Search Results

Search found 71506 results on 2861 pages for 'csharp source net'.

Page 21/2861 | < Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >

  • ASP.NET Membership Provider Setup

    - by Ben Griswold
    In this screencast, Noah and I show you how to quickly get started with the ASP.NET Membership Provider.  We’ll take you through basic features and setup and walk you through membership table creation with the ASP.NET SQL Server Wizard. I’ve written about the ASP.NET Membership Provider and setup before.  If you missed the post, this introductory video may be for you.     This is one of our first screencasts.  If you have feedback, I’d love to hear it.

    Read the article

  • Build .deb package from source, without installing it

    - by Mechanical snail
    Suppose I have an installer program or source tarball for some program I want to install. (There is no Debian package available.) First I want to create a .deb package out of it, in order to be able to cleanly remove the installed program in the future (see Uninstalling application built from source, If I build a package from source how can I uninstall or remove completely?). Also, installing using a package prevents it from clobbering files from other packages, which cannot be guaranteed if you run the installer or sudo make install. Checkinstall From reading the answers there and elsewhere, I gather the usual solution is to use checkinstall to build the package. Unfortunately, it seems checkinstall does not prevent make install from clobbering system files from other packages. For example, according to Reverting problems caused by checkinstall with gcc build: I created a Debian package from the install using sudo checkinstall -D make install. [...] I removed it using Synaptic Package Manager. As it turns out, [removing] the package checkinstall created from make install tried to remove every single file the installation process touched, including shared gcc libraries like /lib64/libgcc_s.so. I then tried to tell checkinstall to build the package without installing it, in the hope of bypassing the issue. I created a dummy Makefile: install: echo "Bogus" > /bin/qwertyuiop and ran sudo checkinstall --install=no. The file /bin/qwertyuiop was created, even though the package was not installed. In my case, I do not trust the installer / make install to not overwrite system files, so this use of checkinstall is ruled out. How can I build the package, without installing it or letting it touch system files? Is it possible to run Checkinstall in a fakechrooted debootstrap environment to achieve this? Preferably the build should be done as a normal user rather than root, which would prevent the process from overwriting system files if it goes wrong.

    Read the article

  • LLBLGen Pro feature highlights: grouping model elements

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) When working with an entity model which has more than a few entities, it's often convenient to be able to group entities together if they belong to a semantic sub-model. For example, if your entity model has several entities which are about 'security', it would be practical to group them together under the 'security' moniker. This way, you could easily find them back, yet they can be left inside the complete entity model altogether so their relationships with entities outside the group are kept. In other situations your domain consists of semi-separate entity models which all target tables/views which are located in the same database. It then might be convenient to have a single project to manage the complete target database, yet have the entity models separate of each other and have them result in separate code bases. LLBLGen Pro can do both for you. This blog post will illustrate both situations. The feature is called group usage and is controllable through the project settings. This setting is supported on all supported O/R mapper frameworks. Situation one: grouping entities in a single model. This situation is common for entity models which are dense, so many relationships exist between all sub-models: you can't split them up easily into separate models (nor do you likely want to), however it's convenient to have them grouped together into groups inside the entity model at the project level. A typical example for this is the AdventureWorks example database for SQL Server. This database, which is a single catalog, has for each sub-group a schema, however most of these schemas are tightly connected with each other: adding all schemas together will give a model with entities which indirectly are related to all other entities. LLBLGen Pro's default setting for group usage is AsVisualGroupingMechanism which is what this situation is all about: we group the elements for visual purposes, it has no real meaning for the model nor the code generated. Let's reverse engineer AdventureWorks to an entity model. By default, LLBLGen Pro uses the target schema an element is in which is being reverse engineered, as the group it will be in. This is convenient if you already have categorized tables/views in schemas, like which is the case in AdventureWorks. Of course this can be switched off, or corrected on the fly. When reverse engineering, we'll walk through a wizard which will guide us with the selection of the elements which relational model data should be retrieved, which we can later on use to reverse engineer to an entity model. The first step after specifying which database server connect to is to select these elements. below we can see the AdventureWorks catalog as well as the different schemas it contains. We'll include all of them. After the wizard completes, we have all relational model data nicely in our catalog data, with schemas. So let's reverse engineer entities from the tables in these schemas. We select in the catalog explorer the schemas 'HumanResources', 'Person', 'Production', 'Purchasing' and 'Sales', then right-click one of them and from the context menu, we select Reverse engineer Tables to Entity Definitions.... This will bring up the dialog below. We check all checkboxes in one go by checking the checkbox at the top to mark them all to be added to the project. As you can see LLBLGen Pro has already filled in the group name based on the schema name, as this is the default and we didn't change the setting. If you want, you can select multiple rows at once and set the group name to something else using the controls on the dialog. We're fine with the group names chosen so we'll simply click Add to Project. This gives the following result:   (I collapsed the other groups to keep the picture small ;)). As you can see, the entities are now grouped. Just to see how dense this model is, I've expanded the relationships of Employee: As you can see, it has relationships with entities from three other groups than HumanResources. It's not doable to cut up this project into sub-models without duplicating the Employee entity in all those groups, so this model is better suited to be used as a single model resulting in a single code base, however it benefits greatly from having its entities grouped into separate groups at the project level, to make work done on the model easier. Now let's look at another situation, namely where we work with a single database while we want to have multiple models and for each model a separate code base. Situation two: grouping entities in separate models within the same project. To get rid of the entities to see the second situation in action, simply undo the reverse engineering action in the project. We still have the AdventureWorks relational model data in the catalog. To switch LLBLGen Pro to see each group in the project as a separate project, open the Project Settings, navigate to General and set Group usage to AsSeparateProjects. In the catalog explorer, select Person and Production, right-click them and select again Reverse engineer Tables to Entities.... Again check the checkbox at the top to mark all entities to be added and click Add to Project. We get two groups, as expected, however this time the groups are seen as separate projects. This means that the validation logic inside LLBLGen Pro will see it as an error if there's e.g. a relationship or an inheritance edge linking two groups together, as that would lead to a cyclic reference in the code bases. To see this variant of the grouping feature, seeing the groups as separate projects, in action, we'll generate code from the project with the two groups we just created: select from the main menu: Project -> Generate Source-code... (or press F7 ;)). In the dialog popping up, select the target .NET framework you want to use, the template preset, fill in a destination folder and click Start Generator (normal). This will start the code generator process. As expected the code generator has simply generated two code bases, one for Person and one for Production: The group name is used inside the namespace for the different elements. This allows you to add both code bases to a single solution and use them together in a different project without problems. Below is a snippet from the code file of a generated entity class. //... using System.Xml.Serialization; using AdventureWorks.Person; using AdventureWorks.Person.HelperClasses; using AdventureWorks.Person.FactoryClasses; using AdventureWorks.Person.RelationClasses; using SD.LLBLGen.Pro.ORMSupportClasses; namespace AdventureWorks.Person.EntityClasses { //... /// <summary>Entity class which represents the entity 'Address'.<br/><br/></summary> [Serializable] public partial class AddressEntity : CommonEntityBase //... The advantage of this is that you can have two code bases and work with them separately, yet have a single target database and maintain everything in a single location. If you decide to move to a single code base, you can do so with a change of one setting. It's also useful if you want to keep the groups as separate models (and code bases) yet want to add relationships to elements from another group using a copy of the entity: you can simply reverse engineer the target table to a new entity into a different group, effectively making a copy of the entity. As there's a single target database, changes made to that database are reflected in both models which makes maintenance easier than when you'd have a separate project for each group, with its own relational model data. Conclusion LLBLGen Pro offers a flexible way to work with entities in sub-models and control how the sub-models end up in the generated code.

    Read the article

  • User is trying to leave! Set at-least confirm alert on browser(tab) close event!!

    - by kaushalparik27
    This is something that might be annoying or irritating for end user. Obviously, It's impossible to prevent end user from closing the/any browser. Just think of this if it becomes possible!!!. That will be a horrible web world where everytime you will be attacked by sites and they will not allow to close your browser until you confirm your shopping cart and do the payment. LOL:) You need to open the task manager and might have to kill the running browser exe processes.Anyways; Jokes apart, but I have one situation where I need to alert/confirm from the user in any anyway when they try to close the browser or change the url. Think of this: You are creating a single page intranet asp.net application where your employee can enter/select their TDS/Investment Declarations and you wish to at-least ALERT/CONFIRM them if they are attempting to:[1] Close the Browser[2] Close the Browser Tab[3] Attempt to go some other site by Changing the urlwithout completing/freezing their declaration.So, Finally requirement is clear. I need to alert/confirm the user what he is going to do on above bulleted events. I am going to use window.onbeforeunload event to set the javascript confirm alert box to appear.    <script language="JavaScript" type="text/javascript">        window.onbeforeunload = confirmExit;        function confirmExit() {            return "You are about to exit the system before freezing your declaration! If you leave now and never return to freeze your declaration; then they will not go into effect and you may lose tax deduction, Are you sure you want to leave now?";        }    </script>See! you are halfway done!. So, every time browser unloads the page, above confirm alert causes to appear on front of user like below:By saying here "every time browser unloads the page"; I mean to say that whenever page loads or postback happens the browser onbeforeunload event will be executed. So, event a button submit or a link submit which causes page to postback would tend to execute the browser onbeforeunload event to fire!So, now the hurdle is how can we prevent the alert "Not to show when page is being postback" via any button/link submit? Answer is JQuery :)Idea is, you just need to set the script reference src to jQuery library and Set the window.onbeforeunload event to null when any input/link causes a page to postback.Below will be the complete code:<head runat="server">    <title></title>    <script src="jquery.min.js" type="text/javascript"></script>    <script language="JavaScript" type="text/javascript">        window.onbeforeunload = confirmExit;        function confirmExit() {            return "You are about to exit the system before freezing your declaration! If you leave now and never return to freeze your declaration; then they will not go into effect and you may lose tax deduction, Are you sure you want to leave now?";        }        $(function() {            $("a").click(function() {                window.onbeforeunload = null;            });            $("input").click(function() {                window.onbeforeunload = null;            });        });    </script></head><body>    <form id="form1" runat="server">    <div></div>    </form></body></html>So, By this post I have tried to set the confirm alert if user try to close the browser/tab or try leave the site by changing the url. I have attached a working example with this post here. I hope someone might find it helpful.

    Read the article

  • License Requirements for Including Dual-Licensed Open-Source Software

    - by Rick Roth
    How do you opt into one software license and not the other when the distributor gives the consumer more than one choice? For example I would like to use the DataTables JavaScript library in my web application. According to their web site, "DataTables is dual licensed under the GPL v2 license or a BSD (3-point) license." Furthermore, the source code of the JavaScript library has this text that calls out both licenses: /** * @summary DataTables * @description Paginate, search and sort HTML tables * @version 1.9.4 * @file jquery.dataTables.js * @author Allan Jardine (www.sprymedia.co.uk) * @contact www.sprymedia.co.uk/contact * * @copyright Copyright 2008-2012 Allan Jardine, all rights reserved. * * This source file is free software, under either the GPL v2 license or a * BSD style license, available at: * http://datatables.net/license_gpl2 * http://datatables.net/license_bsd * * This source file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the license files for details. * * For details please refer to: http://www.datatables.net */ Finally, the web pages with the licensing text (e.g. the DataTables BSD license page) has this statement: "DataTables is made available under both the GPL v2 license and a BSD (3-point) style license. You can select which one you wish to use the DataTables code under." My specific question is "how do you select which one you want to use." In my case, I want to only use the BSD license and I want to make it explicitly clear that I do not opt into the GPL v2 license in any way. How do you do that and have it hold up to legal challenge?

    Read the article

  • How to access HTML elements from server side code in an asp.net website

    - by nikolaosk
    In this post I will demonstrate with a hands on example how HTML elements in an .aspx page can be processed exactly like standard ASP.Net server controls. Basically how to make them accessible from server side code. 1) Launch Visual Studio 2010/2008/2005. (express editions will work fine). Create a new empty website and choose a suitable name for it. Choose VB as the development language. 2) Add a new item in your site, a web form. Leave the default name. 3) Let's say that we want to change the background...(read more)

    Read the article

  • Should a c# dev switch to VB.net when the team language base is mixed?

    - by jjr2527
    I recently joined a new development team where the language preferences are mixed on the .net platform. Dev 1: Knows VB.net, does not know c# Dev 2: Knows VB.net, does not know c# Dev 3: Knows c# and VB.net, prefers c# Dev 4: Knows c# and VB6(VB.net should be pretty easy to pick up), prefers c# It seems to me that the thought leaders in the .net space are c# devs almost universally. I also thought that some 3rd party tools didn't support VB.net but when I started looking into it I didn't find any good examples. I would prefer to get the whole team on c# but if there isn't any good reason to force the issue aside from preference then I don't think that is the right choice. Are there any reasons I should lead folks away from VB.net?

    Read the article

  • Union,Except and Intersect operator in Linq

    - by Jalpesh P. Vadgama
    While developing a windows service using Linq-To-SQL i was in need of something that will intersect the two list and return a list with the result. After searching on net i have found three great use full operators in Linq Union,Except and Intersect. Here are explanation of each operator. Union Operator: Union operator will combine elements of both entity and return result as third new entities. Except Operator: Except operator will remove elements of first entities which elements are there in second entities and will return as third new entities. Intersect Operator: As name suggest it will return common elements of both entities and return result as new entities. Let’s take a simple console application as  a example where i have used two string array and applied the three operator one by one and print the result using Console.Writeline. Here is the code for that. C#, using GeSHi 1.0.8.6 using System; using System.Collections.Generic; using System.Linq; using System.Text;     namespace ConsoleApplication1 {     class Program     {         static void Main(string[] args)         {             string[] a = { "a", "b", "c", "d" };             string[] b = { "d","e","f","g"};               var UnResult = a.Union(b);             Console.WriteLine("Union Result");               foreach (string s in UnResult)             {                 Console.WriteLine(s);                          }               var ExResult = a.Except(b);             Console.WriteLine("Except Result");             foreach (string s in ExResult)             {                 Console.WriteLine(s);             }               var InResult = a.Intersect(b);             Console.WriteLine("Intersect Result");             foreach (string s in InResult)             {                 Console.WriteLine(s);             }             Console.ReadLine();                        }          } }   Parsed in 0.022 seconds at 45.54 KB/s Here is the output of console application as Expected. Hope this will help you.. Technorati Tags: Linq,Except,InterSect,Union,C#

    Read the article

  • ASP.NET Web Forms Extensibility: Handler Factories

    - by Ricardo Peres
    An handler factory is the class that implements IHttpHandlerFactory and is responsible for instantiating an handler (IHttpHandler) that will process the current request. This is true for all kinds of web requests, whether they are for ASPX pages, ASMX/SVC web services, ASHX/AXD handlers, or any other kind of file. Also used for restricting access for certain file types, such as Config, Csproj, etc. Handler factories are registered on the global Web.config file, normally located at %WINDIR%\Microsoft.NET\Framework<x64>\vXXXX\Config for a given path and request type (GET, POST, HEAD, etc). This goes on section <httpHandlers>. You would create a custom handler factory for a number of reasons, let me list just two: A centralized place for using dependency injection; Also a centralized place for invoking custom methods or performing some kind of validation on all pages. Let’s see an example using Unity for injecting dependencies into a page, suppose we have this on Global.asax.cs: 1: public class Global : HttpApplication 2: { 3: internal static readonly IUnityContainer Unity = new UnityContainer(); 4: 5: void Application_Start(Object sender, EventArgs e) 6: { 7: Unity.RegisterType<IFunctionality, ConcreteFunctionality>(); 8: } 9: } We instantiate Unity and register a concrete implementation for an interface, this could/should probably go in the Web.config file. Forget about its actual definition, it’s not important. Then, we create a custom handler factory: 1: public class UnityPageHandlerFactory : PageHandlerFactory 2: { 3: public override IHttpHandler GetHandler(HttpContext context, String requestType, String virtualPath, String path) 4: { 5: IHttpHandler handler = base.GetHandler(context, requestType, virtualPath, path); 6: 7: //one scenario: inject dependencies 8: Global.Unity.BuildUp(handler.GetType(), handler, String.Empty); 9:  10: return (handler); 11: } 12: } It inherits from PageHandlerFactory, which is .NET’s included factory for building regular ASPX pages. We override the GetHandler method and issue a call to the BuildUp method, which will inject required dependencies, if any exist. An example page with dependencies might be: 1: public class SomePage : Page 2: { 3: [Dependency] 4: public IFunctionality Functionality 5: { 6: get; 7: set; 8: } 9: } Notice the DependencyAttribute, it is used by Unity to identify properties that require dependency injection. When BuildUp is called, the Functionality property (or any other properties with the DependencyAttribute attribute) will receive the concrete implementation associated with it’s type, as registered on Unity. Another example, checking a page for authorization. Let’s define an interface first: 1: public interface IRestricted 2: { 3: Boolean Check(HttpContext ctx); 4: } An a page implementing that interface: 1: public class RestrictedPage : Page, IRestricted 2: { 3: public Boolean Check(HttpContext ctx) 4: { 5: //check the context and return a value 6: return ...; 7: } 8: } For this, we would use an handler factory such as this: 1: public class RestrictedPageHandlerFactory : PageHandlerFactory 2: { 3: private static readonly IHttpHandler forbidden = new UnauthorizedHandler(); 4:  5: public override IHttpHandler GetHandler(HttpContext context, String requestType, String virtualPath, String path) 6: { 7: IHttpHandler handler = base.GetHandler(context, requestType, virtualPath, path); 8: 9: if (handler is IRestricted) 10: { 11: if ((handler as IRestricted).Check(context) == false) 12: { 13: return (forbidden); 14: } 15: } 16:  17: return (handler); 18: } 19: } 20:  21: public class UnauthorizedHandler : IHttpHandler 22: { 23: #region IHttpHandler Members 24:  25: public Boolean IsReusable 26: { 27: get { return (true); } 28: } 29:  30: public void ProcessRequest(HttpContext context) 31: { 32: context.Response.StatusCode = (Int32) HttpStatusCode.Unauthorized; 33: context.Response.ContentType = "text/plain"; 34: context.Response.Write(context.Response.Status); 35: context.Response.Flush(); 36: context.Response.Close(); 37: context.ApplicationInstance.CompleteRequest(); 38: } 39:  40: #endregion 41: } The UnauthorizedHandler is an example of an IHttpHandler that merely returns an error code to the client, but does not cause redirection to the login page, it is included merely as an example. One thing we must keep in mind is, there can be only one handler factory registered for a given path/request type (verb) tuple. A typical registration would be: 1: <httpHandlers> 2: <remove path="*.aspx" verb="*"/> 3: <add path="*.aspx" verb="*" type="MyNamespace.MyHandlerFactory, MyAssembly"/> 4: </httpHandlers> First we remove the previous registration for ASPX files, and then we register our own. And that’s it. A very useful mechanism which I use lots of times.

    Read the article

  • Membership in ASP.Net applications - part 4

    - by nikolaosk
    This is the fourth post in a series of posts regarding ASP.Net built in membership functionality,providers,controls. You can read the first one here . You can read the second post here . You can read the third post here . In this post I will show you how to add users programmatically to a role. In the third post we saw how to get users in a specific role.I will also show you how to delete a user and a role programmatically. 1) Launch Visual Studio 2005,2008/2010. Express editions will work fine....(read more)

    Read the article

  • Run the Windows .net Application in System Tray on System Startup

    - by Rajneesh Verma
    Hi, Today i have created a .net windows application which has following key points. 1. Run only one instance of the project: to achieve this i have change the code of Program.cs as: Code Snippet static class Program { /// <summary> /// The main entry point for the application. /// </summary> [ STAThread ] static void Main() { bool instanceCountOne = false ; using ( Mutex mtex = new Mutex ( true , "MyRunningApp" , out instanceCountOne)) { if (instanceCountOne) { Application ...(read more)

    Read the article

  • How to share code as open source?

    - by Ethel Evans
    I have a little program that I wrote for a local group to handle a somewhat complicated scheduling issue for scheduling multiple meetings in multiple locations that change weekly according to certain criteria. It's a niche need, but I wouldn't be surprised if there are other groups that could use software like this. In fact, we've had requests from others for directions on starting a group like this, and if their groups get as big, they might also want special software to help with scheduling. I plan to continue developing the program and eventually make it an online web app, but a very simple alpha version is completed as a console app. I'd like to make it available as open source, but I have no idea what kind of process I should go through first. Right now, all I have is Java code, not even unit-tested thoroughly. I haven't shown the code to anyone else. There is no documentation. I don't know where I would put the code so others could access it. I don't know anything about licensing it. I don't know what kind of support people will expect from me if I release it as open source. I have no idea what else I should worry about. Can someone outline for me (or post an article(s) that outlines) the process of taking open source software from "coded" to "completed / available"? I really don't want to embarrass myself by doing things weirdly.

    Read the article

  • Which Open Source Licenses can address concerns for an Open Source Game Engine?

    - by Chris
    I am on a team that is looking to open source an engine we are building. It's intended as an engine for Online RPG style games. We're writing it to work on both desktops and android platforms. I've been over to the OSI http://opensource.org/licenses/category to check out the most common licenses. However, this will be my first time going into an open source project and I wanted to know if the community had some insight into which licenses might be best suited. Key licensing concerns: Removing or limiting our liability (most already seem to cover this, but stating for completeness). We want other developers to be able to take part or all of our project and use it in their own projects with proper accreditation to our project. Licensing should not hinder someone's ability to quickly use the engine. They should be able to download a release and start using it without needing to wait on licensing issues. Game content (gfx, sound, etc.) that is not part of the engine should be allowed to be licensed separately. If someone is using our engine, they can retain full copy right of their content, including engine generated data. Our primary goal is exposure, which is why we're going open source to start with. Both for the project and for the individuals developing it. Are there any licenses that can require accreditation visible to players? While I'd put our primary goal as exposure, for licensing the accreditation is less of a concern. From what I've read through (and have been able to understand) it doesn't seem like any of the licenses cover anything that is produced by the licensed software. Are there any that state this specifically, or does simply not mentioning it leave it open for other licensing? Are there any other concerns that we should consider? Has anyone had any issues using any of these licenses?

    Read the article

  • Is my concept in open source license correct?

    - by tester
    I would like to justify whether my concept in the open source license is correct, as you know that, misunderstanding the terms may lead to a serious law sue. Thank you. The main difference among the open source license is whether the license is copyleft. Copyleft license means allow the others to reproduce, modify and distribute the products but the released product is bound by the same licensing restriction. That means they have to use the same license for the modified version. Also, the copyleft license require all the released modified version to be free software. On the other hand, if any others create derived work incorporating non-copyleft licensed code, they can choose any license for the code. The serveral kinds of license and comparsion GPL is a restrictive license. Software requires to released as GPL license if that integrate or is modified from the other GPL license software . The library used in developing GPL license software are also restricted to GPL and LGPL , proprietary software are not allowed to employ (or complied with) in any part of the GPL application. LGPL is similar to GPL , but was more permissive with regarding allow the using of other non-GPL software. BSD is relatively simple license, it allow developer to do anything on the original source code . The license holder do not hold any legal responsibilities for their released product. Apache license is evolved from the BSD license. The legal terms are improved and are written by legal professionals in a more modern way. It covers comprehensive intellectual property ownership and liability issues. Also, are there any popular license beside these? Thank you

    Read the article

  • Selling an open source project: some issues

    - by Sander
    I am the creator / main developer of a small sized open source (PHP) project (GPL3). Currently there is a development team of 3 people (me included). This team has been quite active for some time, but since almost 2 years not much has happened. I myself have decided I want to stop working on the project, but I can't just leave the project because I care about it and I know if I abandon it, it will just be a matter of time before the project completely dies. At this moment, there are still some users and the project is only slightly out-of-date. So I'm thinking about selling the whole project. Of course I'd need to get consent of the other developers, but for now I'm assuming that's not a big problem. So at this moment I have 2 questions: 1) If the project would be sold to a commercial party, would it be possible for them to convert the project to closed source? I would prefer to sell the project to a company/organization that would continue the development under an open source license. 2) Does anyone have any tips to find interested parties? I don't know if I just want to put up a "For Sale" sign on the website of the project. Maybe someone has experience with a comparable situation. Ok guys, thanks in advance!

    Read the article

  • Developer momentum on open source projects

    - by sashang
    Hi I've been struggling to develop momentum contributing to open source projects. I have in the past tried with gcc and contributed a fix to libstdc++ but it was a once off and even though I spent months in my spare time on the dev mailing list and reading through things I just never seemed to develop any momentum with the code. Eventually I unsubscribed and got my free time back and uncluttered my mailbox. Like a lot of people I have some little open source defunct projects lying around on the net, but they're not large and I'm the only contributor. At the moment I'm more interested in contributing to a large open source project and want to know how people got started because I find it difficult while working full time to develop any momentum with the code base. Other more regular contributors, who are on the project full-time, are able to make changes at will and as result enter that positive feedback cycle where they understand the code and also know where it's heading. It makes the barrier to entry higher for those that come along later. My questions are to people who actively contribute to large opensource projects, like the Linux kernel, or gcc or clang/llvm or anything else with say a developer head count of more than 10. How did you get started? Was there a large chunk of time in your life that you just could dedicate to working on the project? I know in Linus's case he had a chunk of time (6 months) to get it started. What barriers to entry did you encounter? Can you describe the initial stages of the time spent with the project, from when you had little understanding of the code to when you understood enough to commit regularly. Thanks

    Read the article

  • Returning Images from ASP.NET Web API

    - by bipinjoshi
    Sometimes you need to save and retrieve image data in SQL Server as a part of Web API functionality. A common approach is to save images as physical image files on the web server and then store the image URL in a SQL Server database. However, at times you need to store image data directly into a SQL Server database rather than the image URL. While dealing with the later scenario you need to read images from a database and then return this image data from your Web API. This article shows the steps involved in this process. http://www.bipinjoshi.net/articles/4b9922c3-0982-4e8f-812c-488ff4dbd507.aspx

    Read the article

  • Developing momentum on open source projects

    - by sashang
    Hi I've been struggling to develop momentum contributing to open source projects. I have in the past tried with gcc and contributed a fix to libstdc++ but it was a once off and even though I spent months in my spare time on the dev mailing list and reading through things I just never seemed to develop any momentum with the code. Eventually I unsubscribed and got my free time back and uncluttered my mailbox. Like a lot of people I have some little open source defunct projects lying around on the net, but they're not large and I'm the only contributor. At the moment I'm more interested in contributing to a large open source project and want to know how people got started because I find it difficult while working full time to develop any momentum with the code base. Other more regular contributors, who are on the project full-time, are able to make changes at will and as result enter that positive feedback cycle where they understand the code and also know where it's heading. It makes the barrier to entry higher for those that come along later. My questions are to people who actively contribute to large opensource projects, like the Linux kernel, or gcc or clang/llvm or anything else with say a developer head count of more than 10. How did you get started? Was there a large chunk of time in your life that you just could dedicate to working on the project? I know in Linus's case he had a chunk of time (6 months) to get it started. What barriers to entry did you encounter? Can you describe the initial stages of the time spent with the project, from when you had little understanding of the code to when you understood enough to commit regularly. Thanks

    Read the article

  • How to promote an open-source project?

    - by Shehi
    First of all, I apologize if this is the wrong section of network to post this question. If it is, please feel free to move it to more appropriate location... Question: I would like to hear your ideas regarding the ways of open source projects being started and run. I have an open-source content management system project and here some questions arise: How should I act? Shall I come up with a viable pre-alpha edition with working front- and back-ends first and then announce the project publicly? Or shall I announce it right away from the scratch? As a developer I know that one should use versioning system like Git or SVN, which I do, no problems there. And the merit of unit-testing is also something to remember, which, to be frank, I am not into at all... Project management - I am a beginner in that, at best. Coding techniques and experiences such as Agile development is something I want to explore... In short, any ideas for a developer who is new to open-source world, is most welcome.

    Read the article

  • Developing my momentum on open source projects

    - by sashang
    Hi I've been struggling to develop momentum contributing to open source projects. I have in the past tried with gcc and contributed a fix to libstdc++ but it was a once off and even though I spent months in my spare time on the dev mailing list and reading through things I just never seemed to develop any momentum with the code. Eventually I unsubscribed and got my free time back and uncluttered my mailbox. Like a lot of people I have some little open source defunct projects lying around on the net, but they're not large and I'm the only contributor. At the moment I'm more interested in contributing to a large open source project and want to know how people got started because I find it difficult while working full time to develop any momentum with the code base. Other more regular contributors, who are on the project full-time, are able to make changes at will and as result enter that positive feedback cycle where they understand the code and also know where it's heading. It makes the barrier to entry higher for those that come along later. My questions are to people who actively contribute to large opensource projects, like the Linux kernel, or gcc or clang/llvm or anything else with say a developer head count of more than 10. How did you get started? Was there a large chunk of time in your life that you just could dedicate to working on the project? I know in Linus's case he had a chunk of time (6 months) to get it started. What barriers to entry did you encounter? Can you describe the initial stages of the time spent with the project, from when you had little understanding of the code to when you understood enough to commit regularly. Thanks

    Read the article

  • How to set up source control in VS2010

    - by Jouke van der Maas
    Hi, I want to set up source control for my project, but it seems like I need a server for this. I've never done this before, and I couldn't find anything helpfull yet. Is there any way to host a server locally so Visual studio can use it? Or do you know any online (free) servers I can use? By the way, if source control is not actually what i should use for keeping track of changes in my files, please suggest a better option. Thanks in advance.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Securing an ASP.NET MVC 2 Application

    - by rajbk
    This post attempts to look at some of the methods that can be used to secure an ASP.NET MVC 2 Application called Northwind Traders Human Resources.  The sample code for the project is attached at the bottom of this post. We are going to use a slightly modified Northwind database. The screen capture from SQL server management studio shows the change. I added a new column called Salary, inserted some random salaries for the employees and then turned off AllowNulls.   The reporting relationship for Northwind Employees is shown below.   The requirements for our application are as follows: Employees can see their LastName, FirstName, Title, Address and Salary Employees are allowed to edit only their Address information Employees can see the LastName, FirstName, Title, Address and Salary of their immediate reports Employees cannot see records of non immediate reports.  Employees are allowed to edit only the Salary and Title information of their immediate reports. Employees are not allowed to edit the Address of an immediate report Employees should be authenticated into the system. Employees by default get the “Employee” role. If a user has direct reports, they will also get assigned a “Manager” role. We use a very basic empId/pwd scheme of EmployeeID (1-9) and password test$1. You should never do this in an actual application. The application should protect from Cross Site Request Forgery (CSRF). For example, Michael could trick Steven, who is already logged on to the HR website, to load a page which contains a malicious request. where without Steven’s knowledge, a form on the site posts information back to the Northwind HR website using Steven’s credentials. Michael could use this technique to give himself a raise :-) UI Notes The layout of our app looks like so: When Nancy (EmpID 1) signs on, she sees the default page with her details and is allowed to edit her address. If Nancy attempts to view the record of employee Andrew who has an employeeID of 2 (Employees/Edit/2), she will get a “Not Authorized” error page. When Andrew (EmpID 2) signs on, he can edit the address field of his record and change the title and salary of employees that directly report to him. Implementation Notes All controllers inherit from a BaseController. The BaseController currently only has error handling code. When a user signs on, we check to see if they are in a Manager role. We then create a FormsAuthenticationTicket, encrypt it (including the roles that the employee belongs to) and add it to a cookie. private void SetAuthenticationCookie(int employeeID, List<string> roles) { HttpCookiesSection cookieSection = (HttpCookiesSection) ConfigurationManager.GetSection("system.web/httpCookies"); AuthenticationSection authenticationSection = (AuthenticationSection) ConfigurationManager.GetSection("system.web/authentication"); FormsAuthenticationTicket authTicket = new FormsAuthenticationTicket( 1, employeeID.ToString(), DateTime.Now, DateTime.Now.AddMinutes(authenticationSection.Forms.Timeout.TotalMinutes), false, string.Join("|", roles.ToArray())); String encryptedTicket = FormsAuthentication.Encrypt(authTicket); HttpCookie authCookie = new HttpCookie(FormsAuthentication.FormsCookieName, encryptedTicket); if (cookieSection.RequireSSL || authenticationSection.Forms.RequireSSL) { authCookie.Secure = true; } HttpContext.Current.Response.Cookies.Add(authCookie); } We read this cookie back in Global.asax and set the Context.User to be a new GenericPrincipal with the roles we assigned earlier. protected void Application_AuthenticateRequest(Object sender, EventArgs e){ if (Context.User != null) { string cookieName = FormsAuthentication.FormsCookieName; HttpCookie authCookie = Context.Request.Cookies[cookieName]; if (authCookie == null) return; FormsAuthenticationTicket authTicket = FormsAuthentication.Decrypt(authCookie.Value); string[] roles = authTicket.UserData.Split(new char[] { '|' }); FormsIdentity fi = (FormsIdentity)(Context.User.Identity); Context.User = new System.Security.Principal.GenericPrincipal(fi, roles); }} We ensure that a user has permissions to view a record by creating a custom attribute AuthorizeToViewID that inherits from ActionFilterAttribute. public class AuthorizeToViewIDAttribute : ActionFilterAttribute{ IEmployeeRepository employeeRepository = new EmployeeRepository(); public override void OnActionExecuting(ActionExecutingContext filterContext) { if (filterContext.ActionParameters.ContainsKey("id") && filterContext.ActionParameters["id"] != null) { if (employeeRepository.IsAuthorizedToView((int)filterContext.ActionParameters["id"])) { return; } } throw new UnauthorizedAccessException("The record does not exist or you do not have permission to access it"); }} We add the AuthorizeToView attribute to any Action method that requires authorization. [HttpPost][Authorize(Order = 1)]//To prevent CSRF[ValidateAntiForgeryToken(Salt = Globals.EditSalt, Order = 2)]//See AuthorizeToViewIDAttribute class[AuthorizeToViewID(Order = 3)] [ActionName("Edit")]public ActionResult Update(int id){ var employeeToEdit = employeeRepository.GetEmployee(id); if (employeeToEdit != null) { //Employees can edit only their address //A manager can edit the title and salary of their subordinate string[] whiteList = (employeeToEdit.IsSubordinate) ? new string[] { "Title", "Salary" } : new string[] { "Address" }; if (TryUpdateModel(employeeToEdit, whiteList)) { employeeRepository.Save(employeeToEdit); return RedirectToAction("Details", new { id = id }); } else { ModelState.AddModelError("", "Please correct the following errors."); } } return View(employeeToEdit);} The Authorize attribute is added to ensure that only authorized users can execute that Action. We use the TryUpdateModel with a white list to ensure that (a) an employee is able to edit only their Address and (b) that a manager is able to edit only the Title and Salary of a subordinate. This works in conjunction with the AuthorizeToViewIDAttribute. The ValidateAntiForgeryToken attribute is added (with a salt) to avoid CSRF. The Order on the attributes specify the order in which the attributes are executed. The Edit View uses the AntiForgeryToken helper to render the hidden token: ......<% using (Html.BeginForm()) {%><%=Html.AntiForgeryToken(NorthwindHR.Models.Globals.EditSalt)%><%= Html.ValidationSummary(true, "Please correct the errors and try again.") %><div class="editor-label"> <%= Html.LabelFor(model => model.LastName) %></div><div class="editor-field">...... The application uses View specific models for ease of model binding. public class EmployeeViewModel{ public int EmployeeID; [Required] [DisplayName("Last Name")] public string LastName { get; set; } [Required] [DisplayName("First Name")] public string FirstName { get; set; } [Required] [DisplayName("Title")] public string Title { get; set; } [Required] [DisplayName("Address")] public string Address { get; set; } [Required] [DisplayName("Salary")] [Range(500, double.MaxValue)] public decimal Salary { get; set; } public bool IsSubordinate { get; set; }} To help with displaying readonly/editable fields, we use a helper method. //Simple extension method to display a TextboxFor or DisplayFor based on the isEditable variablepublic static MvcHtmlString TextBoxOrLabelFor<TModel, TProperty>(this HtmlHelper<TModel> htmlHelper, Expression<Func<TModel, TProperty>> expression, bool isEditable){ if (isEditable) { return htmlHelper.TextBoxFor(expression); } else { return htmlHelper.DisplayFor(expression); }} The helper method is used in the view like so: <%=Html.TextBoxOrLabelFor(model => model.Title, Model.IsSubordinate)%> As mentioned in this post, there is a much easier way to update properties on an object. Download Demo Project VS 2008, ASP.NET MVC 2 RTM Remember to change the connectionString to point to your Northwind DB NorthwindHR.zip Feedback and bugs are always welcome :-)

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

< Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >