Search Results

Search found 19021 results on 761 pages for 'general info'.

Page 21/761 | < Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >

  • ROracle support for TimesTen In-Memory Database

    - by Sam Drake
    Today's guest post comes from Jason Feldhaus, a Consulting Member of Technical Staff in the TimesTen Database organization at Oracle.  He shares with us a sample session using ROracle with the TimesTen In-Memory database.  Beginning in version 1.1-4, ROracle includes support for the Oracle Times Ten In-Memory Database, version 11.2.2. TimesTen is a relational database providing very fast and high throughput through its memory-centric architecture.  TimesTen is designed for low latency, high-volume data, and event and transaction management. A TimesTen database resides entirely in memory, so no disk I/O is required for transactions and query operations. TimesTen is used in applications requiring very fast and predictable response time, such as real-time financial services trading applications and large web applications. TimesTen can be used as the database of record or as a relational cache database to Oracle Database. ROracle provides an interface between R and the database, providing the rich functionality of the R statistical programming environment using the SQL query language. ROracle uses the OCI libraries to handle database connections, providing much better performance than standard ODBC.The latest ROracle enhancements include: Support for Oracle TimesTen In-Memory Database Support for Date-Time using R's POSIXct/POSIXlt data types RAW, BLOB and BFILE data type support Option to specify number of rows per fetch operation Option to prefetch LOB data Break support using Ctrl-C Statement caching support Times Ten 11.2.2 contains enhanced support for analytics workloads and complex queries: Analytic functions: AVG, SUM, COUNT, MAX, MIN, DENSE_RANK, RANK, ROW_NUMBER, FIRST_VALUE and LAST_VALUE Analytic clauses: OVER PARTITION BY and OVER ORDER BY Multidimensional grouping operators: Grouping clauses: GROUP BY CUBE, GROUP BY ROLLUP, GROUP BY GROUPING SETS Grouping functions: GROUP, GROUPING_ID, GROUP_ID WITH clause, which allows repeated references to a named subquery block Aggregate expressions over DISTINCT expressions General expressions that return a character string in the source or a pattern within the LIKE predicate Ability to order nulls first or last in a sort result (NULLS FIRST or NULLS LAST in the ORDER BY clause) Note: Some functionality is only available with Oracle Exalytics, refer to the TimesTen product licensing document for details. Connecting to TimesTen is easy with ROracle. Simply install and load the ROracle package and load the driver. > install.packages("ROracle") > library(ROracle) Loading required package: DBI > drv <- dbDriver("Oracle") Once the ROracle package is installed, create a database connection object and connect to a TimesTen direct driver DSN as the OS user. > conn <- dbConnect(drv, username ="", password="", dbname = "localhost/SampleDb_1122:timesten_direct") You have the option to report the server type - Oracle or TimesTen? > print (paste ("Server type =", dbGetInfo (conn)$serverType)) [1] "Server type = TimesTen IMDB" To create tables in the database using R data frame objects, use the function dbWriteTable. In the following example we write the built-in iris data frame to TimesTen. The iris data set is a small example data set containing 150 rows and 5 columns. We include it here not to highlight performance, but so users can easily run this example in their R session. > dbWriteTable (conn, "IRIS", iris, overwrite=TRUE, ora.number=FALSE) [1] TRUE Verify that the newly created IRIS table is available in the database. To list the available tables and table columns in the database, use dbListTables and dbListFields, respectively. > dbListTables (conn) [1] "IRIS" > dbListFields (conn, "IRIS") [1] "SEPAL.LENGTH" "SEPAL.WIDTH" "PETAL.LENGTH" "PETAL.WIDTH" "SPECIES" To retrieve a summary of the data from the database we need to save the results to a local object. The following call saves the results of the query as a local R object, iris.summary. The ROracle function dbGetQuery is used to execute an arbitrary SQL statement against the database. When connected to TimesTen, the SQL statement is processed completely within main memory for the fastest response time. > iris.summary <- dbGetQuery(conn, 'SELECT SPECIES, AVG ("SEPAL.LENGTH") AS AVG_SLENGTH, AVG ("SEPAL.WIDTH") AS AVG_SWIDTH, AVG ("PETAL.LENGTH") AS AVG_PLENGTH, AVG ("PETAL.WIDTH") AS AVG_PWIDTH FROM IRIS GROUP BY ROLLUP (SPECIES)') > iris.summary SPECIES AVG_SLENGTH AVG_SWIDTH AVG_PLENGTH AVG_PWIDTH 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 <NA> 5.843333 3.057333 3.758 1.199333 Finally, disconnect from the TimesTen Database. > dbCommit (conn) [1] TRUE > dbDisconnect (conn) [1] TRUE We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for our software: Times Ten In-Memory Database,  ROracle.  As always, we welcome comments and questions on the TimesTen and  Oracle R technical forums.

    Read the article

  • Oracle Enterprise Manager 12c Anniversary at Open World General Session and Twitter Chat using #em12c on October 2nd

    - by Anand Akela
    As most of you will remember, Oracle Enterprise Manager 12c was announced last year at Open World. We are celebrating first anniversary of Oracle Enterprise Manager 12c next week at Open world. During the last year, Oracle customers have seen the benefits of federated self-service access to complete application stacks, elastic scalability, automated metering, and charge-back from capabilities of Oracle Enterprise manager 12c. In this session you will learn how customers are leveraging Oracle Enterprise Manager 12c to build and operate their enterprise cloud. You will also hear about Oracle’s IT management strategy and some new capabilities inside the Oracle Enterprise Manager product family. In this anniversary general session of Oracle Enterprise Manager 12c, you will also watch an interactive role play ( similar to what some of you may have seen at "Zero to Cloud" sessions at the Oracle Cloud Builder Summit ) depicting a fictional company in the throes of deploying a private cloud. Watch as the CIO and his key cloud architects battle with misconceptions about enterprise cloud computing and watch how Oracle Enterprise Manager helps them address the key challenges of planning, deploying and managing an enterprise private cloud. The session will be led by Sushil Kumar, Vice President, Product Strategy and Business Development, Oracle Enterprise Manager. Jeff Budge, Director, Global Oracle Technology Practice, CSC Consulting, Inc. will join Sushil for the general session as well. Following the general session, Sushil Kumar ( Twitter user name @sxkumar ) will join us for a Twitter Chat on Tuesday at 1:00 PM to 2:00 PM.  Sushil will answer any follow-up questions from the general session or any question related to Oracle Enterprise Manager and Oracle Private Cloud . You can participate in the chat using hash tag #em12c on Twitter.com or by going to  tweetchat.com/room/em12c (Needs Twitter credential for participating).  You could pre-submit your questions for Sushil using any of the social media channels mentioned below. Stay Connected: Twitter |  Face book |  You Tube |  Linked in |  Newsletter

    Read the article

  • Concurrency Utilities for Java EE Early Draft (JSR 236)

    - by arungupta
    Concurrency Utilities for Java EE is being worked as JSR 236 and has released an Early Draft. It provides concurrency capabilities to Java EE application components without compromising container integrity. Simple (common) and advanced concurrency patterns are easily supported without sacrificing usability. Using Java SE concurrency utilities such as java.util.concurrent API, java.lang.Thread and java.util.Timer in a Java EE application component such as EJB or Servlet are problematic since the container and server have no knowledge of these resources. JSR 236 enables concurrency largely by extending the Concurrency Utilities API developed under JSR-166. This also allows a consistency between Java SE and Java EE concurrency programming model. There are four main programming interfaces available: ManagedExecutorService ManagedScheduledExecutorService ContextService ManagedThreadFactory ManagedExecutorService is a managed version of java.util.concurrent.ExecutorService. The implementations of this interface are provided by the container and accessible using JNDI reference: <resource-env-ref>  <resource-env-ref-name>    concurrent/BatchExecutor  </resource-env-ref-name>  <resource-env-ref-type>    javax.enterprise.concurrent.ManagedExecutorService  </resource-env-ref-type><resource-env-ref> and available as: @Resource(name="concurrent/BatchExecutor")ManagedExecutorService executor; Its recommended to bind the JNDI references in the java:comp/env/concurrent subcontext. The asynchronous tasks that need to be executed need to implement java.lang.Runnable or java.util.concurrent.Callable interface as: public class MyTask implements Runnable { public void run() { // business logic goes here }} OR public class MyTask2 implements Callable<Date> {  public Date call() { // business logic goes here   }} The task is then submitted to the executor using one of the submit method that return a Future instance. The Future represents the result of the task and can also be used to check if the task is complete or wait for its completion. Future<String> future = executor.submit(new MyTask(), String.class);. . .String result = future.get(); Another example to submit tasks is: class MyTask implements Callback<Long> { . . . }class MyTask2 implements Callback<Date> { . . . }ArrayList<Callable> tasks = new ArrayList<();tasks.add(new MyTask());tasks.add(new MyTask2());List<Future<Object>> result = executor.invokeAll(tasks); The ManagedExecutorService may be configured for different properties such as: Hung Task Threshold: Time in milliseconds that a task can execute before it is considered hung Pool Info Core Size: Number of threads to keep alive Maximum Size: Maximum number of threads allowed in the pool Keep Alive: Time to allow threads to remain idle when # of threads > Core Size Work Queue Capacity: # of tasks that can be stored in inbound buffer Thread Use: Application intend to run short vs long-running tasks, accordingly pooled or daemon threads are picked ManagedScheduledExecutorService adds delay and periodic task running capabilities to ManagedExecutorService. The implementations of this interface are provided by the container and accessible using JNDI reference: <resource-env-ref>  <resource-env-ref-name>    concurrent/BatchExecutor  </resource-env-ref-name>  <resource-env-ref-type>    javax.enterprise.concurrent.ManagedExecutorService  </resource-env-ref-type><resource-env-ref> and available as: @Resource(name="concurrent/timedExecutor")ManagedExecutorService executor; And then the tasks are submitted using submit, invokeXXX or scheduleXXX methods. ScheduledFuture<?> future = executor.schedule(new MyTask(), 5, TimeUnit.SECONDS); This will create and execute a one-shot action that becomes enabled after 5 seconds of delay. More control is possible using one of the newly added methods: MyTaskListener implements ManagedTaskListener {  public void taskStarting(...) { . . . }  public void taskSubmitted(...) { . . . }  public void taskDone(...) { . . . }  public void taskAborted(...) { . . . } }ScheduledFuture<?> future = executor.schedule(new MyTask(), 5, TimeUnit.SECONDS, new MyTaskListener()); Here, ManagedTaskListener is used to monitor the state of a task's future. ManagedThreadFactory provides a method for creating threads for execution in a managed environment. A simple usage is: @Resource(name="concurrent/myThreadFactory")ManagedThreadFactory factory;. . .Thread thread = factory.newThread(new Runnable() { . . . }); concurrent/myThreadFactory is a JNDI resource. There is lot of interesting content in the Early Draft, download it, and read yourself. The implementation will be made available soon and also be integrated in GlassFish 4 as well. Some references for further exploring ... Javadoc Early Draft Specification concurrency-ee-spec.java.net [email protected]

    Read the article

  • Adding a modal view controller when I press a info button inside a tableviewCell

    - by gvalero87
    Hi, Here is a complex question, maybe it's not hard but there are many doubts i have. First let me give you what i have. This is the only place where i've gotten good answers. I have a table view controller with custom cells. In those cells i added a button (info dark one from IB) for each one of the cells. What i would like it's that when I press that button it displays a new view with more information about that cell, different of the view that i get from didSelectRowAtIndexPath. I've read a little bit about Modal View Controller and I think this is a case where I should use it. So here are my questions: How do i make a view controller a modal view controller?. I read that i have to have a delegate. Is there an example of how to create a normal modal view controller. I haven't been able to do so. How can this button know which cell is it from?. What i have right is a subclass tableviewcell with an IBOUTLET to this info button. This is not an important question because i guess i just could add a NSIndexPath attribute. I added an action in my tableviewsubclass that is triggered when the touchDown Event is called. I did this connection through IB. How can I call the modal view controller through here?, and is it even the right place to do this? Thanks

    Read the article

  • Storing info in a PostgreSQl database issue

    - by MrEnder
    Ok I am making a registry for my website. First page asks for some personal info if($error==false) { $query = pg_query("INSERT INTO chatterlogins(firstName, lastName, gender, password, ageMonth, ageDay, ageYear, email, createDate) VALUES('$firstNameSignup', '$lastNameSignup', '$genderSignup', md5('$passwordSignup'), $monthSignup, $daySignup, $yearSignup, '$emailSignup', now());"); $query = pg_query("INSERT INTO chatterprofileinfo(email, lastLogin) VALUES('$emailSignup', now());"); $userNameSet = $emailSignup; $_SESSION['$userNameSet'] = $userNameSet; header('Location: signup_step2.php'.$rdruri); } The first query works. The second query works but doesn't save the email... the session doesn't work but the header works and sends me to the next page I get no errors even if I comment out header next page @session_start(); $conn = pg_connect("host=localhost dbname=brittains_db user=brittains password=XXXX" ); $signinCheck = false; $checkForm = ""; if(isset($_SESSION['$userName'])) { $userName = $_SESSION['$userName']; $signinCheck = true; $query = pg_query("UPDATE chatterprofileinfo SET lastLogin='now()' WHERE email='$userName'"); } if(isset($_SESSION['$userNameSet'])) { $userName = $_SESSION['$userNameSet']; $signinCheck = true; $query = pg_query("UPDATE chatterprofileinfo SET lastLogin='now()' WHERE email='$userName'"); } This is the top starting the session depending on if your logged in or not. then if I enter in the info here and put it through this if($error==false) { $query = pg_query("UPDATE chatterprofileinfo SET aboutSelf='$aboutSelf', hobbies='$hobbies', music='$music', tv='$tv', sports='$sports', lastLogin='now()' WHERE email='$userName'") or exit(pg_last_error()); //header('Location: signup_step3.php'.$rdruri); } nothing shows up for on my database from this. I have no idea where I went wrong the website is http://opentech.durhamcollege.ca/~intn2201/brittains/chatter/

    Read the article

  • configure batch to sent minute info instead of entire stdout

    - by Daniel
    Hi all, I am working on a RedHat server along with several other users. We use the batch utility to set a job queue. Some of the programs that I use write stuff to stdout during the run, with info on who much data has been processed to far and estimated time until completion etc. batch -q z at> myScript -i somefile -o someotherfile By default, the batch util send an email to me (since I configured it using .forward) with the entire output from stdout. Since the scripts writes something to stdout a few times each second, the amount of log-stuff I get from a two-day script can be ˜20 Mbs. Clearly not what I want. I can of course pipe stdout to a file like so batch -q z at> myScript -i somefile -o someotherfile > myscript.stdout.log but then I get a blank e-mail from the util. So to my question: Is it possible to configure batch so that it sends time the job started and ended, or run time or some oth valuable information to me, instead of a 20 Mb mail or a blank mail? Note that the scripts that I use are binaries and I cannot customize the code to output less info in the first place (which would be the optimal solution I guess). Thanks /Daniel

    Read the article

  • Add Hexidecimal Header Info to JPEG File Using Java

    - by jboyd
    I need to add header info to a JPEG file in order to get it to work properly when shared on some websites, I've tracked down the correct info through a lot of Hex digging, but now I'm kind of stuck trying to get it into the file. I know where in the file it needs to go, and I know how long it is, my problem is that RandomAccessFile just overwrites existing data in the file and FileOutputStream appends the data to the end. I don't want either, I want to INSERT data starting at the third byte. My example code: File fileToChange = new File("someimage.jpg"); byte[] i = new byte[2]; i[0] = (byte)Integer.decode("0xcc"); i[1] = (byte)Integer.decode("0xcc"); RandomAccessFile f = new RandomAccessFile(new File("videothing.jpg"), "rw"); long aPositionWhereIWantToGo = 2; f.seek(aPositionWhereIWantToGo); // this basically reads n bytes in the file f.write((byte[])i); f.close(); So this doesn't work because it overwrites, and does not insert, I can't find any way to just insert data into a file

    Read the article

  • Creating a Facebook session for getting page info

    - by Marty Haught
    I am trying to get info on a page that my user is admin for. This user has granted my fb_connect app offline access. I have saved the session_key that allows offline access (it has the user's id in it). I am able to publish to this fan page with this session key. But when I try to access the page's info I get an SessionExpired error. This doesn't make sense. Look at the code and output below: p is is a 'profile' object that holds the three pieces of relevant fb data (user_id, session_key and page id) fb_session = Facebooker::Session.create = # fb_session.secure_with!(p.fb_session_key, p.fb_user_id, 0) = nil fb_session.user.has_permission?("offline_access") = true fb_session.user.has_permission?("publish_stream") = true fb_session.user.has_permission?("read_stream") = true pages = fb_session.fql_query("select fan_count from page where page_id = #{p.fb_page_id}") Facebooker::Session::SessionExpired: Session key invalid or no longer valid ... pages = fb_session.pages(:fields = {:page_ids = p.fb_page_id}) Facebooker::Session::SessionExpired: Session key invalid or no longer valid ... pages = Facebooker::Session.create.fql_query("select fan_count from page where page_id = #{p.fb_page_id}") = [#] Perhaps I'm not creating the session right or maybe offline access doesn't give me access to the user's page even though I have permissions to push to it. As you can see when I just use an anon session I'm able to get the fan count, which I'm guessing is publicly available. Does anyone have an idea on this?

    Read the article

  • The XPath @root-node-position attribute info

    - by Igor Savinkin
    I couldn't find the @root-node-position XPath attribute info. Would you give me a link of where i can read about it? Is it XPath 2.0? The code (not mine) is ../preceding-sibling::div[1]/div[@root-node-position]/div applied to this HTML: <div class="left"> <div class='prod2'> <div class='name'>Dell Latitude D610-1.73 Laptop Wireless Computer </div>2 GHz Intel Pentium M, 1 GB DDR2 SDRAM, 40 GB </div> <div class='prod1'> <div class='name'>Samsung Chromebook (Wi-Fi, 11.6-Inch) </div>1.7 GHz, 2 GB DDR3 SDRAM, 16 GB </div> </div> <div class="right"> <div class='price2'>$239.95</div> <div class='price1 best'>$249.00</div> </div> Firstly i fetch a price text under class='right' with this query : //DIV[contains(@class,'best')] and then i apply the above mentioned XPath with @root-node-attribute under class='left' to retrieve the rest of the record info.

    Read the article

  • Passing contextual info to Views in ASP.NET MVC

    - by Andrey
    I wonder - what is the best way to supply contextual (i.e. not related to any particular view, but to all views at the same time) info to a view (or to master page)? Consider the following scenario. Suppose we have an app that supports multiple UI languages. User can switch them via UI's widgets (something like tabs at the top of the page). Each language is rendered as a separate tab. Tab for the current language should not be rendered. To address these requirements I'm planning to have a javascript piece that will hide current's language tab on the client. To do this, I need current's language tab Id on the client. So, I need some way of passing the Id to master page (for it to be 'fused' into the js script). The best thing I can think of is that all my ViewModels should inherit some ViewModeBase that has a field to hold current language tab Id. Then, whatever View I'm rendering, this Id will always be available for the master page's hiding script. However, I'm concerned that this ViewModelBase can potentially grow in an uncontrolled fashion as number of such pieces of contextual info (like current language) will grow.. Any ideas?

    Read the article

  • passing info from facebook to UITabBarController

    - by EquinoX
    When my app first start, it shows up a main page showing to login to facebook and then it goes to the UITabBarController. The code that I have in my app delegate is the following: //this is the .h @interface NMeAppDelegate : NSObject <UIApplicationDelegate> { UIWindow *window; MainViewController *controller; UITabBarController *tabBar; } @property (nonatomic, retain) IBOutlet UITabBarController *tabBar; @property (nonatomic, retain) MainViewController *controller; @property (nonatomic, retain) IBOutlet UIWindow *window; @end //this is the .m of the app delegate #import "NMeAppDelegate.h" @implementation NMeAppDelegate @synthesize window; @synthesize tabBar; @synthesize controller; #pragma mark - #pragma mark Application lifecycle - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { // Override point for customization after application launch. controller = [[MainViewController alloc] init]; [window addSubview:tabBar.view]; [window addSubview:controller.view]; [window makeKeyAndVisible]; return YES; } Inside of MainViewController, I actually have a Facebook * facebook object, which basically has all of the information that I need. Every information that I need for this apps is queried in the MainViewController. The problem is that after getting this info and now I am in the UITabViewController... how do I get those information that I already queried facebook for? I have a class called UserInfo as well, which basically has everything essential I need. I need to have the info from UserInfo so that the other ViewController in the UITabBarController have access to it.... I hope my question makes sense

    Read the article

  • Upgrading Windows 8 boot to VHD to Windows 8.1&ndash;Step by step guide

    - by Liam Westley
    Originally posted on: http://geekswithblogs.net/twickers/archive/2013/10/19/upgrading-windows-8-boot-to-vhd-to-windows-8.1ndashstep-by.aspxBoot to VHD – dual booting Windows 7 and Windows 8 became easy When Windows 8 arrived, quite a few people decided that they would still dual boot their machines, and instead of mucking about with resizing disk partitions to free up space for Windows 8 they decided to use the boot from VHD feature to create a huge hard disc image into which Windows 8 could be installed.  Scott Hanselman wrote this installation guide, while I myself used the installation guide from Ed Bott of ZD net fame. Boot to VHD is a great solution, it achieves a dual boot, can be backed up easily and had virtually no effect on the original Windows 7 partition. As a developer who has dual booted Windows operating systems for years, hacking boot.ini files, the boot to VHD was a much easier solution. Upgrade to Windows 8.1 – ah, you can’t do that on a virtual disk installation (boot to VHD) Last week the final version of Windows 8.1 arrived, and I went into the Windows Store to upgrade.  Luckily I’m on a fast download service, and use an SSD, because once the upgrade was downloaded and prepared Windows informed that This PC can’t run Windows 8.1, and provided the reason, You can’t install Windows on a virtual drive.  You can see an image of the message and discussion that sparked my search for a solution in this Microsoft Technet forum post. I was determined not to have to resize partitions yet again and fiddle with VHD to disk utilities and back again, and in the end I did succeed in upgrading to a Windows 8.1 boot to VHD partition.  It takes quite a bit of effort though … tldr; Simple steps of how you upgrade Boot into Windows 7 – make a copy of your Windows 8 VHD, to become Windows 8.1 Enable Hyper-V in your Windows 8 (the original boot to VHD partition) Create a new virtual machine, attaching the copy of your Windows 8 VHD Start the virtual machine, upgrade it via the Windows Store to Windows 8.1 Shutdown the virtual machine Boot into Windows 7 – use the bcedit tool to create a new Windows 8.1 boot to VHD option (pointing at the copy) Boot into the new Windows 8.1 option Reactivate Windows 8.1 (it will have become deactivated by running under Hyper-V) Remove the original Windows 8 VHD, and in Windows 7 use bcedit to remove it from the boot menu Things you’ll need A system that can run Hyper-V under Windows 8 (Intel i5, i7 class CPU) Enough space to have your original Windows 8 boot to VHD and a copy at the same time An ISO or DVD for Windows 8 to create a bootable Windows 8 partition Step by step guide Boot to your base o/s, the real one, Windows 7. Make a copy of the Windows 8 VHD file that you use to boot Windows 8 (via boot from VHD) – I copied it from a folder on C: called VHD-Win8 to VHD-Win8.1 on my N: drive. Reboot your system into Windows 8, and enable Hyper-V if not already present (this may require reboot) Use the Hyper-V manager , create a new Hyper-V machine, using half your system memory, and use the option to attach an existing VHD on the main IDE controller – this will be the new copy you made in Step 2. Start the virtual machine, use Connect to view it, and you’ll probably discover it cannot boot as there is no boot record If this is the case, go to Hyper-V manager, edit the Settings for the virtual machine to attach an ISO of a Windows 8 DVD to the second IDE controller. Start the virtual machine, use Connect to view it, and it should now attempt a fresh installation of Windows 8.  You should select Advanced Options and choose Repair - this will make VHD bootable When the setup reboots your virtual machine, turn off the virtual machine, and remove the ISO of the Windows 8 DVD from the virtual machine settings. Start virtual machine, use Connect to view it.  You will see the devices to be re-discovered (including your quad CPU becoming single CPU).  Eventually you should see the Windows Login screen. You may notice that your desktop background (Win+D) will have turned black as your Windows installation has become deactivate due to the hardware changes between your real PC and Hyper-V. Fortunately becoming deactivated, does not stop you using the Windows Store, where you can select the update to Windows 8.1. You can now watch the progress joy of the Windows 8 update; downloading, preparing to update, checking compatibility, gathering info, preparing to restart, and finally, confirm restart - remember that you are restarting your virtual machine sitting on the copy of the VHD, not the Windows 8 boot to VHD you are currently using to run Hyper-V (confused yet?) After the reboot you get the real upgrade messages; setting up x%, xx%, (quite slow) After a while, Getting ready Applying PC Settings x%, xx% (really slow) Updating your system (fast) Setting up a few more things x%, (quite slow) Getting ready, again Accept license terms Express settings Confirmed previous password Next, I had to set up a Microsoft account – which is possibly now required, and not optional Using the Microsoft account required a 2 factor authorization, via text message, a 7 digit code for me Finalising settings Blank screen, HI .. We're setting up things for you (similar to original Windows 8 install) 'You can get new apps from the Store', below which is ’Installing your apps’ - I had Windows Media Center which is counts as an app from the Store ‘Taking care of a few things’, below which is ‘Installing your apps’ ‘Taking care of a few things’, below ‘Don't turn off your PC’ ‘Getting your apps ready’, below ‘Don't turn off your PC’ ‘Almost ready’, below ‘Don't turn off your PC’ … finally, we get the Windows 8.1 start menu, and a quick Win+D to check the desktop confirmed all the application icons I expected, pinned items on the taskbar, and one app moaning about a missing drive At this point the upgrade is complete – you can shutdown the virtual machine Reboot from the original Windows 8 and return to Windows 7 to configure booting to the Windows 8.1 copy of the VHD In an administrator command prompt do following use the bcdedit tool (from an MSDN blog about configuring VHD to boot in Windows 7) Type bcedit to list the current boot options, so you can copy the GUID (complete with brackets/braces) for the original Windows 8 boot to VHD Create a new menu option, copy of the Windows 8 option; bcdedit /copy {originalguid} /d "Windows 8.1" Point the new Windows 8.1 option to the copy of the VHD; bcdedit /set {newguid} device vhd=[D:]\Image.vhd Point the new Windows 8.1 option to the copy of the VHD; bcdedit /set {newguid} osdevice vhd=[D:]\Image.vhd Set autodetection of the HAL (may already be set); bcdedit /set {newguid} detecthal on Reboot from Windows 7 and select the new option 'Windows 8.1' on the boot menu, and you’ll have some messages to look at, as your hardware is redetected (as you are back from 1 CPU to 4 CPUs) ‘Getting devices ready, blank then %xx, with occasional blank screen, for the graphics driver, (fast-ish) Getting Ready message (fast) You will have to suffer one final reboots, choose 'Windows 8.1' and you can now login to a lovely Windows 8.1 start screen running on non virtualized hardware via boot to VHD After checking everything is running fine, you can now choose to Activate Windows, which for me was a toll free phone call to the automated system where you type in lots of numbers to be given a whole bunch of new activation codes. Once you’re happy with your new Windows 8.1 boot to VHD, and no longer need the Windows 8 boot to VHD, feel free to delete the old one.  I do believe once you upgrade, you are no longer licensed to use it anyway. There, that was simple wasn’t it? Looking at the huge list of steps it took to perform this upgrade, you may wonder whether I think this is worth it.  Well, I think it is worth booting to VHD.  It makes backups a snap (go to Windows 7, copy the VHD, you backed up the o/s) and helps with disk management – want to move the o/s, you can move the VHD and repoint the boot menu to the new location. The downside is that Microsoft has complete neglected to support boot to VHD as an upgradable option.  Quite a poor decision in my opinion, and if you read twitter and the forums quite a few people agree with that view.  It’s a shame this got missed in the work on creating the upgrade packages for Windows 8.1.

    Read the article

  • Company Review: Google Products

    Google, Inc offers an array of products and services to all of its end-users. However their search capabilities are the foundation for Google’s current success and their primary business focus. Currently, Google offers over twenty different search applications that allow users to search the internet for books, maps, videos, images, products and much more. Their product decisions have allowed users demands to be met while focusing on the free based model. This allows users to access Google data free of charge and indirectly gives Google a strong competitive advantage of other competitors along with the accuracy of the search results. According to Google, Inc, they offer the following types of searching capabilities: Alerts Get email updates on the topics of your choice Blog Search Find blogs on your favorite topics  Books Search the full text of books  Custom Search Create a customized search experience for your community  Desktop Search and personalize your computer  Dictionary Search for definitions of words and phrases Directory Search the web, organized by topic or category Earth Explore the world from your computer Finance Business info, news and interactive charts GOOG-411 Find and connect for free with businesses from your phone  Images Search for images on the web Maps View maps and directions News Search thousands of news stories Patent Search Search the full text of US Patents Product Search Search for stuff to buy Scholar Search scholarly papers Toolbar Add a search box to your browser Trends Explore past and present search trends Videos Search for videos on the web Web Search Search billions of web pages Web Search Features Find movies, music, stocks, books and more mapping Google’s free based business model is only one way it differentiates itself from its competition. There is also a strong focus on the accuracy of search results and the speed in which they are returned to the end-user. Quality function deployment (QFD) is a structured method used to help connect user needs to the design features of a project proposed to address those needs. This method is particularly useful in accounting for needs that are not easily articulated or precisely defined according to the U. S. Department of Transportation Federal Highway Administration. Due to the fact that QFD is so customer driven Google is always in a constant state of change in attempt to reengineer its search algorithms, and other dependant systems so that end-users requirements are constantly being met. Value engineering is a key example of this, Google is constantly trying to improve all aspects of its products, improve system maintainability, and system interoperability. Bridgefield Group defines value engineering as an organized methodology that identifies and selects the lowest lifecycle cost options in design, materials and processes that achieves the desired level of performance, reliability and customer satisfaction. In addition, it seeks to remove unnecessary costs in the above areas and is often a joint effort with cross-functional internal teams and relevant suppliers. Common issues that appear when developing large scale systems like Google’s search applications include modular design of a product and/or service and providing accurate value analysis. A design approach that adheres to four fundamental tenets of cohesiveness, encapsulation, self-containment, and high binding to design a system component as an independently operable unit subject to change is how the Open System Joint Task Force defines modular design. More specifically M. S. Schmaltz defines modular software design as having a large collection of statements strung together in one partition of in-line code; we segment or divide the statements into logical groups called modules. Each module performs one or two tasks, and then passes control to another module. By breaking up the code into "bite-sized chunks", so to speak, we are able to better control the flow of data and control. This is especially true in large software systems. Value analysis is a process to evaluate products and services based on effectiveness, safety, and cost. Value analysis involves assessing the quality as well as the cost of a product or service as defined by the Healthcare Financial Management Association.  “Operations Management deals with the design and management of products, processes, services and supply chains. It considers the acquisition, development, and utilization of resources that firms need to deliver the goods and services their clients want.” (MIT,2010) Google, Inc encourages an open environment between all employees, also known as Googlers. This is reinforced by a cross-section team or cross-functional teams comprised from multiple departments assigned to every project so that every department like marketing, finance, and quality assurance has input on every project. In addition, Google is known for their openness to new ideas regardless of the status or seniority of an employee. In fact, Google allows for 20% of an employee’s time can be devoted to developing new ideas and/or pet projects. HumTech.com defines a cross-functional team as a collection of people with varied levels of skills and experience brought together to accomplish a task. As the name implies, Cross-Functional Team members come from different organizational units. Cross-Functional Teams may be permanent or ad hoc. Google’s search application product strategy primarily focuses on mass customization. This is allows Google to create a base search application and allows results to be returned to the end-users quickly based on specific parameters and search settings. In addition, they also store the data that is returned in case other desire the same results based on other end-users supplying the same customized settings. This allows Google to appear to render search results in virtually real-time to the user while allowing for complete customization of the searching criteria. Greg Vogl, a professor at Uganda Martyrs University, defines mass customization as when a business gives its customers the opportunity to tailor its products or services to the customer's specifications. The IT staff at Google play a key role in ensuring that the search application’s product strategy is maintained simply because the IT staff designs, develops, and maintains all of their proprietary applications. In fact, they also maintain all network infrastructure to ensure that it is available to all end-users. References: http://www.google.com/intl/en/options/ http://ops.fhwa.dot.gov/freight/publications/ftat_user_guide/sec5.htm http://www.bridgefieldgroup.com/bridgefieldgroup/glos9.htm#V http://www.acq.osd.mil/osjtf/termsdef.html http://www.cise.ufl.edu/~mssz/Pascal-CGS2462/prog-dsn.html http://www.hfma.org/publications/business_caring_newsletter/exclusives/Supply+and+Inventory+Terms+Defined.htm http://mitsloan.mit.edu/omg/om-definition.php http://www.humtech.com/opm/grtl/ols/ols3.cfm http://www.gregvogl.net/courses/mis1/glossary.htm

    Read the article

  • LLBLGen Pro feature highlights: grouping model elements

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) When working with an entity model which has more than a few entities, it's often convenient to be able to group entities together if they belong to a semantic sub-model. For example, if your entity model has several entities which are about 'security', it would be practical to group them together under the 'security' moniker. This way, you could easily find them back, yet they can be left inside the complete entity model altogether so their relationships with entities outside the group are kept. In other situations your domain consists of semi-separate entity models which all target tables/views which are located in the same database. It then might be convenient to have a single project to manage the complete target database, yet have the entity models separate of each other and have them result in separate code bases. LLBLGen Pro can do both for you. This blog post will illustrate both situations. The feature is called group usage and is controllable through the project settings. This setting is supported on all supported O/R mapper frameworks. Situation one: grouping entities in a single model. This situation is common for entity models which are dense, so many relationships exist between all sub-models: you can't split them up easily into separate models (nor do you likely want to), however it's convenient to have them grouped together into groups inside the entity model at the project level. A typical example for this is the AdventureWorks example database for SQL Server. This database, which is a single catalog, has for each sub-group a schema, however most of these schemas are tightly connected with each other: adding all schemas together will give a model with entities which indirectly are related to all other entities. LLBLGen Pro's default setting for group usage is AsVisualGroupingMechanism which is what this situation is all about: we group the elements for visual purposes, it has no real meaning for the model nor the code generated. Let's reverse engineer AdventureWorks to an entity model. By default, LLBLGen Pro uses the target schema an element is in which is being reverse engineered, as the group it will be in. This is convenient if you already have categorized tables/views in schemas, like which is the case in AdventureWorks. Of course this can be switched off, or corrected on the fly. When reverse engineering, we'll walk through a wizard which will guide us with the selection of the elements which relational model data should be retrieved, which we can later on use to reverse engineer to an entity model. The first step after specifying which database server connect to is to select these elements. below we can see the AdventureWorks catalog as well as the different schemas it contains. We'll include all of them. After the wizard completes, we have all relational model data nicely in our catalog data, with schemas. So let's reverse engineer entities from the tables in these schemas. We select in the catalog explorer the schemas 'HumanResources', 'Person', 'Production', 'Purchasing' and 'Sales', then right-click one of them and from the context menu, we select Reverse engineer Tables to Entity Definitions.... This will bring up the dialog below. We check all checkboxes in one go by checking the checkbox at the top to mark them all to be added to the project. As you can see LLBLGen Pro has already filled in the group name based on the schema name, as this is the default and we didn't change the setting. If you want, you can select multiple rows at once and set the group name to something else using the controls on the dialog. We're fine with the group names chosen so we'll simply click Add to Project. This gives the following result:   (I collapsed the other groups to keep the picture small ;)). As you can see, the entities are now grouped. Just to see how dense this model is, I've expanded the relationships of Employee: As you can see, it has relationships with entities from three other groups than HumanResources. It's not doable to cut up this project into sub-models without duplicating the Employee entity in all those groups, so this model is better suited to be used as a single model resulting in a single code base, however it benefits greatly from having its entities grouped into separate groups at the project level, to make work done on the model easier. Now let's look at another situation, namely where we work with a single database while we want to have multiple models and for each model a separate code base. Situation two: grouping entities in separate models within the same project. To get rid of the entities to see the second situation in action, simply undo the reverse engineering action in the project. We still have the AdventureWorks relational model data in the catalog. To switch LLBLGen Pro to see each group in the project as a separate project, open the Project Settings, navigate to General and set Group usage to AsSeparateProjects. In the catalog explorer, select Person and Production, right-click them and select again Reverse engineer Tables to Entities.... Again check the checkbox at the top to mark all entities to be added and click Add to Project. We get two groups, as expected, however this time the groups are seen as separate projects. This means that the validation logic inside LLBLGen Pro will see it as an error if there's e.g. a relationship or an inheritance edge linking two groups together, as that would lead to a cyclic reference in the code bases. To see this variant of the grouping feature, seeing the groups as separate projects, in action, we'll generate code from the project with the two groups we just created: select from the main menu: Project -> Generate Source-code... (or press F7 ;)). In the dialog popping up, select the target .NET framework you want to use, the template preset, fill in a destination folder and click Start Generator (normal). This will start the code generator process. As expected the code generator has simply generated two code bases, one for Person and one for Production: The group name is used inside the namespace for the different elements. This allows you to add both code bases to a single solution and use them together in a different project without problems. Below is a snippet from the code file of a generated entity class. //... using System.Xml.Serialization; using AdventureWorks.Person; using AdventureWorks.Person.HelperClasses; using AdventureWorks.Person.FactoryClasses; using AdventureWorks.Person.RelationClasses; using SD.LLBLGen.Pro.ORMSupportClasses; namespace AdventureWorks.Person.EntityClasses { //... /// <summary>Entity class which represents the entity 'Address'.<br/><br/></summary> [Serializable] public partial class AddressEntity : CommonEntityBase //... The advantage of this is that you can have two code bases and work with them separately, yet have a single target database and maintain everything in a single location. If you decide to move to a single code base, you can do so with a change of one setting. It's also useful if you want to keep the groups as separate models (and code bases) yet want to add relationships to elements from another group using a copy of the entity: you can simply reverse engineer the target table to a new entity into a different group, effectively making a copy of the entity. As there's a single target database, changes made to that database are reflected in both models which makes maintenance easier than when you'd have a separate project for each group, with its own relational model data. Conclusion LLBLGen Pro offers a flexible way to work with entities in sub-models and control how the sub-models end up in the generated code.

    Read the article

  • Java EE 6 and NoSQL/MongoDB on GlassFish using JPA and EclipseLink 2.4 (TOTD #175)

    - by arungupta
    TOTD #166 explained how to use MongoDB in your Java EE 6 applications. The code in that tip used the APIs exposed by the MongoDB Java driver and so requires you to learn a new API. However if you are building Java EE 6 applications then you are already familiar with Java Persistence API (JPA). Eclipse Link 2.4, scheduled to release as part of Eclipse Juno, provides support for NoSQL databases by mapping a JPA entity to a document. Their wiki provides complete explanation of how the mapping is done. This Tip Of The Day (TOTD) will show how you can leverage that support in your Java EE 6 applications deployed on GlassFish 3.1.2. Before we dig into the code, here are the key concepts ... A POJO is mapped to a NoSQL data source using @NoSQL or <no-sql> element in "persistence.xml". A subset of JPQL and Criteria query are supported, based upon the underlying data store Connection properties are defined in "persistence.xml" Now, lets lets take a look at the code ... Download the latest EclipseLink 2.4 Nightly Bundle. There is a Installer, Source, and Bundle - make sure to download the Bundle link (20120410) and unzip. Download GlassFish 3.1.2 zip and unzip. Install the Eclipse Link 2.4 JARs in GlassFish Remove the following JARs from "glassfish/modules": org.eclipse.persistence.antlr.jar org.eclipse.persistence.asm.jar org.eclipse.persistence.core.jar org.eclipse.persistence.jpa.jar org.eclipse.persistence.jpa.modelgen.jar org.eclipse.persistence.moxy.jar org.eclipse.persistence.oracle.jar Add the following JARs from Eclipse Link 2.4 nightly build to "glassfish/modules": org.eclipse.persistence.antlr_3.2.0.v201107111232.jar org.eclipse.persistence.asm_3.3.1.v201107111215.jar org.eclipse.persistence.core.jpql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.core_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa.jpql_2.0.0.v20120407-r11132.jar org.eclipse.persistence.jpa.modelgen_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa_2.4.0.v20120407-r11132.jar org.eclipse.persistence.moxy_2.4.0.v20120407-r11132.jar org.eclipse.persistence.nosql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.oracle_2.4.0.v20120407-r11132.jar Start MongoDB Download latest MongoDB from here (2.0.4 as of this writing). Create the default data directory for MongoDB as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db Refer to Quickstart for more details. Start MongoDB as: arungup-mac:mongodb-osx-x86_64-2.0.4 <arungup> ->./bin/mongod./bin/mongod --help for help and startup optionsMon Apr  9 12:56:02 [initandlisten] MongoDB starting : pid=3124 port=27017 dbpath=/data/db/ 64-bit host=arungup-mac.localMon Apr  9 12:56:02 [initandlisten] db version v2.0.4, pdfile version 4.5Mon Apr  9 12:56:02 [initandlisten] git version: 329f3c47fe8136c03392c8f0e548506cb21f8ebfMon Apr  9 12:56:02 [initandlisten] build info: Darwin erh2.10gen.cc 9.8.0 Darwin Kernel Version 9.8.0: Wed Jul 15 16:55:01 PDT 2009; root:xnu-1228.15.4~1/RELEASE_I386 i386 BOOST_LIB_VERSION=1_40Mon Apr  9 12:56:02 [initandlisten] options: {}Mon Apr  9 12:56:02 [initandlisten] journal dir=/data/db/journalMon Apr  9 12:56:02 [initandlisten] recover : no journal files present, no recovery neededMon Apr  9 12:56:02 [websvr] admin web console waiting for connections on port 28017Mon Apr  9 12:56:02 [initandlisten] waiting for connections on port 27017 Check out the JPA/NoSQL sample from SVN repository. The complete source code built in this TOTD can be downloaded here. Create Java EE 6 web app Create a Java EE 6 Maven web app as: mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -DarchetypeArtifactId=webapp-javaee6 -DgroupId=model -DartifactId=javaee-nosql -DarchetypeVersion=1.5 -DinteractiveMode=false Copy the model files from the checked out workspace to the generated project as: cd javaee-nosqlcp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/model src/main/java Copy "persistence.xml" mkdir src/main/resources cp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/META-INF ./src/main/resources Add the following dependencies: <dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.jpa</artifactId> <version>2.4.0-SNAPSHOT</version> <scope>provided</scope></dependency><dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.nosql</artifactId> <version>2.4.0-SNAPSHOT</version></dependency><dependency> <groupId>org.mongodb</groupId> <artifactId>mongo-java-driver</artifactId> <version>2.7.3</version></dependency> The first one is for the EclipseLink latest APIs, the second one is for EclipseLink/NoSQL support, and the last one is the MongoDB Java driver. And the following repository: <repositories> <repository> <id>EclipseLink Repo</id> <url>http://www.eclipse.org/downloads/download.php?r=1&amp;nf=1&amp;file=/rt/eclipselink/maven.repo</url> <snapshots> <enabled>true</enabled> </snapshots> </repository>  </repositories> Copy the "Test.java" to the generated project: mkdir src/main/java/examplecp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/example/Test.java ./src/main/java/example/ This file contains the source code to CRUD the JPA entity to MongoDB. This sample is explained in detail on EclipseLink wiki. Create a new Servlet in "example" directory as: package example;import java.io.IOException;import java.io.PrintWriter;import javax.servlet.ServletException;import javax.servlet.annotation.WebServlet;import javax.servlet.http.HttpServlet;import javax.servlet.http.HttpServletRequest;import javax.servlet.http.HttpServletResponse;/** * @author Arun Gupta */@WebServlet(name = "TestServlet", urlPatterns = {"/TestServlet"})public class TestServlet extends HttpServlet { protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html;charset=UTF-8"); PrintWriter out = response.getWriter(); try { out.println("<html>"); out.println("<head>"); out.println("<title>Servlet TestServlet</title>"); out.println("</head>"); out.println("<body>"); out.println("<h1>Servlet TestServlet at " + request.getContextPath() + "</h1>"); try { Test.main(null); } catch (Exception ex) { ex.printStackTrace(); } out.println("</body>"); out.println("</html>"); } finally { out.close(); } } @Override protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); } @Override protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); }} Build the project and deploy it as: mvn clean packageglassfish3/bin/asadmin deploy --force=true target/javaee-nosql-1.0-SNAPSHOT.war Accessing http://localhost:8080/javaee-nosql/TestServlet shows the following messages in the server.log: connecting(EISLogin( platform=> MongoPlatform user name=> "" MongoConnectionSpec())) . . .Connected: User: Database: 2.7  Version: 2.7 . . .Executing MappedInteraction() spec => null properties => {mongo.collection=CUSTOMER, mongo.operation=INSERT} input => [DatabaseRecord( CUSTOMER._id => 4F848E2BDA0670307E2A8FA4 CUSTOMER.NAME => AMCE)]. . .Data access result: [{TOTALCOST=757.0, ORDERLINES=[{DESCRIPTION=table, LINENUMBER=1, COST=300.0}, {DESCRIPTION=balls, LINENUMBER=2, COST=5.0}, {DESCRIPTION=rackets, LINENUMBER=3, COST=15.0}, {DESCRIPTION=net, LINENUMBER=4, COST=2.0}, {DESCRIPTION=shipping, LINENUMBER=5, COST=80.0}, {DESCRIPTION=handling, LINENUMBER=6, COST=55.0},{DESCRIPTION=tax, LINENUMBER=7, COST=300.0}], SHIPPINGADDRESS=[{POSTALCODE=L5J1H7, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa,STREET=17 Jane St.}], VERSION=2, _id=4F848E2BDA0670307E2A8FA8,DESCRIPTION=Pingpong table, CUSTOMER__id=4F848E2BDA0670307E2A8FA7, BILLINGADDRESS=[{POSTALCODE=L5J1H8, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa, STREET=7 Bank St.}]}] You'll not see any output in the browser, just the output in the console. But the code can be easily modified to do so. Once again, the complete Maven project can be downloaded here. Do you want to try accessing relational and non-relational (aka NoSQL) databases in the same PU ?

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • Visiting the Fire Station in Coromandel

    Hm, I just tried to remember how we actually came up with this cool idea... but it's already too blurred and it doesn't really matter after all. Anyway, if I remember correctly (IIRC), it happened during one of the Linux meetups at Mugg & Bean, Bagatelle where Ajay and I brought our children along and we had a brief conversation about how cool it would be to check out one of the fire stations here in Mauritius. We both thought that it would be a great experience and adventure for the little ones. An idea takes shape And there we go, down the usual routine these... having an idea, checking out the options and discussing who's doing what. Except this time, it was all up to Ajay, and he did a fantastic job. End of August, he told me that he got in touch with one of his friends which actually works as a fire fighter at the station in Coromandel and that there could be an option to come and visit them (soon). A couple of days later - Confirmed! Be there, and in time... What time? Anyway, doesn't really matter... Everything was settled and arranged. I asked the kids on Friday afternoon if they might be interested to see the fire engines and what a fire fighter is doing. Of course, they were all in! Getting up early on Sunday morning isn't really a regular exercise for all of us but everything went smooth and after a short breakfast it was time to leave. Where are we going? Are we there yet? Now, we are in Bambous. Why do you go this way? The kids were so much into it. Absolutely amazing to see their excitement. Are we there yet? Well, we went through the sugar cane fields towards Chebel and then down into the industrial zone at Coromandel. Honestly, I had a clue where the fire station is located but having Google Maps in reach that shouldn't be a problem in case that we might get lost. But my worries were washed away when our children guided us... "There! Over there are the fire engines! We have to turn left, dad." - No comment, the kids were right! As we were there a little bit too early, we parked the car and the kids started to explore the area and outskirts of the fire station. Some minutes later, as if we had placed an order a unit of two cars had to go out for an alarm and the kids could witness them leaving as closely as possible. Sirens on and wow!!! Ladder truck L32 - MAN truck with Rosenbauer built-up and equipment by Metz Taking the tour Ajay arrived shortly after that and guided us finally inside the station to meet with his pal. The three guys were absolutely well-prepared and showed us around in the hall, explaining that there two units out at the moment. But the ladder truck (with max. 32m expandable height) was still around we all got a great insight into the technique and equipment on the vehicle. It was amazing to see all three kids listening to Mambo as give some figures about the truck and how the fire fighters are actually it. The children and 'our' fire fighters of the day had great fun with the various fire engines Absolutely fantastic that the children were allowed to experience this - we had so much fun! Ajay's son brought two of his toy fire engines along, shared them with ours, and they all played very well together. As a parent it was really amazing to see them at such an ease. Enough theory Shortly afterwards the ladder truck was moved outside, got stabilised and ready to go for 'real-life' exercising. With the additional equipment of safety helmets, security belts and so on, we all got a first-hand impression about how it could be as a fire-fighter. Actually, I was totally amazed by the curiousity and excitement of my BWE. She was really into it and asked lots of interesting questions - in general but also technical. And while our fighters were busy with Ajay and family, I gave her some more details and explanations about the truck, the expandable ladder, the safety cage at the top and other equipment available. Safety first! No exceptions and always be prepared for the worst case... Also, the equipped has been checked prior to excuse - This is your life saver... Hooked up and ready to go... ...of course not too high. This is just a demonstration - and 32 meters above ground isn't for everyone. Well, after that it was me that had the asking looks on me, and I finally revealed to the local fire fighters that I was in the auxiliary fire brigade, more precisely in the hazard department, for more than 10 years. So not a professional fire fighter but at least a passionate and educated one as them. Inside the station Our fire fighters really took their time to explain their daily job to kids, provided them access to operation seat on the ladder truck and how the truck cabin is actually equipped with the different radios and so on. It was really a great time. Later on we had a brief tour through the building itself, and again all of our questions were answered. We had great fun and started to joke about bits and pieces. For me it was also very interesting to see the comparison between the fire station here in Mauritius and the ones I have been to back in Germany. Amazing to see them completely captivated in the play - the children had lots of fun! Also, that there are currently ten fire stations all over the island, plus two additional but private ones at the airport and at the harbour. The newest one is actually down in Black River on the west coast because the time from Quatre Bornes takes too long to have any chance of an effective alarm at all. IMHO, a very good decision as time is the most important factor in getting fire incidents under control. After all it was great experience for all of us, especially for the children to see and understand that their toy trucks are only copies of the real thing and that the job of a (professional) fire fighter is very important in our society. Don't forget that those guys run into the danger zone while you're trying to get away from it as much as possible. Another unit just came back from a grass fire - and shortly after they went out again. No time to rest, too much to do! Mauritian Fire Fighters now and (maybe) in the future... Thank you! It was an honour to be around! Thank you to Ajay for organising and arranging this Sunday morning event, and of course of Big Thank You to the three guys that took some time off to have us at the Fire Station in Coromandel and guide us through their daily job! And remember to call 115 in case of emergencies!

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • TOTD #166: Using NoSQL database in your Java EE 6 Applications on GlassFish - MongoDB for now!

    - by arungupta
    The Java EE 6 platform includes Java Persistence API to work with RDBMS. The JPA specification defines a comprehensive API that includes, but not restricted to, how a database table can be mapped to a POJO and vice versa, provides mechanisms how a PersistenceContext can be injected in a @Stateless bean and then be used for performing different operations on the database table and write typesafe queries. There are several well known advantages of RDBMS but the NoSQL movement has gained traction over past couple of years. The NoSQL databases are not intended to be a replacement for the mainstream RDBMS. As Philosophy of NoSQL explains, NoSQL database was designed for casual use where all the features typically provided by an RDBMS are not required. The name "NoSQL" is more of a category of databases that is more known for what it is not rather than what it is. The basic principles of NoSQL database are: No need to have a pre-defined schema and that makes them a schema-less database. Addition of new properties to existing objects is easy and does not require ALTER TABLE. The unstructured data gives flexibility to change the format of data any time without downtime or reduced service levels. Also there are no joins happening on the server because there is no structure and thus no relation between them. Scalability and performance is more important than the entire set of functionality typically provided by an RDBMS. This set of databases provide eventual consistency and/or transactions restricted to single items but more focus on CRUD. Not be restricted to SQL to access the information stored in the backing database. Designed to scale-out (horizontal) instead of scale-up (vertical). This is important knowing that databases, and everything else as well, is moving into the cloud. RBDMS can scale-out using sharding but requires complex management and not for the faint of heart. Unlike RBDMS which require a separate caching tier, most of the NoSQL databases comes with integrated caching. Designed for less management and simpler data models lead to lower administration as well. There are primarily three types of NoSQL databases: Key-Value stores (e.g. Cassandra and Riak) Document databases (MongoDB or CouchDB) Graph databases (Neo4J) You may think NoSQL is panacea but as I mentioned above they are not meant to replace the mainstream databases and here is why: RDBMS have been around for many years, very stable, and functionally rich. This is something CIOs and CTOs can bet their money on without much worry. There is a reason 98% of Fortune 100 companies run Oracle :-) NoSQL is cutting edge, brings excitement to developers, but enterprises are cautious about them. Commercial databases like Oracle are well supported by the backing enterprises in terms of providing support resources on a global scale. There is a full ecosystem built around these commercial databases providing training, performance tuning, architecture guidance, and everything else. NoSQL is fairly new and typically backed by a single company not able to meet the scale of these big enterprises. NoSQL databases are good for CRUDing operations but business intelligence is extremely important for enterprises to stay competitive. RDBMS provide extensive tooling to generate this data but that was not the original intention of NoSQL databases and is lacking in that area. Generating any meaningful information other than CRUDing require extensive programming. Not suited for complex transactions such as banking systems or other highly transactional applications requiring 2-phase commit. SQL cannot be used with NoSQL databases and writing simple queries can be involving. Enough talking, lets take a look at some code. This blog has published multiple blogs on how to access a RDBMS using JPA in a Java EE 6 application. This Tip Of The Day (TOTD) will show you can use MongoDB (a document-oriented database) with a typical 3-tier Java EE 6 application. Lets get started! The complete source code of this project can be downloaded here. Download MongoDB for your platform from here (1.8.2 as of this writing) and start the server as: arun@ArunUbuntu:~/tools/mongodb-linux-x86_64-1.8.2/bin$./mongod./mongod --help for help and startup optionsSun Jun 26 20:41:11 [initandlisten] MongoDB starting : pid=11210port=27017 dbpath=/data/db/ 64-bit Sun Jun 26 20:41:11 [initandlisten] db version v1.8.2, pdfile version4.5Sun Jun 26 20:41:11 [initandlisten] git version:433bbaa14aaba6860da15bd4de8edf600f56501bSun Jun 26 20:41:11 [initandlisten] build sys info: Linuxbs-linux64.10gen.cc 2.6.21.7-2.ec2.v1.2.fc8xen #1 SMP Fri Nov 2017:48:28 EST 2009 x86_64 BOOST_LIB_VERSION=1_41Sun Jun 26 20:41:11 [initandlisten] waiting for connections on port 27017Sun Jun 26 20:41:11 [websvr] web admin interface listening on port 28017 The default directory for the database is /data/db and needs to be created as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db You can specify a different directory using "--dbpath" option. Refer to Quickstart for your specific platform. Using NetBeans, create a Java EE 6 project and make sure to enable CDI and add JavaServer Faces framework. Download MongoDB Java Driver (2.6.3 of this writing) and add it to the project library by selecting "Properties", "LIbraries", "Add Library...", creating a new library by specifying the location of the JAR file, and adding the library to the created project. Edit the generated "index.xhtml" such that it looks like: <h1>Add a new movie</h1><h:form> Name: <h:inputText value="#{movie.name}" size="20"/><br/> Year: <h:inputText value="#{movie.year}" size="6"/><br/> Language: <h:inputText value="#{movie.language}" size="20"/><br/> <h:commandButton actionListener="#{movieSessionBean.createMovie}" action="show" title="Add" value="submit"/></h:form> This page has a simple HTML form with three text boxes and a submit button. The text boxes take name, year, and language of a movie and the submit button invokes the "createMovie" method of "movieSessionBean" and then render "show.xhtml". Create "show.xhtml" ("New" -> "Other..." -> "Other" -> "XHTML File") such that it looks like: <head> <title><h1>List of movies</h1></title> </head> <body> <h:form> <h:dataTable value="#{movieSessionBean.movies}" var="m" > <h:column><f:facet name="header">Name</f:facet>#{m.name}</h:column> <h:column><f:facet name="header">Year</f:facet>#{m.year}</h:column> <h:column><f:facet name="header">Language</f:facet>#{m.language}</h:column> </h:dataTable> </h:form> This page shows the name, year, and language of all movies stored in the database so far. The list of movies is returned by "movieSessionBean.movies" property. Now create the "Movie" class such that it looks like: import com.mongodb.BasicDBObject;import com.mongodb.BasicDBObject;import com.mongodb.DBObject;import javax.enterprise.inject.Model;import javax.validation.constraints.Size;/** * @author arun */@Modelpublic class Movie { @Size(min=1, max=20) private String name; @Size(min=1, max=20) private String language; private int year; // getters and setters for "name", "year", "language" public BasicDBObject toDBObject() { BasicDBObject doc = new BasicDBObject(); doc.put("name", name); doc.put("year", year); doc.put("language", language); return doc; } public static Movie fromDBObject(DBObject doc) { Movie m = new Movie(); m.name = (String)doc.get("name"); m.year = (int)doc.get("year"); m.language = (String)doc.get("language"); return m; } @Override public String toString() { return name + ", " + year + ", " + language; }} Other than the usual boilerplate code, the key methods here are "toDBObject" and "fromDBObject". These methods provide a conversion from "Movie" -> "DBObject" and vice versa. The "DBObject" is a MongoDB class that comes as part of the mongo-2.6.3.jar file and which we added to our project earlier.  The complete javadoc for 2.6.3 can be seen here. Notice, this class also uses Bean Validation constraints and will be honored by the JSF layer. Finally, create "MovieSessionBean" stateless EJB with all the business logic such that it looks like: package org.glassfish.samples;import com.mongodb.BasicDBObject;import com.mongodb.DB;import com.mongodb.DBCollection;import com.mongodb.DBCursor;import com.mongodb.DBObject;import com.mongodb.Mongo;import java.net.UnknownHostException;import java.util.ArrayList;import java.util.List;import javax.annotation.PostConstruct;import javax.ejb.Stateless;import javax.inject.Inject;import javax.inject.Named;/** * @author arun */@Stateless@Namedpublic class MovieSessionBean { @Inject Movie movie; DBCollection movieColl; @PostConstruct private void initDB() throws UnknownHostException { Mongo m = new Mongo(); DB db = m.getDB("movieDB"); movieColl = db.getCollection("movies"); if (movieColl == null) { movieColl = db.createCollection("movies", null); } } public void createMovie() { BasicDBObject doc = movie.toDBObject(); movieColl.insert(doc); } public List<Movie> getMovies() { List<Movie> movies = new ArrayList(); DBCursor cur = movieColl.find(); System.out.println("getMovies: Found " + cur.size() + " movie(s)"); for (DBObject dbo : cur.toArray()) { movies.add(Movie.fromDBObject(dbo)); } return movies; }} The database is initialized in @PostConstruct. Instead of a working with a database table, NoSQL databases work with a schema-less document. The "Movie" class is the document in our case and stored in the collection "movies". The collection allows us to perform query functions on all movies. The "getMovies" method invokes "find" method on the collection which is equivalent to the SQL query "select * from movies" and then returns a List<Movie>. Also notice that there is no "persistence.xml" in the project. Right-click and run the project to see the output as: Enter some values in the text box and click on enter to see the result as: If you reached here then you've successfully used MongoDB in your Java EE 6 application, congratulations! Some food for thought and further play ... SQL to MongoDB mapping shows mapping between traditional SQL -> Mongo query language. Tutorial shows fun things you can do with MongoDB. Try the interactive online shell  The cookbook provides common ways of using MongoDB In terms of this project, here are some tasks that can be tried: Encapsulate database management in a JPA persistence provider. Is it even worth it because the capabilities are going to be very different ? MongoDB uses "BSonObject" class for JSON representation, add @XmlRootElement on a POJO and how a compatible JSON representation can be generated. This will make the fromXXX and toXXX methods redundant.

    Read the article

  • TOTD #166: Using NoSQL database in your Java EE 6 Applications on GlassFish - MongoDB for now!

    - by arungupta
    The Java EE 6 platform includes Java Persistence API to work with RDBMS. The JPA specification defines a comprehensive API that includes, but not restricted to, how a database table can be mapped to a POJO and vice versa, provides mechanisms how a PersistenceContext can be injected in a @Stateless bean and then be used for performing different operations on the database table and write typesafe queries. There are several well known advantages of RDBMS but the NoSQL movement has gained traction over past couple of years. The NoSQL databases are not intended to be a replacement for the mainstream RDBMS. As Philosophy of NoSQL explains, NoSQL database was designed for casual use where all the features typically provided by an RDBMS are not required. The name "NoSQL" is more of a category of databases that is more known for what it is not rather than what it is. The basic principles of NoSQL database are: No need to have a pre-defined schema and that makes them a schema-less database. Addition of new properties to existing objects is easy and does not require ALTER TABLE. The unstructured data gives flexibility to change the format of data any time without downtime or reduced service levels. Also there are no joins happening on the server because there is no structure and thus no relation between them. Scalability and performance is more important than the entire set of functionality typically provided by an RDBMS. This set of databases provide eventual consistency and/or transactions restricted to single items but more focus on CRUD. Not be restricted to SQL to access the information stored in the backing database. Designed to scale-out (horizontal) instead of scale-up (vertical). This is important knowing that databases, and everything else as well, is moving into the cloud. RBDMS can scale-out using sharding but requires complex management and not for the faint of heart. Unlike RBDMS which require a separate caching tier, most of the NoSQL databases comes with integrated caching. Designed for less management and simpler data models lead to lower administration as well. There are primarily three types of NoSQL databases: Key-Value stores (e.g. Cassandra and Riak) Document databases (MongoDB or CouchDB) Graph databases (Neo4J) You may think NoSQL is panacea but as I mentioned above they are not meant to replace the mainstream databases and here is why: RDBMS have been around for many years, very stable, and functionally rich. This is something CIOs and CTOs can bet their money on without much worry. There is a reason 98% of Fortune 100 companies run Oracle :-) NoSQL is cutting edge, brings excitement to developers, but enterprises are cautious about them. Commercial databases like Oracle are well supported by the backing enterprises in terms of providing support resources on a global scale. There is a full ecosystem built around these commercial databases providing training, performance tuning, architecture guidance, and everything else. NoSQL is fairly new and typically backed by a single company not able to meet the scale of these big enterprises. NoSQL databases are good for CRUDing operations but business intelligence is extremely important for enterprises to stay competitive. RDBMS provide extensive tooling to generate this data but that was not the original intention of NoSQL databases and is lacking in that area. Generating any meaningful information other than CRUDing require extensive programming. Not suited for complex transactions such as banking systems or other highly transactional applications requiring 2-phase commit. SQL cannot be used with NoSQL databases and writing simple queries can be involving. Enough talking, lets take a look at some code. This blog has published multiple blogs on how to access a RDBMS using JPA in a Java EE 6 application. This Tip Of The Day (TOTD) will show you can use MongoDB (a document-oriented database) with a typical 3-tier Java EE 6 application. Lets get started! The complete source code of this project can be downloaded here. Download MongoDB for your platform from here (1.8.2 as of this writing) and start the server as: arun@ArunUbuntu:~/tools/mongodb-linux-x86_64-1.8.2/bin$./mongod./mongod --help for help and startup optionsSun Jun 26 20:41:11 [initandlisten] MongoDB starting : pid=11210port=27017 dbpath=/data/db/ 64-bit Sun Jun 26 20:41:11 [initandlisten] db version v1.8.2, pdfile version4.5Sun Jun 26 20:41:11 [initandlisten] git version:433bbaa14aaba6860da15bd4de8edf600f56501bSun Jun 26 20:41:11 [initandlisten] build sys info: Linuxbs-linux64.10gen.cc 2.6.21.7-2.ec2.v1.2.fc8xen #1 SMP Fri Nov 2017:48:28 EST 2009 x86_64 BOOST_LIB_VERSION=1_41Sun Jun 26 20:41:11 [initandlisten] waiting for connections on port 27017Sun Jun 26 20:41:11 [websvr] web admin interface listening on port 28017 The default directory for the database is /data/db and needs to be created as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db You can specify a different directory using "--dbpath" option. Refer to Quickstart for your specific platform. Using NetBeans, create a Java EE 6 project and make sure to enable CDI and add JavaServer Faces framework. Download MongoDB Java Driver (2.6.3 of this writing) and add it to the project library by selecting "Properties", "LIbraries", "Add Library...", creating a new library by specifying the location of the JAR file, and adding the library to the created project. Edit the generated "index.xhtml" such that it looks like: <h1>Add a new movie</h1><h:form> Name: <h:inputText value="#{movie.name}" size="20"/><br/> Year: <h:inputText value="#{movie.year}" size="6"/><br/> Language: <h:inputText value="#{movie.language}" size="20"/><br/> <h:commandButton actionListener="#{movieSessionBean.createMovie}" action="show" title="Add" value="submit"/></h:form> This page has a simple HTML form with three text boxes and a submit button. The text boxes take name, year, and language of a movie and the submit button invokes the "createMovie" method of "movieSessionBean" and then render "show.xhtml". Create "show.xhtml" ("New" -> "Other..." -> "Other" -> "XHTML File") such that it looks like: <head> <title><h1>List of movies</h1></title> </head> <body> <h:form> <h:dataTable value="#{movieSessionBean.movies}" var="m" > <h:column><f:facet name="header">Name</f:facet>#{m.name}</h:column> <h:column><f:facet name="header">Year</f:facet>#{m.year}</h:column> <h:column><f:facet name="header">Language</f:facet>#{m.language}</h:column> </h:dataTable> </h:form> This page shows the name, year, and language of all movies stored in the database so far. The list of movies is returned by "movieSessionBean.movies" property. Now create the "Movie" class such that it looks like: import com.mongodb.BasicDBObject;import com.mongodb.BasicDBObject;import com.mongodb.DBObject;import javax.enterprise.inject.Model;import javax.validation.constraints.Size;/** * @author arun */@Modelpublic class Movie { @Size(min=1, max=20) private String name; @Size(min=1, max=20) private String language; private int year; // getters and setters for "name", "year", "language" public BasicDBObject toDBObject() { BasicDBObject doc = new BasicDBObject(); doc.put("name", name); doc.put("year", year); doc.put("language", language); return doc; } public static Movie fromDBObject(DBObject doc) { Movie m = new Movie(); m.name = (String)doc.get("name"); m.year = (int)doc.get("year"); m.language = (String)doc.get("language"); return m; } @Override public String toString() { return name + ", " + year + ", " + language; }} Other than the usual boilerplate code, the key methods here are "toDBObject" and "fromDBObject". These methods provide a conversion from "Movie" -> "DBObject" and vice versa. The "DBObject" is a MongoDB class that comes as part of the mongo-2.6.3.jar file and which we added to our project earlier.  The complete javadoc for 2.6.3 can be seen here. Notice, this class also uses Bean Validation constraints and will be honored by the JSF layer. Finally, create "MovieSessionBean" stateless EJB with all the business logic such that it looks like: package org.glassfish.samples;import com.mongodb.BasicDBObject;import com.mongodb.DB;import com.mongodb.DBCollection;import com.mongodb.DBCursor;import com.mongodb.DBObject;import com.mongodb.Mongo;import java.net.UnknownHostException;import java.util.ArrayList;import java.util.List;import javax.annotation.PostConstruct;import javax.ejb.Stateless;import javax.inject.Inject;import javax.inject.Named;/** * @author arun */@Stateless@Namedpublic class MovieSessionBean { @Inject Movie movie; DBCollection movieColl; @PostConstruct private void initDB() throws UnknownHostException { Mongo m = new Mongo(); DB db = m.getDB("movieDB"); movieColl = db.getCollection("movies"); if (movieColl == null) { movieColl = db.createCollection("movies", null); } } public void createMovie() { BasicDBObject doc = movie.toDBObject(); movieColl.insert(doc); } public List<Movie> getMovies() { List<Movie> movies = new ArrayList(); DBCursor cur = movieColl.find(); System.out.println("getMovies: Found " + cur.size() + " movie(s)"); for (DBObject dbo : cur.toArray()) { movies.add(Movie.fromDBObject(dbo)); } return movies; }} The database is initialized in @PostConstruct. Instead of a working with a database table, NoSQL databases work with a schema-less document. The "Movie" class is the document in our case and stored in the collection "movies". The collection allows us to perform query functions on all movies. The "getMovies" method invokes "find" method on the collection which is equivalent to the SQL query "select * from movies" and then returns a List<Movie>. Also notice that there is no "persistence.xml" in the project. Right-click and run the project to see the output as: Enter some values in the text box and click on enter to see the result as: If you reached here then you've successfully used MongoDB in your Java EE 6 application, congratulations! Some food for thought and further play ... SQL to MongoDB mapping shows mapping between traditional SQL -> Mongo query language. Tutorial shows fun things you can do with MongoDB. Try the interactive online shell  The cookbook provides common ways of using MongoDB In terms of this project, here are some tasks that can be tried: Encapsulate database management in a JPA persistence provider. Is it even worth it because the capabilities are going to be very different ? MongoDB uses "BSonObject" class for JSON representation, add @XmlRootElement on a POJO and how a compatible JSON representation can be generated. This will make the fromXXX and toXXX methods redundant.

    Read the article

  • Demantra 7.3.1.3 Controlling MDP_MATRIX Combinations Assigned to Forecasting Tasks Using TargetTaskSize

    - by user702295
    New 7.3.1.3 parameter: TargetTaskSize Old parameter: BranchID  Multiple, deprecated  7.3.1.3 onwards Parameter Location: Parameters > System Parameters > Engine > Proport   Default: 0   Engine Mode: Both   Details: Specifies how many MDP_MATRIX combinations the analytical engine attempts to assign to each forecasting task.  Allocation will be affected by forecsat tree branch size.  TaskTargetSize is automcatically calculated.  It holds the perferred branch size, in number of combinations in the lowest level. This parameter is adjusted to a lower value for smaller schemas, depending on the number of available engines.   - As the forecast is generated the engine goes up the tree using max_fore_level and not top_level -1.  Max_fore_level has     to be less than or equal to top_level -1.  Due to this requirement, combinations falling under the same top level -1     member must be in the same task.  A member of the top level -1 of the forecast tree is known as a branch.  An engine     task is therefore comprised of one or more branches.     - Reveal current task size       go to Engine Administrator --> View --> Branch Information and run the application on your Demantra schema.  This will be deprecated in 7.3.1.3 since there is no longer a means of adjusting the brach size directly.  The focus is now on proper hierarchy / forecast design.     - Control of tasks       The number of tasks created is the lowest of number of branches, as defined by top level -1 members in forecast       tree, and engine sessions and the value of TargetTaskSize.  You are used to using the branch multiplier in this       calculation.  As of 7.3.1.3, the branch ID multiple is deprecated.     - Discovery of current branch size       To resolve this you must review the 2nd highest level in the forecast tree (below highest/highest) as this is the       level which determines the size of the branches.  If a few resulting tasks are too large it is recommended that       the forecast tree level driving branches be revised or at times completely removed from the forecast tree.     - Control of foreacast tree branch size         - Run the following sql to determine how even the branches are being split by the engine:             select count(*),branch_id from mdp_matrix where prediction_status = 1 and do_fore = 1 group by branch_id;             This will give you an understanding if some of the individual branches have an unusually large number of           rows and thus might indicate that the engine is not efficiently dividing up the parallel tasks.         - Based on the results of this sql, we may want to adjust the branch id multiplier and/or the number of engines           (both of these settings are found in the Engine Administrator)           select count(*), level_id from mdp_matrix where prediction_status = 1 and do_fore = 1 group by level_id;           This will give us an understanding at which level of the Forecast tree where the forecast is being generated.            Having a majority of combinations higher on the forecast tree might indicate either a poorly designed forecast           tree and/or engine parameters that are too strict           Based on the results of this we would adjust the Forecast Tree to see if choosing a different hierarchy might           produce a forecast, with more combinations, at a lower level.           For example:             - Review the 2nd highest level in the forecast tree, below highest/highest, as this is the level which               determines the size of the branches.             - If a few resulting tasks are too large it is recommended that the forecast tree level driving branches               be revised or at times completely removed from the forecast tree.               - For example, if the highest level of the forecast tree is set to Brand/All Locations.             - You have 10 brands but 2 of the brands account for 67% and 29% of all combinations.             - There is a distinct possibility that the tasks resulting from these 2 branches will be too large for               a single engine to process.  Some possible solutions could be to remove the Brand level and instead               use a different product grouping which has a more even distribution, possibly Product Group.               - It is also possible to add a location dimension to this forecast tree level, for example Customer.                This will also reduce forecast tree branch size and will deliver a balanced task allocation.             - A correctly configured Forecast Tree is something that is done by the Implementation team and is               not the responsibility of Oracle Support.  Allocation will be affected by forecast tree branch size.  When TargetTaskSize is set to 0, the default value, the system automatically calculates a value for 'TargetTaskSize' depending on the number of engines.   - QUESTION:  Does this mean that if TargetTaskSize is 1, we use tree branch size to allocate branches to tasks instead                of automatically calculating the size?     ANSWER: DEV Strongly recommends that the setting of TargetTaskSize remain at the DEFAULT of ZERO (0).   - How to control the number of engines?     Determine how many CPUs are on the machine(s) that is (are) running the engine.  As mentioned earlier, the general     rule is that you should designate 2 engines per each CPU that is available.  So for example, if you are running the     engine on a machine that has 4 CPU then you can have up to 8 engines designated in the Engine Administrator.  In this     type of architecture then instead of having one 'localhost' in your Engine Settings Screen, you would have 'localhost'     repeated eight times in this field.     Where do I set the number of engines?                 To add multiples computers where engine will run, please do a back-up of Settings.xml file under         Analytical Engines\bin\ folder, then edit it and add there the selected machines.                 Example, this will allow 3 engines to start:         - <Entry>           <Key argument="ComputerNames" />           <Value type="string" argument="localhost,localhost,localhost" />           </Entry Otherwise, if there are no additional engines defined, the calculated value of 'TargetTaskSize' is used. (Oracle does not recommend changing the default value.) The TargetTaskSize holds the engines prefered branch size, in number of level 1 combinations.   - Level 1 combinations, known as group size The engine manager will use this parameter to attempt creating branches with similar size.   * The engine manager will not create engines that do not have a branch. The engine divider algorithm uses the value of 'TargetTaskSize' as a system-preferred branch size to create branches that are more equal in size which improves engine performance.  The engine divider will try to add as many tasks as possible to an existing branch, up to the limit of 'TargetTaskSize' level 1 combinations, before adding new branches. Coming up next: - The engine divider - Group size - Level 1 combinations - MAX_FORE_LEVEL - Engine Parameters  

    Read the article

  • Hibernate Query Exception

    - by dharga
    I've got a hibernate query I'm trying to get working but keep getting an exception with a not so helpful stack trace. I'm including the code, the stack trace, and hibernate chatter before the exception is thrown. If you need me to include the entity classes for MessageTarget and GrpExclusion let me know in comments and I'll add them. public List<MessageTarget> findMessageTargets(int age, String gender, String businessCode, String groupId, String systemCode) { Session session = getHibernateTemplate().getSessionFactory().openSession(); List<MessageTarget> results = new ArrayList<MessageTarget>(); try { String hSql = "from MessageTarget mt where " + "not exists (select GrpExclusion where grp_no = ?) and " + "(trgt_gndr_cd = 'A' or trgt_gndr_cd = ?) and " + "sys_src_cd = ? and " + "bampi_busn_sgmnt_cd = ? and " + "trgt_low_age <= ? and " + "trgt_high_age >= ? and " + "(effectiveDate is null or effectiveDate <= ?) and " + "(termDate is null or termDate >= ?)"; results = session.createQuery(hSql) .setParameter(0, groupId) .setParameter(1, gender) .setParameter(2, systemCode) .setParameter(3, businessCode) .setParameter(4, age) .setParameter(5, age) .setParameter(6, new Date()) .setParameter(7, new Date()) .list(); } catch (Exception e) { System.err.println(e.getMessage()); e.printStackTrace(); } finally { session.close(); } return results; } Here's the stacktrace. [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R java.lang.NullPointerException [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.util.SessionFactoryHelper.findSQLFunction(SessionFactoryHelper.java:365) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.tree.IdentNode.getDataType(IdentNode.java:289) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.tree.SelectClause.initializeExplicitSelectClause(SelectClause.java:165) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.HqlSqlWalker.useSelectClause(HqlSqlWalker.java:831) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.HqlSqlWalker.processQuery(HqlSqlWalker.java:619) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.query(HqlSqlBaseWalker.java:672) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.collectionFunctionOrSubselect(HqlSqlBaseWalker.java:4465) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.comparisonExpr(HqlSqlBaseWalker.java:4165) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1864) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1839) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.logicalExpr(HqlSqlBaseWalker.java:1789) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.whereClause(HqlSqlBaseWalker.java:818) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.query(HqlSqlBaseWalker.java:604) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.selectStatement(HqlSqlBaseWalker.java:288) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.antlr.HqlSqlBaseWalker.statement(HqlSqlBaseWalker.java:231) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.QueryTranslatorImpl.analyze(QueryTranslatorImpl.java:254) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.QueryTranslatorImpl.doCompile(QueryTranslatorImpl.java:185) [5/6/10 15:05:21:041 EDT] 00000017 SystemErr R at org.hibernate.hql.ast.QueryTranslatorImpl.compile(QueryTranslatorImpl.java:136) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.engine.query.HQLQueryPlan.<init>(HQLQueryPlan.java:101) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.engine.query.HQLQueryPlan.<init>(HQLQueryPlan.java:80) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.engine.query.QueryPlanCache.getHQLQueryPlan(QueryPlanCache.java:94) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.impl.AbstractSessionImpl.getHQLQueryPlan(AbstractSessionImpl.java:156) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.impl.AbstractSessionImpl.createQuery(AbstractSessionImpl.java:135) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.hibernate.impl.SessionImpl.createQuery(SessionImpl.java:1651) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.bcbst.bamp.ws.dao.MessageTargetDAOImpl.findMessageTargets(MessageTargetDAOImpl.java:30) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.bcbst.bamp.ws.common.AlertReminder.findMessageTargets(AlertReminder.java:22) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:37) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at java.lang.reflect.Method.invoke(Method.java:599) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.jaxws.server.dispatcher.JavaDispatcher.invokeTargetOperation(JavaDispatcher.java:81) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.jaxws.server.dispatcher.JavaBeanDispatcher.invoke(JavaBeanDispatcher.java:98) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.jaxws.server.EndpointController.invoke(EndpointController.java:109) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.jaxws.server.JAXWSMessageReceiver.receive(JAXWSMessageReceiver.java:159) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.engine.AxisEngine.receive(AxisEngine.java:188) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at org.apache.axis2.transport.http.HTTPTransportUtils.processHTTPPostRequest(HTTPTransportUtils.java:275) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.websvcs.transport.http.WASAxis2Servlet.doPost(WASAxis2Servlet.java:1389) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at javax.servlet.http.HttpServlet.service(HttpServlet.java:738) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at javax.servlet.http.HttpServlet.service(HttpServlet.java:831) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1536) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:829) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:458) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapperImpl.handleRequest(ServletWrapperImpl.java:175) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.webapp.WebApp.handleRequest(WebApp.java:3742) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.webapp.WebGroup.handleRequest(WebGroup.java:276) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.WebContainer.handleRequest(WebContainer.java:929) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.WSWebContainer.handleRequest(WSWebContainer.java:1583) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.webcontainer.channel.WCChannelLink.ready(WCChannelLink.java:178) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleDiscrimination(HttpInboundLink.java:455) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleNewInformation(HttpInboundLink.java:384) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.ready(HttpInboundLink.java:272) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.tcp.channel.impl.NewConnectionInitialReadCallback.sendToDiscriminators(NewConnectionInitialReadCallback.java:214) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.tcp.channel.impl.NewConnectionInitialReadCallback.complete(NewConnectionInitialReadCallback.java:113) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.tcp.channel.impl.AioReadCompletionListener.futureCompleted(AioReadCompletionListener.java:165) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.AbstractAsyncFuture.invokeCallback(AbstractAsyncFuture.java:217) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.AsyncChannelFuture.fireCompletionActions(AsyncChannelFuture.java:161) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.AsyncFuture.completed(AsyncFuture.java:138) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.ResultHandler.complete(ResultHandler.java:204) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.ResultHandler.runEventProcessingLoop(ResultHandler.java:775) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.io.async.ResultHandler$2.run(ResultHandler.java:905) [5/6/10 15:05:21:057 EDT] 00000017 SystemErr R at com.ibm.ws.util.ThreadPool$Worker.run(ThreadPool.java:1550) Here's the hibernate chatter. [5/6/10 15:05:20:651 EDT] 00000017 XmlBeanDefini I org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadBeanDefinitions Loading XML bean definitions from class path resource [beans.xml] [5/6/10 15:05:20:823 EDT] 00000017 Configuration I org.slf4j.impl.JCLLoggerAdapter info configuring from url: file:/C:/workspaces/bampi/AlertReminderWS/WebContent/WEB-INF/classes/hibernate.cfg.xml [5/6/10 15:05:20:838 EDT] 00000017 Configuration I org.slf4j.impl.JCLLoggerAdapter info Configured SessionFactory: java:hibernate/Alert/SessionFactory1.0.3 [5/6/10 15:05:20:838 EDT] 00000017 AnnotationBin I org.hibernate.cfg.AnnotationBinder bindClass Binding entity from annotated class: com.bcbst.bamp.ws.model.MessageTarget [5/6/10 15:05:20:838 EDT] 00000017 EntityBinder I org.hibernate.cfg.annotations.EntityBinder bindTable Bind entity com.bcbst.bamp.ws.model.MessageTarget on table MessageTarget [5/6/10 15:05:20:854 EDT] 00000017 AnnotationBin I org.hibernate.cfg.AnnotationBinder bindClass Binding entity from annotated class: com.bcbst.bamp.ws.model.GrpExclusion [5/6/10 15:05:20:854 EDT] 00000017 EntityBinder I org.hibernate.cfg.annotations.EntityBinder bindTable Bind entity com.bcbst.bamp.ws.model.GrpExclusion on table GrpExclusion [5/6/10 15:05:20:854 EDT] 00000017 CollectionBin I org.hibernate.cfg.annotations.CollectionBinder bindOneToManySecondPass Mapping collection: com.bcbst.bamp.ws.model.MessageTarget.exclusions -> GrpExclusion [5/6/10 15:05:20:885 EDT] 00000017 AnnotationSes I org.springframework.orm.hibernate3.LocalSessionFactoryBean buildSessionFactory Building new Hibernate SessionFactory [5/6/10 15:05:20:901 EDT] 00000017 ConnectionPro I org.slf4j.impl.JCLLoggerAdapter info Initializing connection provider: org.springframework.orm.hibernate3.LocalDataSourceConnectionProvider [5/6/10 15:05:20:901 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info RDBMS: Microsoft SQL Server, version: 9.00.4035 [5/6/10 15:05:20:901 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info JDBC driver: Microsoft SQL Server 2005 JDBC Driver, version: 1.2.2828.100 [5/6/10 15:05:20:901 EDT] 00000017 Dialect I org.slf4j.impl.JCLLoggerAdapter info Using dialect: org.hibernate.dialect.SQLServerDialect [5/6/10 15:05:20:916 EDT] 00000017 TransactionFa I org.slf4j.impl.JCLLoggerAdapter info Transaction strategy: org.springframework.orm.hibernate3.SpringTransactionFactory [5/6/10 15:05:20:916 EDT] 00000017 TransactionMa I org.slf4j.impl.JCLLoggerAdapter info No TransactionManagerLookup configured (in JTA environment, use of read-write or transactional second-level cache is not recommended) [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Automatic flush during beforeCompletion(): disabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Automatic session close at end of transaction: disabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Scrollable result sets: enabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info JDBC3 getGeneratedKeys(): enabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Connection release mode: auto [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Default batch fetch size: 1 [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Generate SQL with comments: disabled [5/6/10 15:05:20:916 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Order SQL updates by primary key: disabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Order SQL inserts for batching: disabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Query translator: org.hibernate.hql.ast.ASTQueryTranslatorFactory [5/6/10 15:05:20:932 EDT] 00000017 ASTQueryTrans I org.slf4j.impl.JCLLoggerAdapter info Using ASTQueryTranslatorFactory [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Query language substitutions: {} [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info JPA-QL strict compliance: disabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Second-level cache: enabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Query cache: disabled [5/6/10 15:05:20:932 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Cache region factory : org.hibernate.cache.impl.bridge.RegionFactoryCacheProviderBridge [5/6/10 15:05:20:932 EDT] 00000017 RegionFactory I org.slf4j.impl.JCLLoggerAdapter info Cache provider: org.hibernate.cache.NoCacheProvider [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Optimize cache for minimal puts: disabled [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Structured second-level cache entries: disabled [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Statistics: disabled [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Deleted entity synthetic identifier rollback: disabled [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Default entity-mode: pojo [5/6/10 15:05:20:948 EDT] 00000017 SettingsFacto I org.slf4j.impl.JCLLoggerAdapter info Named query checking : enabled [5/6/10 15:05:20:979 EDT] 00000017 SessionFactor I org.slf4j.impl.JCLLoggerAdapter info building session factory [5/6/10 15:05:21:010 EDT] 00000017 SessionFactor I org.slf4j.impl.JCLLoggerAdapter info Factory name: java:hibernate/Alert/SessionFactory1.0.3 [5/6/10 15:05:21:010 EDT] 00000017 NamingHelper I org.slf4j.impl.JCLLoggerAdapter info JNDI InitialContext properties:{} [5/6/10 15:05:21:010 EDT] 00000017 NamingHelper I org.slf4j.impl.JCLLoggerAdapter info Creating subcontext: java:hibernate [5/6/10 15:05:21:010 EDT] 00000017 NamingHelper I org.slf4j.impl.JCLLoggerAdapter info Creating subcontext: Alert [5/6/10 15:05:21:010 EDT] 00000017 SessionFactor I org.slf4j.impl.JCLLoggerAdapter info Bound factory to JNDI name: java:hibernate/Alert/SessionFactory1.0.3 [5/6/10 15:05:21:026 EDT] 00000017 SessionFactor W org.slf4j.impl.JCLLoggerAdapter warn InitialContext did not implement EventContext [5/6/10 15:05:21:041 EDT] 00000017 PARSER E org.slf4j.impl.JCLLoggerAdapter error <AST>:0:0: unexpected end of subtree

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Microsoft Declares the Future of ASP.NET is Web API

    - by sbwalker
    Sitting on a plane on my way home from Tech Ed 2012 in Orlando, I thought it would be a good time to jot down some key takeaways from this year’s conference. Some of these items I have known since the Microsoft MVP Summit which occurred in Redmond in late February ( but due to NDA restrictions I could not share them with the developer community at large ) and some of them are a result of insightful conversations with a wide variety of industry insiders and Microsoft employees at the conference. First, let’s travel back in time 4 years to the Microsoft MVP Summit in 2008. Microsoft was facing some heat from market newcomer Ruby on Rails and responded with a new web development framework of its own, ASP.NET MVC. At the Summit they estimated that MVC would only be applicable for ~10% of all new web development projects. Based on that prediction I questioned why they were investing such considerable resources for such a relative edge case, but my guess is that they felt it was an important edge case at the time as some of the more vocal .NET evangelists as well as some very high profile start-ups ( ie. Twitter ) had publicly announced their intent to use Rails. Microsoft made a lot of noise about MVC. In fact, they focused so much of their messaging and marketing hype around MVC that it appeared that WebForms was essentially dead. Yes, it may have been true that Microsoft continued to invest in WebForms, but from an outside perspective it really appeared that MVC was the only framework getting any real attention. As a result, MVC started to gain market share. An inside source at Microsoft told me that MVC usage has grown at a rate of about 5% per year and now sits at ~30%. Essentially by focusing so much marketing effort on MVC, Microsoft actually created a larger market demand for it.  This is because in the Microsoft ecosystem there is somewhat of a bandwagon mentality amongst developers. If Microsoft spends a lot of time talking about a specific technology, developers get the perception that it must be really important. So rather than choosing the right tool for the job, they often choose the tool with the most marketing hype and then try to sell it to the customer. In 2010, I blogged about the fact that MVC did not make any business sense for the DotNetNuke platform. This was because our ecosystem relied on third party extensions which were dependent on the WebForms model. If we migrated the core to MVC it would mean that all of the third party extensions would no longer be compatible, which would be an irresponsible business decision for us to make at the expense of our users and customers. However, this did not stop the debate from continuing to occur in our ecosystem. Clearly some developers had drunk Microsoft’s Kool-Aid about MVC and were of the mindset, to paraphrase an old Scottish saying, “If its not MVC, it’s crap”. Now, this is a rather ignorant position to take as most of the benefits of MVC can be achieved in WebForms with solid architecture and responsible coding practices. Clean separation of concerns, unit testing, and direct control over page output are all possible in the WebForms model – it just requires diligence and discipline. So over the past few years some horror stories have begun to bubble to the surface of software development projects focused on ground-up rewrites of web applications for the sole purpose of migrating from WebForms to MVC. These large scale rewrites were typically initiated by engineering teams with only a single argument driving the business decision, that Microsoft was promoting MVC as “the future”. These ill-fated rewrites offered no benefit to end users or customers and in fact resulted in a less stable, less scalable and more complicated systems – basically taking one step forward and two full steps back. A case in point is the announcement earlier this week that a popular open source .NET CMS provider has decided to pull the plug on their new MVC product which has been under active development for more than 18 months and revert back to WebForms. The availability of multiple server-side development models has deeply fragmented the Microsoft developer community. Some folks like to compare it to the age-old VB vs. C# language debate. However, the VB vs. C# language debate was ultimately more of a religious war because at least the two dominant programming languages were compatible with one another and could be used interchangeably. The issue with WebForms vs. MVC is much more challenging. This is because the messaging from Microsoft has positioned the two solutions as being incompatible with one another and as a result web developers feel like they are forced to choose one path or another. Yes, it is true that it has always been technically possible to use WebForms and MVC in the same project, but the tooling support has always made this feel “dirty”. The fragmentation has also made it difficult to attract newcomers as the perceived barrier to entry for learning ASP.NET has become higher. As a result many new software developers entering the market are gravitating to environments where the development model seems more simple and intuitive ( ie. PHP or Ruby ). At the same time that the Web Platform team was busy promoting ASP.NET MVC, the Microsoft Office team has been promoting Sharepoint as a platform for building internal enterprise web applications. Sharepoint has great penetration in the enterprise and over time has been enhanced with improved extensibility capabilities for software developers. But, like many other mature enterprise ASP.NET web applications, it is built on the WebForms development model. Similar to DotNetNuke, Sharepoint leverages a rich third party ecosystem for both generic web controls and more specialized WebParts – both of which rely on WebForms. So basically this resulted in a situation where the Web Platform group had headed off in one direction and the Office team had gone in another direction, and the end customer was stuck in the middle trying to figure out what to do with their existing investments in Microsoft technology. It really emphasized the perception that the left hand was not speaking to the right hand, as strategically speaking there did not seem to be any high level plan from Microsoft to ensure consistency and continuity across the different product lines. With the introduction of ASP.NET MVC, it also made some of the third party control vendors scratch their heads, and wonder what the heck Microsoft was thinking. The original value proposition of ASP.NET over Classic ASP was the ability for web developers to emulate the highly productive desktop development model by using abstract components for creating rich, interactive web interfaces. Web control vendors like Telerik, Infragistics, DevExpress, and ComponentArt had all built sizable businesses offering powerful user interface components to WebForms developers. And even after MVC was introduced these vendors continued to improve their products, offering greater productivity and a superior user experience via AJAX to what was possible in MVC. And since many developers were comfortable and satisfied with these third party solutions, the demand remained strong and the third party web control market continued to prosper despite the availability of MVC. While all of this was going on in the Microsoft ecosystem, there has also been a fundamental shift in the general software development industry. Driven by the explosion of Internet-enabled devices, the focus has now centered on service-oriented architecture (SOA). Service-oriented architecture is all about defining a public API for your product that any client can consume; whether it’s a native application running on a smart phone or tablet, a web browser taking advantage of HTML5 and Javascript, or a rich desktop application running on a PC. REST-based services which utilize the less verbose characteristics of JSON as a transport mechanism, have become the preferred approach over older, more bloated SOAP-based techniques. SOA also has the benefit of producing a cross-platform API, as every major technology stack is able to interact with standard REST-based web services. And for web applications, more and more developers are turning to robust Javascript libraries like JQuery and Knockout for browser-based client-side development techniques for calling web services and rendering content to end users. In fact, traditional server-side page rendering has largely fallen out of favor, resulting in decreased demand for server-side frameworks like Ruby on Rails, WebForms, and (gasp) MVC. In response to these new industry trends, Microsoft did what it always does – it immediately poured some resources into developing a solution which will ensure they remain relevant and competitive in the web space. This work culminated in a new framework which was branded as Web API. It is convention-based and designed to embrace native HTTP standards without copious layers of abstraction. This framework is designed to be the ultimate replacement for both the REST aspects of WCF and ASP.NET MVC Web Services. And since it was developed out of band with a dependency only on ASP.NET 4.0, it means that it can be used immediately in a variety of production scenarios. So at Tech Ed 2012 it was made abundantly clear in numerous sessions that Microsoft views Web API as the “Future of ASP.NET”. In fact, one Microsoft PM even went as far as to say that if we look 3-4 years into the future, that all ASP.NET web applications will be developed using the Web API approach. This is a fairly bold prediction and clearly telegraphs where Microsoft plans to allocate its resources going forward. Currently Web API is being delivered as part of the MVC4 package, but this is only temporary for the sake of convenience. It also sounds like there are still internal discussions going on in terms of how to brand the various aspects of ASP.NET going forward – perhaps the moniker of “ASP.NET Web Stack” coined a couple years ago by Scott Hanselman and utilized as part of the open source release of ASP.NET bits on Codeplex a few months back will eventually stick. Web API is being positioned as the unification of ASP.NET – the glue that is able to pull this fragmented mess back together again. The  “One ASP.NET” strategy will promote the use of all frameworks - WebForms, MVC, and Web API, even within the same web project. Basically the message is utilize the appropriate aspects of each framework to solve your business problems. Instead of navigating developers to a fork in the road, the plan is to educate them that “hybrid” applications are a great strategy for delivering solutions to customers. In addition, the service-oriented approach coupled with client-side development promoted by Web API can effectively be used in both WebForms and MVC applications. So this means it is also relevant to application platforms like DotNetNuke and Sharepoint, which means that it starts to create a unified development strategy across all ASP.NET product lines once again. And so what about MVC? There have actually been rumors floated that MVC has reached a stage of maturity where, similar to WebForms, it will be treated more as a maintenance product line going forward ( MVC4 may in fact be the last significant iteration of this framework ). This may sound alarming to some folks who have recently adopted MVC but it really shouldn’t, as both WebForms and MVC will continue to play a vital role in delivering solutions to customers. They will just not be the primary area where Microsoft is spending the majority of its R&D resources. That distinction will obviously go to Web API. And when the question comes up of why not enhance MVC to make it work with Web API, you must take a step back and look at this from the higher level to see that it really makes no sense. MVC is a server-side page compositing framework; whereas, Web API promotes client-side page compositing with a heavy focus on web services. In order to make MVC work well with Web API, would require a complete rewrite of MVC and at the end of the day, there would be no upgrade path for existing MVC applications. So it really does not make much business sense. So what does this have to do with DotNetNuke? Well, around 8-12 months ago we recognized the software industry trends towards web services and client-side development. We decided to utilize a “hybrid” model which would provide compatibility for existing modules while at the same time provide a bridge for developers who wanted to utilize more modern web techniques. Customers who like the productivity and familiarity of WebForms can continue to build custom modules using the traditional approach. However, in DotNetNuke 6.2 we also introduced a new Service Framework which is actually built on top of MVC2 ( we chose to leverage MVC because it had the most intuitive, light-weight REST implementation in the .NET stack ). The Services Framework allowed us to build some rich interactive features in DotNetNuke 6.2, including the Messaging and Notification Center and Activity Feed. But based on where we know Microsoft is heading, it makes sense for the next major version of DotNetNuke ( which is expected to be released in Q4 2012 ) to migrate from MVC2 to Web API. This will likely result in some breaking changes in the Services Framework but we feel it is the best approach for ensuring the platform remains highly modern and relevant. The fact that our development strategy is perfectly aligned with the “One ASP.NET” strategy from Microsoft means that our customers and developer community can be confident in their current and future investments in the DotNetNuke platform.

    Read the article

  • Adjust timezone of an AVM Fritz!Box 7390

    It's been a while that I purchased an AVM Fritz!Box 7390 but since I'm using this 'PABX' here in Mauritius, I'm not really happy about the wrong time in the logs or handsets connected. Lately, I had some spare time to address this issue, and the following article describes how to adjust the timezone settings in general. The original idea came from an FAQ found in c't 21/11 (for a 7270 written in German language) but I added a couple of things based on other resources online. The following tutorial may be valid for other models, too. Use your common sense and think before you act. Brief introduction to AVM Fritz!Box devices The Fritz!Box series of AVM has been around for more than a decade and those little 'red boxes' have a high level of versatility for your small office or home. High-speed connections, secure WLAN and convenient telephony make a home network out of any network. Whether it's a computer, tablet or smartphone, any device can be connected to the FRITZ!Box. And best of all, installation is so simple that users will be online in a matter of minutes. If you want to have peace of your mind in your small network then a Fritz!Box is the easiest way to achieve that. I'm using my box primarly as WiFi access point, VoIP gateway and media server but only because it came in second after my Linux system. Limitations in the administrative Web UI Unfortunately, there are no possibilities to adjust the timezone settings in the Web UI at all - even not in Expert mode. I assume that this is part of the 'simplification' provided by AVM's design team. That's okay, as long as you reside in Central Europe, and the implicit time handling is correct for your location. Adjusting the timezone I got my device through an order at Amazon Germany already some time ago, and honestly I wasn't bothered too much about the pre-configured (fixed) timezone setting - CET or CEST depending on daylight saving. But you know, it's that kind of splinter at the back of your head that keeps nagging and bothering you indirectly. So, finally I sat down yesterday evening and did a quick research on how to change the timezone. Even though there are a number of results, I read the FAQ from the c't magazine first, as I consider this as a trusted and safe source of information. Of course, it is most important to avoid to 'brick' your device. You've been warned - No support Tinkering with the configuration of any AVM devices seems to be a violation of their official support channels. So, be warned and continue onlyin case that you're sure about what you are going to do. The following solutions are 'as-is' and they worked for my box flawlessly but may cause an issue in your case. Don't blame me... Solution 1 - Backup, modify and restore That's the way as described in the c't article and a couple of other forum postings I found online, mainly from Australia. Login the administrative Web UI and navigate to 'System => Einstellungen sichern' (System => Backup configuration) and store your current configuration to a local file on your machine. Despite some online postings it is not necessary to specify a password in order to secure or encrypt your backup. IMHO, this only adds another unnecessary layer of complexity to the process. Anyway, next you should create a another copy of your settings and keep it unmodified. That's our safety net to restore the current settings in case that we might have to issue a factory setting reset to the box. Now, open the configuration file with an advanced text editor which is capable to deal with Unix carriage returns properly - Windows Notepad doesn't do the job but Wordpad or Notepad++. Personally, I don't care and simply use geany, gedit or nano on Linux. In total there are 3 modifications that we have to apply to the configuration file - one new line and two adjustments. First, we have to add an instruction near the top of file that overrides the device internal checksum validation. Without this line, your settings won't be accepted. Caution: The drectives are case-sensitve and your outcome should read something like this: **** FRITZ!Box Fon WLAN 7390 CONFIGURATION EXPORTPassword=$$$$<ignore>FirmwareVersion=84.05.52CONFIG_INSTALL_TYPE=iks_16MB_xilinx_4eth_2ab_isdn_nt_te_pots_wlan_usb_host_dect_64415OEM=avmCountry=049Language=deNoChecks=yes**** CFGFILE:ar7.cfg/* * /var/flash/ar7.cfg * Mon Jul 29 10:49:18 2013 */ar7cfg {... Then search for the expression 'timezone' and you should find a section like this one (~ line 1113): timezone_manual {        enabled = no;        offset = 0;        dst_enabled = no;        TZ_string = "";        name = "";} We would like to manually handle the timezone setting in our device and therefore we have to enable it and set the proper value for Mauritius. The configuration block should like so afterwards: timezone_manual {        enabled = yes;        offset = 0;        dst_enabled = no;        TZ_string = "MUT-4";        name = "";} We specify the designation and the offset in hours of the timezone we would like to have. Caution: The offset indicates the value one has to add to the local time to arrive at UTC. More details are described in the Explanation of TZ strings. Mauritius has GMT+4 which means that we have to substract 4 hours from the local time to have UTC. Finally, we restore the modified configuration file via the administrative Web UI under 'System => Einstellungen sichern => Wiederherstellen' (System => Backup configuration => Restore). This triggers a reboot of the device, so please be patient and wait until the Web UI displays the login dialog again. Good luck! Solution 2 - Telnet A more elegant, read: technically interesting, way to adjust configuration settings in your Fritz!Box is to access it directly through Telnet. By default AVM disables that protocol channel and you have to enable it with a connected telephone. In order to activate the telnet service dial the following combination: #96*7* #96*8* (to disable telnet again after work has been completed) If you're using an AVM handset like the Fritz!Fon then you will receive a confirmation message on the display like so: telnetd ein Next, depending on your favourite operating system, you either launch a Command prompt in Windows or a terminal in Linux, get your Admin password ready, and you connect to your box like so: $ telnet fritz.box Trying 192.168.1.1...Connected to fritz.box.Escape character is '^]'.password: BusyBox v1.19.3 (2012-10-12 14:52:09 CEST) built-in shell (ash)Enter 'help' for a list of built-in commands.ermittle die aktuelle TTYtty is "/dev/pts/0"Console Ausgaben auf dieses Terminal umgelenkt# That's it, you are connected and we can continue to change the configuration manually. In order to adjust the timezone setting we have to open the ar7.cfg file. As we are now operating in a specialised environment, we only have limited capabilities at hand. One of those is a reduced version of vi - nvi. Let's open a second browser window with the fine manual page of nvi and start to edit our configuration file: # nvi /var/flash/ar7.cfg In our configuration file, we have to navigate to the timezone directives. The easiest way is to search for the expression 'timezone' by typing in the following: /timezone    (press Enter/Return) Now, we should see the exact lines of code like in the backed up version: timezone_manual {                                                                            enabled = no;                                                          offset = 0;                                                         dst_enabled = no;                                                   TZ_string = "";                                                     name = "";                                                        } And of course, we apply the same changes as described in the previous section: timezone_manual {                                                                            enabled = yes;                                                          offset = 0;                                                         dst_enabled = no;                                                   TZ_string = "MUT-4";                                                     name = "";                                                        } Finally, we have to write our changes back to the file and apply the new settings. :wq    (press Enter/Return) # ar7cfgchanged That's it! Finally, close the telnet session by pressing Ctrl+] and enter 'quit'. Additional ideas... There are a couple of more possibilities to enhance and to extend the usability of a Fritz!Box. There are lots of resources available on the net, but I'd like to name a few here. Especially for Linux users it is essential to be able to connect to any device remotely in a  safe and secure way. And the installation of a SSH server on the box would be a first step to improve this situation, also to avoid to run telnet after all. Sometimes, there might be problems in your VoIP connections, feel free to adjust the settings of codecs and connection handling, too. I guess, you'll get the idea... The only frontiers are in your mind.

    Read the article

< Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >