\bword\b','translation',s) ==> translation re.sub(r'\b:-\)\b','smiley',s) ==> :-) for now i'm using the above mentioned regex, and simple replace for the non-alphanumeric words, but it's far from being bulletproof. (p.s. i'm using python)

    Read the article

  • Can I use Visual Studio 2010's compiler with Visual Studio 2008's Runtime Library?

    - by BillyONeal
    Hello everyone :) I have an application that needs to operate on Windows 2000. I'd also like to use Visual Studio 2010 (mainly because of the change in the definition of the auto keyword). However, I'm in a bit of a bind because I need the app to be able to operate on older OS's, namely: Windows 2000 Windows XP RTM Windows XP SP1 Visual Studio 2010's runtime library depends on the EncodePointer / DecodePointer API which was introduced in Windows XP SP2. If using the alternate runtime library is possible, will this break code that relies on C++0x features added in VS2010, like std::regex?

    Read the article

  • Online compilers/runtime for Java, C++, Python and ObjC?

    - by Nocturne
    Does anyone know of a good online compiler/runtime (for C++, Java, Python, ObjC etc.) that I can access on the web? What I'm looking for is something that would allow me to type in a program in a web form and to run the program and see the results online. (Let's not get into the why for now. Suffice it to say for the moment that I don't always have access to a compiler/runtime, and firing up an IDE is just overkill for testing out some code snippets) I know of codepad.org -- but I'm looking for something better.

    Read the article

  • Add Keyboard Input Language to Ubuntu

    - by Matthew Guay
    Want to type in multiple languages in Ubuntu?  Here we’ll show you how you can easily add and switch between multiple keyboard layouts in Ubuntu. Add a Keyboard Language To add a keyboard language, open the System menu, select Preferences, and then select Keyboard. In the Keyboard Preferences dialog, select the Layouts tab, and click Add.   You can select a country and then choose an language and keyboard variant.  Note that some countries, such as the United States, may show several languages.  Once you’ve made your selection, you can preview it on the sample keyboard displayed below the menu. Alternately, on the second tab, select a language and then choose a variant.  Click Add when you’ve made your selection. Now you’ll notice that there are two languages listed in the Keyboard Preferences, and they’re both ready to use immediately.  You can add more if you wish, or close the dialog. Switch Between Languages When you have multiple input languages installed, you’ll notice a new icon in your system tray on the top right.  It will show the abbreviation of the country and/or language name that is currently selected.  Click the icon to change the language. Right-click the dialog to view available languages (listed under Groups), open the Keyboard Preferences dialog again, or show the current layout. If you select Show Current Layout you’ll see a window with the keyboard preview we saw previously when setting the keyboard layout.  You can even print this layout preview out to help you remember a layout if you wish. Change Keyboard Shortcuts to Switch Languages By default, you can switch input languages in Ubuntu from the keyboard by pressing both Alt keys together.  Many users are already used to the default Alt+Switch combination to switch input languages in Windows, and we can add that in Ubuntu.  Open the keyboard preferences dialog, select the Layout tab, and click Options. Click the plus sign beside Key(s) to change layout, and select Alt+Shift.  Click Close, and you can now use this familiar shortcut to switch input languages. The layout options dialog offers many more neat keyboard shortcuts and options.  One especially neat option was the option to use a keyboard led to show when we’re using the alternate keyboard layout.  We selected the ScrollLock light since it’s hardly used today, and now it lights up when we’re using our other input language.   Conclusion Whether you regularly type in multiple languages or only need to enter an occasional character from an alternate keyboard layout, Ubuntu’s keyboard settings make it easy to make your keyboard work the way you want.  And since you can even preview and print a keyboard layout, you can even remember an alternate keyboard’s layout if it’s not printed on your keyboard. Windows users, you’re not left behind, either.  Check out our tutorial on how to Add keyboard languages to XP, Vista, and Windows 7. Similar Articles Productive Geek Tips Add keyboard languages to XP, Vista, and Windows 7Assign a Hotkey to Open a Terminal Window in UbuntuWhat is ctfmon.exe And Why Is It Running?Keyboard Shortcuts for VMware WorkstationInput Director Controls Multiple Windows Machines with One Keyboard and Mouse TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro MELTUP – "The Beginning Of US Currency Crisis And Hyperinflation" Enable or Disable the Task Manager Using TaskMgrED Explorer++ is a Worthy Windows Explorer Alternative Error Goblin Explains Windows Error Codes Twelve must-have Google Chrome plugins Cool Looking Skins for Windows Media Player 12

    Read the article

  • Learning to implement dynamically typed language compiler

    - by TriArc
    I'm interested in learning how to create a compiler for a dynamically typed language. Most compiler books, college courses and articles/tutorials I've come across are specifically for statically typed languages. I've thought of a few ways to do it, but I'd like to know how it's usually done. I know type inferencing is a pretty common strategy, but what about others? Where can I find out more about how to create a dynamically typed language? Edit 1: I meant dynamically typed. Sorry about the confusion. I've written toy compilers for statically typed languages and written some interpreters for dynamically typed languages. Now, I'm interested in learning more about creating compilers for a dynamically typed language. I'm specifically experimenting with LLVM and since I need to specify the type of every method and argument, I'm thinking of ways to implement a dynamically typed language on something like LLVM.

    Read the article

< Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >