Search Results

Search found 523 results on 21 pages for 'invocation'.

Page 21/21 | < Previous Page | 17 18 19 20 21 

  • CodePlex Daily Summary for Wednesday, April 11, 2012

    CodePlex Daily Summary for Wednesday, April 11, 2012Popular ReleasesCommand-Line Database Builder: 1.0.2012.0411: Utility now supports arbitrary key:value pairs on the command-line for performing replacements in the .pp.sql files. Removed the usage of '-' to prefix key:value arguments. AspNetAssemblyPath is no longer a known key:value pair but can still be used because the tool now supports arbitrary key:value pairs for replacements. This was provided previously to support setting up ASP.NET Membership and Roles in a database. I've added a .pp.sql file to the Examples archive that demonstrates this usage.Supporting Guidance and Whitepapers: v1 - Team Foundation Service Whitepapers: Welcome to the BETA release of the Team Foundation Service Whitepapers preview As this is a BETA release and the quality bar for the final Release has not been achieved, we value your candid feedback and recommend that you do not use or deploy these BETA artifacts in a production environment. Quality-Bar Details Documentation has been reviewed by Visual Studio ALM Rangers Documentation has been through an independent technical review All critical bugs have been resolved Known Issue...Scrum Task Board Card Creator: TaskCardCreator 3.2.0.0: What's New: New report template added: Microsoft Visual Studio Scrum 1.0 Detailed Report Supported Templates: Microsoft Visual Studio Scrum 1.0 MSF for Agile Software Development v5.0Microsoft .NET Gadgeteer: .NET Gadgeteer Core 2.42.550 (BETA): Microsoft .NET Gadgeteer Core RELEASE NOTES Version 2.42.550 11 April 2012 BETA VERSION WARNING: This is a beta version! Please note: - API changes may be made before the next version (2.42.600) - The designer will not show modules/mainboards for NETMF 4.2 until you get upgraded libraries from the module/mainboard vendors - Install NETMF 4.2 (see link below) to use the new features of this release That warning aside, this version should continue to sup...DISM GUI: DISM GUI 3.1.1: Fixes - Fixed a bug in the Delete Driver function - The Index field is not auto populated with the number 1LINQ to Twitter: LINQ to Twitter Beta v2.0.24: Supports .NET 3.5, .NET 4.0, Silverlight 4.0, Windows Phone 7.1, and Client Profile. 100% Twitter API coverage. Also available via NuGet.Kendo UI ASP.NET Sample Applications: Sample Applications (2012-04-11): Sample application(s) demonstrating the use of Kendo UI in ASP.NET applications.Json.NET: Json.NET 4.5 Release 2: New feature - Added support for the SerializableAttribute and serializing a type's internal fields New feature - Added MaxDepth to JsonReader/JsonSerializer/JsonSerializerSettings New feature - Added support for ignoring properties with the NonSerializableAttribute Fix - Fixed deserializing a null string throwing a NullReferenceException Fix - Fixed JsonTextReader reading from a slow stream Fix - Fixed CultureInfo not being overridden on JsonSerializerProxy Fix - Fixed full trust ...SCCM Client Actions Tool: SCCM Client Actions Tool v1.12: SCCM Client Actions Tool v1.12 is the latest version. It comes with following changes since last version: Improved WMI date conversion to be aware of timezone differences and DST. Fixed new version check. The tool is downloadable as a ZIP file that contains four files: ClientActionsTool.hta – The tool itself. Cmdkey.exe – command line tool for managing cached credentials. This is needed for alternate credentials feature when running the HTA on Windows XP. Cmdkey.exe is natively availab...Dual Browsing: Dual Browser: Please note the following: I setup the address bar temporarily to only accepts http:// .com addresses. Just type in the name of the website excluding: http://, www., and .com; (Ex: for www.youtube.com just type: youtube then click OK). The page splitter can be grabbed by holding down your left mouse button and move left or right. By right clicking on the page background, you can choose to refresh, go back a page and so on. Demo video: http://youtu.be/L7NTFVM3JUYMultiwfn: Multiwfn 2.3.3: Multiwfn 2.3.3Liberty: v3.2.0.1 Release 9th April 2012: Change Log-Fixed -Reach Fixed a bug where the object editor did not work on non-English operating systemsPath Copy Copy: 10.1: This release addresses the following work items: 11357 11358 11359 This release is a recommended upgrade, especially for users who didn't install the 10.0.1 version.ExtAspNet: ExtAspNet v3.1.3: ExtAspNet - ?? ExtJS ??? ASP.NET 2.0 ???,????? AJAX ?????????? ExtAspNet ????? ExtJS ??? ASP.NET 2.0 ???,????? AJAX ??????????。 ExtAspNet ??????? JavaScript,?? CSS,?? UpdatePanel,?? ViewState,?? WebServices ???????。 ??????: IE 7.0, Firefox 3.6, Chrome 3.0, Opera 10.5, Safari 3.0+ ????:Apache License 2.0 (Apache) ??:http://extasp.net/ ??:http://bbs.extasp.net/ ??:http://extaspnet.codeplex.com/ ??:http://sanshi.cnblogs.com/ ????: +2012-04-08 v3.1.3 -??Language="zh_TW"?JS???BUG(??)。 +?D...Coding4Fun Tools: Coding4Fun.Phone.Toolkit v1.5.5: New Controls ChatBubble ChatBubbleTextBox OpacityToggleButton New Stuff TimeSpan languages added: RU, SK, CS Expose the physics math from TimeSpanPicker Image Stretch now on buttons Bug Fixes Layout fix so RoundToggleButton and RoundButton are exactly the same Fix for ColorPicker when set via code behind ToastPrompt bug fix with OnNavigatedTo Toast now adjusts its layout if the SIP is up Fixed some issues with Expression Blend supportHarness - Internet Explorer Automation: Harness 2.0.3: support the operation fo frameset, frame and iframe Add commands SwitchFrame GetUrl GoBack GoForward Refresh SetTimeout GetTimeout Rename commands GetActiveWindow to GetActiveBrowser SetActiveWindow to SetActiveBrowser FindWindowAll to FindBrowser NewWindow to NewBrowser GetMajorVersion to GetVersionBetter Explorer: Better Explorer 2.0.0.861 Alpha: - fixed new folder button operation not work well in some situations - removed some unnecessary code like subclassing that is not needed anymore - Added option to make Better Exlorer default (at least for WIN+E operations) - Added option to enable file operation replacements (like Terracopy) to work with Better Explorer - Added some basic usability to "Share" button - Other fixesLightFarsiDictionary - ??????? ??? ?????/???????: LightFarsiDictionary - v1: LightFarsiDictionary - v1WPF Application Framework (WAF): WPF Application Framework (WAF) 2.5.0.3: Version: 2.5.0.3 (Milestone 3): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Changelog Legend: [B] Breaking change; [O] Marked member as obsolete [O] WAF: Mark the StringBuilderExtensions class as obsolete because the AppendInNewLine method can be replaced with string.Jo...ClosedXML - The easy way to OpenXML: ClosedXML 0.65.2: Aside from many bug fixes we now have Conditional Formatting The conditional formatting was sponsored by http://www.bewing.nl (big thanks) New on v0.65.1 Fixed issue when loading conditional formatting with default values for icon sets New on v0.65.2 Fixed issue loading conditional formatting Improved inserts performanceNew Projects0x10c Tools: Tools for the 0x10c-CPU: Assembler, emulator and (maybe in the future) a small compiler. Just for fun and exercise.AzureWiki: AzureWiki is the Wiki developed using Windows Azure platform which would be similar to dotnetwikiCommand-Line Database Builder: A command-line tool for interacting with a DBMS command-line interface (e.g., sqlcmd.exe) to execute a sequential list of SQL scripts against the DBMS. Tool allows for expression replacement in the SQL scripts during execution.copydata: The CopyData command-line utility enables you to easily transfer sets of data from an Oracle or SQL server data source directly to a target SQL Server database. It is developed in C#.DinoDoc: The little friendly batch-upload tool designed for SharePoint Server and Windows SharePoint Services, enabling you to easily upload multiple files and folders with a single click! For more information about DinoDoc and about SharePoint development: http://spdino.wordpress.comDiscovery House: This is a project demonstrating a green home.DocShare: DocShare illustrates the CQRS pattern on Windows Azure and also uses MVC4 Web API. DocShare uses two web roles, one for queries (reads) and one for command (writes). Each has a UI and a Web API service.EnderTecLauncher: EnderTecLauncherEntityFilter: This library provides a way to store filtering metadata, and reassemble it into dynamic lambda expressions. It allows for groups of filters to be created. Two implementations of IFilterRepository are in development:Database and XML. It's developed in C# for EntityFramework 4.1 and above.Epi Info™ - Web Analysis & Visualization: Epi Info™ is a public domain suite of software tools designed for the global community of public health practitioners and researchers. It provides for easy data entry form and database construction, a customized data entry experience, and data analyses with epidemiologic statistic Epi Info™ Web Analytics & Visualization is an open source project of the popular Epi Info™ suite of tools. The web product can be deployed as an intranet application and will provide analytical and visualization ...fOrganiz: This application allows you to automatically organize by date in specific subdirectories your picturesforwork: forworkGeneric Language - Mobile & Telephony Technologies: Genlang Mobile and Telephony Technologies, a complete application development platform for all platforms, Windows Mobile, Windows Desktop, Web, Apple, Android, BlackBerry.gindex: Graph has become increasingly important in modelling complicated structures and schemaless data such as proteins,chemical compounds, and XML documents. Given a graph query, it is desirable to retrieve graphs quickly from a large database via graph-based indices.Hijri Date SkinObject: Hijri date skin object for dotnetnuke copy to admin/skins use it in your skin file HorseRaces: Exercise inspired on example found in book "Designing for scalability with Microsoft Windows DNA" by Sten Sundblad and Per SundbladHotelMS: HotelManageSystemhtml5lmth: testjRulee: The jRulee javascript toolkit libraryKrishaTool: oloLegSec: LegSec is an small command line application for collating licence information based on that provided in Nuget packages. Modwind Domain Info: The program determines country of origin for top-level domains and purpose for international ones.MySCM Outlook Addin: This is another tool for SCM/TFS team. Use this add-in to create, update, refresh TFS work items from your Outlook emails. Not a substitution, but this little tool can help you to track your various work in TFS while educating and establishing the processes and policies.neptouni: This software can be used to convert nepali ttf text to the unicode characters.Northwind SSDT: An SSDT project for the Northwind database. This will enable you to deploy Northwind wherever you like. Note that to allow for hosting in a SQL Azure database that is used to host objects for other applications all the Northwind objects have been moved into a schema called [Northwind]Optional: Optional is a library to create options and commands from command-line arguments. It uses Convention over Configuration to get out of your way. Attributes can be used to set properties which differ from the convention.pbdevnpro1: pbdevnpro1,no1Projet LIF7 Snake: Projet LIF7 SnakePurpleStoat: A modular, extensible Silverlight application shell using Prism, Unity and the Enterprise Library, and written in C#. It includes WCF services which provide AuthZ and logging services to the shell, which are also available to the modules.Sharepoint 2010 Weather WebPart using Azure Data Market Met Office Feed: Sharepoint 2010 WebPart that displays a 5 day weather forecast for a given location. The weather data is retrieved from the Met Office feed hosted on the Windows Azure Data Market. This is a free data feed that provides weather data for the UK only.Silverlight Layouts: Silverlight Layouts is a project for controls that behave as content placeholders with pre-defined GUI layout for some of common scenarios: - frozen headers, - frozen columns, - cyrcle layouts etc.Snom Phone .NET Library: .NET Automation library for the snom IP phones. Provides simple class library to interact with you snom phone: - Press any key on the phone. - Dial numbers. - Answer or hang up call. - Mute and un-mute. - Hold and un-hold a call. - Navigate through a routing phone system using dial tone. - Get events on incoming or outgoing calls, as well as other events. - And more...Substrate Windows 8 XAML Framework: Framework for writing Windows 8 applications in XAMLTiger Converters: Tiger is a small languaje based on expressions, so it's perfect for writing the body of a WPF/SL converter.Time manager by bozheville: Time manager by bozhevilleUmbraco 501 on Windows Azure (with Dynamic Deploy): This project is configured to run Umbraco 5.0.1 on Windows Azure via the Dynamic Deploy platform. For more information on Dynamic Deploy visit http://www.dynamicdeploy.com Dynamic Deploy is a cloud deployment platform from where you can deploy applications directly to cloud platforms (like Windows Azure). UnitPrice: This is unit priceWebmedia: this is my webmedia projectWindows 8 Metro RSS Reader: A RSS Reader metro app for Windows 8 written in C# and XAML based on the sample Grid templateWindows Phone UPnP: The basics of a UPnP network stack for Windows Phone, based on a blog post originally. Written in C#, also requires the Async CTP. Includes device discovery via SSDP and method invocation.WinRT XAML Toolkit: A set of controls, extensions and helper classes for Windows Runtime XAML applicationsWmiGuru: WmiGuru is a lightweight F# library for WMI operations such as getting instances, creating instance, and querying associated instances.????: ???? ??.net mvc3??。??jquery+html5????。?????: openwebsite

    Read the article

  • SecurityException in Sandboxed AppDomain

    - by Galen
    I'm attempting to use C# as a scripting language using CSharpCodeProvider (using VS2010 and .NET 4.0). I want the scripts to be run in a restricted AppDomain with minimal permissions. Currently, I'm getting an exception while trying to instantiate a class in the AppDomain (The call to CreateInstanceAndUnwrap()). Here is some simplified code that reproduces the exception: using System; using System.Collections.Generic; using Microsoft.CSharp; using System.CodeDom; using System.CodeDom.Compiler; using System.Security; using System.Security.Policy; using System.Security.Permissions; using System.Reflection; using System.Runtime.Remoting; namespace ConsoleApp { class Program { static void Main(string[] args) { // set permissions PermissionSet permissions = new PermissionSet(PermissionState.None); permissions.AddPermission(new SecurityPermission( SecurityPermissionFlag.Execution)); AppDomainSetup adSetup = new AppDomainSetup(); adSetup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; //Create a list of fully trusted assemblies Assembly[] asms = AppDomain.CurrentDomain.GetAssemblies(); List<StrongName> sns = new List<StrongName>(); for (int x = 0; x < asms.Length; x++) { StrongName sn = asms[x].Evidence.GetHostEvidence<StrongName>(); if (sn != null && sns.Contains(sn) == false) sns.Add(sn); } //this includes: "mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" AppDomain domain = AppDomain.CreateDomain("NewAppDomain", AppDomain.CurrentDomain.Evidence, adSetup, permissions);//, sns);//, sn4, sn, sn2, sn3); try { String asmName = Assembly.GetExecutingAssembly().FullName; String typeName = typeof(ConsoleApp.ScriptRunner).FullName; //Throws exception here ScriptRunner scriptRunner = domain.CreateInstanceAndUnwrap(asmName, typeName) as ScriptRunner; } catch (SecurityException se) { System.Diagnostics.Debug.WriteLine(se.Message); } catch (Exception ex) { System.Diagnostics.Debug.WriteLine(ex.Message); } } } public class ScriptRunner : MarshalByRefObject { public ScriptRunner() { //A breakpoint placed here is never reached. CompilerParameters param; param = new CompilerParameters(); param.CompilerOptions = ""; param.GenerateExecutable = false; param.GenerateInMemory = true; param.IncludeDebugInformation = false; // C# compiler CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CompilerResults results = codeProvider.CompileAssemblyFromFile(param, "Danger.cs"); } } } The exception is being thrown from mscorlib and it is a System.Reflection.TargetInvocationException that has an inner System.Security.SecurityException. Here is the exception: System.Reflection.TargetInvocationException was unhandled Message=Exception has been thrown by the target of an invocation. Source=mscorlib StackTrace: at System.RuntimeTypeHandle.CreateInstance(RuntimeType type, Boolean publicOnly, Boolean noCheck, Boolean& canBeCached, RuntimeMethodHandleInternal& ctor, Boolean& bNeedSecurityCheck) at System.RuntimeType.CreateInstanceSlow(Boolean publicOnly, Boolean skipCheckThis, Boolean fillCache) at System.RuntimeType.CreateInstanceDefaultCtor(Boolean publicOnly, Boolean skipVisibilityChecks, Boolean skipCheckThis, Boolean fillCache) at System.Activator.CreateInstance(Type type, Boolean nonPublic) at System.RuntimeType.CreateInstanceImpl(BindingFlags bindingAttr, Binder binder, Object[] args, CultureInfo culture, Object[] activationAttributes) at System.Activator.CreateInstance(Type type, BindingFlags bindingAttr, Binder binder, Object[] args, CultureInfo culture, Object[] activationAttributes) at System.Activator.CreateInstance(String assemblyName, String typeName, Boolean ignoreCase, BindingFlags bindingAttr, Binder binder, Object[] args, CultureInfo culture, Object[] activationAttributes, Evidence securityInfo, StackCrawlMark& stackMark) at System.Activator.CreateInstance(String assemblyName, String typeName) at System.AppDomain.CreateInstance(String assemblyName, String typeName) at System.AppDomain.CreateInstanceAndUnwrap(String assemblyName, String typeName) at System.AppDomain.CreateInstanceAndUnwrap(String assemblyName, String typeName) at ConsoleApp.Program.Main(String[] args) in C:\Documents and Settings\NaultyCS\my documents\visual studio 2010\Projects\ConsoleApplication4\ConsoleApplication4\Program.cs:line 46 at System.AppDomain._nExecuteAssembly(RuntimeAssembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() InnerException: System.Security.SecurityException Message=Request failed. Source=ConsoleApplication4 GrantedSet=<PermissionSet class="System.Security.PermissionSet" version="1"> <IPermission class="System.Security.Permissions.SecurityPermission, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1" Flags="Execution"/> </PermissionSet> PermissionState=<PermissionSet class="System.Security.PermissionSet" version="1" Unrestricted="true"/> RefusedSet="" Url=file:///C:/Documents and Settings/NaultyCS/my documents/visual studio 2010/Projects/ConsoleApplication4/ConsoleApplication4/bin/Debug/ConsoleApplication4.EXE StackTrace: at ConsoleApp.ScriptRunner..ctor() InnerException: So it appears to me that mscorlib is demanding full trust. I've added it as a fully trusted assembly, but it has no effect. What am I doing wrong here?

    Read the article

  • GoogleAppEngine : ClassNotFoundException : javax.jdo.metadata.ComponentMetadata

    - by James.Elsey
    I'm trying to deploy my application to a locally running GoogleAppEngine development server, but I'm getting the following stack trace when I start the server Apr 23, 2010 9:03:33 PM com.google.apphosting.utils.jetty.JettyLogger warn WARNING: Nested in org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'clientDao' defined in ServletContext resource [/WEB-INF/applicationContext.xml]: Cannot resolve reference to bean 'entityManagerFactory' while setting bean property 'entityManagerFactory'; nested exception is org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'entityManagerFactory' defined in ServletContext resource [/WEB-INF/applicationContext.xml]: Invocation of init method failed; nested exception is java.lang.NoClassDefFoundError: javax/jdo/metadata/ComponentMetadata: java.lang.ClassNotFoundException: javax.jdo.metadata.ComponentMetadata at java.net.URLClassLoader$1.run(URLClassLoader.java:217) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:205) at java.lang.ClassLoader.loadClass(ClassLoader.java:319) at com.google.appengine.tools.development.IsolatedAppClassLoader.loadClass(IsolatedAppClassLoader.java:151) at java.lang.ClassLoader.loadClass(ClassLoader.java:264) at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:332) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:264) at javax.jdo.JDOHelper$18.run(JDOHelper.java:2009) at javax.jdo.JDOHelper$18.run(JDOHelper.java:2007) at java.security.AccessController.doPrivileged(Native Method) at javax.jdo.JDOHelper.forName(JDOHelper.java:2006) at javax.jdo.JDOHelper.invokeGetPersistenceManagerFactoryOnImplementation(JDOHelper.java:1155) at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:803) at javax.jdo.JDOHelper.getPersistenceManagerFactory(JDOHelper.java:698) at org.datanucleus.jpa.EntityManagerFactoryImpl.initialisePMF(EntityManagerFactoryImpl.java:482) at org.datanucleus.jpa.EntityManagerFactoryImpl.<init>(EntityManagerFactoryImpl.java:255) at org.datanucleus.store.appengine.jpa.DatastoreEntityManagerFactory.<init>(DatastoreEntityManagerFactory.java:68) at org.datanucleus.store.appengine.jpa.DatastorePersistenceProvider.createContainerEntityManagerFactory(DatastorePersistenceProvider.java:45) at org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean.createNativeEntityManagerFactory(LocalContainerEntityManagerFactoryBean.java:224) at org.springframework.orm.jpa.AbstractEntityManagerFactoryBean.afterPropertiesSet(AbstractEntityManagerFactoryBean.java:291) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1369) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1335) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:473) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(Native Method) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveReference(BeanDefinitionValueResolver.java:269) at org.springframework.beans.factory.support.BeanDefinitionValueResolver.resolveValueIfNecessary(BeanDefinitionValueResolver.java:104) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyPropertyValues(AbstractAutowireCapableBeanFactory.java:1245) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.populateBean(AbstractAutowireCapableBeanFactory.java:1010) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:472) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(Native Method) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:429) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:728) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:380) at org.springframework.web.context.ContextLoader.createWebApplicationContext(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationContext(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitialized(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler.java:530) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.java:1218) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java:500) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:40) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java:117) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:40) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java:117) at org.mortbay.jetty.Server.doStart(Server.java:217) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:40) at com.google.appengine.tools.development.JettyContainerService.startContainer(JettyContainerService.java:181) at com.google.appengine.tools.development.AbstractContainerService.startup(AbstractContainerService.java:116) at com.google.appengine.tools.development.DevAppServerImpl.start(DevAppServerImpl.java:217) at com.google.appengine.tools.development.DevAppServerMain$StartAction.apply(DevAppServerMain.java:162) at com.google.appengine.tools.util.Parser$ParseResult.applyArgs(Parser.java:48) at com.google.appengine.tools.development.DevAppServerMain.<init>(DevAppServerMain.java:113) at com.google.appengine.tools.development.DevAppServerMain.main(DevAppServerMain.java:89) The server is running at http://localhost:1234/ I'm a little confused over this, since I have the same application running locally on GlassFish/MySQL. All I have done is to swap in the relevant jar files, and change the persistence.xml. My applicationContext.xml looks as follows : <context:annotation-config/> <bean id="clientDao" class="com.jameselsey.salestracker.dao.jpa.JpaDaoClient"> <property name="entityManagerFactory" ref="entityManagerFactory"/> </bean> <bean id="entityManagerFactory" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"/> <bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager"> <property name="entityManagerFactory" ref="entityManagerFactory" /> </bean> <bean id="org.springframework.context.annotation.internalPersistenceAnnotationProcessor" class="com.jameselsey.salestracker.util.GaeFixInternalPersistenceAnnotationProcessor" /> <bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/> <tx:annotation-driven/> <bean id="clientService" class="com.jameselsey.salestracker.service.ClientService"/> </beans> My JPA DAO looks like this public class JpaDao extends JpaDaoSupport { protected <T> List<T> findAll(Class<T> clazz) { return getJpaTemplate().find("select c from " + clazz.getName() + " c"); } protected <T> T findOne(String jpql, Map params) { List<T> results = getJpaTemplate().findByNamedParams(jpql, params); if(results.isEmpty()) { return null; } if(results.size() > 1) { throw new IncorrectResultSizeDataAccessException(1, results.size()); } return results.get(0); } } And an example implemented method looks like this : @Override public Client getClientById(Integer clientId) { String jpql = "SELECT c " + "FROM com.jameselsey.salestracker.domain.Client c " + "WHERE c.id = " + clientId; return (Client) getJpaTemplate().find(jpql).get(0); } Like I say, this works ok on Glassfish/MySQL, is it possible this error could be a red herring to something else?

    Read the article

  • mappedBy reference an unknown target entity property - hibernate error

    - by tommy
    first, my classes: User package com.patpuc.model; import java.util.List; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.Id; import javax.persistence.OneToMany; import javax.persistence.Table; import com.patpuc.model.RolesMap; @Entity @Table(name = "users") public class User { @Id @Column(name = "USER_ID", unique = true, nullable = false) private int user_id; @Column(name = "NAME", nullable = false) private String name; @Column(name = "SURNAME", unique = true, nullable = false) private String surname; @Column(name = "USERNAME_U", unique = true, nullable = false) private String username_u; // zamiast username @Column(name = "PASSWORD", unique = true, nullable = false) private String password; @Column(name = "USER_DESCRIPTION", nullable = false) private String userDescription; @Column(name = "AUTHORITY", nullable = false) private String authority = "ROLE_USER"; @Column(name = "ENABLED", nullable = false) private int enabled; @OneToMany(mappedBy = "rUser") private List<RolesMap> rolesMap; public List<RolesMap> getRolesMap() { return rolesMap; } public void setRolesMap(List<RolesMap> rolesMap) { this.rolesMap = rolesMap; } /** * @return the user_id */ public int getUser_id() { return user_id; } /** * @param user_id * the user_id to set */ public void setUser_id(int user_id) { this.user_id = user_id; } /** * @return the name */ public String getName() { return name; } /** * @param name * the name to set */ public void setName(String name) { this.name = name; } /** * @return the surname */ public String getSurname() { return surname; } /** * @param surname * the surname to set */ public void setSurname(String surname) { this.surname = surname; } /** * @return the username_u */ public String getUsername_u() { return username_u; } /** * @param username_u * the username_u to set */ public void setUsername_u(String username_u) { this.username_u = username_u; } /** * @return the password */ public String getPassword() { return password; } /** * @param password * the password to set */ public void setPassword(String password) { this.password = password; } /** * @return the userDescription */ public String getUserDescription() { return userDescription; } /** * @param userDescription * the userDescription to set */ public void setUserDescription(String userDescription) { this.userDescription = userDescription; } /** * @return the authority */ public String getAuthority() { return authority; } /** * @param authority * the authority to set */ public void setAuthority(String authority) { this.authority = authority; } /** * @return the enabled */ public int getEnabled() { return enabled; } /** * @param enabled * the enabled to set */ public void setEnabled(int enabled) { this.enabled = enabled; } @Override public String toString() { StringBuffer strBuff = new StringBuffer(); strBuff.append("id : ").append(getUser_id()); strBuff.append(", name : ").append(getName()); strBuff.append(", surname : ").append(getSurname()); return strBuff.toString(); } } RolesMap.java package com.patpuc.model; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.Id; import javax.persistence.JoinColumn; import javax.persistence.ManyToOne; import javax.persistence.Table; import com.patpuc.model.User; @Entity @Table(name = "roles_map") public class RolesMap { private int rm_id; private String username_a; private String username_l; //private String username_u; private String password; private int role_id; @ManyToOne @JoinColumn(name="username_u", nullable=false) private User rUser; public RolesMap(){ } /** * @return the user */ public User getUser() { return rUser; } /** * @param user the user to set */ public void setUser(User rUser) { this.rUser = rUser; } @Id @Column(name = "RM_ID", unique = true, nullable = false) public int getRmId() { return rm_id; } public void setRmId(int rm_id) { this.rm_id = rm_id; } @Column(name = "USERNAME_A", unique = true) public String getUsernameA() { return username_a; } public void setUsernameA(String username_a) { this.username_a = username_a; } @Column(name = "USERNAME_L", unique = true) public String getUsernameL() { return username_l; } public void setUsernameL(String username_l) { this.username_l = username_l; } @Column(name = "PASSWORD", unique = true, nullable = false) public String getPassword() { return password; } public void setPassword(String password) { this.password = password; } @Column(name = "ROLE_ID", unique = true, nullable = false) public int getRoleId() { return role_id; } public void setRoleId(int role_id) { this.role_id = role_id; } } when i try run this on server i have exception like this: Error creating bean with name 'SessionFactory' defined in ServletContext resource [/WEB-INF/classes/baseBeans.xml]: Invocation of init method failed; nested exception is org.hibernate.AnnotationException: mappedBy reference an unknown target entity property: com.patpuc.model.RolesMap.users in com.patpuc.model.User.rolesMap But i don't exaclu know what i'm doing wrong. Can somebody help me fix this problem?

    Read the article

  • Hibernate Lazy init exception in spring scheduled job

    - by Noam Nevo
    I have a spring scheduled job (@Scheduled) that sends emails from my system according to a list of recipients in the DB. This method is annotated with the @Scheduled annotation and it invokes a method from another interface, the method in the interface is annotated with the @Transactional annotation. Now, when i invoke the scheduled method manually, it works perfectly. But when the method is invoked by spring scheduler i get the LazyInitFailed exception in the method implementing the said interface. What am I doing wrong? code: The scheduled method: @Component public class ScheduledReportsSender { public static final int MAX_RETIRES = 3; public static final long HALF_HOUR = 1000 * 60 * 30; @Autowired IScheduledReportDAO scheduledReportDAO; @Autowired IDataService dataService; @Autowired IErrorService errorService; @Scheduled(cron = "0 0 3 ? * *") // every day at 2:10AM public void runDailyReports() { // get all daily reports List<ScheduledReport> scheduledReports = scheduledReportDAO.getDaily(); sendScheduledReports(scheduledReports); } private void sendScheduledReports(List<ScheduledReport> scheduledReports) { if(scheduledReports.size()<1) { return; } //check if data flow ended its process by checking the report_last_updated table in dwh int reportTimeId = scheduledReportDAO.getReportTimeId(); String todayTimeId = DateUtils.getTimeid(DateUtils.getTodayDate()); int yesterdayTimeId = Integer.parseInt(DateUtils.addDaysSafe(todayTimeId, -1)); int counter = 0; //wait for time id to update from the daily flow while (reportTimeId != yesterdayTimeId && counter < MAX_RETIRES) { errorService.logException("Daily report sender, data not ready. Will try again in one hour.", null, null, null); try { Thread.sleep(HALF_HOUR); } catch (InterruptedException ignore) {} reportTimeId = scheduledReportDAO.getReportTimeId(); counter++; } if (counter == MAX_RETIRES) { MarketplaceServiceException mse = new MarketplaceServiceException(); mse.setMessage("Data flow not done for today, reports are not sent."); throw mse; } // get updated timeid updateTimeId(); for (ScheduledReport scheduledReport : scheduledReports) { dataService.generateScheduledReport(scheduledReport); } } } The Invoked interface: public interface IDataService { @Transactional public void generateScheduledReport(ScheduledReport scheduledReport); } The implementation (up to the line of the exception): @Service public class DataService implements IDataService { public void generateScheduledReport(ScheduledReport scheduledReport) { // if no recipients or no export type - return if(scheduledReport.getRecipients()==null || scheduledReport.getRecipients().size()==0 || scheduledReport.getExportType() == null) { return; } } } Stack trace: ERROR: 2012-09-01 03:30:00,365 [Scheduler-15] LazyInitializationException.<init>(42) | failed to lazily initialize a collection of role: com.x.model.scheduledReports.ScheduledReport.recipients, no session or session was closed org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.x.model.scheduledReports.ScheduledReport.recipients, no session or session was closed at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:383) at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:375) at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:122) at org.hibernate.collection.PersistentBag.size(PersistentBag.java:248) at com.x.service.DataService.generateScheduledReport(DataService.java:219) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:309) at org.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint(ReflectiveMethodInvocation.java:183) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:150) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:110) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) at $Proxy208.generateScheduledReport(Unknown Source) at com.x.scheduledJobs.ScheduledReportsSender.sendScheduledReports(ScheduledReportsSender.java:85) at com.x.scheduledJobs.ScheduledReportsSender.runDailyReports(ScheduledReportsSender.java:38) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.util.MethodInvoker.invoke(MethodInvoker.java:273) at org.springframework.scheduling.support.MethodInvokingRunnable.run(MethodInvokingRunnable.java:65) at org.springframework.scheduling.support.DelegatingErrorHandlingRunnable.run(DelegatingErrorHandlingRunnable.java:51) at org.springframework.scheduling.concurrent.ReschedulingRunnable.run(ReschedulingRunnable.java:81) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334) at java.util.concurrent.FutureTask.run(FutureTask.java:166) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$101(ScheduledThreadPoolExecutor.java:165) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:636) ERROR: 2012-09-01 03:30:00,366 [Scheduler-15] MethodInvokingRunnable.run(68) | Invocation of method 'runDailyReports' on target class [class com.x.scheduledJobs.ScheduledReportsSender] failed org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.x.model.scheduledReports.ScheduledReport.recipients, no session or session was closed at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:383) at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:375) at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:122) at org.hibernate.collection.PersistentBag.size(PersistentBag.java:248) at com.x.service.DataService.generateScheduledReport(DataService.java:219) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:309) at org.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint(ReflectiveMethodInvocation.java:183) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:150) at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:110) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:172) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:202) at $Proxy208.generateScheduledReport(Unknown Source) at com.x.scheduledJobs.ScheduledReportsSender.sendScheduledReports(ScheduledReportsSender.java:85) at com.x.scheduledJobs.ScheduledReportsSender.runDailyReports(ScheduledReportsSender.java:38) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.springframework.util.MethodInvoker.invoke(MethodInvoker.java:273) at org.springframework.scheduling.support.MethodInvokingRunnable.run(MethodInvokingRunnable.java:65) at org.springframework.scheduling.support.DelegatingErrorHandlingRunnable.run(DelegatingErrorHandlingRunnable.java:51) at org.springframework.scheduling.concurrent.ReschedulingRunnable.run(ReschedulingRunnable.java:81) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334) at java.util.concurrent.FutureTask.run(FutureTask.java:166) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$101(ScheduledThreadPoolExecutor.java:165) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:636)

    Read the article

  • JSF : How to refresh required field in ajax request

    - by Tama
    Ok, here you are the core problem. The page. I have two required "input text". A command button that changes the bean value and reRenderes the "job" object. <a4j:form id="pervForm"> SURNAME:<h:inputText id="surname" label="Surname" value="#{prevManager.surname}" required="true" /> <br/> JOB:<h:inputText value="#{prevManager.job}" id="job" maxlength="10" size="10" label="#{msg.common_label_job}" required="true" /> <br/> <a4j:commandButton value="Set job to Programmer" ajaxSingle="true" reRender="job"> <a4j:actionparam name="jVal" value="Programmer" assignTo="#{prevManager.job}"/> </a4j:commandButton> <h:commandButton id="save" value="save" action="save" class="HATSBUTTON"/> </a4j:form> Here the simple manager: public class PrevManager { private String surname; private String job; public String getSurname() { return surname; } public void setSurname(String surname) { this.surname = surname; } public String getJob() { return job; } public void setJob(String job) { this.job = job; } public String save() { //do something } } Let's do this: Write something on the Job input text (such as "teacher"). Leave empty the surname. Save. Validation error appears (surname is mandatory). Press "Set job to Programmer": nothing happens. Checking the bean value, I discovered that it is correctly updated, indeed the component on the page is not updated! Well, according to the JBoss Docs I found: Ajax region is a key ajax component. It limits the part of the component tree to be processed on the server side when ajax request comes. Processing means invocation during Decode, Validation and Model Update phase. Most common reasons to use a region are: -avoiding the aborting of the JSF lifecycle processing during the validation of other form input unnecessary for given ajax request; -defining the different strategies when events will be delivered (immediate="true/false") -showing an individual indicator of an ajax status -increasing the performance of the rendering processing (selfRendered="true/false", renderRegionOnly="true/false") The following two examples show the situation when a validation error does not allow to process an ajax input. Type the name. The outputText component should reappear after you. However, in the first case, this activity will be aborted because of the other field with required="true". You will see only the error message while the "Job" field is empty. Here you are the example: <ui:composition xmlns="http://www.w3.org/1999/xhtml" xmlns:ui="http://java.sun.com/jsf/facelets" xmlns:h="http://java.sun.com/jsf/html" xmlns:f="http://java.sun.com/jsf/core" xmlns:a4j="http://richfaces.org/a4j" xmlns:rich="http://richfaces.org/rich"> <style> .outergridvalidationcolumn { padding: 0px 30px 10px 0px; } </style> <a4j:outputPanel ajaxRendered="true"> <h:messages style="color:red" /> </a4j:outputPanel> <h:panelGrid columns="2" columnClasses="outergridvalidationcolumn"> <h:form id="form1"> <h:panelGrid columns="2"> <h:outputText value="Name" /> <h:inputText value="#{userBean.name}"> <a4j:support event="onkeyup" reRender="outname" /> </h:inputText> <h:outputText value="Job" /> <h:inputText required="true" id="job2" value="#{userBean.job}" /> </h:panelGrid> </h:form> <h:form id="form2"> <h:panelGrid columns="2"> <h:outputText value="Name" /> <a4j:region> <h:inputText value="#{userBean.name}"> <a4j:support event="onkeyup" reRender="outname" /> </h:inputText> </a4j:region> <h:outputText value="Job" /> <h:inputText required="true" id="job1" value="#{userBean.job}" /> </h:panelGrid> </h:form> </h:panelGrid> <h:outputText id="outname" style="font-weight:bold" value="Typed Name: #{userBean.name}" /> <br /> </ui:composition> Form1: the behaviour is incorrect. I need to fill the job and then the name. Form2: the behaviour is correct. I do not need to fill the job to see the correct value. Unfortunately using Ajax region does not help (indeed I used it in a bad way ...) because my fields are both REQUIRED. That's the main different. Any idea? Many thanks.

    Read the article

  • Why can't I retrieve the entities I've just persisted?

    - by felipecao
    I've got this web service that basically queries the database and returns all persisted entities. For testing purposes, I've created a TestDataManager that persists 2 example entities after Spring context is loaded (BTW, I'm using JAX-WS, Spring, Hibernate and HSQLDB). My TestDataManager looks like this: @Component public class TestDataManager { @Resource private SessionFactory sf; @PostConstruct @Transactional(readOnly = false, propagation = Propagation.REQUIRES_NEW) public void insertTestData(){ sf.openSession(); sf.openSession().beginTransaction(); sf.openSession().persist(new Site("site one")); sf.openSession().persist(new Site("site two")); sf.openSession().flush(); } } My JAX-WS endpoint looks like this: @WebService public class SmartBrickEndpoint { @Resource private WebServiceContext context; public Set<Site> getSitesForUser(String user){ return getSiteService().findByUser(new User(user)); } private ISiteService getSiteService(){ ServletContext servletContext = (ServletContext) context.getMessageContext().get("javax.xml.ws.servlet.context"); return (ISiteService) BeanRetriever.getBean(servletContext, ISiteService.class); } } This my Service class: @Component @Transactional(readOnly = true) public class SiteService implements ISiteService { @Resource private ISiteDao siteDao; @Override public Set<Site> findByUser(User user) { return siteDao.findByUser(user); } } This is my DAO: @Component @Transactional(readOnly = true) public class SiteDao implements ISiteDao { @Resource private SessionFactory sessionFactory; @Override public Set<Site> findByUser(User user) { Set<Site> sites = new LinkedHashSet<Site>(sessionFactory.getCurrentSession().createCriteria(Site.class).list()); return sites; } } This is my applicationContext.xml: <context:annotation-config /> <context:component-scan base-package="br.unirio.wsimxp.dao"/> <context:component-scan base-package="br.unirio.wsimxp.service"/> <context:component-scan base-package="br.unirio.wsimxp.spring"/> <bean id="applicationDS" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="org.hsqldb.jdbcDriver"/> <property name="url" value="jdbc:hsqldb:file:sites"/> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean"> <property name="dataSource" ref="applicationDS" /> <property name="configLocation"> <value>classpath:hibernate.cfg.xml</value> </property> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">org.hibernate.dialect.HSQLDialect</prop> <prop key="hibernate.show_sql">true</prop> <prop key="hibernate.format_sql">true</prop> <prop key="hibernate.connection.release_mode">on_close</prop> <!--<prop key="hibernate.current_session_context_class">thread</prop>--> <prop key="hibernate.query.factory_class">org.hibernate.hql.classic.ClassicQueryTranslatorFactory</prop> <prop key="hibernate.hbm2ddl.auto">create-drop</prop> </props> </property> </bean> <bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="sessionFactory" /> </bean> <tx:annotation-driven transaction-manager="transactionManager" /> This is what's going on now: when the app is deployed, TestDataManager#insertTestData kicks-in (due to @PostConstruct) and persist does not raise any exception. I should have 2 entities in the DB by now. Afterwards, I invoke the endpoint by a SOAP client, and the request goes all the way up to the DAO. The Hibernate invocation does not raise any exception, but the returned list is empty. The odd thing is, in TestDataManager, if I switch from sf.openSession() to sf.getCurrentSession(), I get an error message: "No Hibernate Session bound to thread, and configuration does not allow creation of non-transactional one here". What I am doing wrong here? Why is the query "not seeing" the persisted entities? Why do I need to invoke sf.openSession() on TestDataManager although it's annotated with @Transactional? I have done some tests with hibernate.current_session_context_class=thread in application.xml, but then I just switch problems in each class. I'd like not needing to manually invoke sf.openSession() and leave that for Hibernate to take care. Thanks a lot for any help!

    Read the article

  • Need some suggestions on my softwares architecture. [Code review]

    - by Sergio Tapia
    I'm making an open source C# library for other developers to use. My key concern is ease of use. This means using intuitive names, intuitive method usage and such. This is the first time I've done something with other people in mind, so I'm really concerned about the quality of the architecture. Plus, I wouldn't mind learning a thing or two. :) I have three classes: Downloader, Parser and Movie I was thinking that it would be best to only expose the Movie class of my library and have Downloader and Parser remain hidden from invocation. Ultimately, I see my library being used like this. using FreeIMDB; public void Test() { var MyMovie = Movie.FindMovie("The Matrix"); //Now MyMovie would have all it's fields set and ready for the big show. } Can you review how I'm planning this, and point out any wrong judgement calls I've made and where I could improve. Remember, my main concern is ease of use. Movie.cs using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Drawing; namespace FreeIMDB { public class Movie { public Image Poster { get; set; } public string Title { get; set; } public DateTime ReleaseDate { get; set; } public string Rating { get; set; } public string Director { get; set; } public List<string> Writers { get; set; } public List<string> Genres { get; set; } public string Tagline { get; set; } public string Plot { get; set; } public List<string> Cast { get; set; } public string Runtime { get; set; } public string Country { get; set; } public string Language { get; set; } public Movie FindMovie(string Title) { Movie film = new Movie(); Parser parser = Parser.FromMovieTitle(Title); film.Poster = parser.Poster(); film.Title = parser.Title(); film.ReleaseDate = parser.ReleaseDate(); //And so an so forth. } public Movie FindKnownMovie(string ID) { Movie film = new Movie(); Parser parser = Parser.FromMovieID(ID); film.Poster = parser.Poster(); film.Title = parser.Title(); film.ReleaseDate = parser.ReleaseDate(); //And so an so forth. } } } Parser.cs using System; using System.Collections.Generic; using System.Linq; using System.Text; using HtmlAgilityPack; namespace FreeIMDB { /// <summary> /// Provides a simple, and intuitive way for searching for movies and actors on IMDB. /// </summary> class Parser { private Downloader downloader = new Downloader(); private HtmlDocument Page; #region "Page Loader Events" private Parser() { } public static Parser FromMovieTitle(string MovieTitle) { var newParser = new Parser(); newParser.Page = newParser.downloader.FindMovie(MovieTitle); return newParser; } public static Parser FromActorName(string ActorName) { var newParser = new Parser(); newParser.Page = newParser.downloader.FindActor(ActorName); return newParser; } public static Parser FromMovieID(string MovieID) { var newParser = new Parser(); newParser.Page = newParser.downloader.FindKnownMovie(MovieID); return newParser; } public static Parser FromActorID(string ActorID) { var newParser = new Parser(); newParser.Page = newParser.downloader.FindKnownActor(ActorID); return newParser; } #endregion #region "Page Parsing Methods" public string Poster() { //Logic to scrape the Poster URL from the Page element of this. return null; } public string Title() { return null; } public DateTime ReleaseDate() { return null; } #endregion } } ----------------------------------------------- Do you guys think I'm heading towards a good path, or am I setting myself up for a world of hurt later on? My original thought was to separate the downloading, the parsing and the actual populating to easily have an extensible library. Imagine if one day the website changed its HTML, I would then only have to modifiy the parsing class without touching the Downloader.cs or Movie.cs class. Thanks for reading and for helping!

    Read the article

  • Swing object: first setText() gets "stuck" when using Mac Java SE 6

    - by Tim
    Hi there, I am a Java newbie trying to maintain an application that works fine under J2SE 5.0 (32- and 64-bit) but has a very specific problem when run under Java SE 6 64-bit: [Tims-MPB:~] tlynch% java -version java version "1.6.0_15" Java(TM) SE Runtime Environment (build 1.6.0_15-b03-226) Java HotSpot(TM) 64-Bit Server VM (build 14.1-b02-92, mixed mode) The application is cross-platform and reportedly works correctly on Java SE 6 under Windows, though I haven't been able to verify that myself. The program uses a JTextField for some text entry and a JLabel to indicate the text to be entered. The first time the showDialog() method is called to set the label text and display the dialog, it works correctly, but subsequent calls all result in the display of the label from the initial invocation rather than the one most recently specified via setText(). public void showDialog(String msgText) { System.out.println("set ChatDialog: " + msgText); jLabel1.setText(msgText); jLabel1.repaint(); // I added this; it didn't help System.out.println("get ChatDialog: " + jLabel1.getText()); super.setVisible(true); } [the full text of the class is provided below] The added printlns validate that expected text is passed to the label's setText() method and is confirmed by retrieving it using getText(), but what shows up on the screen/GUI is always the text from the very first time the method was called for the object. A similar issue is observed with a JTextArea used to label another dialog box. These problem are consistent across multiple Mac systems running Java SE 6 under OS 10.5.x and 10.6.x, but they are never observed when one reverts to J2SE 5.0. If there is some background information pertinent to this problem that I have omitted, please let me know. Any insights or advice appreciated. package gui; import java.awt.*; import java.awt.event.KeyEvent; import javax.swing.*; // Referenced classes of package gui: // MyJPanel, ChatDialog_jTextField1_keyAdapter, WarWindow public class ChatDialog extends JDialog { public ChatDialog(JFrame parent, WarWindow w) { super(parent, true); text = ""; borderLayout1 = new BorderLayout(); jPanel1 = new MyJPanel(); borderLayout2 = new BorderLayout(); jPanel2 = new MyJPanel(); jPanel3 = new MyJPanel(); jLabel1 = new JLabel(); jTextField1 = new JTextField(); warWindow = w; try { jbInit(); } catch(Exception exception) { System.out.println("Problem with ChatDialog init"); exception.printStackTrace(); } return; } public String getText() { return text; } void jTextField1_keyPressed(KeyEvent e) { int id = e.getKeyCode(); switch(id) { case 10: // '\n' text = jTextField1.getText(); setVisible(false); break; } } private void jbInit() throws Exception { setLocation(232, 450); setSize(560, 60); setModal(true); setResizable(false); setUndecorated(true); getContentPane().setLayout(borderLayout1); jPanel1.setLayout(borderLayout2); jPanel2.setMinimumSize(new Dimension(10, 20)); jPanel2.setPreferredSize(new Dimension(10, 20)); jLabel1.setPreferredSize(new Dimension(380, 15)); jLabel1.setHorizontalAlignment(0); jLabel1.setText("Chat Message"); jTextField1.setPreferredSize(new Dimension(520, 21)); jTextField1.setRequestFocusEnabled(false); jTextField1.addKeyListener(new ChatDialog_jTextField1_keyAdapter(this)); getContentPane().add(jPanel1, "Center"); jPanel1.add(jPanel2, "North"); jPanel2.add(jLabel1, null); jPanel1.add(jPanel3, "Center"); jPanel3.add(jTextField1, null); } public void setVisible(boolean b) { jTextField1.setText(""); super.setVisible(b); } public void showDialog(String msgText) { System.out.println("set ChatDialog: " + msgText); jLabel1.setText(msgText); jLabel1.repaint(); // I added this; it didn't help System.out.println("get ChatDialog: " + jLabel1.getText()); super.setVisible(true); } void this_keyPressed(KeyEvent e) { int id = e.getKeyCode(); switch(id) { case 10: // '\n' System.exit(88); break; } } BorderLayout borderLayout1; BorderLayout borderLayout2; JLabel jLabel1; JPanel jPanel1; JPanel jPanel2; JPanel jPanel3; JTextField jTextField1; String text; WarWindow warWindow; }

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using BPEL Performance Statistics to Diagnose Performance Bottlenecks

    - by fip
    Tuning performance of Oracle SOA 11G applications could be challenging. Because SOA is a platform for you to build composite applications that connect many applications and "services", when the overall performance is slow, the bottlenecks could be anywhere in the system: the applications/services that SOA connects to, the infrastructure database, or the SOA server itself.How to quickly identify the bottleneck becomes crucial in tuning the overall performance. Fortunately, the BPEL engine in Oracle SOA 11G (and 10G, for that matter) collects BPEL Engine Performance Statistics, which show the latencies of low level BPEL engine activities. The BPEL engine performance statistics can make it a bit easier for you to identify the performance bottleneck. Although the BPEL engine performance statistics are always available, the access to and interpretation of them are somewhat obscure in the early and current (PS5) 11G versions. This blog attempts to offer instructions that help you to enable, retrieve and interpret the performance statistics, before the future versions provides a more pleasant user experience. Overview of BPEL Engine Performance Statistics  SOA BPEL has a feature of collecting some performance statistics and store them in memory. One MBean attribute, StatLastN, configures the size of the memory buffer to store the statistics. This memory buffer is a "moving window", in a way that old statistics will be flushed out by the new if the amount of data exceeds the buffer size. Since the buffer size is limited by StatLastN, impacts of statistics collection on performance is minimal. By default StatLastN=-1, which means no collection of performance data. Once the statistics are collected in the memory buffer, they can be retrieved via another MBean oracle.as.soainfra.bpel:Location=[Server Name],name=BPELEngine,type=BPELEngine.> My friend in Oracle SOA development wrote this simple 'bpelstat' web app that looks up and retrieves the performance data from the MBean and displays it in a human readable form. It does not have beautiful UI but it is fairly useful. Although in Oracle SOA 11.1.1.5 onwards the same statistics can be viewed via a more elegant UI under "request break down" at EM -> SOA Infrastructure -> Service Engines -> BPEL -> Statistics, some unsophisticated minds like mine may still prefer the simplicity of the 'bpelstat' JSP. One thing that simple JSP does do well is that you can save the page and send it to someone to further analyze Follows are the instructions of how to install and invoke the BPEL statistic JSP. My friend in SOA Development will soon blog about interpreting the statistics. Stay tuned. Step1: Enable BPEL Engine Statistics for Each SOA Servers via Enterprise Manager First st you need to set the StatLastN to some number as a way to enable the collection of BPEL Engine Performance Statistics EM Console -> soa-infra(Server Name) -> SOA Infrastructure -> SOA Administration -> BPEL Properties Click on "More BPEL Configuration Properties" Click on attribute "StatLastN", set its value to some integer number. Typically you want to set it 1000 or more. Step 2: Download and Deploy bpelstat.war File to Admin Server, Note: the WAR file contains a JSP that does NOT have any security restriction. You do NOT want to keep in your production server for a long time as it is a security hazard. Deactivate the war once you are done. Download the bpelstat.war to your local PC At WebLogic Console, Go to Deployments -> Install Click on the "upload your file(s)" Click the "Browse" button to upload the deployment to Admin Server Accept the uploaded file as the path, click next Check the default option "Install this deployment as an application" Check "AdminServer" as the target server Finish the rest of the deployment with default settings Console -> Deployments Check the box next to "bpelstat" application Click on the "Start" button. It will change the state of the app from "prepared" to "active" Step 3: Invoke the BPEL Statistic Tool The BPELStat tool merely call the MBean of BPEL server and collects and display the in-memory performance statics. You usually want to do that after some peak loads. Go to http://<admin-server-host>:<admin-server-port>/bpelstat Enter the correct admin hostname, port, username and password Enter the SOA Server Name from which you want to collect the performance statistics. For example, SOA_MS1, etc. Click Submit Keep doing the same for all SOA servers. Step 3: Interpret the BPEL Engine Statistics You will see a few categories of BPEL Statistics from the JSP Page. First it starts with the overall latency of BPEL processes, grouped by synchronous and asynchronous processes. Then it provides the further break down of the measurements through the life time of a BPEL request, which is called the "request break down". 1. Overall latency of BPEL processes The top of the page shows that the elapse time of executing the synchronous process TestSyncBPELProcess from the composite TestComposite averages at about 1543.21ms, while the elapse time of executing the asynchronous process TestAsyncBPELProcess from the composite TestComposite2 averages at about 1765.43ms. The maximum and minimum latency were also shown. Synchronous process statistics <statistics>     <stats key="default/TestComposite!2.0.2-ScopedJMSOSB*soa_bfba2527-a9ba-41a7-95c5-87e49c32f4ff/TestSyncBPELProcess" min="1234" max="4567" average="1543.21" count="1000">     </stats> </statistics> Asynchronous process statistics <statistics>     <stats key="default/TestComposite2!2.0.2-ScopedJMSOSB*soa_bfba2527-a9ba-41a7-95c5-87e49c32f4ff/TestAsyncBPELProcess" min="2234" max="3234" average="1765.43" count="1000">     </stats> </statistics> 2. Request break down Under the overall latency categorized by synchronous and asynchronous processes is the "Request breakdown". Organized by statistic keys, the Request breakdown gives finer grain performance statistics through the life time of the BPEL requests.It uses indention to show the hierarchy of the statistics. Request breakdown <statistics>     <stats key="eng-composite-request" min="0" max="0" average="0.0" count="0">         <stats key="eng-single-request" min="22" max="606" average="258.43" count="277">             <stats key="populate-context" min="0" max="0" average="0.0" count="248"> Please note that in SOA 11.1.1.6, the statistics under Request breakdown is aggregated together cross all the BPEL processes based on statistic keys. It does not differentiate between BPEL processes. If two BPEL processes happen to have the statistic that share same statistic key, the statistics from two BPEL processes will be aggregated together. Keep this in mind when we go through more details below. 2.1 BPEL process activity latencies A very useful measurement in the Request Breakdown is the performance statistics of the BPEL activities you put in your BPEL processes: Assign, Invoke, Receive, etc. The names of the measurement in the JSP page directly come from the names to assign to each BPEL activity. These measurements are under the statistic key "actual-perform" Example 1:  Follows is the measurement for BPEL activity "AssignInvokeCreditProvider_Input", which looks like the Assign activity in a BPEL process that assign an input variable before passing it to the invocation:                                <stats key="AssignInvokeCreditProvider_Input" min="1" max="8" average="1.9" count="153">                                     <stats key="sensor-send-activity-data" min="0" max="1" average="0.0" count="306">                                     </stats>                                     <stats key="sensor-send-variable-data" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="monitor-send-activity-data" min="0" max="0" average="0.0" count="306">                                     </stats>                                 </stats> Note: because as previously mentioned that the statistics cross all BPEL processes are aggregated together based on statistic keys, if two BPEL processes happen to name their Invoke activity the same name, they will show up at one measurement (i.e. statistic key). Example 2: Follows is the measurement of BPEL activity called "InvokeCreditProvider". You can not only see that by average it takes 3.31ms to finish this call (pretty fast) but also you can see from the further break down that most of this 3.31 ms was spent on the "invoke-service".                                  <stats key="InvokeCreditProvider" min="1" max="13" average="3.31" count="153">                                     <stats key="initiate-correlation-set-again" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="invoke-service" min="1" max="13" average="3.08" count="153">                                         <stats key="prep-call" min="0" max="1" average="0.04" count="153">                                         </stats>                                     </stats>                                     <stats key="initiate-correlation-set" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="sensor-send-activity-data" min="0" max="0" average="0.0" count="306">                                     </stats>                                     <stats key="sensor-send-variable-data" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="monitor-send-activity-data" min="0" max="0" average="0.0" count="306">                                     </stats>                                     <stats key="update-audit-trail" min="0" max="2" average="0.03" count="153">                                     </stats>                                 </stats> 2.2 BPEL engine activity latency Another type of measurements under Request breakdown are the latencies of underlying system level engine activities. These activities are not directly tied to a particular BPEL process or process activity, but they are critical factors in the overall engine performance. These activities include the latency of saving asynchronous requests to database, and latency of process dehydration. My friend Malkit Bhasin is working on providing more information on interpreting the statistics on engine activities on his blog (https://blogs.oracle.com/malkit/). I will update this blog once the information becomes available. Update on 2012-10-02: My friend Malkit Bhasin has published the detail interpretation of the BPEL service engine statistics at his blog http://malkit.blogspot.com/2012/09/oracle-bpel-engine-soa-suite.html.

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Moving data files failing

    - by Miles Hayler
    Trying to migrate data from C: to D: via the SBS console is failing. The wizard starts running but drops out in the first few seconds. I'll post the full logs, but the important lines appear to be as follows: An exception of type 'Type: System.IO.FileNotFoundException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' has occurred. Message: The system cannot find the file specified. (Exception from HRESULT: 0x80070002) Stack: at TaskScheduler.TaskSchedulerClass.GetFolder(String Path) at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: GetServerBackupTaskStatus: fail to find the task --- ErrorCode:0 I've been googling for days with no luck. I have found that mscorlib is a component of .net, and I've discovered multiple instances of the file in %windir%, %windir%\winsxs, %windir%\Microsoft.net Anyone come across and fixed this one before? --------------------------------------------------------- [1516] 110315.190856.1105: Storage: Initializing...C:\Program Files\Windows Small Business Server\Bin\MoveData.exe [1516] 110315.190856.2875: Storage: Data Store to be moved: Exchange [1516] 110315.190856.5305: TaskScheduler: Exception System.IO.FileNotFoundException: [1516] 110315.190856.5605: Exception: --------------------------------------- An exception of type 'Type: System.IO.FileNotFoundException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' has occurred. Timestamp: 03/15/2011 19:08:56 Message: The system cannot find the file specified. (Exception from HRESULT: 0x80070002) Stack: at TaskScheduler.TaskSchedulerClass.GetFolder(String Path) at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) [1516] 110315.190856.5625: Storage: Exception Microsoft.WindowsServerSolutions.Common.WindowsTaskSchedulerException: [1516] 110315.190856.5635: Exception: --------------------------------------- [b]An exception of type 'Type: Microsoft.WindowsServerSolutions.Common.WindowsTaskSchedulerException, Common, Version=6.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' has occurred.[/b] Timestamp: 03/15/2011 19:08:56 Message: Failed to find the task path Stack: at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) at Microsoft.WindowsServerSolutions.Storage.Common.ServerBackupUtility.GetServerBackupTaskStatus() --------------------------------------- An exception of type 'Type: System.IO.FileNotFoundException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' has occurred. Timestamp: 03/15/2011 19:08:56 Message: The system cannot find the file specified. (Exception from HRESULT: 0x80070002) Stack: at TaskScheduler.TaskSchedulerClass.GetFolder(String Path) at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) [1516] 110315.190856.5665: Storage: Error Retrieving Server Backup Task Status: ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: GetServerBackupTaskStatus: fail to find the task ---> ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Common.WindowsTaskSchedulerException: Failed to find the task path ---> System.IO.FileNotFoundException: The system cannot find the file specified. (Exception from HRESULT: 0x80070002) at TaskScheduler.TaskSchedulerClass.GetFolder(String Path) at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) at Microsoft.WindowsServerSolutions.Storage.Common.ServerBackupUtility.GetServerBackupTaskStatus() --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Storage.Common.ServerBackupUtility.GetServerBackupTaskStatus() at Microsoft.WindowsServerSolutions.Storage.MoveData.Helper.get_ServerBackupTaskState() [1516] 110315.190857.6216: Storage: Backup Task State: Unknown [1516] 110315.190857.9347: Storage: Launching the Move Data Wizard! [1516] 110315.190857.9397: Wizard: Admin:QueryNextPage(null) = Storage.MoveDataWizard.GettingStartedPage [1516] 110315.190857.9417: Wizard: TOC Storage.MoveDataWizard.GettingStartedPage is on ExpectedPath [1516] 110315.190857.9577: Wizard: Storage.MoveDataWizard.GettingStartedPage entered [1516] 110315.190857.9657: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.GettingStartedPage) = Storage.MoveDataWizard.DiagnoseDataStorePage [1516] 110315.190857.9657: Wizard: TOC Storage.MoveDataWizard.DiagnoseDataStorePage is on ExpectedPath [1516] 110315.190857.9657: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.DiagnoseDataStorePage) = Storage.MoveDataWizard.NewDataStoreLocationPage [1516] 110315.190857.9657: Wizard: TOC Storage.MoveDataWizard.NewDataStoreLocationPage is on ExpectedPath [1516] 110315.190857.9657: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.NewDataStoreLocationPage) = null [1516] 110315.190857.9697: Wizard: ---------------------------------- [1516] 110315.190857.9697: Wizard: The pages visted: [1516] 110315.190857.9697: Wizard: Current Page := [TOC Storage.MoveDataWizard.GettingStartedPage] [1516] 110315.190857.9697: Wizard: [TOC] : TOC Storage.MoveDataWizard.DiagnoseDataStorePage [1516] 110315.190857.9697: Wizard: [TOC] : TOC Storage.MoveDataWizard.NewDataStoreLocationPage [1516] 110315.190857.9697: Wizard: Step 1 of 3 [1516] 110315.190907.0406: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.GettingStartedPage) = Storage.MoveDataWizard.DiagnoseDataStorePage [1516] 110315.190907.0416: Wizard: Storage.MoveDataWizard.GettingStartedPage exited with the button: Next [1516] 110315.190907.0416: WizardChainEngine Next Clicked: Going to page {0}.: Storage.MoveDataWizard.DiagnoseDataStorePage [1516] 110315.190907.0496: Wizard: Storage.MoveDataWizard.DiagnoseDataStorePage entered [1516] 110315.190907.0606: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.DiagnoseDataStorePage) = Storage.MoveDataWizard.NewDataStoreLocationPage [1516] 110315.190907.0606: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.NewDataStoreLocationPage) = null [1516] 110315.190907.0606: Wizard: ---------------------------------- [1516] 110315.190907.0606: Wizard: The pages visted: [1516] 110315.190907.0606: Wizard: [TOC] visited: TOC Storage.MoveDataWizard.GettingStartedPage [1516] 110315.190907.0606: Wizard: Current Page := [TOC Storage.MoveDataWizard.DiagnoseDataStorePage] [1516] 110315.190907.0616: Wizard: [TOC] : TOC Storage.MoveDataWizard.NewDataStoreLocationPage [1516] 110315.190907.0616: Wizard: Step 2 of 3 [19772] 110315.190907.0656: Storage: Starting System Diagnosis [19772] 110315.190907.0656: Storage: Getting Data Store Information [19772] 110315.190907.1086: Storage: Create the list of storage and DB directory path [19772] 110315.190907.1246: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks..ctor [19772] 110315.190907.1546: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks.Initialize [19772] 110315.190907.1596: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190907.1606: Messaging: Exchange install path: C:\Program Files\Microsoft\Exchange Server\bin [19772] 110315.190908.4157: Messaging: E12 Monad runspace created ID: Microsoft.PowerShell [19772] 110315.190908.4237: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190908.4287: Messaging: Executed management shell command: get-exchangeserver [19772] 110315.190910.2369: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190910.2369: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190910.5699: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks.GatherAdminInfo [19772] 110315.190910.5699: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190910.5719: Messaging: Executed management shell command: get-user -Identity "dmagroup.local\Administrator" [19772] 110315.190911.0870: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.0880: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.0880: Messaging: Executed management shell command: get-mailbox -Identity "d2ae2bf0-48a7-4ce9-9e72-bb3c765454ac" [19772] 110315.190911.1300: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.1310: Messaging: User Administrator is mail enabled and can use MessagingManagement to send mail. [19772] 110315.190911.1310: Messaging: Email address used for user: [email protected] [19772] 110315.190911.1440: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.1440: Messaging: Executed management shell command: get-group -Identity "Domain Admins" [19772] 110315.190911.1630: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.1640: Messaging: User Administrator is a member of Domain Admins and can use MessagingManagement to manage Exchange. [19772] 110315.190911.1640: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks.GatherAdminInfo [19772] 110315.190911.1640: Messaging: MessagingManagement enabled for Exchange management: True [19772] 110315.190911.1640: Messaging: MessagingManagement enabled for mail submission: True [19772] 110315.190911.1640: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks.Initialize [19772] 110315.190911.1640: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Tasks.TaskMoveExchangeData.CreateDataStoreDriveList [19772] 110315.190911.1670: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190911.1670: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.1670: Messaging: Executed management shell command: get-storagegroup -Server "SERVER01" [19772] 110315.190911.2990: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.3070: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190911.3070: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.3070: Messaging: Executed management shell command: get-mailboxdatabase -Server "SERVER01" [19772] 110315.190911.4440: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.4520: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190911.4520: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.4520: Messaging: Executed management shell command: get-publicfolderdatabase -Server "SERVER01" [19772] 110315.190911.5240: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.5510: Storage: Data Store Drive/s Details:Name=C:\,Size=12675712420 [19772] 110315.190911.5510: Storage: Data Store Size Details: Current Total Size=12675712420 Required Size=12675712420 [19772] 110315.190911.5510: Storage: MoveData Task can move the Data Store=True [19772] 110315.190911.8401: Storage: An error was encountered when performing system diagnosis : ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: WMI error occurred while accessing drive ---> System.Management.ManagementException: Not found at System.Management.ManagementException.ThrowWithExtendedInfo(ManagementStatus errorCode) at System.Management.ManagementObjectCollection.ManagementObjectEnumerator.MoveNext() at Microsoft.WindowsServerSolutions.Storage.Common.DriveUtil.IsDriveRemovable(String drive) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Storage.Common.DriveUtil.IsDriveRemovable(String drive) at Microsoft.WindowsServerSolutions.Storage.Common.DataStoreInfo.LoadAvailableDrives() at Microsoft.WindowsServerSolutions.Storage.Common.MoveDataUtil.CanMoveData(DataStoreInfo storeInfo, MoveDataError& error) at Microsoft.WindowsServerSolutions.Storage.MoveData.DiagnoseDataStorePagePresenter.DiagnoseDataStore(Object sender, DoWorkEventArgs args) [1516] 110315.190912.0331: Storage: An error occured during the execution: System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: Diagnosing the Data Store failed (see the inner exception) ---> ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: WMI error occurred while accessing drive ---> System.Management.ManagementException: Not found at System.Management.ManagementException.ThrowWithExtendedInfo(ManagementStatus errorCode) at System.Management.ManagementObjectCollection.ManagementObjectEnumerator.MoveNext() at Microsoft.WindowsServerSolutions.Storage.Common.DriveUtil.IsDriveRemovable(String drive) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Storage.Common.DriveUtil.IsDriveRemovable(String drive) at Microsoft.WindowsServerSolutions.Storage.Common.DataStoreInfo.LoadAvailableDrives() at Microsoft.WindowsServerSolutions.Storage.Common.MoveDataUtil.CanMoveData(DataStoreInfo storeInfo, MoveDataError& error) at Microsoft.WindowsServerSolutions.Storage.MoveData.DiagnoseDataStorePagePresenter.DiagnoseDataStore(Object sender, DoWorkEventArgs args) at System.ComponentModel.BackgroundWorker.WorkerThreadStart(Object argument) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Storage.MoveData.DiagnoseDataStorePagePresenter.backgroundWorker_RunWorkerCompleted(Object sender, RunWorkerCompletedEventArgs e) --- End of inner exception stack trace --- at System.RuntimeMethodHandle._InvokeMethodFast(Object target, Object[] arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeTypeHandle typeOwner) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Delegate.DynamicInvokeImpl(Object[] args) at System.Windows.Forms.Control.InvokeMarshaledCallbackDo(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbackHelper(Object obj) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Forms.Control.InvokeMarshaledCallback(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbacks() at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.WndProc(Message& m) at System.Windows.Forms.NativeWindow.DebuggableCallback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) at System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG& msg) at System.Windows.Forms.Application.ComponentManager.System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(Int32 dwComponentID, Int32 reason, Int32 pvLoopData) at System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at Microsoft.WindowsServerSolutions.Common.Wizards.Framework.WizardFrameView.Create() at Microsoft.WindowsServerSolutions.Common.Wizards.Framework.WizardChainEngine.Launch() at Microsoft.WindowsServerSolutions.Storage.MoveData.MainClass.LaunchMoveDataWizard() at Microsoft.WindowsServerSolutions.Storage.MoveData.MainClass.Main(String[] args)

    Read the article

  • No Properties path set - looking in classpath

    - by Will
    For whatever reason my project has decided it cannot find my transaction.properties file. It is located in the : src/main/resource However it looks in looks in target/classes/ The file also resides yet throws the errors(see below) These all seem to stem from the whole in the init of code I have no acces to which is always fun. Anyone have any idea how to get past the whole: Using init file: /target/classes/transactions.properties com.atomikos.icatch.SysException: Error in init: Error during checkpointing at com.atomikos.icatch.imp.TransactionServiceImp.init(TransactionServiceImp.java:728) EDIT: The errors are mainly pointing at the atomikos path. I'll be honest I'm at a total loss as to what is actually happening under the hood so. It's rather melting. The two files are the same so it shouldn't really matter which file it uses, however I can view the first error line reference. public synchronized void init ( Properties properties ) throws SysException { Stack errors = new Stack (); this.properties_ = properties; try { recoverymanager_.init (); } catch ( LogException le ) { errors.push ( le ); throw new SysException ( "Error in init: " + le.getMessage (), errors ); } recoverCoordinators (); //initialized is now set in recover() //initialized_ = true; shuttingDown_ = false; control_ = new LogControlImp ( this ); // call recovery already, to make sure that the // RMI participants can start inquiring and replay recover (); notifyListeners ( true, false ); } Full error printout: Using init file: /target/classes/transactions.properties com.atomikos.icatch.SysException: Error in init: Error during checkpointing at com.atomikos.icatch.imp.TransactionServiceImp.init(TransactionServiceImp.java:728) at com.atomikos.icatch.imp.BaseTransactionManager.init(BaseTransactionManager.java:217) at com.atomikos.icatch.standalone.StandAloneTransactionManager.init(StandAloneTransactionManager.java:104) at com.atomikos.icatch.standalone.UserTransactionServiceImp.init(UserTransactionServiceImp.java:307) at com.atomikos.icatch.config.UserTransactionServiceImp.init(UserTransactionServiceImp.java:413) at com.atomikos.icatch.jta.UserTransactionManager.checkSetup(UserTransactionManager.java:90) at com.atomikos.icatch.jta.UserTransactionManager.init(UserTransactionManager.java:140) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeCustomInitMethod(AbstractAutowireCapableBeanFactory.java:1544) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1485) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1417) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:519) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:291) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:288) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:190) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:580) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:895) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:425) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:139) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:93) at com.citi.eq.mo.dcc.server.Main.main(Main.java:32) Nested exception is: com.atomikos.persistence.LogException: Error during checkpointing at com.atomikos.persistence.imp.FileLogStream.writeCheckpoint(FileLogStream.java:229) at com.atomikos.persistence.imp.StreamObjectLog.init(StreamObjectLog.java:185) at com.atomikos.persistence.imp.StateRecoveryManagerImp.init(StateRecoveryManagerImp.java:71) at com.atomikos.icatch.imp.TransactionServiceImp.init(TransactionServiceImp.java:725) at com.atomikos.icatch.imp.BaseTransactionManager.init(BaseTransactionManager.java:217) at com.atomikos.icatch.standalone.StandAloneTransactionManager.init(StandAloneTransactionManager.java:104) at com.atomikos.icatch.standalone.UserTransactionServiceImp.init(UserTransactionServiceImp.java:307) at com.atomikos.icatch.config.UserTransactionServiceImp.init(UserTransactionServiceImp.java:413) at com.atomikos.icatch.jta.UserTransactionManager.checkSetup(UserTransactionManager.java:90) at com.atomikos.icatch.jta.UserTransactionManager.init(UserTransactionManager.java:140) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeCustomInitMethod(AbstractAutowireCapableBeanFactory.java:1544) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1485) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1417) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:519) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:291) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:288) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:190) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:580) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:895) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:425) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:139) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:93) at com.citi.eq.mo.dcc.server.Main.main(Main.java:32) 08/05/2011 14:55:59.998 [main] [] [INFO ] [o.s.b.f.s.DefaultListableBeanFactory] Destroying singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@164dbd5: defining beans [gfiPropertyConfigurerCommon,org.springframework.context.annotation.internalConfigurationAnnotationProcessor,org.springframework.context.annotation.internalAutowiredAnnotationProcessor,org.springframework.context.annotation.internalRequiredAnnotationProcessor,org.springframework.context.annotation.internalCommonAnnotationProcessor,org.springframework.context.annotation.internalPersistenceAnnotationProcessor,ZtsListenerContainer,ztsMessageListener,dccMessageHandler,dccToRioPublisher,rioJmsTemplate,dccMessageTransformer,ztsFixtoRioTransformer,dateManager,ztsDropCopyConverterContextFactory,ZtsBlockListenerContainer,ztsblockdropCopyConverterContextFactory,ZasListenerContainer,zasMessageListener,zastoRIOMessageTransformer,zasDropCopyConverterContextFactory,ztsToDccJndiTemplate,ztsQcf,ztsBlockToDccJndiTemplate,ztsBlockQcf,zasToDccJndiTemplate,zasQcf,rioJndiTemplate,rioTcf,rioDestinationResolver,URO.ZTSTRADES.1_Producer,mbeanServer,jmxExporter,rules-execution-server-engine,rio-object,trade-validator-context,trade-validator,validation-rules-helper,javaxTransactionManager,javaxUserTransaction,springPlatformTransactionManager,org.springframework.aop.config.internalAutoProxyCreator,org.springframework.transaction.annotation.AnnotationTransactionAttributeSource#0,org.springframework.transaction.interceptor.TransactionInterceptor#0,org.springframework.transaction.config.internalTransactionAdvisor,org.springframework.scheduling.annotation.internalAsyncAnnotationProcessor,org.springframework.scheduling.annotation.internalScheduledAnnotationProcessor]; root of factory hierarchy 08/05/2011 14:56:00.013 [main] [] [INFO ] [o.s.jmx.export.MBeanExporter] Unregistering JMX-exposed beans on shutdown Exception in thread "main" org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'javaxTransactionManager' defined in class path resource [eq-mo-dcc-server-context.xml]: Invocation of init method failed; nested exception is com.atomikos.icatch.SysException: Error in init(): Error in init: Error during checkpointing at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1420) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:519) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:291) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:222) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:288) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:190) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:580) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:895) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:425) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:139) at org.springframework.context.support.ClassPathXmlApplicationContext.<init>(ClassPathXmlApplicationContext.java:93) at com.citi.eq.mo.dcc.server.Main.main(Main.java:32) Caused by: com.atomikos.icatch.SysException: Error in init(): Error in init: Error during checkpointing at com.atomikos.icatch.standalone.UserTransactionServiceImp.init(UserTransactionServiceImp.java:374) at com.atomikos.icatch.config.UserTransactionServiceImp.init(UserTransactionServiceImp.java:413) at com.atomikos.icatch.jta.UserTransactionManager.checkSetup(UserTransactionManager.java:90) at com.atomikos.icatch.jta.UserTransactionManager.init(UserTransactionManager.java:140) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeCustomInitMethod(AbstractAutowireCapableBeanFactory.java:1544) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1485) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1417) ... 12 more Caused by: com.atomikos.icatch.SysException: Error in init: Error during checkpointing at com.atomikos.icatch.imp.TransactionServiceImp.init(TransactionServiceImp.java:728) at com.atomikos.icatch.imp.BaseTransactionManager.init(BaseTransactionManager.java:217) at com.atomikos.icatch.standalone.StandAloneTransactionManager.init(StandAloneTransactionManager.java:104) at com.atomikos.icatch.standalone.UserTransactionServiceImp.init(UserTransactionServiceImp.java:307) ... 22 more

    Read the article

  • ASP.NET exception gives irrelevant stack trace on YSOD, very challenging!

    - by pootow
    Here is the YSOD: Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.Data.SqlClient.SqlException: Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding. Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [SqlException (0x80131904): Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding.] System.Data.ProviderBase.DbConnectionPool.GetConnection(DbConnection owningObject) +428 System.Data.ProviderBase.DbConnectionFactory.GetConnection(DbConnection owningConnection) +65 System.Data.ProviderBase.DbConnectionClosed.OpenConnection(DbConnection outerConnection, DbConnectionFactory connectionFactory) +117 System.Data.SqlClient.SqlConnection.Open() +122 ECommerce.PMethod.Sql.SqlConns.Open() +78 ECommerce.PMethod.Sql.SqlConns..ctor() +120 ECommerce.login.DatasInfo.Proc.UserCenter.IsLogin(String UserGUID, Int32 UserID) +49 ECommerce.login.Rules.Users.UserLogin.isLogin() +44 Config.isUserLogined() +5 Shopping_Shopping.Page_Load(Object sender, EventArgs e) +10 System.Web.Util.CalliHelper.EventArgFunctionCaller(IntPtr fp, Object o, Object t, EventArgs e) +14 System.Web.Util.CalliEventHandlerDelegateProxy.Callback(Object sender, EventArgs e) +35 System.Web.UI.Control.OnLoad(EventArgs e) +99 System.Web.UI.Control.LoadRecursive() +50 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) +627 [TypeInitializationException: The type initializer for 'ECommerce.ERP.DAL.DBConn' threw an exception.] ECommerce.ERP.DAL.DBConn.get_ConnString() +0 [ObjectDefinitionStoreException: Factory method 'System.String get_ConnString()' threw an Exception.] Spring.Objects.Factory.Support.SimpleInstantiationStrategy.Instantiate(RootObjectDefinition definition, String name, IObjectFactory factory, MethodInfo factoryMethod, Object[] arguments) +257 Spring.Objects.Factory.Support.ConstructorResolver.InstantiateUsingFactoryMethod(String name, RootObjectDefinition definition, Object[] arguments) +624 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.InstantiateUsingFactoryMethod(String name, RootObjectDefinition definition, Object[] arguments) +60 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.CreateObjectInstance(String objectName, RootObjectDefinition objectDefinition, Object[] arguments) +56 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.InstantiateObject(String name, RootObjectDefinition definition, Object[] arguments, Boolean allowEagerCaching, Boolean suppressConfigure) +436 [ObjectCreationException: Error thrown by a dependency of object 'styleService' defined in 'assembly [ECommerce.Services.Impl, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [ECommerce.Services.Impl.AppContext.xml] line 56' : Initialization of object failed : Factory method 'System.String get_ConnString()' threw an Exception. while resolving 'constructor argument with name promotionservice' to 'promotionService' defined in 'assembly [ECommerce.Services.Impl, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [ECommerce.Services.Impl.AppContext.xml] line 31' while resolving 'constructor argument with name domainservice' to 'promotionDomainService' defined in 'assembly [ECommerce.Domain, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [ECommerce.Domain.AppContext.xml] line 20' while resolving 'constructor argument with name promotionrepos' to 'promotionRepos' defined in 'assembly [ECommerce.Data.AdoNet, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [ECommerce.Data.AdoNet.AppContext.xml] line 34' while resolving 'constructor argument with name connstr' to 'ECommerce.ERP.DAL.DBConn#389F399' defined in 'assembly [ECommerce.Data.AdoNet, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [ECommerce.Data.AdoNet.AppContext.xml] line 34'] Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveReference(IObjectDefinition definition, String name, String argumentName, RuntimeObjectReference reference) +394 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolvePropertyValue(String name, IObjectDefinition definition, String argumentName, Object argumentValue) +312 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveValueIfNecessary(String name, IObjectDefinition definition, String argumentName, Object argumentValue) +17 Spring.Objects.Factory.Support.ConstructorResolver.ResolveConstructorArguments(String objectName, RootObjectDefinition definition, ObjectWrapper wrapper, ConstructorArgumentValues cargs, ConstructorArgumentValues resolvedValues) +993 Spring.Objects.Factory.Support.ConstructorResolver.AutowireConstructor(String objectName, RootObjectDefinition rod, ConstructorInfo[] chosenCtors, Object[] explicitArgs) +171 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.AutowireConstructor(String name, RootObjectDefinition definition, ConstructorInfo[] ctors, Object[] explicitArgs) +65 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.CreateObjectInstance(String objectName, RootObjectDefinition objectDefinition, Object[] arguments) +161 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.InstantiateObject(String name, RootObjectDefinition definition, Object[] arguments, Boolean allowEagerCaching, Boolean suppressConfigure) +636 Spring.Objects.Factory.Support.AbstractObjectFactory.CreateAndCacheSingletonInstance(String objectName, RootObjectDefinition objectDefinition, Object[] arguments) +174 Spring.Objects.Factory.Support.WebObjectFactory.CreateAndCacheSingletonInstance(String objectName, RootObjectDefinition objectDefinition, Object[] arguments) +150 Spring.Objects.Factory.Support.AbstractObjectFactory.GetObjectInternal(String name, Type requiredType, Object[] arguments, Boolean suppressConfigure) +990 Spring.Objects.Factory.Support.AbstractObjectFactory.GetObject(String name) +10 Spring.Context.Support.AbstractApplicationContext.GetObject(String name) +20 ECommerce.Common.ServiceLocator.GetService() +334 ECommerce.Mvc.Controllers.StylesController..ctor() +72 [TargetInvocationException: Exception has been thrown by the target of an invocation.] System.RuntimeTypeHandle.CreateInstance(RuntimeType type, Boolean publicOnly, Boolean noCheck, Boolean& canBeCached, RuntimeMethodHandle& ctor, Boolean& bNeedSecurityCheck) +0 System.RuntimeType.CreateInstanceSlow(Boolean publicOnly, Boolean fillCache) +86 System.RuntimeType.CreateInstanceImpl(Boolean publicOnly, Boolean skipVisibilityChecks, Boolean fillCache) +230 System.Activator.CreateInstance(Type type, Boolean nonPublic) +67 System.Web.Mvc.DefaultControllerFactory.GetControllerInstance(RequestContext requestContext, Type controllerType) +80 [InvalidOperationException: An error occurred when trying to create a controller of type 'ECommerce.Mvc.Controllers.StylesController'. Make sure that the controller has a parameterless public constructor.] System.Web.Mvc.DefaultControllerFactory.GetControllerInstance(RequestContext requestContext, Type controllerType) +190 System.Web.Mvc.DefaultControllerFactory.CreateController(RequestContext requestContext, String controllerName) +68 System.Web.Mvc.MvcHandler.ProcessRequestInit(HttpContextBase httpContext, IController& controller, IControllerFactory& factory) +118 System.Web.Mvc.MvcHandler.BeginProcessRequest(HttpContextBase httpContext, AsyncCallback callback, Object state) +46 System.Web.Mvc.MvcHandler.BeginProcessRequest(HttpContext httpContext, AsyncCallback callback, Object state) +63 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.BeginProcessRequest(HttpContext context, AsyncCallback cb, Object extraData) +13 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +8677954 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +155 Version Information: Microsoft .NET Framework Version:2.0.50727.3082; ASP.NET Version:2.0.50727.3082 Question is: the first stack trace is irrelevant to others, what happened? Any ideas? Let me make this more clear: a MVC page uses the spring part trying to load a lazy-init service which constructor wants a connection string through a static property like this: <object id="promotionRepos" type="ECommerce.Data.AdoNet.Promotions.PromotionRepos, ECommerce.Data.AdoNet" lazy-init="true"> <constructor-arg name="provider"> <null /> </constructor-arg> <constructor-arg name="connStr"> <object type="ECommerce.ERP.DAL.DBConn, ECommerce.ERP.DAL" factory-method="get_ConnString" /> </constructor-arg> <property name="RefreshInterval" value="00:00:10" /> </object> the timeout part is some what irrelevent to all others. see this in the first exception: Shopping_Shopping.Page_Load(Object sender, EventArgs e) +10 it's another page at all. And also, ECommerce.PMethod.Sql.SqlConns.Open() uses its own connection string, not the one loaded by spring, it's different module from diffrent team. And I am sure the connection string is correct. And, this ysod cames up randomly. Sometimes nothing is wrong, and sometimes, it appears. I thought there could be something wrong with my database or the network/firewall, I will check it later, but now I want understand this tricky stack trace.

    Read the article

  • g++ SSE intrinsics dilemma - value from intrinsic "saturates"

    - by Sriram
    Hi, I wrote a simple program to implement SSE intrinsics for computing the inner product of two large (100000 or more elements) vectors. The program compares the execution time for both, inner product computed the conventional way and using intrinsics. Everything works out fine, until I insert (just for the fun of it) an inner loop before the statement that computes the inner product. Before I go further, here is the code: //this is a sample Intrinsics program to compute inner product of two vectors and compare Intrinsics with traditional method of doing things. #include <iostream> #include <iomanip> #include <xmmintrin.h> #include <stdio.h> #include <time.h> #include <stdlib.h> using namespace std; typedef float v4sf __attribute__ ((vector_size(16))); double innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume len1 = len2. float result = 0.0; for(int i = 0; i < len1; i++) { for(int j = 0; j < len1; j++) { result += (arr1[i] * arr2[i]); } } //float y = 1.23e+09; //cout << "y = " << y << endl; return result; } double sse_v4sf_innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume that len1 = len2. if(len1 != len2) { cout << "Lengths not equal." << endl; exit(1); } /*steps: * 1. load a long-type (4 float) into a v4sf type data from both arrays. * 2. multiply the two. * 3. multiply the same and store result. * 4. add this to previous results. */ v4sf arr1Data, arr2Data, prevSums, multVal, xyz; //__builtin_ia32_xorps(prevSums, prevSums); //making it equal zero. //can explicitly load 0 into prevSums using loadps or storeps (Check). float temp[4] = {0.0, 0.0, 0.0, 0.0}; prevSums = __builtin_ia32_loadups(temp); float result = 0.0; for(int i = 0; i < (len1 - 3); i += 4) { for(int j = 0; j < len1; j++) { arr1Data = __builtin_ia32_loadups(&arr1[i]); arr2Data = __builtin_ia32_loadups(&arr2[i]); //store the contents of two arrays. multVal = __builtin_ia32_mulps(arr1Data, arr2Data); //multiply. xyz = __builtin_ia32_addps(multVal, prevSums); prevSums = xyz; } } //prevSums will hold the sums of 4 32-bit floating point values taken at a time. Individual entries in prevSums also need to be added. __builtin_ia32_storeups(temp, prevSums); //store prevSums into temp. cout << "Values of temp:" << endl; for(int i = 0; i < 4; i++) cout << temp[i] << endl; result += temp[0] + temp[1] + temp[2] + temp[3]; return result; } int main() { clock_t begin, end; int length = 100000; float *arr1, *arr2; double result_Conventional, result_Intrinsic; // printStats("Allocating memory."); arr1 = new float[length]; arr2 = new float[length]; // printStats("End allocation."); srand(time(NULL)); //init random seed. // printStats("Initializing array1 and array2"); begin = clock(); for(int i = 0; i < length; i++) { // for(int j = 0; j < length; j++) { // arr1[i] = rand() % 10 + 1; arr1[i] = 2.5; // arr2[i] = rand() % 10 - 1; arr2[i] = 2.5; // } } end = clock(); cout << "Time to initialize array1 and array2 = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("Finished initialization."); // printStats("Begin inner product conventionally."); begin = clock(); result_Conventional = innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product conventionally = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("End inner product conventionally."); // printStats("Begin inner product using Intrinsics."); begin = clock(); result_Intrinsic = sse_v4sf_innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product with intrinsics = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; //printStats("End inner product using Intrinsics."); cout << "Results: " << endl; cout << " result_Conventional = " << result_Conventional << endl; cout << " result_Intrinsics = " << result_Intrinsic << endl; return 0; } I use the following g++ invocation to build this: g++ -W -Wall -O2 -pedantic -march=i386 -msse intrinsics_SSE_innerProduct.C -o innerProduct Each of the loops above, in both the functions, runs a total of N^2 times. However, given that arr1 and arr2 (the two floating point vectors) are loaded with a value 2.5, the length of the array is 100,000, the result in both cases should be 6.25e+10. The results I get are: Results: result_Conventional = 6.25e+10 result_Intrinsics = 5.36871e+08 This is not all. It seems that the value returned from the function that uses intrinsics "saturates" at the value above. I tried putting other values for the elements of the array and different sizes too. But it seems that any value above 1.0 for the array contents and any size above 1000 meets with the same value we see above. Initially, I thought it might be because all operations within SSE are in floating point, but floating point should be able to store a number that is of the order of e+08. I am trying to see where I could be going wrong but cannot seem to figure it out. I am using g++ version: g++ (GCC) 4.4.1 20090725 (Red Hat 4.4.1-2). Any help on this is most welcome. Thanks, Sriram.

    Read the article

  • Uploading multiple files using Spring MVC 3.0.2 after HiddenHttpMethodFilter has been enabled

    - by Tiny
    I'm using Spring version 3.0.2. I need to upload multiple files using the multiple="multiple" attribute of a file browser such as, <input type="file" id="myFile" name="myFile" multiple="multiple"/> (and not using multiple file browsers something like the one stated by this answer, it indeed works I tried). Although no versions of Internet Explorer supports this approach unless an appropriate jQuery plugin/widget is used, I don't care about it right now (since most other browsers support this). This works fine with commons fileupload but in addition to using RequestMethod.POST and RequestMethod.GET methods, I also want to use other request methods supported and suggested by Spring like RequestMethod.PUT and RequestMethod.DELETE in their own appropriate places. For this to be so, I have configured Spring with HiddenHttpMethodFilter which goes fine as this question indicates. but it can upload only one file at a time even though multiple files in the file browser are chosen. In the Spring controller class, a method is mapped as follows. @RequestMapping(method={RequestMethod.POST}, value={"admin_side/Temp"}) public String onSubmit(@RequestParam("myFile") List<MultipartFile> files, @ModelAttribute("tempBean") TempBean tempBean, BindingResult error, Map model, HttpServletRequest request, HttpServletResponse response) throws IOException, FileUploadException { for(MultipartFile file:files) { System.out.println(file.getOriginalFilename()); } } Even with the request parameter @RequestParam("myFile") List<MultipartFile> files which is a List of type MultipartFile (it can always have only one file at a time). I could find a strategy which is likely to work with multiple files on this blog. I have gone through it carefully. The solution below the section SOLUTION 2 – USE THE RAW REQUEST says, If however the client insists on using the same form input name such as ‘files[]‘ or ‘files’ and then populating that name with multiple files then a small hack is necessary as follows. As noted above Spring 2.5 throws an exception if it detects the same form input name of type file more than once. CommonsFileUploadSupport – the class which throws that exception is not final and the method which throws that exception is protected so using the wonders of inheritance and subclassing one can simply fix/modify the logic a little bit as follows. The change I’ve made is literally one word representing one method invocation which enables us to have multiple files incoming under the same form input name. It attempts to override the method protected MultipartParsingResult parseFileItems(List fileItems, String encoding) {} of the abstract class CommonsFileUploadSupport by extending the class CommonsMultipartResolver such as, package multipartResolver; import java.io.UnsupportedEncodingException; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; import javax.servlet.ServletContext; import org.apache.commons.fileupload.FileItem; import org.springframework.util.StringUtils; import org.springframework.web.multipart.MultipartException; import org.springframework.web.multipart.MultipartFile; import org.springframework.web.multipart.commons.CommonsMultipartFile; import org.springframework.web.multipart.commons.CommonsMultipartResolver; final public class MultiCommonsMultipartResolver extends CommonsMultipartResolver { public MultiCommonsMultipartResolver() { } public MultiCommonsMultipartResolver(ServletContext servletContext) { super(servletContext); } @Override @SuppressWarnings("unchecked") protected MultipartParsingResult parseFileItems(List fileItems, String encoding) { Map<String, MultipartFile> multipartFiles = new HashMap<String, MultipartFile>(); Map multipartParameters = new HashMap(); // Extract multipart files and multipart parameters. for (Iterator it = fileItems.iterator(); it.hasNext();) { FileItem fileItem = (FileItem) it.next(); if (fileItem.isFormField()) { String value = null; if (encoding != null) { try { value = fileItem.getString(encoding); } catch (UnsupportedEncodingException ex) { if (logger.isWarnEnabled()) { logger.warn("Could not decode multipart item '" + fileItem.getFieldName() + "' with encoding '" + encoding + "': using platform default"); } value = fileItem.getString(); } } else { value = fileItem.getString(); } String[] curParam = (String[]) multipartParameters.get(fileItem.getFieldName()); if (curParam == null) { // simple form field multipartParameters.put(fileItem.getFieldName(), new String[] { value }); } else { // array of simple form fields String[] newParam = StringUtils.addStringToArray(curParam, value); multipartParameters.put(fileItem.getFieldName(), newParam); } } else { // multipart file field CommonsMultipartFile file = new CommonsMultipartFile(fileItem); if (multipartFiles.put(fileItem.getName(), file) != null) { throw new MultipartException("Multiple files for field name [" + file.getName() + "] found - not supported by MultipartResolver"); } if (logger.isDebugEnabled()) { logger.debug("Found multipart file [" + file.getName() + "] of size " + file.getSize() + " bytes with original filename [" + file.getOriginalFilename() + "], stored " + file.getStorageDescription()); } } } return new MultipartParsingResult(multipartFiles, multipartParameters); } } What happens is that the last line in the method parseFileItems() (the return statement) i.e. return new MultipartParsingResult(multipartFiles, multipartParameters); causes a compile-time error because the first parameter multipartFiles is a type of Map implemented by HashMap but in reality, it requires a parameter of type MultiValueMap<String, MultipartFile> It is a constructor of a static class inside the abstract class CommonsFileUploadSupport, public abstract class CommonsFileUploadSupport { protected static class MultipartParsingResult { public MultipartParsingResult(MultiValueMap<String, MultipartFile> mpFiles, Map<String, String[]> mpParams) { } } } The reason might be - this solution is about the Spring version 2.5 and I'm using the Spring version 3.0.2 which might be inappropriate for this version. I however tried to replace the Map with MultiValueMap in various ways such as the one shown in the following segment of code, MultiValueMap<String, MultipartFile>mul=new LinkedMultiValueMap<String, MultipartFile>(); for(Entry<String, MultipartFile>entry:multipartFiles.entrySet()) { mul.add(entry.getKey(), entry.getValue()); } return new MultipartParsingResult(mul, multipartParameters); but no success. I'm not sure how to replace Map with MultiValueMap and even doing so could work either. After doing this, the browser shows the Http response, HTTP Status 400 - type Status report message description The request sent by the client was syntactically incorrect (). Apache Tomcat/6.0.26 I have tried to shorten the question as possible as I could and I haven't included unnecessary code. How could be made it possible to upload multiple files after Spring has been configured with HiddenHttpMethodFilter? That blog indicates that It is a long standing, high priority bug. If there is no solution regarding the version 3.0.2 (3 or higher) then I have to disable Spring support forever and continue to use commons-fileupolad as suggested by the third solution on that blog omitting the PUT, DELETE and other request methods forever. Just curiously waiting for a solution and/or suggestion. Very little changes to the code in the parseFileItems() method inside the class MultiCommonsMultipartResolver might make it to upload multiple files but I couldn't succeed in my attempts (again with the Spring version 3.0.2 (3 or higher)).

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • How to resolve: 'cmd' is not recognized as an internal or external command?

    - by qwer1234
    I have searched other forums to solve this error where it would either end with: 1.) re-install OS 2.) Setting path variable C:/Windows/System32 The latter did not work, and as you can probably imagine, I do not want to have to re-install my OS... I am running the command "mvn jetty:run" and the following is my stack trace, finishing with the message: "'cmd' is not recognized as an internal or external command, operable problem or batch file" as stated in the title of this question. [INFO] Scanning for projects... [INFO] ------------------------------------------------------------------------ [INFO] Building Test Tool [INFO] task-segment: [jetty:run] [INFO] ------------------------------------------------------------------------ [INFO] Preparing jetty:run [WARNING] Removing: run from forked lifecycle, to prevent recursive invocation. [INFO] [resources:resources] [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 32 resources [INFO] Copying 192 resources [INFO] [compiler:compile] [INFO] Compiling 1854 source files to C:\Development\global_stock_record\test\java\Turtle\target\classes [INFO] ------------------------------------------------------------------------ [ERROR] BUILD FAILURE [INFO] ------------------------------------------------------------------------ [INFO] Compilation failure C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\compilers\JavaScriptClassCompiler.java:[45,29] cannot find symbol symbol : class CompilerEnvirons location: package org.mozilla.javascript C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\compilers\JavaScriptClassCompiler.java:[47,29] cannot find symbol symbol : class ContextFactory location: package org.mozilla.javascript C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\compilers\JavaScriptClassCompiler.java:[49,39] cannot find symbol symbol : class ClassCompiler location: package org.mozilla.javascript.optimizer C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\compilers\JavaScriptClassCompiler.java:[181,55] cannot find symbol symbol : class CompilerEnvirons location: class net.sf.jasperreports.compilers.JavaScriptClassCompiler C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\export\JRXmlExporter.java:[99,26] package org.w3c.tools.codec does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[26,34] package org.apache.commons.digester does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[27,34] package org.apache.commons.digester does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[34,47] cannot find symbol symbol: class ObjectCreationFactory public abstract class JRBaseFactory implements ObjectCreationFactory C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[41,21] cannot find symbol symbol : class Digester location: class net.sf.jasperreports.engine.xml.JRBaseFactory C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[47,8] cannot find symbol symbol : class Digester location: class net.sf.jasperreports.engine.xml.JRBaseFactory C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\JRBaseFactory.java:[56,25] cannot find symbol symbol : class Digester location: class net.sf.jasperreports.engine.xml.JRBaseFactory C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\Code39Component.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\BarcodeComponent.java:[41,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\Code39Component.java:[66,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.Code39Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\BarcodeComponent.java:[179,29] cannot find symbol symbol : class HumanReadablePlacement location: class net.sf.jasperreports.components.barcode4j.BarcodeComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN128Component.java:[26,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\DataMatrixComponent.java:[26,45] package org.krysalis.barcode4j.impl.datamatrix does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\FourStateBarcodeComponent.java:[26,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\UPCAComponent.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\UPCEComponent.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN13Component.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN8Component.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\Interleaved2Of5Component.java:[28,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN128Component.java:[57,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.EAN128Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\DataMatrixComponent.java:[62,22] cannot find symbol symbol : class SymbolShapeHint location: class net.sf.jasperreports.components.barcode4j.DataMatrixComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\FourStateBarcodeComponent.java:[76,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.FourStateBarcodeComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\UPCAComponent.java:[56,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.UPCAComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\UPCEComponent.java:[56,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.UPCEComponent C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN13Component.java:[56,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.EAN13Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\EAN8Component.java:[56,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.EAN8Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\Interleaved2Of5Component.java:[60,29] cannot find symbol symbol : class ChecksumMode location: class net.sf.jasperreports.components.barcode4j.Interleaved2Of5Component C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRHibernateAbstractDataSource.java:[36,25] package org.hibernate.type does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[49,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[50,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[51,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[52,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[53,20] package org.hibernate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[54,25] package org.hibernate.type does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRHibernateAbstractDataSource.java:[173,38] cannot find symbol symbol : class Type location: class net.sf.jasperreports.engine.data.JRHibernateAbstractDataSource C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[66,35] cannot find symbol symbol : class Type location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[89,9] cannot find symbol symbol : class Session location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[90,9] cannot find symbol symbol : class Query location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[92,9] cannot find symbol symbol : class ScrollableResults location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[359,8] cannot find symbol symbol : class Type location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\query\JRHibernateQueryExecuter.java:[474,8] cannot find symbol symbol : class ScrollableResults location: class net.sf.jasperreports.engine.query.JRHibernateQueryExecuter C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barbecue\BarbecueFillComponent.java:[40,31] package net.sourceforge.barbecue does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[38,27] package org.apache.tools.ant does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[39,27] package org.apache.tools.ant does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[40,27] package org.apache.tools.ant does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[41,33] package org.apache.tools.ant.types does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[42,33] package org.apache.tools.ant.types does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[43,43] package org.apache.tools.ant.types.resources does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[44,32] package org.apache.tools.ant.util does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[45,32] package org.apache.tools.ant.util does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRBaseAntTask.java:[34,36] package org.apache.tools.ant.taskdefs does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRBaseAntTask.java:[41,35] cannot find symbol symbol: class MatchingTask public class JRBaseAntTask extends MatchingTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[74,9] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[76,9] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[86,23] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[104,8] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[131,8] cannot find symbol symbol : class Path location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[145,30] cannot find symbol symbol : class BuildException location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[183,41] cannot find symbol symbol : class BuildException location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[211,33] cannot find symbol symbol : class BuildException location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\ant\JRAntXmlExportTask.java:[276,32] cannot find symbol symbol : class BuildException location: class net.sf.jasperreports.ant.JRAntXmlExportTask C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\TransformedPropertyRule.java:[27,34] package org.apache.commons.digester does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\xml\TransformedPropertyRule.java:[37,54] cannot find symbol symbol: class Rule public abstract class TransformedPropertyRule extends Rule C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\data\mondrian\MondrianDataAdapterService.java:[29,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\data\mondrian\MondrianDataAdapterService.java:[30,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\data\mondrian\MondrianDataAdapterService.java:[31,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\data\mondrian\MondrianDataAdapterService.java:[45,9] cannot find symbol symbol : class Connection location: class net.sf.jasperreports.data.mondrian.MondrianDataAdapterService C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[40,10] package jxl does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[41,10] package jxl does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[42,10] package jxl does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[43,20] package jxl.read.biff does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[66,9] cannot find symbol symbol : class Workbook location: class net.sf.jasperreports.engine.data.JRXlsDataSource C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\engine\data\JRXlsDataSource.java:[83,24] cannot find symbol symbol : class Workbook location: class net.sf.jasperreports.engine.data.JRXlsDataSource C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\olap\xmla\JRXmlaMember.java:[26,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\olap\result\JROlapMember.java:[26,20] package mondrian.olap does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\olap\xmla\JRXmlaMember.java:[89,8] cannot find symbol symbol : class Member location: class net.sf.jasperreports.olap.xmla.JRXmlaMember C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\olap\result\JROlapMember.java:[46,1] cannot find symbol symbol : class Member location: interface net.sf.jasperreports.olap.result.JROlapMember C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\web\actions\AbstractAction.java:[43,36] package org.codehaus.jackson.annotate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\web\actions\AbstractAction.java:[49,1] cannot find symbol symbol: class JsonTypeInfo @JsonTypeInfo(use=JsonTypeInfo.Id.NAME, include=JsonTypeInfo.As.PROPERTY, property="actionName") C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[32,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[33,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[34,29] package org.krysalis.barcode4j does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[35,34] package org.krysalis.barcode4j.impl does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[36,42] package org.krysalis.barcode4j.impl.codabar does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[37,42] package org.krysalis.barcode4j.impl.code128 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[38,42] package org.krysalis.barcode4j.impl.code128 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[39,41] package org.krysalis.barcode4j.impl.code39 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[40,45] package org.krysalis.barcode4j.impl.datamatrix does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[41,45] package org.krysalis.barcode4j.impl.datamatrix does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[42,44] package org.krysalis.barcode4j.impl.fourstate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[43,44] package org.krysalis.barcode4j.impl.fourstate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[44,44] package org.krysalis.barcode4j.impl.fourstate does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[45,42] package org.krysalis.barcode4j.impl.int2of5 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[46,41] package org.krysalis.barcode4j.impl.pdf417 does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[47,42] package org.krysalis.barcode4j.impl.postnet does not exist C:\Development\global_stock_record\test\java\Turtle\src\main\java\net\sf\jasperreports\components\barcode4j\AbstractBarcodeEvaluator.java:[48,41] package org.krysalis.barcode4j.impl.upcean does not exist [INFO] ------------------------------------------------------------------------ [INFO] For more information, run Maven with the -e switch [INFO] ------------------------------------------------------------------------ [INFO] Total time: 17 seconds [INFO] Finished at: Fri Dec 07 11:46:28 EST 2012 [INFO] Final Memory: 27M/63M [INFO] ------------------------------------------------------------------------

    Read the article

  • JBOSS 7.1 started hanging after 6 months of deployment

    - by PVR
    My application is been live from 6 months. The application is host on jboss 7.1 server. From last few days I am finding numerous problem of hanging of jboss server. Though I restart the jboss server again, it does not invoke. I need to restart the server machine itself. Can anyone please let me know what could be the cause of these problems and the workable resolutions or any suggestion ? Kindly dont degrade the question as I am facing a lot problems due to this hanging issue. Also for the information, the application is based on Java, GWT, Hibernate 3. Please find the standalone.xml file in case if it helps. <extensions> <extension module="org.jboss.as.clustering.infinispan"/> <extension module="org.jboss.as.configadmin"/> <extension module="org.jboss.as.connector"/> <extension module="org.jboss.as.deployment-scanner"/> <extension module="org.jboss.as.ee"/> <extension module="org.jboss.as.ejb3"/> <extension module="org.jboss.as.jaxrs"/> <extension module="org.jboss.as.jdr"/> <extension module="org.jboss.as.jmx"/> <extension module="org.jboss.as.jpa"/> <extension module="org.jboss.as.logging"/> <extension module="org.jboss.as.mail"/> <extension module="org.jboss.as.naming"/> <extension module="org.jboss.as.osgi"/> <extension module="org.jboss.as.pojo"/> <extension module="org.jboss.as.remoting"/> <extension module="org.jboss.as.sar"/> <extension module="org.jboss.as.security"/> <extension module="org.jboss.as.threads"/> <extension module="org.jboss.as.transactions"/> <extension module="org.jboss.as.web"/> <extension module="org.jboss.as.webservices"/> <extension module="org.jboss.as.weld"/> </extensions> <system-properties> <property name="org.apache.coyote.http11.Http11Protocol.COMPRESSION" value="on"/> <property name="org.apache.coyote.http11.Http11Protocol.COMPRESSION_MIME_TYPES" value="text/javascript,text/css,text/html,text/xml,text/json"/> </system-properties> <management> <security-realms> <security-realm name="ManagementRealm"> <authentication> <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/> </authentication> </security-realm> <security-realm name="ApplicationRealm"> <authentication> <properties path="application-users.properties" relative-to="jboss.server.config.dir"/> </authentication> </security-realm> </security-realms> <management-interfaces> <native-interface security-realm="ManagementRealm"> <socket-binding native="management-native"/> </native-interface> <http-interface security-realm="ManagementRealm"> <socket-binding http="management-http"/> </http-interface> </management-interfaces> </management> <profile> <subsystem xmlns="urn:jboss:domain:logging:1.1"> <console-handler name="CONSOLE"> <level name="INFO"/> <formatter> <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/> </formatter> </console-handler> <periodic-rotating-file-handler name="FILE"> <formatter> <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/> </formatter> <file relative-to="jboss.server.log.dir" path="server.log"/> <suffix value=".yyyy-MM-dd"/> <append value="true"/> </periodic-rotating-file-handler> <logger category="com.arjuna"> <level name="WARN"/> </logger> <logger category="org.apache.tomcat.util.modeler"> <level name="WARN"/> </logger> <logger category="sun.rmi"> <level name="WARN"/> </logger> <logger category="jacorb"> <level name="WARN"/> </logger> <logger category="jacorb.config"> <level name="ERROR"/> </logger> <root-logger> <level name="INFO"/> <handlers> <handler name="CONSOLE"/> <handler name="FILE"/> </handlers> </root-logger> </subsystem> <subsystem xmlns="urn:jboss:domain:configadmin:1.0"/> <subsystem xmlns="urn:jboss:domain:datasources:1.0"> <datasources> <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS" enabled="true" use-java-context="true"> <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url> <driver>h2</driver> <security> <user-name>sa</user-name> <password>sa</password> </security> </datasource> <drivers> <driver name="h2" module="com.h2database.h2"> <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class> </driver> </drivers> </datasources> </subsystem> <subsystem xmlns="urn:jboss:domain:deployment-scanner:1.1"> <deployment-scanner path="deployments" relative-to="jboss.server.base.dir" scan-interval="5000"/> </subsystem> <subsystem xmlns="urn:jboss:domain:ee:1.0"/> <subsystem xmlns="urn:jboss:domain:ejb3:1.2"> <session-bean> <stateless> <bean-instance-pool-ref pool-name="slsb-strict-max-pool"/> </stateless> <stateful default-access-timeout="5000" cache-ref="simple"/> <singleton default-access-timeout="5000"/> </session-bean> <pools> <bean-instance-pools> <strict-max-pool name="slsb-strict-max-pool" max-pool-size="20" instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/> <strict-max-pool name="mdb-strict-max-pool" max-pool-size="20" instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/> </bean-instance-pools> </pools> <caches> <cache name="simple" aliases="NoPassivationCache"/> <cache name="passivating" passivation-store-ref="file" aliases="SimpleStatefulCache"/> </caches> <passivation-stores> <file-passivation-store name="file"/> </passivation-stores> <async thread-pool-name="default"/> <timer-service thread-pool-name="default"> <data-store path="timer-service-data" relative-to="jboss.server.data.dir"/> </timer-service> <remote connector-ref="remoting-connector" thread-pool-name="default"/> <thread-pools> <thread-pool name="default"> <max-threads count="10"/> <keepalive-time time="100" unit="milliseconds"/> </thread-pool> </thread-pools> </subsystem> <subsystem xmlns="urn:jboss:domain:infinispan:1.2" default-cache-container="hibernate"> <cache-container name="hibernate" default-cache="local-query"> <local-cache name="entity"> <transaction mode="NON_XA"/> <eviction strategy="LRU" max-entries="10000"/> <expiration max-idle="100000"/> </local-cache> <local-cache name="local-query"> <transaction mode="NONE"/> <eviction strategy="LRU" max-entries="10000"/> <expiration max-idle="100000"/> </local-cache> <local-cache name="timestamps"> <transaction mode="NONE"/> <eviction strategy="NONE"/> </local-cache> </cache-container> </subsystem> <subsystem xmlns="urn:jboss:domain:jaxrs:1.0"/> <subsystem xmlns="urn:jboss:domain:jca:1.1"> <archive-validation enabled="true" fail-on-error="true" fail-on-warn="false"/> <bean-validation enabled="true"/> <default-workmanager> <short-running-threads> <core-threads count="50"/> <queue-length count="50"/> <max-threads count="50"/> <keepalive-time time="10" unit="seconds"/> </short-running-threads> <long-running-threads> <core-threads count="50"/> <queue-length count="50"/> <max-threads count="50"/> <keepalive-time time="100" unit="seconds"/> </long-running-threads> </default-workmanager> <cached-connection-manager/> </subsystem> <subsystem xmlns="urn:jboss:domain:jdr:1.0"/> <subsystem xmlns="urn:jboss:domain:jmx:1.1"> <show-model value="true"/> <remoting-connector/> </subsystem> <subsystem xmlns="urn:jboss:domain:jpa:1.0"> <jpa default-datasource=""/> </subsystem> <subsystem xmlns="urn:jboss:domain:mail:1.0"> <mail-session jndi-name="java:jboss/mail/Default"> <smtp-server outbound-socket-binding-ref="mail-smtp"/> </mail-session> </subsystem> <subsystem xmlns="urn:jboss:domain:naming:1.1"/> <subsystem xmlns="urn:jboss:domain:osgi:1.2" activation="lazy"> <properties> <property name="org.osgi.framework.startlevel.beginning"> 1 </property> </properties> <capabilities> <capability name="javax.servlet.api:v25"/> <capability name="javax.transaction.api"/> <capability name="org.apache.felix.log" startlevel="1"/> <capability name="org.jboss.osgi.logging" startlevel="1"/> <capability name="org.apache.felix.configadmin" startlevel="1"/> <capability name="org.jboss.as.osgi.configadmin" startlevel="1"/> </capabilities> </subsystem> <subsystem xmlns="urn:jboss:domain:pojo:1.0"/> <subsystem xmlns="urn:jboss:domain:remoting:1.1"> <connector name="remoting-connector" socket-binding="remoting" security-realm="ApplicationRealm"/> </subsystem> <subsystem xmlns="urn:jboss:domain:resource-adapters:1.0"/> <subsystem xmlns="urn:jboss:domain:sar:1.0"/> <subsystem xmlns="urn:jboss:domain:security:1.1"> <security-domains> <security-domain name="other" cache-type="default"> <authentication> <login-module code="Remoting" flag="optional"> <module-option name="password-stacking" value="useFirstPass"/> </login-module> <login-module code="RealmUsersRoles" flag="required"> <module-option name="usersProperties" value="${jboss.server.config.dir}/application-users.properties"/> <module-option name="rolesProperties" value="${jboss.server.config.dir}/application-roles.properties"/> <module-option name="realm" value="ApplicationRealm"/> <module-option name="password-stacking" value="useFirstPass"/> </login-module> </authentication> </security-domain> <security-domain name="jboss-web-policy" cache-type="default"> <authorization> <policy-module code="Delegating" flag="required"/> </authorization> </security-domain> <security-domain name="jboss-ejb-policy" cache-type="default"> <authorization> <policy-module code="Delegating" flag="required"/> </authorization> </security-domain> </security-domains> </subsystem> <subsystem xmlns="urn:jboss:domain:threads:1.1"/> <subsystem xmlns="urn:jboss:domain:transactions:1.1"> <core-environment> <process-id> <uuid/> </process-id> </core-environment> <recovery-environment socket-binding="txn-recovery-environment" status-socket-binding="txn-status-manager"/> <coordinator-environment default-timeout="300"/> </subsystem> <subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-host" native="false"> <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/> <virtual-server name="default-host" enable-welcome-root="false"> <alias name="localhost"/> <alias name="nextenders.com"/> </virtual-server> </subsystem> <subsystem xmlns="urn:jboss:domain:webservices:1.1"> <modify-wsdl-address>true</modify-wsdl-address> <wsdl-host>${jboss.bind.address:127.0.0.1}</wsdl-host> <endpoint-config name="Standard-Endpoint-Config"/> <endpoint-config name="Recording-Endpoint-Config"> <pre-handler-chain name="recording-handlers" protocol-bindings="##SOAP11_HTTP ##SOAP11_HTTP_MTOM ##SOAP12_HTTP ##SOAP12_HTTP_MTOM"> <handler name="RecordingHandler" class="org.jboss.ws.common.invocation.RecordingServerHandler"/> </pre-handler-chain> </endpoint-config> </subsystem> <subsystem xmlns="urn:jboss:domain:weld:1.0"/> </profile> <interfaces> <interface name="management"> <inet-address value="${jboss.bind.address.management:127.0.0.1}"/> </interface> <interface name="public"> <inet-address value="${jboss.bind.address:127.0.0.1}"/> </interface> <interface name="unsecure"> <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}"/> </interface> </interfaces> <socket-binding-group name="standard-sockets" default-interface="public" port-offset="${jboss.socket.binding.port-offset:0}"> <socket-binding name="management-native" interface="management" port="${jboss.management.native.port:9999}"/> <socket-binding name="management-http" interface="management" port="${jboss.management.http.port:9990}"/> <socket-binding name="management-https" interface="management" port="${jboss.management.https.port:9443}"/> <socket-binding name="ajp" port="8009"/> <socket-binding name="http" port="80"/> <socket-binding name="https" port="443"/> <socket-binding name="osgi-http" interface="management" port="8090"/> <socket-binding name="remoting" port="4447"/> <socket-binding name="txn-recovery-environment" port="4712"/> <socket-binding name="txn-status-manager" port="4713"/> <outbound-socket-binding name="mail-smtp"> <remote-destination host="localhost" port="25"/> </outbound-socket-binding> </socket-binding-group>

    Read the article

< Previous Page | 17 18 19 20 21