Search Results

Search found 5593 results on 224 pages for 'fixed'.

Page 210/224 | < Previous Page | 206 207 208 209 210 211 212 213 214 215 216 217  | Next Page >

  • How to use Azure storage for uploading and displaying pictures.

    - by Magnus Karlsson
    Basic set up of Azure storage for local development and production. This is a somewhat completion of the following guide from http://www.windowsazure.com/en-us/develop/net/how-to-guides/blob-storage/ that also involves a practical example that I believe is commonly used, i.e. upload and present an image from a user.   First we set up for local storage and then we configure for them to work on a web role. Steps: 1. Configure connection string locally. 2. Configure model, controllers and razor views.   1. Setup connectionsstring 1.1 Right click your web role and choose “Properties”. 1.2 Click Settings. 1.3 Add setting. 1.4 Name your setting. This will be the name of the connectionstring. 1.5 Click the ellipsis to the right. (the ellipsis appear when you mark the area. 1.6 The following window appears- Select “Windows Azure storage emulator” and click ok.   Now we have a connection string to use. To be able to use it we need to make sure we have windows azure tools for storage. 2.1 Click Tools –> Library Package manager –> Manage Nuget packages for solution. 2.2 This is what it looks like after it has been added.   Now on to what the code should look like. 3.1 First we need a view which collects images to upload. Here Index.cshtml. 1: @model List<string> 2:  3: @{ 4: ViewBag.Title = "Index"; 5: } 6:  7: <h2>Index</h2> 8: <form action="@Url.Action("Upload")" method="post" enctype="multipart/form-data"> 9:  10: <label for="file">Filename:</label> 11: <input type="file" name="file" id="file1" /> 12: <br /> 13: <label for="file">Filename:</label> 14: <input type="file" name="file" id="file2" /> 15: <br /> 16: <label for="file">Filename:</label> 17: <input type="file" name="file" id="file3" /> 18: <br /> 19: <label for="file">Filename:</label> 20: <input type="file" name="file" id="file4" /> 21: <br /> 22: <input type="submit" value="Submit" /> 23: 24: </form> 25:  26: @foreach (var item in Model) { 27:  28: <img src="@item" alt="Alternate text"/> 29: } 3.2 We need a controller to receive the post. Notice the “containername” string I send to the blobhandler. I use this as a folder for the pictures for each user. If this is not a requirement you could just call it container or anything with small characters directly when creating the container. 1: public ActionResult Upload(IEnumerable<HttpPostedFileBase> file) 2: { 3: BlobHandler bh = new BlobHandler("containername"); 4: bh.Upload(file); 5: var blobUris=bh.GetBlobs(); 6: 7: return RedirectToAction("Index",blobUris); 8: } 3.3 The handler model. I’ll let the comments speak for themselves. 1: public class BlobHandler 2: { 3: // Retrieve storage account from connection string. 4: CloudStorageAccount storageAccount = CloudStorageAccount.Parse( 5: CloudConfigurationManager.GetSetting("StorageConnectionString")); 6: 7: private string imageDirecoryUrl; 8: 9: /// <summary> 10: /// Receives the users Id for where the pictures are and creates 11: /// a blob storage with that name if it does not exist. 12: /// </summary> 13: /// <param name="imageDirecoryUrl"></param> 14: public BlobHandler(string imageDirecoryUrl) 15: { 16: this.imageDirecoryUrl = imageDirecoryUrl; 17: // Create the blob client. 18: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 19: 20: // Retrieve a reference to a container. 21: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 22: 23: // Create the container if it doesn't already exist. 24: container.CreateIfNotExists(); 25: 26: //Make available to everyone 27: container.SetPermissions( 28: new BlobContainerPermissions 29: { 30: PublicAccess = BlobContainerPublicAccessType.Blob 31: }); 32: } 33: 34: public void Upload(IEnumerable<HttpPostedFileBase> file) 35: { 36: // Create the blob client. 37: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 38: 39: // Retrieve a reference to a container. 40: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 41: 42: if (file != null) 43: { 44: foreach (var f in file) 45: { 46: if (f != null) 47: { 48: CloudBlockBlob blockBlob = container.GetBlockBlobReference(f.FileName); 49: blockBlob.UploadFromStream(f.InputStream); 50: } 51: } 52: } 53: } 54: 55: public List<string> GetBlobs() 56: { 57: // Create the blob client. 58: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 59: 60: // Retrieve reference to a previously created container. 61: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 62: 63: List<string> blobs = new List<string>(); 64: 65: // Loop over blobs within the container and output the URI to each of them 66: foreach (var blobItem in container.ListBlobs()) 67: blobs.Add(blobItem.Uri.ToString()); 68: 69: return blobs; 70: } 71: } 3.4 So, when the files have been uploaded we will get them to present them to out user in the index page. Pretty straight forward. In this example we only present the image by sending the Uri’s to the view. A better way would be to save them up in a view model containing URI, metadata, alternate text, and other relevant information but for this example this is all we need.   4. Now press F5 in your solution to try it out. You can see the storage emulator UI here:     4.1 If you get any exceptions or errors I suggest to first check if the service Is running correctly. I had problem with this and they seemed related to the installation and a reboot fixed my problems.     5. Set up for Cloud storage. To do this we need to add configuration for cloud just as we did for local in step one. 5.1 We need our keys to do this. Go to the windows Azure menagement portal, select storage icon to the right and click “Manage keys”. (Image from a different blog post though).   5.2 Do as in step 1.but replace step 1.6 with: 1.6 Choose “Manually entered credentials”. Enter your account name. 1.7 Paste your Account Key from step 5.1. and click ok.   5.3. Save, publish and run! Please feel free to ask any questions using the comments form at the bottom of this page. I will get back to you to help you solve any questions. Our consultancy agency also provides services in the Nordic regions if you would like any further support.

    Read the article

  • CLR Version issues with CorBindRuntimeEx

    - by Rick Strahl
    I’m working on an older FoxPro application that’s using .NET Interop and this app loads its own copy of the .NET runtime through some of our own tools (wwDotNetBridge). This all works fine and it’s fairly straightforward to load and host the runtime and then make calls against it. I’m writing this up for myself mostly because I’ve been bitten by these issues repeatedly and spend 15 minutes each However, things get tricky when calling specific versions of the .NET runtime since .NET 4.0 has shipped. Basically we need to be able to support both .NET 2.0 and 4.0 and we’re currently doing it with the same assembly – a .NET 2.0 assembly that is the AppDomain entry point. This works as .NET 4.0 can easily host .NET 2.0 assemblies and the functionality in the 2.0 assembly provides all the features we need to call .NET 4.0 assemblies via Reflection. In wwDotnetBridge we provide a load flag that allows specification of the runtime version to use. Something like this: do wwDotNetBridge LOCAL loBridge as wwDotNetBridge loBridge = CreateObject("wwDotNetBridge","v4.0.30319") and this works just fine in most cases.  If I specify V4 internally that gets fixed up to a whole version number like “v4.0.30319” which is then actually used to host the .NET runtime. Specifically the ClrVersion setting is handled in this Win32 DLL code that handles loading the runtime for me: /// Starts up the CLR and creates a Default AppDomain DWORD WINAPI ClrLoad(char *ErrorMessage, DWORD *dwErrorSize) { if (spDefAppDomain) return 1; //Retrieve a pointer to the ICorRuntimeHost interface HRESULT hr = CorBindToRuntimeEx( ClrVersion, //Retrieve latest version by default L"wks", //Request a WorkStation build of the CLR STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (void**)&spRuntimeHost ); if (FAILED(hr)) { *dwErrorSize = SetError(hr,ErrorMessage); return hr; } //Start the CLR hr = spRuntimeHost->Start(); if (FAILED(hr)) return hr; CComPtr<IUnknown> pUnk; WCHAR domainId[50]; swprintf(domainId,L"%s_%i",L"wwDotNetBridge",GetTickCount()); hr = spRuntimeHost->CreateDomain(domainId,NULL,&pUnk); hr = pUnk->QueryInterface(&spDefAppDomain.p); if (FAILED(hr)) return hr; return 1; } CorBindToRuntimeEx allows for a specific .NET version string to be supplied which is what I’m doing via an API call from the FoxPro code. The behavior of CorBindToRuntimeEx is a bit finicky however. The documentation states that NULL should load the latest version of the .NET runtime available on the machine – but it actually doesn’t. As far as I can see – regardless of runtime overrides even in the .config file – NULL will always load .NET 2.0 even if 4.0 is installed. <supportedRuntime> .config File Settings Things get even more unpredictable once you start adding runtime overrides into the application’s .config file. In my scenario working inside of Visual FoxPro this would be VFP9.exe.config in the FoxPro installation folder (not the current folder). If I have a specific runtime override in the .config file like this: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v2.0.50727" /> </startup> </configuration> Not surprisingly with this I can load a .NET 2.0  runtime, but I will not be able to load Version 4.0 of the .NET runtime even if I explicitly specify it in my call to ClrLoad. Worse I don’t get an error – it will just go ahead and hand me a V2 version of the runtime and assume that’s what I wanted. Yuck! However, if I set the supported runtime to V4 in the .config file: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v4.0.30319" /> </startup> </configuration> Then I can load both V4 and V2 of the runtime. Specifying NULL however will STILL only give me V2 of the runtime. Again this seems pretty inconsistent. If you’re hosting runtimes make sure you check which version of the runtime is actually loading first to ensure you get the one you’re looking for. If the wrong version loads – say 2.0 and you want 4.0 - and you then proceed to load 4.0 assemblies they will all fail to load due to version mismatches. This is how all of this started – I had a bunch of assemblies that weren’t loading and it took a while to figure out that the host was running the wrong version of the CLR and therefore caused the assemblies loading to fail. Arrggh! <supportedRuntime> and Debugger Version <supportedRuntime> also affects the use of the .NET debugger when attached to the target application. Whichever runtime is specified in the key is the version of the debugger that fires up. This can have some interesting side effects. If you load a .NET 2.0 assembly but <supportedRuntime> points at V4.0 (or vice versa) the debugger will never fire because it can only debug in the appropriate runtime version. This has bitten me on several occasions where code runs just fine but the debugger will just breeze by breakpoints without notice. The default version for the debugger is the latest version installed on the system if <supportedRuntime> is not set. Summary Besides all the hassels, I’m thankful I can build a .NET 2.0 assembly and have it host .NET 4.0 and call .NET 4.0 code. This way we’re able to ship a single assembly that provides functionality that supports both .NET 2 and 4 without having to have separate DLLs for both which would be a deployment and update nightmare. The MSDN documentation does point at newer hosting API’s specifically for .NET 4.0 which are way more complicated and even less documented but that doesn’t help here because the runtime needs to be able to host both .NET 4.0 and 2.0. Not pleased about that – the new APIs look way more complex and of course they’re not available with older versions of the runtime installed which in our case makes them useless to me in this scenario where I have to support .NET 2.0 hosting (to provide greater ‘built-in’ platform support). Once you know the behavior above, it’s manageable. However, it’s quite easy to get tripped up here because there are multiple combinations that can really screw up behaviors.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 1

    - by Simon Cooper
    Before we look at the bytes comprising the CLR-specific data inside an assembly, we first need to understand the logical format of the metadata (For this post I only be looking at simple pure-IL assemblies; mixed-mode assemblies & other things complicates things quite a bit). Metadata streams Most of the CLR-specific data inside an assembly is inside one of 5 streams, which are analogous to the sections in a PE file. The name of each section in a PE file starts with a ., and the name of each stream in the CLR metadata starts with a #. All but one of the streams are heaps, which store unstructured binary data. The predefined streams are: #~ Also called the metadata stream, this stream stores all the information on the types, methods, fields, properties and events in the assembly. Unlike the other streams, the metadata stream has predefined contents & structure. #Strings This heap is where all the namespace, type & member names are stored. It is referenced extensively from the #~ stream, as we'll be looking at later. #US Also known as the user string heap, this stream stores all the strings used in code directly. All the strings you embed in your source code end up in here. This stream is only referenced from method bodies. #GUID This heap exclusively stores GUIDs used throughout the assembly. #Blob This heap is for storing pure binary data - method signatures, generic instantiations, that sort of thing. Items inside the heaps (#Strings, #US, #GUID and #Blob) are indexed using a simple binary offset from the start of the heap. At that offset is a coded integer giving the length of that item, then the item's bytes immediately follow. The #GUID stream is slightly different, in that GUIDs are all 16 bytes long, so a length isn't required. Metadata tables The #~ stream contains all the assembly metadata. The metadata is organised into 45 tables, which are binary arrays of predefined structures containing information on various aspects of the metadata. Each entry in a table is called a row, and the rows are simply concatentated together in the file on disk. For example, each row in the TypeRef table contains: A reference to where the type is defined (most of the time, a row in the AssemblyRef table). An offset into the #Strings heap with the name of the type An offset into the #Strings heap with the namespace of the type. in that order. The important tables are (with their table number in hex): 0x2: TypeDef 0x4: FieldDef 0x6: MethodDef 0x14: EventDef 0x17: PropertyDef Contains basic information on all the types, fields, methods, events and properties defined in the assembly. 0x1: TypeRef The details of all the referenced types defined in other assemblies. 0xa: MemberRef The details of all the referenced members of types defined in other assemblies. 0x9: InterfaceImpl Links the types defined in the assembly with the interfaces that type implements. 0xc: CustomAttribute Contains information on all the attributes applied to elements in this assembly, from method parameters to the assembly itself. 0x18: MethodSemantics Links properties and events with the methods that comprise the get/set or add/remove methods of the property or method. 0x1b: TypeSpec 0x2b: MethodSpec These tables provide instantiations of generic types and methods for each usage within the assembly. There are several ways to reference a single row within a table. The simplest is to simply specify the 1-based row index (RID). The indexes are 1-based so a value of 0 can represent 'null'. In this case, which table the row index refers to is inferred from the context. If the table can't be determined from the context, then a particular row is specified using a token. This is a 4-byte value with the most significant byte specifying the table, and the other 3 specifying the 1-based RID within that table. This is generally how a metadata table row is referenced from the instruction stream in method bodies. The third way is to use a coded token, which we will look at in the next post. So, back to the bytes Now we've got a rough idea of how the metadata is logically arranged, we can now look at the bytes comprising the start of the CLR data within an assembly: The first 8 bytes of the .text section are used by the CLR loader stub. After that, the CLR-specific data starts with the CLI header. I've highlighted the important bytes in the diagram. In order, they are: The size of the header. As the header is a fixed size, this is always 0x48. The CLR major version. This is always 2, even for .NET 4 assemblies. The CLR minor version. This is always 5, even for .NET 4 assemblies, and seems to be ignored by the runtime. The RVA and size of the metadata header. In the diagram, the RVA 0x20e4 corresponds to the file offset 0x2e4 Various flags specifying if this assembly is pure-IL, whether it is strong name signed, and whether it should be run as 32-bit (this is how the CLR differentiates between x86 and AnyCPU assemblies). A token pointing to the entrypoint of the assembly. In this case, 06 (the last byte) refers to the MethodDef table, and 01 00 00 refers to to the first row in that table. (after a gap) RVA of the strong name signature hash, which comes straight after the CLI header. The RVA 0x2050 corresponds to file offset 0x250. The rest of the CLI header is mainly used in mixed-mode assemblies, and so is zeroed in this pure-IL assembly. After the CLI header comes the strong name hash, which is a SHA-1 hash of the assembly using the strong name key. After that comes the bodies of all the methods in the assembly concatentated together. Each method body starts off with a header, which I'll be looking at later. As you can see, this is a very small assembly with only 2 methods (an instance constructor and a Main method). After that, near the end of the .text section, comes the metadata, containing a metadata header and the 5 streams discussed above. We'll be looking at this in the next post. Conclusion The CLI header data doesn't have much to it, but we've covered some concepts that will be important in later posts - the logical structure of the CLR metadata and the overall layout of CLR data within the .text section. Next, I'll have a look at the contents of the #~ stream, and how the table data is arranged on disk.

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Contracting as a Software Developer in the UK

    - by Frez
    Normal 0 false false false EN-GB X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;} Having had some 15 years’ experience of working as a software contractor, I am often asked by developers who work as permanent employees (permies) about the pros and cons of working as a software consultant through my own limited company and whether the move would be a good one for them. Whilst it is possible to contract using other financial vehicles such as umbrella companies, this article will only consider limited companies as that is what I have experience of using. Contracting or consultancy requires a different mind-set from being a permanent member of staff, and not all developers are capable of this shift in attitude. Whilst you can look forward to an increase in the money you take home, there are real risks and expenses you would not normally be exposed to as a permie. So let us have a look at the pros and cons: Pros: More money There is no doubt that whilst you are working on contracts you will earn significantly more than you would as a permanent employee. Furthermore, working through a limited company is more tax efficient. Less politics You really have no need to involve yourself in office politics. When the end of the day comes you can go home and not think or worry about the power struggles within the company you are contracted to. Your career progression is not tied to the company. Expenses from gross income All your expenses of trading as a business will come out of your company’s gross income, i.e. before tax. This covers travelling expenses provided you have not been at the same client/location for more than two years, internet subscriptions, professional subscriptions, software, hardware, accountancy services and so on. Cons: Work is more transient Contracts typically range from a couple of weeks to a year, although will most likely start at 3 months. However, most contracts are extended either because the project you have been brought in to help with takes longer to deliver than expected, the client decides they can use you on other aspects of the project, or the client decides they would like to use you on other projects. The temporary nature of the work means that you will have down-time between contracts while you secure new opportunities during which time your company will have no income. You may need to attend several interviews before securing a new contract. Accountancy expenses Your company is a separate entity and there are accountancy requirements which, unless you like paperwork, means your company will need to appoint an accountant to prepare your company’s accounts. It may also be worth purchasing some accountancy software, so talk to your accountant about this as they may prefer you to use a particular software package so they can integrate it with their systems. VAT You will need to register your company for VAT. This is tax neutral for you as the VAT you charge your clients you will pass onto the government less any VAT you are reclaiming from expenses, but it is additional paperwork to undertake each quarter. It is worth checking out the Fixed Rate VAT Scheme that is available, particularly after the initial expenses of setting up your company are over. No training Clients take you on based on your skills, not to train you when they will lose that investment at the end of the contract, so understand that it is unlikely you will receive any training funded by a client. However, learning new skills during a contract is possible and you may choose to accept a contract on a lower rate if this is guaranteed as it will help secure future contracts. No financial extras You will have no free pension, life, accident, sickness or medical insurance unless you choose to purchase them yourself. A financial advisor can give you all the necessary advice in this area, and it is worth taking seriously. A year after I started as a consultant I contracted a serious illness, this kept me off work for over two months, my client was very understanding and it could have been much worse, so it is worth considering what your options might be in the case of illness, death and retirement. Agencies Whilst it is possible to work directly for end clients there are pros and cons of working through an agency.  The main advantage is cash flow, you invoice the agency and they typically pay you within a week, whereas working directly for a client could have you waiting up to three months to be paid. The downside of working for agencies, especially in the current difficult times, is that they may go out of business and you then have difficulty getting the money you are owed. Tax investigation It is possible that the Inland Revenue may decide to investigate your company for compliance with tax law. Insurance is available to cover you for this. My personal recommendation would be to join the PCG as this insurance is included as a benefit of membership, Professional Indemnity Some agencies require that you are covered by professional indemnity insurance; this is a cost you would not incur as a permie. Travel Unless you live in an area that has an abundance of opportunities, such as central London, it is likely that you will be travelling further, longer and with more expense than if you were permanently employed at a local company. This not only affects you monetarily, but also your quality of life and the ability to keep fit and healthy. Obtaining finance If you want to secure a mortgage on a property it can be more difficult or expensive, especially if you do not have three years of audited accounts to show a mortgage lender.   Caveat This post is my personal opinion and should not be used as a definitive guide or recommendation to contracting and whether it is suitable for you as an individual, i.e. I accept no responsibility if you decide to take up contracting based on this post and you fare badly for whatever reason.

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Dual Monitor (Monitor and TV)

    - by umpirsky
    I connected TV to my computer, and trying to set dual display. Whatever resolution I choose for my second display (TV) I get message like this: The selected configuration for displays could not be applied required virtual size does not fit available size: requested=(2704, 1050), minimum=(320, 200), maximum=(1680, 1680) How can I fix this? Also, while I was experimenting system went to deadlock, I restarted and after boot monitor just turns off once system is up. I boot in recovery mode and after several retries fixed it somehow, I don't know how, probably by changing display config from display manager. now I found xorg.conf.new file in my home dir: Section "ServerLayout" Identifier "X.org Configured" Screen 0 "Screen0" 0 0 Screen 1 "Screen1" RightOf "Screen0" Screen 2 "Screen2" RightOf "Screen1" InputDevice "Mouse0" "CorePointer" InputDevice "Keyboard0" "CoreKeyboard" EndSection Section "Files" ModulePath "/usr/lib/xorg/modules" FontPath "/usr/share/fonts/X11/misc" FontPath "/usr/share/fonts/X11/cyrillic" FontPath "/usr/share/fonts/X11/100dpi/:unscaled" FontPath "/usr/share/fonts/X11/75dpi/:unscaled" FontPath "/usr/share/fonts/X11/Type1" FontPath "/usr/share/fonts/X11/100dpi" FontPath "/usr/share/fonts/X11/75dpi" FontPath "/var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType" FontPath "built-ins" EndSection Section "Module" Load "extmod" Load "dbe" Load "glx" Load "dri" Load "dri2" Load "record" EndSection Section "InputDevice" Identifier "Keyboard0" Driver "kbd" EndSection Section "InputDevice" Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/input/mice" Option "ZAxisMapping" "4 5 6 7" EndSection Section "Monitor" Identifier "Monitor0" VendorName "Monitor Vendor" ModelName "Monitor Model" EndSection Section "Monitor" Identifier "Monitor1" VendorName "Monitor Vendor" ModelName "Monitor Model" EndSection Section "Monitor" Identifier "Monitor2" VendorName "Monitor Vendor" ModelName "Monitor Model" EndSection Section "Device" ### Available Driver options are:- ### Values: <i>: integer, <f>: float, <bool>: "True"/"False", ### <string>: "String", <freq>: "<f> Hz/kHz/MHz", ### <percent>: "<f>%" ### [arg]: arg optional #Option "NoAccel" # [<bool>] #Option "SWcursor" # [<bool>] #Option "Dac6Bit" # [<bool>] #Option "Dac8Bit" # [<bool>] #Option "BusType" # [<str>] #Option "CPPIOMode" # [<bool>] #Option "CPusecTimeout" # <i> #Option "AGPMode" # <i> #Option "AGPFastWrite" # [<bool>] #Option "AGPSize" # <i> #Option "GARTSize" # <i> #Option "RingSize" # <i> #Option "BufferSize" # <i> #Option "EnableDepthMoves" # [<bool>] #Option "EnablePageFlip" # [<bool>] #Option "NoBackBuffer" # [<bool>] #Option "DMAForXv" # [<bool>] #Option "FBTexPercent" # <i> #Option "DepthBits" # <i> #Option "PCIAPERSize" # <i> #Option "AccelDFS" # [<bool>] #Option "IgnoreEDID" # [<bool>] #Option "CustomEDID" # [<str>] #Option "DisplayPriority" # [<str>] #Option "PanelSize" # [<str>] #Option "ForceMinDotClock" # <freq> #Option "ColorTiling" # [<bool>] #Option "VideoKey" # <i> #Option "RageTheatreCrystal" # <i> #Option "RageTheatreTunerPort" # <i> #Option "RageTheatreCompositePort" # <i> #Option "RageTheatreSVideoPort" # <i> #Option "TunerType" # <i> #Option "RageTheatreMicrocPath" # <str> #Option "RageTheatreMicrocType" # <str> #Option "ScalerWidth" # <i> #Option "RenderAccel" # [<bool>] #Option "SubPixelOrder" # [<str>] #Option "ClockGating" # [<bool>] #Option "VGAAccess" # [<bool>] #Option "ReverseDDC" # [<bool>] #Option "LVDSProbePLL" # [<bool>] #Option "AccelMethod" # <str> #Option "DRI" # [<bool>] #Option "ConnectorTable" # <str> #Option "DefaultConnectorTable" # [<bool>] #Option "DefaultTMDSPLL" # [<bool>] #Option "TVDACLoadDetect" # [<bool>] #Option "ForceTVOut" # [<bool>] #Option "TVStandard" # <str> #Option "IgnoreLidStatus" # [<bool>] #Option "DefaultTVDACAdj" # [<bool>] #Option "Int10" # [<bool>] #Option "EXAVSync" # [<bool>] #Option "ATOMTVOut" # [<bool>] #Option "R4xxATOM" # [<bool>] #Option "ForceLowPowerMode" # [<bool>] #Option "DynamicPM" # [<bool>] #Option "NewPLL" # [<bool>] #Option "ZaphodHeads" # <str> Identifier "Card0" Driver "radeon" BusID "PCI:2:0:0" EndSection Section "Device" ### Available Driver options are:- ### Values: <i>: integer, <f>: float, <bool>: "True"/"False", ### <string>: "String", <freq>: "<f> Hz/kHz/MHz", ### <percent>: "<f>%" ### [arg]: arg optional #Option "ShadowFB" # [<bool>] #Option "Rotate" # <str> #Option "fbdev" # <str> #Option "debug" # [<bool>] Identifier "Card1" Driver "fbdev" BusID "PCI:2:0:0" EndSection Section "Device" ### Available Driver options are:- ### Values: <i>: integer, <f>: float, <bool>: "True"/"False", ### <string>: "String", <freq>: "<f> Hz/kHz/MHz", ### <percent>: "<f>%" ### [arg]: arg optional #Option "ShadowFB" # [<bool>] #Option "DefaultRefresh" # [<bool>] #Option "ModeSetClearScreen" # [<bool>] Identifier "Card2" Driver "vesa" BusID "PCI:2:0:0" EndSection Section "Screen" Identifier "Screen0" Device "Card0" Monitor "Monitor0" SubSection "Display" Viewport 0 0 Depth 1 EndSubSection SubSection "Display" Viewport 0 0 Depth 4 EndSubSection SubSection "Display" Viewport 0 0 Depth 8 EndSubSection SubSection "Display" Viewport 0 0 Depth 15 EndSubSection SubSection "Display" Viewport 0 0 Depth 16 EndSubSection SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "Screen1" Device "Card1" Monitor "Monitor1" SubSection "Display" Viewport 0 0 Depth 1 EndSubSection SubSection "Display" Viewport 0 0 Depth 4 EndSubSection SubSection "Display" Viewport 0 0 Depth 8 EndSubSection SubSection "Display" Viewport 0 0 Depth 15 EndSubSection SubSection "Display" Viewport 0 0 Depth 16 EndSubSection SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "Screen2" Device "Card2" Monitor "Monitor2" SubSection "Display" Viewport 0 0 Depth 1 EndSubSection SubSection "Display" Viewport 0 0 Depth 4 EndSubSection SubSection "Display" Viewport 0 0 Depth 8 EndSubSection SubSection "Display" Viewport 0 0 Depth 15 EndSubSection SubSection "Display" Viewport 0 0 Depth 16 EndSubSection SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Can I delete it? Second display (TV) only works when I check Mirror displays option.

    Read the article

  • Profiling Startup Of VS2012 &ndash; SpeedTrace Profiler

    - by Alois Kraus
    SpeedTrace is a relatively unknown profiler made a company called Ipcas. A single professional license does cost 449€+VAT. For the test I did use SpeedTrace 4.5 which is currently Beta. Although it is cheaper than dotTrace it has by far the most options to influence how profiling does work. First you need to create a tracing project which does configure tracing for one process type. You can start the application directly from the profiler or (much more interesting) it does attach to a specific process when it is started. For this you need to check “Trace the specified …” radio button and enter the process name in the “Process Name of the Trace” edit box. You can even selectively enable tracing for processes with a specific command line. Then you need to activate the trace project by pressing the Activate Project button and you are ready to start VS as usual. If you want to profile the next 10 VS instances that you start you can set the Number of Processes counter to e.g. 10. This is immensely helpful if you are trying to profile only the next 5 started processes. As you can see there are many more tabs which do allow to influence tracing in a much more sophisticated way. SpeedTrace is the only profiler which does not rely entirely on the profiling Api of .NET. Instead it does modify the IL code (instrumentation on the fly) to write tracing information to disc which can later be analyzed. This approach is not only very fast but it does give you unprecedented analysis capabilities. Once the traces are collected they do show up in your workspace where you can open the trace viewer. I do skip the other windows because this view is by far the most useful one. You can sort the methods not only by Wall Clock time but also by CPU consumption and wait time which none of the other products support in their views at the same time. If you want to optimize for CPU consumption sort by CPU time. If you want to find out where most time is spent you need Clock Total time and Clock Waiting. There you can directly see if the method did take long because it did wait on something or it did really execute stuff that did take so long. Once you have found a method you want to drill deeper you can double click on a method to get to the Caller/Callee view which is similar to the JetBrains Method Grid view. But this time you do see much more. In the middle is the clicked method. Above are the methods that call you and below are the methods that you do directly call. Normally you would then start digging deeper to find the end of the chain where the slow method worth optimizing is located. But there is a shortcut. You can press the magic   button to calculate the aggregation of all called methods. This is displayed in the lower left window where you can see each method call and how long it did take. There you can also sort to see if this call stack does only contain methods (e.g. WCF connect calls which you cannot make faster) not worth optimizing. YourKit has a similar feature where it is called Callees List. In the Functions tab you have in the context menu also many other useful analysis options One really outstanding feature is the View Call History Drilldown. When you select this one you get not a sum of all method invocations but a list with the duration of each method call. This is not surprising since SpeedTrace does use tracing to get its timings. There you can get many useful graphs how this method did behave over time. Did it become slower at some point in time or was only the first call slow? The diagrams and the list will tell you that. That is all fine but what should I do when one method call was slow? I want to see from where it was coming from. No problem select the method in the list hit F10 and you get the call stack. This is a life saver if you e.g. search for serialization problems. Today Serializers are used everywhere. You want to find out from where the 5s XmlSerializer.Deserialize call did come from? Hit F10 and you get the call stack which did invoke the 5s Deserialize call. The CPU timeline tab is also useful to find out where long pauses or excessive CPU consumption did happen. Click in the graph to get the Thread Stacks window where you can get a quick overview what all threads were doing at this time. This does look like the Stack Traces feature in YourKit. Only this time you get the last called method first which helps to quickly see what all threads were executing at this moment. YourKit does generate a rather long list which can be hard to go through when you have many threads. The thread list in the middle does not give you call stacks or anything like that but you see which methods were found most often executing code by the profiler which is a good indication for methods consuming most CPU time. This does sound too good to be true? I have not told you the best part yet. The best thing about this profiler is the staff behind it. When I do see a crash or some other odd behavior I send a mail to Ipcas and I do get usually the next day a mail that the problem has been fixed and a download link to the new version. The guys at Ipcas are even so helpful to log in to your machine via a Citrix Client to help you to get started profiling your actual application you want to profile. After a 2h telco I was converted from a hater to a believer of this tool. The fast response time might also have something to do with the fact that they are actively working on 4.5 to get out of the door. But still the support is by far the best I have encountered so far. The only downside is that you should instrument your assemblies including the .NET Framework to get most accurate numbers. You can profile without doing it but then you will see very high JIT times in your process which can severely affect the correctness of the measured timings. If you do not care about exact numbers you can also enable in the main UI in the Data Trace tab logging of method arguments of primitive types. If you need to know what files at which times were opened by your application you can find it out without a debugger. Since SpeedTrace does read huge trace files in its reader you should perhaps use a 64 bit machine to be able to analyze bigger traces as well. The memory consumption of the trace reader is too high for my taste. But they did promise for the next version to come up with something much improved.

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • RIF PRD: Presentation syntax issues

    - by Charles Young
    Over Christmas I got to play a bit with the W3C RIF PRD and came across a few issues which I thought I would record for posterity. Specifically, I was working on a grammar for the presentation syntax using a GLR grammar parser tool (I was using the current CTP of ‘M’ (MGrammer) and Intellipad – I do so hope the MS guys don’t kill off M and Intellipad now they have dropped the other parts of SQL Server Modelling). I realise that the presentation syntax is non-normative and that any issues with it do not therefore compromise the standard. However, presentation syntax is useful in its own right, and it would be great to iron out any issues in a future revision of the standard. The main issues are actually not to do with the grammar at all, but rather with the ‘running example’ in the RIF PRD recommendation. I started with the code provided in Example 9.1. There are several discrepancies when compared with the EBNF rules documented in the standard. Broadly the problems can be categorised as follows: ·      Parenthesis mismatch – the wrong number of parentheses are used in various places. For example, in GoldRule, the RHS of the rule (the ‘Then’) is nested in the LHS (‘the If’). In NewCustomerAndWidgetRule, the RHS is orphaned from the LHS. Together with additional incorrect parenthesis, this leads to orphanage of UnknownStatusRule from the entire Document. ·      Invalid use of parenthesis in ‘Forall’ constructs. Parenthesis should not be used to enclose formulae. Removal of the invalid parenthesis gave me a feeling of inconsistency when comparing formulae in Forall to formulae in If. The use of parenthesis is not actually inconsistent in these two context, but in an If construct it ‘feels’ as if you are enclosing formulae in parenthesis in a LISP-like fashion. In reality, the parenthesis is simply being used to group subordinate syntax elements. The fact that an If construct can contain only a single formula as an immediate child adds to this feeling of inconsistency. ·      Invalid representation of compact URIs (CURIEs) in the context of Frame productions. In several places the URIs are not qualified with a namespace prefix (‘ex1:’). This conflicts with the definition of CURIEs in the RIF Datatypes and Built-Ins 1.0 document. Here are the productions: CURIE          ::= PNAME_LN                  | PNAME_NS PNAME_LN       ::= PNAME_NS PN_LOCAL PNAME_NS       ::= PN_PREFIX? ':' PN_LOCAL       ::= ( PN_CHARS_U | [0-9] ) ((PN_CHARS|'.')* PN_CHARS)? PN_CHARS       ::= PN_CHARS_U                  | '-' | [0-9] | #x00B7                  | [#x0300-#x036F] | [#x203F-#x2040] PN_CHARS_U     ::= PN_CHARS_BASE                  | '_' PN_CHARS_BASE ::= [A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6]                  | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF]                  | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF]                  | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD]                  | [#x10000-#xEFFFF] PN_PREFIX      ::= PN_CHARS_BASE ((PN_CHARS|'.')* PN_CHARS)? The more I look at CURIEs, the more my head hurts! The RIF specification allows prefixes and colons without local names, which surprised me. However, the CURIE Syntax 1.0 working group note specifically states that this form is supported…and then promptly provides a syntactic definition that seems to preclude it! However, on (much) deeper inspection, it appears that ‘ex1:’ (for example) is allowed, but would really represent a ‘fragment’ of the ‘reference’, rather than a prefix! Ouch! This is so completely ambiguous that it surely calls into question the whole CURIE specification.   In any case, RIF does not allow local names without a prefix. ·      Missing ‘External’ specifiers for built-in functions and predicates.  The EBNF specification enforces this for terms within frames, but does not appear to enforce (what I believe is) the correct use of External on built-in predicates. In any case, the running example only specifies ‘External’ once on the predicate in UnknownStatusRule. External() is required in several other places. ·      The List used on the LHS of UnknownStatusRule is comma-delimited. This is not supported by the EBNF definition. Similarly, the argument list of pred:list-contains is illegally comma-delimited. ·      Unnecessary use of conjunction around a single formula in DiscountRule. This is strictly legal in the EBNF, but redundant.   All the above issues concern the presentation syntax used in the running example. There are a few minor issues with the grammar itself. Note that Michael Kiefer stated in his paper “Rule Interchange Format: The Framework” that: “The presentation syntax of RIF … is an abstract syntax and, as such, it omits certain details that might be important for unambiguous parsing.” ·      The grammar cannot differentiate unambiguously between strategies and priorities on groups. A processor is forced to resolve this by detecting the use of IRIs and integers. This could easily be fixed in the grammar.   ·      The grammar cannot unambiguously parse the ‘->’ operator in frames. Specifically, ‘-’ characters are allowed in PN_LOCAL names and hence a parser cannot determine if ‘status->’ is (‘status’ ‘->’) or (‘status-’ ‘>’).   One way to fix this is to amend the PN_LOCAL production as follows: PN_LOCAL ::= ( PN_CHARS_U | [0-9] ) ((PN_CHARS|'.')* ((PN_CHARS)-('-')))? However, unilaterally changing the definition of this production, which is defined in the SPARQL Query Language for RDF specification, makes me uncomfortable. ·      I assume that the presentation syntax is case-sensitive. I couldn’t find this stated anywhere in the documentation, but function/predicate names do appear to be documented as being case-sensitive. ·      The EBNF does not specify whitespace handling. A couple of productions (RULE and ACTION_BLOCK) are crafted to enforce the use of whitespace. This is not necessary. It seems inconsistent with the rest of the specification and can cause parsing issues. In addition, the Const production exhibits whitespaces issues. The intention may have been to disallow the use of whitespace around ‘^^’, but any direct implementation of the EBNF will probably allow whitespace between ‘^^’ and the SYMSPACE. Of course, I am being a little nit-picking about all this. On the whole, the EBNF translated very smoothly and directly to ‘M’ (MGrammar) and proved to be fairly complete. I have encountered far worse issues when translating other EBNF specifications into usable grammars.   I can’t imagine there would be any difficulty in implementing the same grammar in Antlr, COCO/R, gppg, XText, Bison, etc. A general observation, which repeats a point made above, is that the use of parenthesis in the presentation syntax can feel inconsistent and un-intuitive.   It isn’t actually inconsistent, but I think the presentation syntax could be improved by adopting braces, rather than parenthesis, to delimit subordinate syntax elements in a similar way to so many programming languages. The familiarity of braces would communicate the structure of the syntax more clearly to people like me.  If braces were adopted, parentheses could be retained around ‘var (frame | ‘new()’) constructs in action blocks. This use of parenthesis feels very LISP-like, and I think that this is my issue. It’s as if the presentation syntax represents the deformed love-child of LISP and C. In some places (specifically, action blocks), parenthesis is used in a LISP-like fashion. In other places it is used like braces in C. I find this quite confusing. Here is a corrected version of the running example (Example 9.1) in compliant presentation syntax: Document(    Prefix( ex1 <http://example.com/2009/prd2> )    (* ex1:CheckoutRuleset *)  Group rif:forwardChaining (     (* ex1:GoldRule *)    Group 10 (      Forall ?customer such that And(?customer # ex1:Customer                                     ?customer[ex1:status->"Silver"])        (Forall ?shoppingCart such that ?customer[ex1:shoppingCart->?shoppingCart]           (If Exists ?value (And(?shoppingCart[ex1:value->?value]                                  External(pred:numeric-greater-than-or-equal(?value 2000))))            Then Do(Modify(?customer[ex1:status->"Gold"])))))      (* ex1:DiscountRule *)    Group (      Forall ?customer such that ?customer # ex1:Customer        (If Or( ?customer[ex1:status->"Silver"]                ?customer[ex1:status->"Gold"])         Then Do ((?s ?customer[ex1:shoppingCart-> ?s])                  (?v ?s[ex1:value->?v])                  Modify(?s [ex1:value->External(func:numeric-multiply (?v 0.95))]))))      (* ex1:NewCustomerAndWidgetRule *)    Group (      Forall ?customer such that And(?customer # ex1:Customer                                     ?customer[ex1:status->"New"] )        (If Exists ?shoppingCart ?item                   (And(?customer[ex1:shoppingCart->?shoppingCart]                        ?shoppingCart[ex1:containsItem->?item]                        ?item # ex1:Widget ) )         Then Do( (?s ?customer[ex1:shoppingCart->?s])                  (?val ?s[ex1:value->?val])                  (?voucher ?customer[ex1:voucher->?voucher])                  Retract(?customer[ex1:voucher->?voucher])                  Retract(?voucher)                  Modify(?s[ex1:value->External(func:numeric-multiply(?val 0.90))]))))      (* ex1:UnknownStatusRule *)    Group (      Forall ?customer such that ?customer # ex1:Customer        (If Not(Exists ?status                       (And(?customer[ex1:status->?status]                            External(pred:list-contains(List("New" "Bronze" "Silver" "Gold") ?status)) )))         Then Do( Execute(act:print(External(func:concat("New customer: " ?customer))))                  Assert(?customer[ex1:status->"New"]))))  ) )   I hope that helps someone out there :-)

    Read the article

  • I see no LOBs!

    - by Paul White
    Is it possible to see LOB (large object) logical reads from STATISTICS IO output on a table with no LOB columns? I was asked this question today by someone who had spent a good fraction of their afternoon trying to work out why this was occurring – even going so far as to re-run DBCC CHECKDB to see if any corruption had taken place.  The table in question wasn’t particularly pretty – it had grown somewhat organically over time, with new columns being added every so often as the need arose.  Nevertheless, it remained a simple structure with no LOB columns – no TEXT or IMAGE, no XML, no MAX types – nothing aside from ordinary INT, MONEY, VARCHAR, and DATETIME types.  To add to the air of mystery, not every query that ran against the table would report LOB logical reads – just sometimes – but when it did, the query often took much longer to execute. Ok, enough of the pre-amble.  I can’t reproduce the exact structure here, but the following script creates a table that will serve to demonstrate the effect: IF OBJECT_ID(N'dbo.Test', N'U') IS NOT NULL DROP TABLE dbo.Test GO CREATE TABLE dbo.Test ( row_id NUMERIC IDENTITY NOT NULL,   col01 NVARCHAR(450) NOT NULL, col02 NVARCHAR(450) NOT NULL, col03 NVARCHAR(450) NOT NULL, col04 NVARCHAR(450) NOT NULL, col05 NVARCHAR(450) NOT NULL, col06 NVARCHAR(450) NOT NULL, col07 NVARCHAR(450) NOT NULL, col08 NVARCHAR(450) NOT NULL, col09 NVARCHAR(450) NOT NULL, col10 NVARCHAR(450) NOT NULL, CONSTRAINT [PK dbo.Test row_id] PRIMARY KEY CLUSTERED (row_id) ) ; The next script loads the ten variable-length character columns with one-character strings in the first row, two-character strings in the second row, and so on down to the 450th row: WITH Numbers AS ( -- Generates numbers 1 - 450 inclusive SELECT TOP (450) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) INSERT dbo.Test WITH (TABLOCKX) SELECT REPLICATE(N'A', N.n), REPLICATE(N'B', N.n), REPLICATE(N'C', N.n), REPLICATE(N'D', N.n), REPLICATE(N'E', N.n), REPLICATE(N'F', N.n), REPLICATE(N'G', N.n), REPLICATE(N'H', N.n), REPLICATE(N'I', N.n), REPLICATE(N'J', N.n) FROM Numbers AS N ORDER BY N.n ASC ; Once those two scripts have run, the table contains 450 rows and 10 columns of data like this: Most of the time, when we query data from this table, we don’t see any LOB logical reads, for example: -- Find the maximum length of the data in -- column 5 for a range of rows SELECT result = MAX(DATALENGTH(T.col05)) FROM dbo.Test AS T WHERE row_id BETWEEN 50 AND 100 ; But with a different query… -- Read all the data in column 1 SELECT result = MAX(DATALENGTH(T.col01)) FROM dbo.Test AS T ; …suddenly we have 49 LOB logical reads, as well as the ‘normal’ logical reads we would expect. The Explanation If we had tried to create this table in SQL Server 2000, we would have received a warning message to say that future INSERT or UPDATE operations on the table might fail if the resulting row exceeded the in-row storage limit of 8060 bytes.  If we needed to store more data than would fit in an 8060 byte row (including internal overhead) we had to use a LOB column – TEXT, NTEXT, or IMAGE.  These special data types store the large data values in a separate structure, with just a small pointer left in the original row. Row Overflow SQL Server 2005 introduced a feature called row overflow, which allows one or more variable-length columns in a row to move to off-row storage if the data in a particular row would otherwise exceed 8060 bytes.  You no longer receive a warning when creating (or altering) a table that might need more than 8060 bytes of in-row storage; if SQL Server finds that it can no longer fit a variable-length column in a particular row, it will silently move one or more of these columns off the row into a separate allocation unit. Only variable-length columns can be moved in this way (for example the (N)VARCHAR, VARBINARY, and SQL_VARIANT types).  Fixed-length columns (like INTEGER and DATETIME for example) never move into ‘row overflow’ storage.  The decision to move a column off-row is done on a row-by-row basis – so data in a particular column might be stored in-row for some table records, and off-row for others. In general, if SQL Server finds that it needs to move a column into row-overflow storage, it moves the largest variable-length column record for that row.  Note that in the case of an UPDATE statement that results in the 8060 byte limit being exceeded, it might not be the column that grew that is moved! Sneaky LOBs Anyway, that’s all very interesting but I don’t want to get too carried away with the intricacies of row-overflow storage internals.  The point is that it is now possible to define a table with non-LOB columns that will silently exceed the old row-size limit and result in ordinary variable-length columns being moved to off-row storage.  Adding new columns to a table, expanding an existing column definition, or simply storing more data in a column than you used to – all these things can result in one or more variable-length columns being moved off the row. Note that row-overflow storage is logically quite different from old-style LOB and new-style MAX data type storage – individual variable-length columns are still limited to 8000 bytes each – you can just have more of them now.  Having said that, the physical mechanisms involved are very similar to full LOB storage – a column moved to row-overflow leaves a 24-byte pointer record in the row, and the ‘separate storage’ I have been talking about is structured very similarly to both old-style LOBs and new-style MAX types.  The disadvantages are also the same: when SQL Server needs a row-overflow column value it needs to follow the in-row pointer a navigate another chain of pages, just like retrieving a traditional LOB. And Finally… In the example script presented above, the rows with row_id values from 402 to 450 inclusive all exceed the total in-row storage limit of 8060 bytes.  A SELECT that references a column in one of those rows that has moved to off-row storage will incur one or more lob logical reads as the storage engine locates the data.  The results on your system might vary slightly depending on your settings, of course; but in my tests only column 1 in rows 402-450 moved off-row.  You might like to play around with the script – updating columns, changing data type lengths, and so on – to see the effect on lob logical reads and which columns get moved when.  You might even see row-overflow columns moving back in-row if they are updated to be smaller (hint: reduce the size of a column entry by at least 1000 bytes if you hope to see this). Be aware that SQL Server will not warn you when it moves ‘ordinary’ variable-length columns into overflow storage, and it can have dramatic effects on performance.  It makes more sense than ever to choose column data types sensibly.  If you make every column a VARCHAR(8000) or NVARCHAR(4000), and someone stores data that results in a row needing more than 8060 bytes, SQL Server might turn some of your column data into pseudo-LOBs – all without saying a word. Finally, some people make a distinction between ordinary LOBs (those that can hold up to 2GB of data) and the LOB-like structures created by row-overflow (where columns are still limited to 8000 bytes) by referring to row-overflow LOBs as SLOBs.  I find that quite appealing, but the ‘S’ stands for ‘small’, which makes expanding the whole acronym a little daft-sounding…small large objects anyone? © Paul White 2011 email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Learnings from trying to write better software: Loud errors from the very start

    - by theo.spears
    Microsoft made a very small number of backwards incompatible changes between .NET 1.1 and 2.0, because they wanted to make it as easy and safe as possible to port applications to the new runtime. (Here’s a list.) However, one thing they did change was what happens when a background thread fails with an unhanded exception - in .NET 1.1 nothing happened, the thread terminated, and the application continued oblivious. Try the same trick in .NET 2.0 and the entire application, including all threads, will rudely terminate. There are three reasons for this. Firstly if a background thread has crashed, it may have left the entire application in an inconsistent state, in a way that will affect other threads. It’s better to terminate the entire application than continue and have the application perform actions based on a broken state, for example take customer orders, or write corrupt files to disk.  Secondly, during software development, it is far better for errors to be loud and obtrusive. Even if you have unit tests and integration tests (and you should), a key part of ensuring software works properly is to actually try using it, both through systematic testing and through the casual use all software gets by its developers during use. Subtle errors are easy to miss if you are not actually doing real work using the application, loud errors are obvious. Thirdly, and most importantly, even if catching and swallowing exceptions indiscriminately doesn't cause any problems in your application, the presence of unexpected exceptions shows you do not fully understand the behavior of your code. The currently released version of your application may be absolutely correct. However, because your mental model of the behavior is wrong, any future change you make to the program could and probably will introduce critical errors.  This applies to more than just exceptions causing threads to exit, any unexpected state should make the application blow up in an un-ignorable way. The worst thing you can do is silently swallow errors and continue. And let's be clear, writing to a log file does not count as blowing up in an un-ignorable way.  This is all simple as long as the call stack only contains your code, but when your functions start to be called by third party or .NET framework code, it's surprisingly easy for exceptions to start vanishing. Let's look at two examples.   1. Windows forms drag drop events  Usually if you throw an exception from a winforms event handler it will bring up the "application has crashed" dialog with abort and continue options. This is a good default behavior - the error is big and loud, but it is possible for the user to ignore the error and hopefully save their data, if somehow this bug makes it past testing. However drag and drop are different - throw an exception from one of these and it will just be silently swallowed with no explanation.  By the way, it's not just drag and drop events. Timer events do it too.  You can research how exceptions are treated in different handlers and code appropriately, but the safest and most user friendly approach is to always catch exceptions in your event handlers and show your own error message. I'll talk about one good approach to handling these exceptions at the end of this post.   2. SSMS integration for SQL Tab Magic  A while back wrote an SSMS add-in called SQL Tab Magic (learn more about the process here). It works by listening to certain SSMS events and remembering what documents are opened and closed. I deployed it internally and it was used for a few months by a number of people without problems, so I was reasonably confident in its quality. Before releasing I made a few cleanups, including introducing error reporting. Bam. A few days later I was looking at over 1,000 error reports in my inbox. In turns out I wasn't handling table designers properly. The exceptions were there, but again SSMS was helpfully swallowing them all for me, so I was blissfully unaware. Had I made my errors loud from the start, I would have noticed these issues long before and fixed them.   Handling exceptions  Now you are systematically catching exceptions throughout your application, you need to do something with them. I've tried 3 options: log them, alert the user, and automatically send them home.  There are a few good options for logging in .NET. The most widespread is Apache log4net, which provides a very capable and configurable logging framework. There is also NLog which has a compatible interface, with a greater emphasis on fluent rather than XML configuration.  Alerting the user serves two purposes. Firstly it means they understand their action has failed to they don't just assume it worked (Silent file copy failure is a problem if you then delete the originals) or that they should keep waiting for a background task to complete. Secondly, it means the users can report the bug to your support team, and then you can fix it. This means the message you show the user should contain the information you need as a developer to identify and fix it. And the user will probably just send you a screenshot of the dialog, so it shouldn't be hidden by scroll bars.  This leads us to the third option, automatically sending error reports home. By automatic I mean with minimal effort on the part of the user, rather than doing it silently behind their backs. The advantage of this is you can send back far more detailed and precise information than you can expect a user to include in an email, and by making it easier to report errors, you make it more likely users will do so.  We do this using a great tool called SmartAssembly (full disclosure: this is a product made by Red Gate). It captures complete stack traces including the values of all local variables and then allows the user to send all this information back with a single click. We also capture log files to help understand what lead up to the error. We then use the free SmartAssembly Sync for Jira to dedupe these reports and raise them as bugs in our bug tracking system.  The combined effect of loud errors during development and then automatic error reporting once software is deployed allows us to find and fix more bugs, correct misunderstandings on how our software works, and overall is a key piece in delivering higher quality software. However it is no substitute for having motivated cunning testers in the building - and we're looking to hire more of those too.   If you found this post interesting you should follow me on twitter.  

    Read the article

  • Why you need to learn async in .NET

    - by PSteele
    I had an opportunity to teach a quick class yesterday about what’s new in .NET 4.0.  One of the topics was the TPL (Task Parallel Library) and how it can make async programming easier.  I also stressed that this is the direction Microsoft is going with for C# 5.0 and learning the TPL will greatly benefit their understanding of the new async stuff.  We had a little time left over and I was able to show some code that uses the Async CTP to accomplish some stuff, but it wasn’t a simple demo that you could jump in to and understand so I thought I’d thrown one together and put it in a blog post. The entire solution file with all of the sample projects is located here. A Simple Example Let’s start with a super-simple example (WindowsApplication01 in the solution). I’ve got a form that displays a label and a button.  When the user clicks the button, I want to start displaying the current time for 15 seconds and then stop. What I’d like to write is this: lblTime.ForeColor = Color.Red; for (var x = 0; x < 15; x++) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); Thread.Sleep(1000); } lblTime.ForeColor = SystemColors.ControlText; (Note that I also changed the label’s color while counting – not quite an ILM-level effect, but it adds something to the demo!) As I’m sure most of my readers are aware, you can’t write WinForms code this way.  WinForms apps, by default, only have one thread running and it’s main job is to process messages from the windows message pump (for a more thorough explanation, see my Visual Studio Magazine article on multithreading in WinForms).  If you put a Thread.Sleep in the middle of that code, your UI will be locked up and unresponsive for those 15 seconds.  Not a good UX and something that needs to be fixed.  Sure, I could throw an “Application.DoEvents()” in there, but that’s hacky. The Windows Timer Then I think, “I can solve that.  I’ll use the Windows Timer to handle the timing in the background and simply notify me when the time has changed”.  Let’s see how I could accomplish this with a Windows timer (WindowsApplication02 in the solution): public partial class Form1 : Form { private readonly Timer clockTimer; private int counter;   public Form1() { InitializeComponent(); clockTimer = new Timer {Interval = 1000}; clockTimer.Tick += UpdateLabel; }   private void UpdateLabel(object sender, EventArgs e) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); counter++; if (counter == 15) { clockTimer.Enabled = false; lblTime.ForeColor = SystemColors.ControlText; } }   private void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; counter = 0; clockTimer.Start(); } } Holy cow – things got pretty complicated here.  I use the timer to fire off a Tick event every second.  Inside there, I can update the label.  Granted, I can’t use a simple for/loop and have to maintain a global counter for the number of iterations.  And my “end” code (when the loop is finished) is now buried inside the bottom of the Tick event (inside an “if” statement).  I do, however, get a responsive application that doesn’t hang or stop repainting while the 15 seconds are ticking away. But doesn’t .NET have something that makes background processing easier? The BackgroundWorker Next I try .NET’s BackgroundWorker component – it’s specifically designed to do processing in a background thread (leaving the UI thread free to process the windows message pump) and allows updates to be performed on the main UI thread (WindowsApplication03 in the solution): public partial class Form1 : Form { private readonly BackgroundWorker worker;   public Form1() { InitializeComponent(); worker = new BackgroundWorker {WorkerReportsProgress = true}; worker.DoWork += StartUpdating; worker.ProgressChanged += UpdateLabel; worker.RunWorkerCompleted += ResetLabelColor; }   private void StartUpdating(object sender, DoWorkEventArgs e) { var workerObject = (BackgroundWorker) sender; for (int x = 0; x < 15; x++) { workerObject.ReportProgress(0); Thread.Sleep(1000); } }   private void UpdateLabel(object sender, ProgressChangedEventArgs e) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); }   private void ResetLabelColor(object sender, RunWorkerCompletedEventArgs e) { lblTime.ForeColor = SystemColors.ControlText; }   private void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; worker.RunWorkerAsync(); } } Well, this got a little better (I think).  At least I now have my simple for/next loop back.  Unfortunately, I’m still dealing with event handlers spread throughout my code to co-ordinate all of this stuff in the right order. Time to look into the future. The async way Using the Async CTP, I can go back to much simpler code (WindowsApplication04 in the solution): private async void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; for (var x = 0; x < 15; x++) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); await TaskEx.Delay(1000); } lblTime.ForeColor = SystemColors.ControlText; } This code will run just like the Timer or BackgroundWorker versions – fully responsive during the updates – yet is way easier to implement.  In fact, it’s almost a line-for-line copy of the original version of this code.  All of the async plumbing is handled by the compiler and the framework.  My code goes back to representing the “what” of what I want to do, not the “how”. I urge you to download the Async CTP.  All you need is .NET 4.0 and Visual Studio 2010 sp1 – no need to set up a virtual machine with the VS2011 beta (unless, of course, you want to dive right in to the C# 5.0 stuff!).  Starting playing around with this today and see how much easier it will be in the future to write async-enabled applications.

    Read the article

  • Five Key Strategies in Master Data Management

    - by david.butler(at)oracle.com
    Here is a very interesting Profit Magazine article on MDM: A recent customer survey reveals the deleterious effects of data fragmentation. by Trevor Naidoo, December 2010   Across industries and geographies, IT organizations have grown in complexity, whether due to mergers and acquisitions, or decentralized systems supporting functional or departmental requirements. With systems architected over time to support unique, one-off process needs, they are becoming costly to maintain, and the Internet has only further added to the complexity. Data fragmentation has become a key inhibitor in delivering flexible, user-friendly systems. The Oracle Insight team conducted a survey assessing customers' master data management (MDM) capabilities over the past two years to get a sense of where they are in terms of their capabilities. The responses, by 27 respondents from six different industries, reveal five key areas in which customers need to improve their data management in order to get better financial results. 1. Less than 15 percent of organizations surveyed understand the sources and quality of their master data, and have a roadmap to address missing data domains. Examples of the types of master data domains referred to are customer, supplier, product, financial and site. Many organizations have multiple sources of master data with varying degrees of data quality in each source -- customer data stored in the customer relationship management system is inconsistent with customer data stored in the order management system. Imagine not knowing how many places you stored your customer information, and whether a customer's address was the most up to date in each source. In fact, more than 55 percent of the respondents in the survey manage their data quality on an ad-hoc basis. It is important for organizations to document their inventory of data sources and then profile these data sources to ensure that there is a consistent definition of key data entities throughout the organization. Some questions to ask are: How do we define a customer? What is a product? How do we define a site? The goal is to strive for one common repository for master data that acts as a cross reference for all other sources and ensures consistent, high-quality master data throughout the organization. 2. Only 18 percent of respondents have an enterprise data management strategy to ensure that data is treated as an asset to the organization. Most respondents handle data at the department or functional level and do not have an enterprise view of their master data. The sales department may track all their interactions with customers as they move through the sales cycle, the service department is tracking their interactions with the same customers independently, and the finance department also has a different perspective on the same customer. The salesperson may not be aware that the customer she is trying to sell to is experiencing issues with existing products purchased, or that the customer is behind on previous invoices. The lack of a data strategy makes it difficult for business users to turn data into information via reports. Without the key building blocks in place, it is difficult to create key linkages between customer, product, site, supplier and financial data. These linkages make it possible to understand patterns. A well-defined data management strategy is aligned to the business strategy and helps create the governance needed to ensure that data stewardship is in place and data integrity is intact. 3. Almost 60 percent of respondents have no strategy to integrate data across operational applications. Many respondents have several disparate sources of data with no strategy to keep them in sync with each other. Even though there is no clear strategy to integrate the data (see #2 above), the data needs to be synced and cross-referenced to keep the business processes running. About 55 percent of respondents said they perform this integration on an ad hoc basis, and in many cases, it is done manually with the help of Microsoft Excel spreadsheets. For example, a salesperson needs a report on global sales for a specific product, but the product has different product numbers in different countries. Typically, an analyst will pull all the data into Excel, manually create a cross reference for that product, and then aggregate the sales. The exact same procedure has to be followed if the same report is needed the following month. A well-defined consolidation strategy will ensure that a central cross-reference is maintained with updates in any one application being propagated to all the other systems, so that data is synchronized and up to date. This can be done in real time or in batch mode using integration technology. 4. Approximately 50 percent of respondents spend manual efforts cleansing and normalizing data. Information stored in various systems usually follows different standards and formats, making it difficult to match the data. A customer's address can be stored in different ways using a variety of abbreviations -- for example, "av" or "ave" for avenue. Similarly, a product's attributes can be stored in a number of different ways; for example, a size attribute can be stored in inches and can also be entered as "'' ". These types of variations make it difficult to match up data from different sources. Today, most customers rely on manual, heroic efforts to match, cleanse, and de-duplicate data -- clearly not a scalable, sustainable model. To solve this challenge, organizations need the ability to standardize data for customers, products, sites, suppliers and financial accounts; however, less than 10 percent of respondents have technology in place to automatically resolve duplicates. It is no wonder, therefore, that we get communications about products we don't own, at addresses we don't reside, and using channels (like direct mail) we don't like. An all-too-common example of a potential challenge follows: Customers end up receiving duplicate communications, which not only impacts customer satisfaction, but also incurs additional mailing costs. Cleansing, normalizing, and standardizing data will help address most of these issues. 5. Only 10 percent of respondents have the ability to share data that was mastered in a master data hub. Close to 60 percent of respondents have efforts in place that profile, standardize and cleanse data manually, and the output of these efforts are stored in spreadsheets in various parts of the organization. This valuable information is not easily shared with the rest of the organization and, more importantly, this enriched information cannot be sent back to the source systems so that the data is fixed at the source. A key benefit of a master data management strategy is not only to clean the data, but to also share the data back to the source systems as well as other systems that need the information. Aside from the source systems, another key beneficiary of this data is the business intelligence system. Having clean master data as input to business intelligence systems provides more accurate and enhanced reporting.  Characteristics of Stellar MDM When deciding on the right master data management technology, organizations should look for solutions that have four main characteristics: enterprise-grade MDM performance complete technology that can be rapidly deployed and addresses multiple business issues end-to-end MDM process management with data quality monitoring and assurance pre-built MDM business relevant applications with data stores and workflows These master data management capabilities will aid in moving closer to a best-practice maturity level, delivering tremendous efficiencies and savings as well as revenue growth opportunities as a result of better understanding your customers.  Trevor Naidoo is a senior director in Industry Strategy and Insight at Oracle. 

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • CodePlex Daily Summary for Monday, August 11, 2014

    CodePlex Daily Summary for Monday, August 11, 2014Popular ReleasesSpace Engineers Server Manager: SESM V1.15: V1.15 - Updated Quartz library - Correct a bug in the new mod managment - Added a warning if you have backup enabled on a server but no static map configuredAspose for Apache POI: Missing Features of Apache POI SS - v 1.2: Release contain the Missing Features in Apache POI SS SDK in comparison with Aspose.Cells What's New ? Following Examples: Create Pivot Charts Detect Merged Cells Sort Data Printing Workbooks Feedback and Suggestions Many more examples are available at Aspose Docs. Raise your queries and suggest more examples via Aspose Forums or via this social coding site.AngularGo (SPA Project Template): AngularGo.VS2013.vsix: First ReleaseTouchmote: Touchmote 1.0 beta 13: Changes Less GPU usage Works together with other Xbox 360 controls Bug fixesPublic Key Infrastructure PowerShell module: PowerShell PKI Module v3.0: Important: I would like to hear more about what you are thinking about the project? I appreciate that you like it (2000 downloads over past 6 months), but may be you have to say something? What do you dislike in the module? Maybe you would love to see some new functionality? Tell, what you think! Installation guide:Use default installation path to install this module for current user only. To install this module for all users — enable "Install for all users" check-box in installation UI ...Modern UI for WPF: Modern UI 1.0.6: The ModernUI assembly including a demo app demonstrating the various features of Modern UI for WPF. BREAKING CHANGE LinkGroup.GroupName renamed to GroupKey NEW FEATURES Improved rendering on high DPI screens, including support for per-monitor DPI awareness available in Windows 8.1 (see also Per-monitor DPI awareness) New ModernProgressRing control with 8 builtin styles New LinkCommands.NavigateLink routed command New Visual Studio project templates 'Modern UI WPF App' and 'Modern UI W...ClosedXML - The easy way to OpenXML: ClosedXML 0.74.0: Multiple thread safe improvements including AdjustToContents XLHelper XLColor_Static IntergerExtensions.ToStringLookup Exception now thrown when saving a workbook with no sheets, instead of creating a corrupt workbook Fix for hyperlinks with non-ASCII Characters Added basic workbook protection Fix for error thrown, when a spreadsheet contained comments and images Fix to Trim function Fix Invalid operation Exception thrown when the formula functions MAX, MIN, and AVG referenc...SEToolbox: SEToolbox 01.042.019 Release 1: Added RadioAntenna broadcast name to ship name detail. Added two additional columns for Asteroid material generation for Asteroid Fields. Added Mass and Block number columns to main display. Added Ellipsis to some columns on main display to reduce name confusion. Added correct SE version number in file when saving. Re-added in reattaching Motor when drag/dropping or importing ships (KeenSH have added RotorEntityId back in after removing it months ago). Added option to export and r...jQuery List DragSort: jQuery List DragSort 0.5.2: Fixed scrollContainer removing deprecated use of $.browser so should now work with latest version of jQuery. Added the ability to return false in dragEnd to revert sort order Project changes Added nuget package for dragsort https://www.nuget.org/packages/dragsort Converted repository from SVN to MercurialBraintree Client Library: Braintree 2.32.0: Allow credit card verification options to be passed outside of the nonce for PaymentMethod.create Allow billingaddress parameters and billingaddress_id to be passed outside of the nonce for PaymentMethod.create Add Subscriptions to paypal accounts Add PaymentMethod.update Add failonduplicatepaymentmethod option to PaymentMethod.create Add support for dispute webhooksThe Mario Kart 8 App: V1.0.2.1: First Codeplex release. WINDOWS INSTALLER ONLYAspose Java for Docx4j: Aspose.Words vs Docx4j - v 1.0: Release contain the Code Comparison for Features in Docx4j SDK and Aspose.Words What's New ?Following Examples: Accessing Document Properties Add Bookmarks Convert to Formats Delete Bookmarks Working with Comments Feedback and Suggestions Many more examples are available at Aspose Docs. Raise your queries and suggest more examples via Aspose Forums or via this social coding site.File System Security PowerShell Module: NTFSSecurity 2.4.1: Add-Access and Remove-Access now take multiple accoutsYourSqlDba: YourSqlDba 5.2.1.: This version improves alert message that comes a while after you install the script. First it says to get it from YourSqlDba.CodePlex.com If you don't want to update now, just-rerun the script from your installed version. To get actual version running just execute install.PrintVersionInfo. . You can go to source code / history and click on change set 72957 to see changes in the script.Manipulator: Manipulator: manipulatorXNB filetype plugin for Paint.NET: Paint.NET XNB plugin v0.4.0.0: CHANGELOG Reverted old incomplete changes. Updated library for compatibility with Paint .NET 4. Updated project to NET 4.5. Updated version to 0.4.0.0. INSTALLATION INSTRUCTIONS Extract the ZIP file to your Paint.NET\FileTypes folder.EdiFabric: Release 4.1: Changed MessageContextWix# (WixSharp) - managed interface for WiX: Release 1.0.0.0: Release 1.0.0.0 Custom UI Custom MSI Dialog Custom CLR Dialog External UIMath.NET Numerics: Math.NET Numerics v3.2.0: Linear Algebra: Vector.Map2 (map2 in F#), storage-optimized Linear Algebra: fix RemoveColumn/Row early index bound check (was not strict enough) Statistics: Entropy ~Jeff Mastry Interpolation: use Array.BinarySearch instead of local implementation ~Candy Chiu Resources: fix a corrupted exception message string Portable Build: support .Net 4.0 as well by using profile 328 instead of 344. .Net 3.5: F# extensions now support .Net 3.5 as well .Net 3.5: NuGet package now contains pro...babelua: 1.6.5.1: V1.6.5.1 - 2014.8.7New feature: Formatting code; Stability improvement: fix a bug that pop up error "System.Net.WebResponse EndGetResponse";New ProjectsDouDou: a little project.Dynamic MVC: Dynamically generate views from your model objects for a data centric MVC application.EasyDb - Simple Data Access: EasyDb is a simple library for data access that allows you to write less code.ExpressToAbroad: just go!!!!!Full Silverlight Web Video/Voice Conferencing: The Goal of this project is to provide complete Open Source (Voice/Video Chatting Client/Server) Modules Using SilverlightGaia: Gaia is an app for Windows plataform, Gaia is like Siri and Google Now or Betty but Gaia use only text commands.pxctest: pxctestSTACS: Career Management System for MIT by Team "STACS"StrongWorld: StrongWorld.WebSuiteXevas Tools: Xevas is a professional coders group of 'Nimbuzz'. We make all tools for worldwide users of nimbuzz at free of cost.????????: ????????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ????????????????: ????????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ????????????????: ????????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ???????????????: ????????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ??????????????: ????????????????: ????????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ??????????????: ???????????????: ???????????????: ??????????????: ??????????????: ??????????????: ????????????????: ?????????

    Read the article

  • elffile: ELF Specific File Identification Utility

    - by user9154181
    Solaris 11 has a new standard user level command, /usr/bin/elffile. elffile is a variant of the file utility that is focused exclusively on linker related files: ELF objects, archives, and runtime linker configuration files. All other files are simply identified as "non-ELF". The primary advantage of elffile over the existing file utility is in the area of archives — elffile examines the archive members and can produce a summary of the contents, or per-member details. The impetus to add elffile to Solaris came from the effort to extend the format of Solaris archives so that they could grow beyond their previous 32-bit file limits. That work introduced a new archive symbol table format. Now that there was more than one possible format, I thought it would be useful if the file utility could identify which format a given archive is using, leading me to extend the file utility: % cc -c ~/hello.c % ar r foo.a hello.o % file foo.a foo.a: current ar archive, 32-bit symbol table % ar r -S foo.a hello.o % file foo.a foo.a: current ar archive, 64-bit symbol table In turn, this caused me to think about all the things that I would like the file utility to be able to tell me about an archive. In particular, I'd like to be able to know what's inside without having to unpack it. The end result of that train of thought was elffile. Much of the discussion in this article is adapted from the PSARC case I filed for elffile in December 2010: PSARC 2010/432 elffile Why file Is No Good For Archives And Yet Should Not Be Fixed The standard /usr/bin/file utility is not very useful when applied to archives. When identifying an archive, a user typically wants to know 2 things: Is this an archive? Presupposing that the archive contains objects, which is by far the most common use for archives, what platform are the objects for? Are they for sparc or x86? 32 or 64-bit? Some confusing combination from varying platforms? The file utility provides a quick answer to question (1), as it identifies all archives as "current ar archive". It does nothing to answer the more interesting question (2). To answer that question, requires a multi-step process: Extract all archive members Use the file utility on the extracted files, examine the output for each file in turn, and compare the results to generate a suitable summary description. Remove the extracted files It should be easier and more efficient to answer such an obvious question. It would be reasonable to extend the file utility to examine archive contents in place and produce a description. However, there are several reasons why I decided not to do so: The correct design for this feature within the file utility would have file examine each archive member in turn, applying its full abilities to each member. This would be elegant, but also represents a rather dramatic redesign and re-implementation of file. Archives nearly always contain nothing but ELF objects for a single platform, so such generality in the file utility would be of little practical benefit. It is best to avoid adding new options to standard utilities for which other implementations of interest exist. In the case of the file utility, one concern is that we might add an option which later appears in the GNU version of file with a different and incompatible meaning. Indeed, there have been discussions about replacing the Solaris file with the GNU version in the past. This may or may not be desirable, and may or may not ever happen. Either way, I don't want to preclude it. Examining archive members is an O(n) operation, and can be relatively slow with large archives. The file utility is supposed to be a very fast operation. I decided that extending file in this way is overkill, and that an investment in the file utility for better archive support would not be worth the cost. A solution that is more narrowly focused on ELF and other linker related files is really all that we need. The necessary code for doing this already exists within libelf. All that is missing is a small user-level wrapper to make that functionality available at the command line. In that vein, I considered adding an option for this to the elfdump utility. I examined elfdump carefully, and even wrote a prototype implementation. The added code is small and simple, but the conceptual fit with the rest of elfdump is poor. The result complicates elfdump syntax and documentation, definite signs that this functionality does not belong there. And so, I added this functionality as a new user level command. The elffile Command The syntax for this new command is elffile [-s basic | detail | summary] filename... Please see the elffile(1) manpage for additional details. To demonstrate how output from elffile looks, I will use the following files: FileDescription configA runtime linker configuration file produced with crle dwarf.oAn ELF object /etc/passwdA text file mixed.aArchive containing a mixture of ELF and non-ELF members mixed_elf.aArchive containing ELF objects for different machines not_elf.aArchive containing no ELF objects same_elf.aArchive containing a collection of ELF objects for the same machine. This is the most common type of archive. The file utility identifies these files as follows: % file config dwarf.o /etc/passwd mixed.a mixed_elf.a not_elf.a same_elf.a config: Runtime Linking Configuration 64-bit MSB SPARCV9 dwarf.o: ELF 64-bit LSB relocatable AMD64 Version 1 /etc/passwd: ascii text mixed.a: current ar archive, 32-bit symbol table mixed_elf.a: current ar archive, 32-bit symbol table not_elf.a: current ar archive same_elf.a: current ar archive, 32-bit symbol table By default, elffile uses its "summary" output style. This output differs from the output from the file utility in 2 significant ways: Files that are not an ELF object, archive, or runtime linker configuration file are identified as "non-ELF", whereas the file utility attempts further identification for such files. When applied to an archive, the elffile output includes a description of the archive's contents, without requiring member extraction or other additional steps. Applying elffile to the above files: % elffile config dwarf.o /etc/passwd mixed.a mixed_elf.a not_elf.a same_elf.a config: Runtime Linking Configuration 64-bit MSB SPARCV9 dwarf.o: ELF 64-bit LSB relocatable AMD64 Version 1 /etc/passwd: non-ELF mixed.a: current ar archive, 32-bit symbol table, mixed ELF and non-ELF content mixed_elf.a: current ar archive, 32-bit symbol table, mixed ELF content not_elf.a: current ar archive, non-ELF content same_elf.a: current ar archive, 32-bit symbol table, ELF 64-bit LSB relocatable AMD64 Version 1 The output for same_elf.a is of particular interest: The vast majority of archives contain only ELF objects for a single platform, and in this case, the default output from elffile answers both of the questions about archives posed at the beginning of this discussion, in a single efficient step. This makes elffile considerably more useful than file, within the realm of linker-related files. elffile can produce output in two other styles, "basic", and "detail". The basic style produces output that is the same as that from 'file', for linker-related files. The detail style produces per-member identification of archive contents. This can be useful when the archive contents are not homogeneous ELF object, and more information is desired than the summary output provides: % elffile -s detail mixed.a mixed.a: current ar archive, 32-bit symbol table mixed.a(dwarf.o): ELF 32-bit LSB relocatable 80386 Version 1 mixed.a(main.c): non-ELF content mixed.a(main.o): ELF 64-bit LSB relocatable AMD64 Version 1 [SSE]

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • Agilist, Heal Thyself!

    - by Dylan Smith
    I’ve been meaning to blog about a great experience I had earlier in the year at Prairie Dev Con Calgary.  Myself and Steve Rogalsky did a session that we called “Agilist, Heal Thyself!”.  We used a format that was new to me, but that Steve had seen used at another conference.  What we did was start by asking the audience to give us a list of challenges they had had when adopting agile.  We wrote them all down, then had everybody vote on the most interesting ones.  Then we split into two groups, and each group was assigned one of the agile challenges.  We had 20 minutes to discuss the challenge, and suggest solutions or approaches to improve things.  At the end of the 20 minutes, each of the groups gave a brief summary of their discussion and learning's, then we mixed up the groups and repeated with another 2 challenges. The 2 groups I was part of had some really interesting discussions, and suggestions: Unfinished Stories at the end of Sprints The first agile challenge we tackled, was something that every single Scrum team I have worked with has struggled with.  What happens when you get to the end of a Sprint, and there are some stories that are only partially completed.  The team in question was getting very de-moralized as they felt that every Sprint was a failure as they never had a set of fully completed stories. How do you avoid this? and/or what do you do when it happens? There were 2 pieces of advice that were well received: 1. Try to bring stories to completion before starting new ones.  This is advice I give all my Scrum teams.  If you have a 3-week sprint, what happens all too often is you get to the end of week 2, and a lot of stories are almost done; but almost none are completely done.  This is a Bad Thing.  I encourage the teams I work with to only start a new story as a very last resort.  If you finish your task look at the stories in progress and see if there’s anything you can do to help before moving onto a new story.  In the daily standup, put a focus on seeing what stories got completed yesterday, if a few days go by with none getting completed, be sure this fact is visible to the team and do something about it.  Something I’ve been doing recently is introducing WIP (Work In Progress) limits while using Scrum.  My current team has 2-week sprints, and we usually have about a dozen or stories in a sprint.  We instituted a WIP limit of 4 stories.  If 4 stories have been started but not finished then nobody is allowed to start new stories.  This made it obvious very quickly that our QA tasks were our bottleneck (we have 4 devs, but only 1.5 testers).  The WIP limit forced the developers to start to pickup QA tasks before moving onto the next dev tasks, and we ended our sprints with many more stories completely finished than we did before introducing WIP limits. 2. Rather than using time-boxed sprints, why not just do away with them altogether and go to a continuous flow type approach like KanBan.  Limit WIP to keep things under control, but don’t have a fixed time box at the end of which all tasks are supposed to be done.  This eliminates the problem almost entirely.  At some points in the project (releases) you need to be able to burn down all the half finished stories to get a stable release build, but this probably occurs less often than every sprint, and there are alternative approaches to achieve it using branching strategies rather than forcing your team to try to get to Zero WIP every 2-weeks (e.g. when you are ready for a release, create a new branch for any new stories, but finish all existing stories in the current branch and release it). Trying to Introduce Agile into a team with previous Bad Agile Experiences One of the agile adoption challenges somebody described, was he was in a leadership role on a team he had recently joined – lets call him Dave.  This team was currently very waterfall in their ALM process, but they were about to start on a new green-field project.  Dave wanted to use this new project as an opportunity to do things the “right way”, using an Agile methodology like Scrum, adopting TDD, automated builds, proper branching strategies, etc.  The problem he was facing is everybody else on the team had previously gone through an “Agile Adoption” that was a horrible failure.  Dave blamed this failure on the consultant brought in previously to lead this agile transition, but regardless of the reason, the team had very negative feelings towards agile, and was very resistant to trying it out again.  Dave possibly had the authority to try to force the team to adopt Agile practices, but we all know that doesn’t work very well.  What was Dave to do? Ultimately, the best advice was to question *why* did Dave want to adopt all these various practices. Rather than trying to convince his team that these were the “right way” to run a dev project, and trying to do a Big Bang approach to introducing change.  He would be better served by identifying problems the team currently faces, have a discussion with the team to get everybody to agree that specific problems existed, then have an open discussion about ways to address those problems.  This way Dave could incrementally introduce agile practices, and he doesn’t even need to identify them as “agile” practices if he doesn’t want to.  For example, when we discussed with Dave, he said probably the teams biggest problem was long periods without feedback from users, then finding out too late that the software is not going to meet their needs.  Rather than Dave jumping right to introducing Scrum and all it entails, it would be easier to get buy-in from team if he framed it as a discussion of existing problems, and brainstorming possible solutions.  And possibly most importantly, don’t try to do massive changes all at once with a team that has not bought-into those changes.  Taking an incremental approach has a greater chance of success. I see something similar in my day job all the time too.  Clients who for one reason or another claim to not be fans of agile (or not ready for agile yet).  But then they go on to ask me to help them get shorter feedback cycles, quicker delivery cycles, iterative development processes, etc.  It’s kind of funny at times, sometimes you just need to phrase the suggestions in terms they are using and avoid the word “agile”. PS – I haven’t blogged all that much over the past couple of years, but in an attempt to motivate myself, a few of us have accepted a blogger challenge.  There’s 6 of us who have all put some money into a pool, and the agreement is that we each need to blog at least once every 2-weeks.  The first 2-week period that we miss we’re eliminated.  Last person standing gets the money.  So expect at least one blog post every couple of weeks for the near future (I hope!).  And check out the blogs of the other 5 people in this blogger challenge: Steve Rogalsky: http://winnipegagilist.blogspot.ca Aaron Kowall: http://www.geekswithblogs.net/caffeinatedgeek Tyler Doerkson: http://blog.tylerdoerksen.com David Alpert: http://www.spinthemoose.com Dave White: http://www.agileramblings.com (note: site not available yet.  should be shortly or he owes me some money!)

    Read the article

  • I Know What I Did This Summer: Put Down Trex Decking

    - by thatjeffsmith
    If you’re wondering why I would bore everyone with my pictures and frequent status updates/tweets from the past week – it’s so I could document the process of refurbishing my deck, or what some would call a porch. When we go to take a vacation, buy a car, do anything – we also read personal blogs to get the real story. So, if you’re curious about what it takes to tackle this sort of project, read on. Skills/Equipment/Manpower We Possessed I took the old decking out by myself. I’m about 230 lbs, more than 6′ tall, and I’m pretty healthy. This took about 8 hours over two afternoons. Three of us put the deck back together. My wife has two engineering degrees. Her father also has two engineering degrees. Lots of brainpower available here. Also, her dad ran the public works department for a country for more than 20 years – so lots and lots of practical experience on hand. We had a compound mitre saw, a skilsaw, 2-3 crowbars, a framing hammer, 3 cordless drills, a corded drill, lots of sawhorses, a power sander, an angle grinder, a 10×10 Coleman canopy tent, a Ford F-150 pickup truck, outdoor speakers and lots of iTunes playlists, plenty of water and cold beer. Why We Did This Our deck was relatively young – it was built in 2005. However, the pressure treated boards must not have been adequately maintained before we bought the house. I had powerwashed the deck every other year and had it stained a few times. The boards just rotted. We’re going to be in the house for a long time, and we wanted something that would look nice and require little maintenance. More bad deck boards The deck boards were in bad shape Things We Learned The two most important things: The hidden fasteners have to be put in JUST right. Wedge them into the grooved board, then bend down the bit that is screwed down. We didn’t do this on the first board and couldn’t get the second board to fit nearly close enough. Watching the official TREX YouTube video helped immensely, and we should have watched that first. When pre-drilling holes for the boards that need screwed down – DO NOT pre-drill through the underlying framing wood. ONLY pre-drill through the TREX itself. The screw won’t seat in the board properly. Instead of sitting down flush with the board, it will stop at the top of the board and just spin. I had to call the the place that sold me the screws to find this out. So about a third of our screws look like crap. If it doesn’t look or feel right – stop everything and pick up your computer or your phone. It’s not right, and it will be much easier to stop and find out why. We didn’t do this, and now I’m going to see every screw that’s not flush with the boards and get upset. Oh well. The Process How much time did it take? Well I spent about 8 hours taking the deck apart. And then the 3 of use spent 8 hours the first day, 10 hours the second day, 8 hours the third, and another 6 hours on the fourth day. That’s like 104 man-hours. We supposedly saved four or five thousand dollars in labor, but don’t do the math here or you might get a bit upset. The main thing is that we got what we wanted, and there won’t be any surprises later. Now for some pictures… This 6”+ pry bar made the destruction of the old deck much easier Most of the joists, once exposed, were OK. This joist wasn’t sitting on ANYTHING before. We think a lazy gas person cut the board to sneak a gas line in. Awesome… These monster lag bolts had to be accounted for when putting in the additional framing The border pattern Sheri wanted to put in required a lot more framing. These were the first boards to go down – we screwed them in as there was no way to attach clips I sat, kicked in the boards, and then drilled these clips in – but my wife was able to go MUCH faster by using her hands to lock the boards in and drill on her knees. I liked locking the board in with my feet when they needed to be ‘encouraged’ to go straight. The first board took FOREVER to go in, but then when we got rolling, we were able to put in a 20′ board in less than 10 minutes. This was end of construction day #2 – we got much further than we thought we would. Ah, the dreaded last 10% – what to do here? Remember those ‘floating’ stringers? Yeah, we fixed that up a bit, too. My wife used a website (and her brain) to calculate exactly how to cut the stringers to give us the rise/run we needed with the proper clearance and all that jazz. The stairs with stringers and toe kicks – this was worth the effort It started raining on us as I screwed down the steps – this we managed to get our shade tent up on the deck to protect us from the rain too The stairs, finished Finished, mostly Good corner shot The top of the stairs Stairs, looking down Celebratory beer In Summary There are a few things we’re not happy with. I think we can fix them up – but later. I have a few things left to finish, rewire the lighting, get the gas grille put back in, and rehang some screen doors. I was expecting this to be a lot worse than it was. If I didn’t have the help, I would have never done it myself. But I’m glad that I did have that help and did do that project. It’s not often you get to spend that kind of qualify time with family and building cool stuff.

    Read the article

  • BI Applications overview

    - by sv744
    Welcome to Oracle BI applications blog! This blog will talk about various features, general roadmap, description of functionality and implementation steps related to Oracle BI applications. In the first post we start with an overview of the BI apps and will delve deeper into some of the topics below in the upcoming weeks and months. If there are other topics you would like us to talk about, pl feel free to provide feedback on that. The Oracle BI applications are a set of pre-built applications that enable pervasive BI by providing role-based insight for each functional area, including sales, service, marketing, contact center, finance, supplier/supply chain, HR/workforce, and executive management. For example, Sales Analytics includes role-based applications for sales executives, sales management, as well as front-line sales reps, each of whom have different needs. The applications integrate and transform data from a range of enterprise sources—including Siebel, Oracle, PeopleSoft, SAP, and others—into actionable intelligence for each business function and user role. This blog  starts with the key benefits and characteristics of Oracle BI applications. In a series of subsequent blogs, each of these points will be explained in detail. Why BI apps? Demonstrate the value of BI to a business user, show reports / dashboards / model that can answer their business questions as part of the sales cycle. Demonstrate technical feasibility of BI project and significantly lower risk and improve success Build Vs Buy benefit Don’t have to start with a blank sheet of paper. Help consolidate disparate systems Data integration in M&A situations Insulate BI consumers from changes in the OLTP Present OLTP data and highlight issues of poor data / missing data – and improve data quality and accuracy Prebuilt Integrations BI apps support prebuilt integrations against leading ERP sources: Fusion Applications, E- Business Suite, Peoplesoft, JD Edwards, Siebel, SAP Co-developed with inputs from functional experts in BI and Applications teams. Out of the box dimensional model to source model mappings Multi source and Multi Instance support Rich Data Model    BI apps have a very rich dimensionsal data model built over 10 years that incorporates best practises from BI modeling perspective as well as reflect the source system complexities  Thanks for reading a long post, and be on the lookout for future posts.  We will look forward to your valuable feedback on these topics as well as suggestions on what other topics would you like us to cover. I Conformed dimensional model across all business subject areas allows cross functional reporting, e.g. customer / supplier 360 Over 360 fact tables across 7 product areas CRM – 145, SCM – 47, Financials – 28, Procurement – 20, HCM – 27, Projects – 18, Campus Solutions – 21, PLM - 56 Supported by 300 physical dimensions Support for extensive calendars; Gregorian, enterprise and ledger based Conformed data model and metrics for real time vs warehouse based reporting  Multi-tenant enabled Extensive BI related transformations BI apps ETL and data integration support various transformations required for dimensional models and reporting requirements. All these have been distilled into common patterns and abstracted logic which can be readily reused across different modules Slowly Changing Dimension support Hierarchy flattening support Row / Column Hybrid Hierarchy Flattening As Is vs. As Was hierarchy support Currency Conversion :-  Support for 3 corporate, CRM, ledger and transaction currencies UOM conversion Internationalization / Localization Dynamic Data translations Code standardization (Domains) Historical Snapshots Cycle and process lifecycle computations Balance Facts Equalization of GL accounting chartfields/segments Standardized values for categorizing GL accounts Reconciliation between GL and subledgers to track accounted/transferred/posted transactions to GL Materialization of data only available through costly and complex APIs e.g. Fusion Payroll, EBS / Fusion Accruals Complex event Interpretation of source data – E.g. o    What constitutes a transfer o    Deriving supervisors via position hierarchy o    Deriving primary assignment in PSFT o    Categorizing and transposition to measures of Payroll Balances to specific metrics to support side by side comparison of measures of for example Fixed Salary, Variable Salary, Tax, Bonus, Overtime Payments. o    Counting of Events – E.g. converting events to fact counters so that for example the number of hires can easily be added up and compared alongside the total transfers and terminations. Multi pass processing of multiple sources e.g. headcount, salary, promotion, performance to allow side to side comparison. Adding value to data to aid analysis through banding, additional domain classifications and groupings to allow higher level analytical reporting and data discovery Calculation of complex measures examples: o    COGs, DSO, DPO, Inventory turns  etc o    Transfers within a Hierarchy or out of / into a hierarchy relative to view point in hierarchy. Configurability and Extensibility support  BI apps offer support for extensibility for various entities as automated extensibility or part of extension methodology Key Flex fields and Descriptive Flex support  Extensible attribute support (JDE)  Conformed Domains ETL Architecture BI apps offer a modular adapter architecture which allows support of multiple product lines into a single conformed model Multi Source Multi Technology Orchestration – creates load plan taking into account task dependencies and customers deployment to generate a plan based on a customers of multiple complex etl tasks Plan optimization allowing parallel ETL tasks Oracle: Bit map indexes and partition management High availability support    Follow the sun support. TCO BI apps support several utilities / capabilities that help with overall total cost of ownership and ensure a rapid implementation Improved cost of ownership – lower cost to deploy On-going support for new versions of the source application Task based setups flows Data Lineage Functional setup performed in Web UI by Functional person Configuration Test to Production support Security BI apps support both data and object security enabling implementations to quickly configure the application as per the reporting security needs Fine grain object security at report / dashboard and presentation catalog level Data Security integration with source systems  Extensible to support external data security rules Extensive Set of KPIs Over 7000 base and derived metrics across all modules Time series calculations (YoY, % growth etc) Common Currency and UOM reporting Cross subject area KPIs (analyzing HR vs GL data, drill from GL to AP/AR, etc) Prebuilt reports and dashboards 3000+ prebuilt reports supporting a large number of industries Hundreds of role based dashboards Dynamic currency conversion at dashboard level Highly tuned Performance The BI apps have been tuned over the years for both a very performant ETL and dashboard performance. The applications use best practises and advanced database features to enable the best possible performance. Optimized data model for BI and analytic queries Prebuilt aggregates& the ability for customers to create their own aggregates easily on warehouse facts allows for scalable end user performance Incremental extracts and loads Incremental Aggregate build Automatic table index and statistics management Parallel ETL loads Source system deletes handling Low latency extract with Golden Gate Micro ETL support Bitmap Indexes Partitioning support Modularized deployment, start small and add other subject areas seamlessly Source Specfic Staging and Real Time Schema Support for source specific operational reporting schema for EBS, PSFT, Siebel and JDE Application Integrations The BI apps also allow for integration with source systems as well as other applications that provide value add through BI and enable BI consumption during operational decision making Embedded dashboards for Fusion, EBS and Siebel applications Action Link support Marketing Segmentation Sales Predictor Dashboard Territory Management External Integrations The BI apps data integration choices include support for loading extenral data External data enrichment choices : UNSPSC, Item class etc. Extensible Spend Classification Broad Deployment Choices Exalytics support Databases :  Oracle, Exadata, Teradata, DB2, MSSQL ETL tool of choice : ODI (coming), Informatica Extensible and Customizable Extensible architecture and Methodology to add custom and external content Upgradable across releases

    Read the article

  • I Clobbered a Leopard with a Window Last Night

    - by D'Arcy Lussier
    I’ve had my 15” Mac Book Pro for a little over a year now, and its hands-down the best laptop I’ve ever owned…hardware wise. And I tried, I really really tried, to like OSX. I even bought Parallels so I could run Windows 7 and all my development tools while still trying to live in an OSX world. But in the end, I missed Windows too much. There were just too many shortcomings with OSX that kept me from being productive. For one thing, Office for Mac is *not* Office for Windows. The applications are written by different teams, and Excel on the Mac is just different enough to be painful. The VM experience was adequate, but my MBP would heat up like crazy when running it and the experience trying to get Windows apps to interact with an OSX file system was awkward. And I found I was in the VM more than I thought I’d be. iMovie is not as easy to use for doing simple movie editing as Windows Movie Maker. There’s no free blog editing software for OSX that’s on par with Windows Live Writer. And really, all I was using OSX for was Twitter (which I can use a Windows client for) and web browsing (also something Windows can provide obviously). So I had to ask myself – why am I forcing myself to use an operating system I don’t like, on a laptop that can support Windows 7? And so I paved my MBP and am happily running Windows 7 on it…and its fantastic! All the good stuff with the hardware is still there with the goodness of Win 7. Happy happy. I did run into some snags doing this though, and that’s really what this blog post is about – things to be aware of if you want to install Win 7 directly on your MBP metal. First, Ensure You Have Your Original Mac Install Disk This was a warning my buddy Dylan, who’s been running Win 7 on his MBP for a while now, gave me early on. The reason you need that original disk is that the hardware drivers you need are all located there. Apparently you can’t easily download them, so make sure you have them ahead of time. Second, Forget BootCamp The only reason you need BootCamp is if you still want the option to boot into OSX. If you don’t, then you don’t need BootCamp. In fact, you don’t even need BootCamp to install Win 7. What you *will* need though is a DVD with Win 7 burnt on it. Apple doesn’t support bootable USB drives. Well, actually they do for Mac Book Airs which don’t come with optical drives…but to get it working you’ll need to edit a system file of BootCamp so your make of MBP is included in an XML document, and even then you *still* are using BootCamp meaning you’ll be making an OSX partition. So don’t worry about BootCamp, just burn a Windows 7 disc, put it into the DVD drive, and restart your MBP. Third, Know The Secret Commands So after putting in the Windows 7 DVD and restarting your MBP, you’ll want to hold down the ‘C’ key during boot up. This tells the MBP that it should boot from the DVD drive instead of the hard drive. Interestingly, it appears you don’t have to do this if its the Mac OSX install disc (more on that in a second), but regardless – hold down C and Windows will start the install process. Next up is the partition process. You’ll notice that there’s a partition called ETI or something like that. This has to do with the drive format that Apple uses and how they partition their system drives. What I did – I blew it away! At first I didn’t, but I was told I couldn’t install Windows on the remaining space due to the different drive format. Blowing away the ETI partition (and all other partitions) allowed me to continue the Windows install. *REMEMBER –  No warranty is provided or implied, just telling you what I did and how I got it to work. Ok, so now Windows is installed and I’m rebooting. Everything looks good, but I need drivers! So I put in the OSX install DVD and run the BootCamp assistant which installs all the Windows drivers I need. Fantastic! Oh, I need to restart – no problem. OH NO, PROBLEM! I left the OSX install DVD in the drive and now the MBP wants to boot from the drive and install OSX! I’m not holding down the C key, what the heck?! Ok, well there must be a way to eject this disk…hmm…no physical button on the side…the eject button doesn’t seem to work on the keyboard…no little pin hole to insert something to force the disc out…well what the…?! It turns out, if you want to eject a disc at boot up, you need (and I kid you not) to plug a mouse into the laptop and hold down the right-click button while its booting. This ejected the disc for me. Seriously. Finally, Things You Should Be Aware Of Once you have Windows up and running there’s a few things you need to be aware of, mainly new keyboard shortcuts. For instance, on the Mac keyboard there is no Home, End, PageUp or PageDown. There’s also no obvious way to do something like select large amounts of text (like you would by holding Shift-Home at the end of a line of text for instance). So here’s some shortcuts you need to know: Home – fn + left arrow End – fn + right arrow Select a line of text as you would with the Home key – Shift + fn + left arrow Select a line of text as you would with the End key – Shift + fn + right arrow Page Up – fn + up arrow Page Down – fn + down arrow Also, you’ll notice that the awesome Mac track pad doesn’t respond to taps as clicks. No fear, this is just a setting that needs to be altered in the BootCamp control panel (that controls the Mac Hardware-specific settings within Windows, you can access it easily from the system tray icon) One other thing, battery life seems a bit lower than with OSX, but then again I’m also doing more than Twitter or web browsing on this thing now. Conclusion My laptop runs awesome now that I have Windows 7 on there. It’s obviously up to individual taste, but for me I just didn’t see benefits to living in an OSX world when everything I needed lived in Windows. And also, I finally am back to an operating system that doesn’t require me to eject a USB drive before physically removing it! It’s 2012 folks, how has this not been fixed?! D

    Read the article

  • Big data: An evening in the life of an actual buyer

    - by Jean-Pierre Dijcks
    Here I am, and this is an actual story of one of my evenings, trying to spend money with a company and ultimately failing. I just gave up and bought a service from another vendor, not the incumbent. Here is that story and how I think big data could actually fix this (and potentially prevent some of this from happening). In the end this story should illustrate how big data can benefit me (get me what I want without causing grief) and the company I am trying to buy something from. Note: Lots of details left out, I have no intention of being the annoyed blogger moaning about a specific company. What did I want to get? We watch TV, we have internet and we do have a land line. The land line is from a different vendor then the TV and the internet. I have decided that this makes no sense and I was going to get a bundle (no need to infer who this is, I just picked the generic bundle word as this is what I want to get) of all three services as this seems to save me money. I also want to not talk to people, I just want to click on a website when I feel like it and get it all sorted. I do think that is reality. I want to just do my shopping at 9.30pm while watching silly reruns on TV. Problem 1 - Bad links So, I'm an existing customer of the company I want to buy my bundle from. I go to the website, I click on offers. Turns out they are offers for new customers. After grumbling about how good they are, I click on offers for existing customers. Bummer, it goes to offers for new customers, so I click again on the link for offers for existing customers. No cigar... it just does not work. Big data solutions: 1) Do not show an existing customer the offers for new customers unless they are the same => This is only partially doable without login, but if a customer logs in the application should always know that this is an existing customer. But in general, imagine I do this from my home going through the internet service of this vendor to their domain... an instant filter should move me into the "existing customer route". 2) Flag dead or incorrect links => I've clicked the link for "existing customer offers" at least 3 times in under 5 seconds... Identifying patterns like this is easy in Hadoop and can very quickly make a list of potentially incorrect links. No need for realtime fixing, just the fact that this link can be pro-actively fixed across my entire web domain is a good thing. Preventative maintenance! Problem 2 - Purchase cannot be completed Apart from the fact that the browsing pattern to actually get to what I want is poorly designed, my purchase never gets past a specific point. In other words, I put something into my shopping cart and when I want to move on the application either crashes (with me going to an error page) or hangs or goes into something like chat. So I try again, and again and again. I think I tried this entire path (while being logged in!!) at least 10 times over the course of 20 minutes. I also clicked on the feedback button and, frustrated as I was, tried to explain this did not work... Big Data Solutions: 1) This web site does shopping cart analysis. I got an email next day stating I have things in my shopping cart, just click here to complete my purchase. After the above experience, this just added insult to my pain... 2) What should have happened, is a Hadoop job going over all logged in customers that are on the buy flow. It should flag anyone who is trying (multiple attempts from the same user to do the same thing), analyze the shopping card, the clicks to identify what the customers wants, his feedback provided (note: always own your own website feedback, never just farm this out!!) and in a short turn around time (30 minutes to 2 hours or so) email me with a link to complete my purchase. Not with a link to my shopping cart 12 hours later, but a link to actually achieve what I wanted... Why should this company go through the big data effort? I do believe this is relatively easy to do using our Oracle Event Processing and Big Data Appliance solutions combined. It is almost so simple (to my mind) that it makes no sense that this is not in place? But, now I am ranting... Why is this interesting? It is because of $$$$. After trying really hard, I mean I did this all in the evening, and again in the morning before going to work. I kept on failing, But I really wanted this to work... so an email that said, sorry, we noticed you tried to get a bundle (the log knows what I wanted, where I failed, so easy to generate), here is the link to click and complete your purchase. And here is 2 movies on us as an apology would have kept me as a customer, and got the additional $$$$ per month for the next couple of years. It would also lead to upsell on my phone package etc. Instead, I went to a completely different company, bought service from them. Lost money for company A, negative sentiment for company A and me telling this story at the water cooler so I'm influencing more people to think negatively about company A. All in all, a loss of easy money, a ding in sentiment and image where a relatively simple solution exists and can be in place on the software I describe routinely in this blog... For those who are coming to Openworld and maybe see value in solving the above, or are thinking of how to solve this, come visit us in Moscone North - Oracle Red Lounge or in the Engineered Systems Showcase.

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

  • VNIC - New feature of AK8 - Working with VNICs

    - by Steve Tunstall
    One of the important new features of the AK8 code is the ability to use multiple IP addresses on the same physical network port. This feature is called VNICs, or Virtual NICs. This allows us to no longer "burn" a whole port in a cluster when one cluster peer owns a network port. Traditionally, we have had to leave Net0 empty on controller 2, because it was used for managing controller 1. Vise-versa for Net1 on Controller 1. Then, if you have data going over 10GigE ports, you probably only had half of your ports running at any given time, and the partner 10GigE port on the other controller just sat there, doing nothing, unless the first controller went down. What a waste. Those days are over.  I want to thank and give a big shout-out to our good partner, OnX Enterprise Solutions, for allowing me to come into their lab and play around with their 7320 to do this demo. They let me make a big mess of their lab for the day as I played around with VNICs. If you're looking for a partner who knows Oracle well and can also piece together a solution from multiple vendors to get you what you need, OnX is a good choice. If you would like to talk to your local OnX rep, you can contact Scott Gill at [email protected] and he can point you in the right direction for your area.  Here we go: Here is what your Datalinks window looks like BEFORE you upgrade to AK8. Here's what the same screen looks like after you upgrade. See the new box? So here is my current network setup. I have my 4 physical interfaces setup each with an IP address. If I ping them, no problems.  So I can ping 180, 181, 251, and 252. However, if I try to ping 240, it does not work, as the 240 address is not being used by any of these interfaces, right?Let's change that. Here, I'm going to make a new Datalink by clicking the Datalink "Plus sign" button. I will check the VNIC box and tell it to use igb2, even though another interface is already using it. Now, I will create a new Interface, and choose "v_dl2" for it's datalink. My new network screen looks like this. A few things to take note of here. First, when I click the "igb2" device, it only highlights dl2 and int2. It does not highlight v_dl2 or v_int2.I think it should, but OK, it looks like VNICs don't highlight when you click the device. Second, note how the underscore character in v_dl2 and v_int2 do not seem to show on this screen. You can see it plainly if you go in and edit them, but from here it looks like a space instead of an underscore. Just a cosmetic bug, but something to be aware of. Now, if I click the VNIC datalink "v_dl2", on the other hand, it DOES highlight the device it belongs to, as it should. Seen here: Note that it did not, however, highlight int2 with it, even though int2 is connected to igb2. That's because we clicked v_dl2, which int2 has nothing to do with. So I'm OK with that. So let's try pinging 240 now. Of course, it works great.  So I now make another VNIC, and call it v_dl3 using igb3, and v_int3 with an address of 241. I then setup three shares, using ports 251, 240, and 241.Remember that IP 251 and 240 both are using the same physical port of igb2, and IP 241 is using port igb3. Next, I copy a folder full of stuff over to all three shares at the same time. I have analytics going so I can see the traffic. My top chart is showing the logical interfaces, and the bottom chart is showing the physical ports.Sure enough, look at the igb2 and vnic1 interfaces. They equal the traffic going over the igb2 physical port on the second chart. VNIC2, on the other hand, gets igb3 all to itself. This would work the same way with 10Gig or Infiniband ports. You can now have multiple IP addresses and even completely different subnets sharing the same physical ports. You may need to make route table entries for that. This allows us to use all of the ports you paid for with no more waste.  Very, very cool.  One small "bug" I found when doing this. It's really not a bug, it was designed to do this when VNICs were not around. But now that we have NVIC capability, they should probably change this. I've alerted the engineering team about this and they're looking into it, so perhaps it will be fixed in a later code. Here it is. Remember when we made the new VNIC datalink, I specifically said to click on the "Plus Sign" button to create it? I don't always do that. I really like to use the drag-and-drop method to create my datalinks in the network screen.HOWEVER, if you were to do that for building a VNIC, it will mess you up a little. Watch this. Here, I'm dragging igb3 over to make a new datalink. igb3 is already being used by dl3, but I'm going to make this a VNIC, so who cares, right? Well, the ZFSSA does not KNOW you are going to make it a VNIC, now does it? So... it works as designed and REMOVES the igb3 device from the current dl3 datalink in the background. See how it's now missing? At the same time, the dl3 datalink choice is missing from my list of possible VNICs for me to choose from!!!! Hey!!! I wanted to pick dl3. Why isn't it on the list??? Well, it can't be on this list because dl3 no longer has a device associated with it. Bummer for you. When you click cancel, the device is still missing from dl3. The fix is easy. Just edit dl3 by clicking the pencil button, do absolutely nothing, and click "Apply". The device will magically come back. Now, make the VNIC datalink by clicking the "Plus Sign" button. Sure enough, once you check the VNIC box, dl3 is a valid choice. No problem.  That's it for now. Have fun with VNICs.

    Read the article

< Previous Page | 206 207 208 209 210 211 212 213 214 215 216 217  | Next Page >