Search Results

Search found 5424 results on 217 pages for 'mssql 2005'.

Page 212/217 | < Previous Page | 208 209 210 211 212 213 214 215 216 217  | Next Page >

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Ubuntu 14.04 Failed to load module udlfb

    - by jar276705
    DisplayLink doesn't load and run. The adapter is recognized and /dev/FB1 is created. USB bus info: Bus 001 Device 006: ID 17e9:0198 DisplayLink Xorg.0.log: X.Org X Server 1.15.1 Release Date: 2014-04-13 [ 44708.386] X Protocol Version 11, Revision 0 [ 44708.389] Build Operating System: Linux 3.2.0-37-generic i686 Ubuntu [ 44708.392] Current Operating System: Linux rrl 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:08:14 UTC 2014 i686 [ 44708.392] Kernel command line: BOOT_IMAGE=/boot/vmlinuz-3.13.0-24-generic root=UUID=6b719a77-29e0-4668-8f16-57d0d3a73a3f ro quiet splash vt.handoff=7 [ 44708.399] Build Date: 16 April 2014 01:40:08PM [ 44708.402] xorg-server 2:1.15.1-0ubuntu2 (For technical support please see http://www.ubuntu.com/support) [ 44708.405] Current version of pixman: 0.30.2 [ 44708.412] Before reporting problems, check http://wiki.x.org to make sure that you have the latest version. [ 44708.412] Markers: (--) probed, (**) from config file, (==) default setting, (++) from command line, (!!) notice, (II) informational, (WW) warning, (EE) error, (NI) not implemented, (??) unknown. [ 44708.427] (==) Log file: "/var/log/Xorg.0.log", Time: Thu May 1 09:38:27 2014 [ 44708.431] (==) Using config file: "/etc/X11/xorg.conf" [ 44708.434] (==) Using system config directory "/usr/share/X11/xorg.conf.d" [ 44708.435] (==) ServerLayout "X.org Configured" [ 44708.435] (**) |-->Screen "DisplayLinkScreen" (0) [ 44708.435] (**) | |-->Monitor "DisplayLinkMonitor" [ 44708.435] (**) | |-->Device "DisplayLinkDevice" [ 44708.435] (**) |-->Screen "Screen0" (1) [ 44708.435] (**) | |-->Monitor "Monitor0" [ 44708.435] (**) | |-->Device "Card0" [ 44708.435] (**) |-->Input Device "Mouse0" [ 44708.435] (**) |-->Input Device "Keyboard0" [ 44708.435] (==) Automatically adding devices [ 44708.435] (==) Automatically enabling devices [ 44708.435] (==) Automatically adding GPU devices [ 44708.435] (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi/" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi/" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (**) FontPath set to: /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, built-ins, /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, built-ins [ 44708.435] (**) ModulePath set to "/usr/lib/xorg/modules" [ 44708.435] (WW) Hotplugging is on, devices using drivers 'kbd', 'mouse' or 'vmmouse' will be disabled. [ 44708.435] (WW) Disabling Mouse0 [ 44708.435] (WW) Disabling Keyboard0 [ 44708.435] (II) Loader magic: 0xb77106c0 [ 44708.435] (II) Module ABI versions: [ 44708.435] X.Org ANSI C Emulation: 0.4 [ 44708.435] X.Org Video Driver: 15.0 [ 44708.435] X.Org XInput driver : 20.0 [ 44708.435] X.Org Server Extension : 8.0 [ 44708.436] (II) xfree86: Adding drm device (/dev/dri/card0) [ 44708.436] (II) xfree86: Adding drm device (/dev/dri/card1) [ 44708.437] (--) PCI:*(0:1:5:0) 1002:9616:105b:0e26 rev 0, Mem @ 0xf0000000/134217728, 0xfeae0000/65536, 0xfe900000/1048576, I/O @ 0x0000b000/256 [ 44708.441] Initializing built-in extension Generic Event Extension [ 44708.444] Initializing built-in extension SHAPE [ 44708.448] Initializing built-in extension MIT-SHM [ 44708.452] Initializing built-in extension XInputExtension [ 44708.456] Initializing built-in extension XTEST [ 44708.460] Initializing built-in extension BIG-REQUESTS [ 44708.464] Initializing built-in extension SYNC [ 44708.468] Initializing built-in extension XKEYBOARD [ 44708.471] Initializing built-in extension XC-MISC [ 44708.475] Initializing built-in extension SECURITY [ 44708.479] Initializing built-in extension XINERAMA [ 44708.483] Initializing built-in extension XFIXES [ 44708.487] Initializing built-in extension RENDER [ 44708.491] Initializing built-in extension RANDR [ 44708.494] Initializing built-in extension COMPOSITE [ 44708.498] Initializing built-in extension DAMAGE [ 44708.502] Initializing built-in extension MIT-SCREEN-SAVER [ 44708.506] Initializing built-in extension DOUBLE-BUFFER [ 44708.510] Initializing built-in extension RECORD [ 44708.513] Initializing built-in extension DPMS [ 44708.517] Initializing built-in extension Present [ 44708.521] Initializing built-in extension DRI3 [ 44708.525] Initializing built-in extension X-Resource [ 44708.528] Initializing built-in extension XVideo [ 44708.532] Initializing built-in extension XVideo-MotionCompensation [ 44708.535] Initializing built-in extension SELinux [ 44708.539] Initializing built-in extension XFree86-VidModeExtension [ 44708.542] Initializing built-in extension XFree86-DGA [ 44708.546] Initializing built-in extension XFree86-DRI [ 44708.549] Initializing built-in extension DRI2 [ 44708.549] (II) "glx" will be loaded. This was enabled by default and also specified in the config file. [ 44708.549] (WW) "xmir" is not to be loaded by default. Skipping. [ 44708.549] (II) LoadModule: "glx" [ 44708.549] (II) Loading /usr/lib/xorg/modules/extensions/libglx.so [ 44708.550] (II) Module glx: vendor="X.Org Foundation" [ 44708.550] compiled for 1.15.1, module version = 1.0.0 [ 44708.550] ABI class: X.Org Server Extension, version 8.0 [ 44708.550] (==) AIGLX enabled [ 44708.553] Loading extension GLX [ 44708.553] (II) LoadModule: "udlfb" [ 44708.554] (WW) Warning, couldn't open module udlfb [ 44708.554] (II) UnloadModule: "udlfb" [ 44708.554] (II) Unloading udlfb [ 44708.554] (EE) Failed to load module "udlfb" (module does not exist, 0) [ 44708.554] (II) LoadModule: "modesetting" [ 44708.554] (II) Loading /usr/lib/xorg/modules/drivers/modesetting_drv.so [ 44708.554] (II) Module modesetting: vendor="X.Org Foundation" [ 44708.554] compiled for 1.15.0, module version = 0.8.1 [ 44708.554] Module class: X.Org Video Driver [ 44708.554] ABI class: X.Org Video Driver, version 15.0 [ 44708.554] (==) Matched fglrx as autoconfigured driver 0 [ 44708.554] (==) Matched ati as autoconfigured driver 1 [ 44708.554] (==) Matched fglrx as autoconfigured driver 2 [ 44708.554] (==) Matched ati as autoconfigured driver 3 [ 44708.554] (==) Matched modesetting as autoconfigured driver 4 [ 44708.554] (==) Matched fbdev as autoconfigured driver 5 [ 44708.554] (==) Matched vesa as autoconfigured driver 6 [ 44708.554] (==) Assigned the driver to the xf86ConfigLayout [ 44708.554] (II) LoadModule: "fglrx" [ 44708.554] (WW) Warning, couldn't open module fglrx [ 44708.554] (II) UnloadModule: "fglrx" [ 44708.554] (II) Unloading fglrx [ 44708.554] (EE) Failed to load module "fglrx" (module does not exist, 0) [ 44708.554] (II) LoadModule: "ati" [ 44708.554] (II) Loading /usr/lib/xorg/modules/drivers/ati_drv.so [ 44708.554] (II) Module ati: vendor="X.Org Foundation" [ 44708.554] compiled for 1.15.0, module version = 7.3.0 [ 44708.554] Module class: X.Org Video Driver [ 44708.554] ABI class: X.Org Video Driver, version 15.0 [ 44708.554] (II) LoadModule: "radeon" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/radeon_drv.so [ 44708.555] (II) Module radeon: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 7.3.0 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) LoadModule: "modesetting" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/modesetting_drv.so [ 44708.555] (II) Module modesetting: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 0.8.1 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) UnloadModule: "modesetting" [ 44708.555] (II) Unloading modesetting [ 44708.555] (II) Failed to load module "modesetting" (already loaded, 0) [ 44708.555] (II) LoadModule: "fbdev" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/fbdev_drv.so [ 44708.555] (II) Module fbdev: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 0.4.4 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) LoadModule: "vesa" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/vesa_drv.so [ 44708.555] (II) Module vesa: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 2.3.3 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) modesetting: Driver for Modesetting Kernel Drivers: kms [ 44708.555] (II) RADEON: Driver for ATI Radeon chipsets: [ 44708.560] (II) FBDEV: driver for framebuffer: fbdev [ 44708.560] (II) VESA: driver for VESA chipsets: vesa [ 44708.560] (--) using VT number 7 [ 44708.578] (II) modesetting(0): using drv /dev/dri/card0 [ 44708.578] (II) modesetting(G0): using drv /dev/dri/card1 [ 44708.578] (WW) Falling back to old probe method for fbdev [ 44708.578] (II) Loading sub module "fbdevhw" [ 44708.578] (II) LoadModule: "fbdevhw" [ 44708.578] (II) Loading /usr/lib/xorg/modules/libfbdevhw.so [ 44708.578] (II) Module fbdevhw: vendor="X.Org Foundation" [ 44708.578] compiled for 1.15.1, module version = 0.0.2 [ 44708.578] ABI class: X.Org Video Driver, version 15.0 [ 44708.578] (WW) Falling back to old probe method for vesa [ 44708.578] (**) modesetting(0): Depth 16, (--) framebuffer bpp 16 [ 44708.578] (==) modesetting(0): RGB weight 565 [ 44708.578] (==) modesetting(0): Default visual is TrueColor [ 44708.578] (II) modesetting(0): ShadowFB: preferred YES, enabled YES [ 44708.608] (II) modesetting(0): Output VGA-0 using monitor section DisplayLinkMonitor [ 44708.610] (II) modesetting(0): Output DVI-0 has no monitor section [ 44708.640] (II) modesetting(0): EDID for output VGA-0 [ 44708.640] (II) modesetting(0): Manufacturer: ACR Model: 74 Serial#: 2483090993 [ 44708.640] (II) modesetting(0): Year: 2009 Week: 40 [ 44708.640] (II) modesetting(0): EDID Version: 1.3 [ 44708.640] (II) modesetting(0): Analog Display Input, Input Voltage Level: 0.700/0.700 V [ 44708.640] (II) modesetting(0): Sync: Separate [ 44708.640] (II) modesetting(0): Max Image Size [cm]: horiz.: 53 vert.: 29 [ 44708.640] (II) modesetting(0): Gamma: 2.20 [ 44708.640] (II) modesetting(0): DPMS capabilities: StandBy Suspend Off; RGB/Color Display [ 44708.641] (II) modesetting(0): First detailed timing is preferred mode [ 44708.641] (II) modesetting(0): redX: 0.649 redY: 0.338 greenX: 0.289 greenY: 0.609 [ 44708.641] (II) modesetting(0): blueX: 0.146 blueY: 0.070 whiteX: 0.313 whiteY: 0.329 [ 44708.641] (II) modesetting(0): Supported established timings: [ 44708.641] (II) modesetting(0): 720x400@70Hz [ 44708.641] (II) modesetting(0): 640x480@60Hz [ 44708.641] (II) modesetting(0): 640x480@72Hz [ 44708.641] (II) modesetting(0): 640x480@75Hz [ 44708.641] (II) modesetting(0): 800x600@56Hz [ 44708.641] (II) modesetting(0): 800x600@60Hz [ 44708.641] (II) modesetting(0): 800x600@72Hz [ 44708.641] (II) modesetting(0): 800x600@75Hz [ 44708.641] (II) modesetting(0): 1024x768@60Hz [ 44708.641] (II) modesetting(0): 1024x768@70Hz [ 44708.641] (II) modesetting(0): 1024x768@75Hz [ 44708.641] (II) modesetting(0): 1280x1024@75Hz [ 44708.641] (II) modesetting(0): Manufacturer's mask: 0 [ 44708.641] (II) modesetting(0): Supported standard timings: [ 44708.641] (II) modesetting(0): #0: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 [ 44708.641] (II) modesetting(0): #1: hsize: 1152 vsize 864 refresh: 75 vid: 20337 [ 44708.641] (II) modesetting(0): #2: hsize: 1440 vsize 900 refresh: 60 vid: 149 [ 44708.641] (II) modesetting(0): #3: hsize: 1440 vsize 900 refresh: 75 vid: 3989 [ 44708.641] (II) modesetting(0): #4: hsize: 1600 vsize 1200 refresh: 60 vid: 16553 [ 44708.641] (II) modesetting(0): #5: hsize: 1680 vsize 1050 refresh: 60 vid: 179 [ 44708.641] (II) modesetting(0): Supported detailed timing: [ 44708.641] (II) modesetting(0): clock: 138.5 MHz Image Size: 531 x 298 mm [ 44708.641] (II) modesetting(0): h_active: 1920 h_sync: 1968 h_sync_end 2000 h_blank_end 2080 h_border: 0 [ 44708.641] (II) modesetting(0): v_active: 1080 v_sync: 1083 v_sync_end 1088 v_blanking: 1111 v_border: 0 [ 44708.641] (II) modesetting(0): Monitor name: H243H [ 44708.641] (II) modesetting(0): Ranges: V min: 56 V max: 76 Hz, H min: 31 H max: 83 kHz, PixClock max 185 MHz [ 44708.641] (II) modesetting(0): Serial No: LEW0C0044002 [ 44708.641] (II) modesetting(0): EDID (in hex): [ 44708.641] (II) modesetting(0): 00ffffffffffff000472740031f60094 [ 44708.641] (II) modesetting(0): 2813010368351d78ea6085a6564a9c25 [ 44708.641] (II) modesetting(0): 125054afcf008180714f9500950fa940 [ 44708.641] (II) modesetting(0): b300010101011a3680a070381f403020 [ 44708.641] (II) modesetting(0): 3500132a2100001a000000fc00483234 [ 44708.642] (II) modesetting(0): 33480a20202020202020000000fd0038 [ 44708.642] (II) modesetting(0): 4c1f5312000a202020202020000000ff [ 44708.642] (II) modesetting(0): 004c45573043303034343030320a003c [ 44708.642] (II) modesetting(0): Printing probed modes for output VGA-0 [ 44708.642] (II) modesetting(0): Modeline "1280x1024"x75.0 135.00 1280 1296 1440 1688 1024 1025 1028 1066 +hsync +vsync (80.0 kHz UeP) [ 44708.642] (II) modesetting(0): Modeline "1920x1080"x59.9 138.50 1920 1968 2000 2080 1080 1083 1088 1111 +hsync -vsync (66.6 kHz eP) [ 44708.642] (II) modesetting(0): Modeline "1600x1200"x60.0 162.00 1600 1664 1856 2160 1200 1201 1204 1250 +hsync +vsync (75.0 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1680x1050"x60.0 146.25 1680 1784 1960 2240 1050 1053 1059 1089 -hsync +vsync (65.3 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1280x1024"x60.0 108.00 1280 1328 1440 1688 1024 1025 1028 1066 +hsync +vsync (64.0 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1440x900"x75.0 136.75 1440 1536 1688 1936 900 903 909 942 -hsync +vsync (70.6 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1440x900"x59.9 106.50 1440 1520 1672 1904 900 903 909 934 -hsync +vsync (55.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1152x864"x75.0 108.00 1152 1216 1344 1600 864 865 868 900 +hsync +vsync (67.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x75.1 78.80 1024 1040 1136 1312 768 769 772 800 +hsync +vsync (60.1 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x70.1 75.00 1024 1048 1184 1328 768 771 777 806 -hsync -vsync (56.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x60.0 65.00 1024 1048 1184 1344 768 771 777 806 -hsync -vsync (48.4 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x72.2 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync (48.1 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x75.0 49.50 800 816 896 1056 600 601 604 625 +hsync +vsync (46.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x60.3 40.00 800 840 968 1056 600 601 605 628 +hsync +vsync (37.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x56.2 36.00 800 824 896 1024 600 601 603 625 +hsync +vsync (35.2 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x75.0 31.50 640 656 720 840 480 481 484 500 -hsync -vsync (37.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x72.8 31.50 640 664 704 832 480 489 491 520 -hsync -vsync (37.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x60.0 25.20 640 656 752 800 480 490 492 525 -hsync -vsync (31.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "720x400"x70.1 28.32 720 738 846 900 400 412 414 449 -hsync +vsync (31.5 kHz e) [ 44708.645] (II) modesetting(0): EDID for output DVI-0 [ 44708.645] (II) modesetting(0): Output VGA-0 connected [ 44708.645] (II) modesetting(0): Output DVI-0 disconnected [ 44708.645] (II) modesetting(0): Using user preference for initial modes [ 44708.645] (II) modesetting(0): Output VGA-0 using initial mode 1280x1024 [ 44708.645] (II) modesetting(0): Using default gamma of (1.0, 1.0, 1.0) unless otherwise stated. [ 44708.645] (==) modesetting(0): DPI set to (96, 96) [ 44708.645] (II) Loading sub module "fb" [ 44708.645] (II) LoadModule: "fb" [ 44708.645] (II) Loading /usr/lib/xorg/modules/libfb.so [ 44708.645] (II) Module fb: vendor="X.Org Foundation" [ 44708.645] compiled for 1.15.1, module version = 1.0.0 [ 44708.645] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.645] (II) Loading sub module "shadow" [ 44708.645] (II) LoadModule: "shadow" [ 44708.646] (II) Loading /usr/lib/xorg/modules/libshadow.so [ 44708.646] (II) Module shadow: vendor="X.Org Foundation" [ 44708.646] compiled for 1.15.1, module version = 1.1.0 [ 44708.646] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.646] (**) modesetting(G0): Depth 16, (--) framebuffer bpp 16 [ 44708.646] (==) modesetting(G0): RGB weight 565 [ 44708.646] (==) modesetting(G0): Default visual is TrueColor [ 44708.646] (II) modesetting(G0): ShadowFB: preferred NO, enabled NO [ 44708.727] (II) modesetting(G0): Output DVI-1-0 using monitor section DisplayLinkMonitor [ 44708.808] (II) modesetting(G0): EDID for output DVI-1-0 [ 44708.808] (II) modesetting(G0): Manufacturer: WDE Model: 1702 Serial#: 0 [ 44708.808] (II) modesetting(G0): Year: 2005 Week: 14 [ 44708.808] (II) modesetting(G0): EDID Version: 1.3 [ 44708.808] (II) modesetting(G0): Analog Display Input, Input Voltage Level: 0.700/0.700 V [ 44708.808] (II) modesetting(G0): Sync: Separate [ 44708.808] (II) modesetting(G0): Max Image Size [cm]: horiz.: 34 vert.: 27 [ 44708.808] (II) modesetting(G0): Gamma: 2.20 [ 44708.808] (II) modesetting(G0): DPMS capabilities: StandBy Suspend Off; RGB/Color Display [ 44708.808] (II) modesetting(G0): Default color space is primary color space [ 44708.808] (II) modesetting(G0): First detailed timing is preferred mode [ 44708.808] (II) modesetting(G0): GTF timings supported [ 44708.808] (II) modesetting(G0): redX: 0.643 redY: 0.352 greenX: 0.283 greenY: 0.608 [ 44708.808] (II) modesetting(G0): blueX: 0.147 blueY: 0.102 whiteX: 0.313 whiteY: 0.329 [ 44708.808] (II) modesetting(G0): Supported established timings: [ 44708.808] (II) modesetting(G0): 720x400@70Hz [ 44708.808] (II) modesetting(G0): 640x480@60Hz [ 44708.808] (II) modesetting(G0): 640x480@67Hz [ 44708.808] (II) modesetting(G0): 640x480@72Hz [ 44708.808] (II) modesetting(G0): 640x480@75Hz [ 44708.808] (II) modesetting(G0): 800x600@56Hz [ 44708.808] (II) modesetting(G0): 800x600@60Hz [ 44708.808] (II) modesetting(G0): 800x600@72Hz [ 44708.808] (II) modesetting(G0): 800x600@75Hz [ 44708.808] (II) modesetting(G0): 832x624@75Hz [ 44708.808] (II) modesetting(G0): 1024x768@60Hz [ 44708.808] (II) modesetting(G0): 1024x768@70Hz [ 44708.808] (II) modesetting(G0): 1024x768@75Hz [ 44708.809] (II) modesetting(G0): 1280x1024@75Hz [ 44708.809] (II) modesetting(G0): Manufacturer's mask: 0 [ 44708.809] (II) modesetting(G0): Supported standard timings: [ 44708.809] (II) modesetting(G0): #0: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 [ 44708.809] (II) modesetting(G0): #1: hsize: 1152 vsize 864 refresh: 75 vid: 20337 [ 44708.809] (II) modesetting(G0): Supported detailed timing: [ 44708.809] (II) modesetting(G0): clock: 108.0 MHz Image Size: 338 x 270 mm [ 44708.809] (II) modesetting(G0): h_active: 1280 h_sync: 1328 h_sync_end 1440 h_blank_end 1688 h_border: 0 [ 44708.809] (II) modesetting(G0): v_active: 1024 v_sync: 1025 v_sync_end 1028 v_blanking: 1066 v_border: 0 [ 44708.809] (II) modesetting(G0): Ranges: V min: 50 V max: 75 Hz, H min: 30 H max: 82 kHz, PixClock max 145 MHz [ 44708.809] (II) modesetting(G0): Monitor name: WDE LCM-17v2 [ 44708.809] (II) modesetting(G0): Serial No: 0 [ 44708.809] (II) modesetting(G0): EDID (in hex): [ 44708.809] (II) modesetting(G0): 00ffffffffffff005c85021700000000 [ 44708.809] (II) modesetting(G0): 0e0f010368221b78ef8bc5a45a489b25 [ 44708.809] (II) modesetting(G0): 1a5054bfef008180714f010101010101 [ 44708.809] (II) modesetting(G0): 010101010101302a009851002a403070 [ 44708.809] (II) modesetting(G0): 1300520e1100001e000000fd00324b1e [ 44708.809] (II) modesetting(G0): 520e000a202020202020000000fc0057 [ 44708.809] (II) modesetting(G0): 4445204c434d2d313776320a000000ff [ 44708.809] (II) modesetting(G0): 00300a202020202020202020202000e7 [ 44708.809] (II) modesetting(G0): Printing probed modes for output DVI-1-0 [ 44708.809] (II) modesetting(G0): Modeline "1280x1024"x60.0 108.00 1280 1328 1440 1688 1024 1025 1028 1066 +hsync +vsync (64.0 kHz UeP) [ 44708.809] (II) modesetting(G0): Modeline "1280x1024"x75.0 135.00 1280 1296 1440 1688 1024 1025 1028 1066 +hsync +vsync (80.0 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x960"x60.0 108.00 1280 1376 1488 1800 960 961 964 1000 +hsync +vsync (60.0 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x800"x74.9 106.50 1280 1360 1488 1696 800 803 809 838 -hsync +vsync (62.8 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x800"x59.8 83.50 1280 1352 1480 1680 800 803 809 831 +hsync -vsync (49.7 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1152x864"x75.0 108.00 1152 1216 1344 1600 864 865 868 900 +hsync +vsync (67.5 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x768"x74.9 102.25 1280 1360 1488 1696 768 771 778 805 +hsync -vsync (60.3 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x768"x59.9 79.50 1280 1344 1472 1664 768 771 778 798 -hsync +vsync (47.8 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x75.1 78.80 1024 1040 1136 1312 768 769 772 800 +hsync +vsync (60.1 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x70.1 75.00 1024 1048 1184 1328 768 771 777 806 -hsync -vsync (56.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x60.0 65.00 1024 1048 1184 1344 768 771 777 806 -hsync -vsync (48.4 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x576"x60.0 46.97 1024 1064 1168 1312 576 577 580 597 -hsync +vsync (35.8 kHz) [ 44708.810] (II) modesetting(G0): Modeline "832x624"x74.6 57.28 832 864 928 1152 624 625 628 667 -hsync -vsync (49.7 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x72.2 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync (48.1 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x75.0 49.50 800 816 896 1056 600 601 604 625 +hsync +vsync (46.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x60.3 40.00 800 840 968 1056 600 601 605 628 +hsync +vsync (37.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x56.2 36.00 800 824 896 1024 600 601 603 625 +hsync +vsync (35.2 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "848x480"x60.0 33.75 848 864 976 1088 480 486 494 517 +hsync +vsync (31.0 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x75.0 31.50 640 656 720 840 480 481 484 500 -hsync -vsync (37.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x72.8 31.50 640 664 704 832 480 489 491 520 -hsync -vsync (37.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x66.7 30.24 640 704 768 864 480 483 486 525 -hsync -vsync (35.0 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x60.0 25.20 640 656 752 800 480 490 492 525 -hsync -vsync (31.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "720x400"x70.1 28.32 720 738 846 900 400 412 414 449 -hsync +vsync (31.5 kHz e) [ 44708.810] (II) modesetting(G0): Using default gamma of (1.0, 1.0, 1.0) unless otherwise stated. [ 44708.810] (==) modesetting(G0): DPI set to (96, 96) [ 44708.810] (II) Loading sub module "fb" [ 44708.810] (II) LoadModule: "fb" [ 44708.810] (II) Loading /usr/lib/xorg/modules/libfb.so [ 44708.810] (II) Module fb: vendor="X.Org Foundation" [ 44708.810] compiled for 1.15.1, module version = 1.0.0 [ 44708.811] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.811] (II) UnloadModule: "radeon" [ 44708.811] (II) Unloading radeon [ 44708.811] (II) UnloadModule: "fbdev" [ 44708.811] (II) Unloading fbdev [ 44708.811] (II) UnloadSubModule: "fbdevhw" [ 44708.811] (II) Unloading fbdevhw [ 44708.811] (II) UnloadModule: "vesa" [ 44708.811] (II) Unloading vesa [ 44708.811] (==) modesetting(G0): Backing store enabled [ 44708.811] (==) modesetting(G0): Silken mouse enabled [ 44708.812] (II) modesetting(G0): RandR 1.2 enabled, ignore the following RandR disabled message. [ 44708.812] (==) modesetting(G0): DPMS enabled [ 44708.812] (WW) modesetting(G0): Option "fbdev" is not used [ 44708.812] (==) modesetting(0): Backing store enabled [ 44708.812] (==) modesetting(0): Silken mouse enabled [ 44708.812] (II) modesetting(0): RandR 1.2 enabled, ignore the following RandR disabled message. [ 44708.812] (==) modesetting(0): DPMS enabled [ 44708.812] (WW) modesetting(0): Option "fbdev" is not used [ 44708.856] (--) RandR disabled [ 44708.867] (II) SELinux: Disabled on system [ 44708.868] (II) AIGLX: Screen 0 is not DRI2 capable [ 44708.868] (EE) AIGLX: reverting to software rendering [ 44708.878] (II) AIGLX: Loaded and initialized swrast [ 44708.878] (II) GLX: Initialized DRISWRAST GL provider for screen 0 [ 44708.879] (II) modesetting(G0): Damage tracking initialized [ 44708.879] (II) modesetting(0): Damage tracking initialized [ 44708.879] (II) modesetting(0): Setting screen physical size to 338 x 270 [ 44708.900] (II) XKB: generating xkmfile /tmp/server-B20D7FC79C7F597315E3E501AEF10E0D866E8E92.xkm [ 44708.918] (II) config/udev: Adding input device Power Button (/dev/input/event1) [ 44708.918] (**) Power Button: Applying InputClass "evdev keyboard catchall" [ 44708.918] (II) LoadModule: "evdev" [ 44708.918] (II) Loading /usr/lib/xorg/modules/input/evdev_drv.so [ 44708.918] (II) Module evdev: vendor="X.Org Foundation" [ 44708.918] compiled for 1.15.0, module version = 2.8.2 [ 44708.918] Module class: X.Org XInput Driver [ 44708.918] ABI class: X.Org XInput driver, version 20.0 [ 44708.918] (II) Using input driver 'evdev' for 'Power Button' [ 44708.918] (**) Power Button: always reports core events [ 44708.918] (**) evdev: Power Button: Device: "/dev/input/event1" [ 44708.918] (--) evdev: Power Button: Vendor 0 Product 0x1 [ 44708.918] (--) evdev: Power Button: Found keys [ 44708.918] (II) evdev: Power Button: Configuring as keyboard [ 44708.918] (**) Option "config_info" "udev:/sys/devices/LNXSYSTM:00/LNXPWRBN:00/input/input1/event1" [ 44708.918] (II) XINPUT: Adding extended input device "Power Button" (type: KEYBOARD, id 6) [ 44708.918] (**) Option "xkb_rules" "evdev" [ 44708.918] (**) Option "xkb_model" "pc105" [ 44708.918] (**) Option "xkb_layout" "us" [ 44708.919] (II) config/udev: Adding input device Power Button (/dev/input/event0) [ 44708.919] (**) Power Button: Applying InputClass "evdev keyboard catchall" [ 44708.919] (II) Using input driver 'evdev' for 'Power Button' [ 44708.919] (**) Power Button: always reports core events [ 44708.919] (**) evdev: Power Button: Device: "/dev/input/event0" [ 44708.919] (--) evdev: Power Button: Vendor 0 Product 0x1 [ 44708.919] (--) evdev: Power Button: Found keys [ 44708.919] (II) evdev: Power Button: Configuring as keyboard [ 44708.919] (**) Option "config_info" "udev:/sys/devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/input0/event0" Is there anything I can do to fix this problem.

    Read the article

  • Plan Caching and Query Memory Part I – When not to use stored procedure or other plan caching mechanisms like sp_executesql or prepared statement

    - by sqlworkshops
      The most common performance mistake SQL Server developers make: SQL Server estimates memory requirement for queries at compilation time. This mechanism is fine for dynamic queries that need memory, but not for queries that cache the plan. With dynamic queries the plan is not reused for different set of parameters values / predicates and hence different amount of memory can be estimated based on different set of parameter values / predicates. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union. This article covers Sort with examples. It is recommended to read Plan Caching and Query Memory Part II after this article which covers Hash Match operations.   When the plan is cached by using stored procedure or other plan caching mechanisms like sp_executesql or prepared statement, SQL Server estimates memory requirement based on first set of execution parameters. Later when the same stored procedure is called with different set of parameter values, the same amount of memory is used to execute the stored procedure. This might lead to underestimation / overestimation of memory on plan reuse, overestimation of memory might not be a noticeable issue for Sort operations, but underestimation of memory will lead to spill over tempdb resulting in poor performance.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   To read additional articles I wrote click here.   In most cases it is cheaper to pay for the compilation cost of dynamic queries than huge cost for spill over tempdb, unless memory requirement for a stored procedure does not change significantly based on predicates.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script. Most of these concepts are also covered in our webcasts: www.sqlworkshops.com/webcasts   Enough theory, let’s see an example where we sort initially 1 month of data and then use the stored procedure to sort 6 months of data.   Let’s create a stored procedure that sorts customers by name within certain date range.   --Example provided by www.sqlworkshops.com create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1)       end go Let’s execute the stored procedure initially with 1 month date range.   set statistics time on go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 48 ms to complete.     The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.       The estimated number of rows, 43199.9 is similar to actual number of rows 43200 and hence the memory estimation should be ok.       There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 679 ms to complete.      The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.      The estimated number of rows, 43199.9 is way different from the actual number of rows 259200 because the estimation is based on the first set of parameter value supplied to the stored procedure which is 1 month in our case. This underestimation will lead to sort spill over tempdb, resulting in poor performance.      There was Sort Warnings in SQL Profiler.    To monitor the amount of data written and read from tempdb, one can execute select num_of_bytes_written, num_of_bytes_read from sys.dm_io_virtual_file_stats(2, NULL) before and after the stored procedure execution, for additional information refer to the webcast: www.sqlworkshops.com/webcasts.     Let’s recompile the stored procedure and then let’s first execute the stored procedure with 6 month date range.  In a production instance it is not advisable to use sp_recompile instead one should use DBCC FREEPROCCACHE (plan_handle). This is due to locking issues involved with sp_recompile, refer to our webcasts for further details.   exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go Now the stored procedure took only 294 ms instead of 679 ms.    The stored procedure was granted 26832 KB of memory.      The estimated number of rows, 259200 is similar to actual number of rows of 259200. Better performance of this stored procedure is due to better estimation of memory and avoiding sort spill over tempdb.      There was no Sort Warnings in SQL Profiler.       Now let’s execute the stored procedure with 1 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 49 ms to complete, similar to our very first stored procedure execution.     This stored procedure was granted more memory (26832 KB) than necessary memory (6656 KB) based on 6 months of data estimation (259200 rows) instead of 1 month of data estimation (43199.9 rows). This is because the estimation is based on the first set of parameter value supplied to the stored procedure which is 6 months in this case. This overestimation did not affect performance, but it might affect performance of other concurrent queries requiring memory and hence overestimation is not recommended. This overestimation might affect performance Hash Match operations, refer to article Plan Caching and Query Memory Part II for further details.    Let’s recompile the stored procedure and then let’s first execute the stored procedure with 2 day date range. exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-02' go The stored procedure took 1 ms.      The stored procedure was granted 1024 KB based on 1440 rows being estimated.      There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go   The stored procedure took 955 ms to complete, way higher than 679 ms or 294ms we noticed before.      The stored procedure was granted 1024 KB based on 1440 rows being estimated. But we noticed in the past this stored procedure with 6 month date range needed 26832 KB of memory to execute optimally without spill over tempdb. This is clear underestimation of memory and the reason for the very poor performance.      There was Sort Warnings in SQL Profiler. Unlike before this was a Multiple pass sort instead of Single pass sort. This occurs when granted memory is too low.      Intermediate Summary: This issue can be avoided by not caching the plan for memory allocating queries. Other possibility is to use recompile hint or optimize for hint to allocate memory for predefined date range.   Let’s recreate the stored procedure with recompile hint. --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, recompile)       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.      The stored procedure with 1 month date range has good estimation like before.      The stored procedure with 6 month date range also has good estimation and memory grant like before because the query was recompiled with current set of parameter values.      The compilation time and compilation CPU of 1 ms is not expensive in this case compared to the performance benefit.     Let’s recreate the stored procedure with optimize for hint of 6 month date range.   --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, optimize for (@CreationDateFrom = '2001-01-01', @CreationDateTo ='2001-06-30'))       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.    The stored procedure with 1 month date range has overestimation of rows and memory. This is because we provided hint to optimize for 6 months of data.      The stored procedure with 6 month date range has good estimation and memory grant because we provided hint to optimize for 6 months of data.       Let’s execute the stored procedure with 12 month date range using the currently cashed plan for 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-12-31' go The stored procedure took 1138 ms to complete.      2592000 rows were estimated based on optimize for hint value for 6 month date range. Actual number of rows is 524160 due to 12 month date range.      The stored procedure was granted enough memory to sort 6 month date range and not 12 month date range, so there will be spill over tempdb.      There was Sort Warnings in SQL Profiler.      As we see above, optimize for hint cannot guarantee enough memory and optimal performance compared to recompile hint.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   Summary: Cached plan might lead to underestimation or overestimation of memory because the memory is estimated based on first set of execution parameters. It is recommended not to cache the plan if the amount of memory required to execute the stored procedure has a wide range of possibilities. One can mitigate this by using recompile hint, but that will lead to compilation overhead. However, in most cases it might be ok to pay for compilation rather than spilling sort over tempdb which could be very expensive compared to compilation cost. The other possibility is to use optimize for hint, but in case one sorts more data than hinted by optimize for hint, this will still lead to spill. On the other side there is also the possibility of overestimation leading to unnecessary memory issues for other concurrently executing queries. In case of Hash Match operations, this overestimation of memory might lead to poor performance. When the values used in optimize for hint are archived from the database, the estimation will be wrong leading to worst performance, so one has to exercise caution before using optimize for hint, recompile hint is better in this case. I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.     Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.     Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan

    Read the article

  • CodePlex Daily Summary for Wednesday, November 23, 2011

    CodePlex Daily Summary for Wednesday, November 23, 2011Popular ReleasesVisual Leak Detector for Visual C++ 2008/2010: v2.2.1: Enhancements: * strdup and _wcsdup functions support added. * Preliminary support for VS 11 added. Bugs Fixed: * Low performance after upgrading from VLD v2.1. * Memory leaks with static linking fixed (disabled calloc support). * Runtime error R6002 fixed because of wrong memory dump format. * version.h fixed in installer. * Some PVS studio warning fixed.NetSqlAzMan - .NET SQL Authorization Manager: 3.6.0.10: 3.6.0.10 22-Nov-2011 Update: Removed PreEmptive Platform integration (PreEmptive analytics) Removed all PreEmptive attributes Removed PreEmptive.dll assembly references from all projects Added first support to ADAM/AD LDS Thanks to PatBea. Work Item 9775: http://netsqlazman.codeplex.com/workitem/9775Developer Team Article System Management: DTASM v1.3: ?? ??? ???? 3 ????? ???? ???? ????? ??? : - ????? ?????? ????? ???? ?? ??? ???? ????? ?? ??? ? ?? ???? ?????? ???? ?? ???? ????? ?? . - ??? ?? ???? ????? ???? ????? ???? ???? ?? ????? , ?????? ????? ????? ?? ??? . - ??? ??????? ??? ??? ???? ?? ????? ????? ????? .SharePoint 2010 FBA Pack: SharePoint 2010 FBA Pack 1.2.0: Web parts are now fully customizable via html templates (Issue #323) FBA Pack is now completely localizable using resource files. Thank you David Chen for submitting the code as well as Chinese translations of the FBA Pack! The membership request web part now gives the option of having the user enter the password and removing the captcha (Issue # 447) The FBA Pack will now work in a zone that does not have FBA enabled (Another zone must have FBA enabled, and the zone must contain the me...SharePoint 2010 Education Demo Project: Release SharePoint SP1 for Education Solutions: This release includes updates to the Content Packs for SharePoint SP1. All Content Packs have been updated to install successfully under SharePoint SP1SQL Monitor - tracking sql server activities: SQLMon 4.1 alpha 6: 1. improved support for schema 2. added find reference when right click on object list 3. added object rename supportBugNET Issue Tracker: BugNET 0.9.126: First stable release of version 0.9. Upgrades from 0.8 are fully supported and upgrades to future releases will also be supported. This release is now compiled against the .NET 4.0 framework and is a requirement. Because of this the web.config has significantly changed. After upgrading, you will need to configure the authentication settings for user registration and anonymous access again. Please see our installation / upgrade instructions for more details: http://wiki.bugnetproject.c...Anno 2070 Assistant: v0.1.0 (STABLE): Version 0.1.0 Features Production Chains Eco Production Chains (Complete) Tycoon Production Chains (Disabled - Incomplete) Tech Production Chains (Disabled - Incomplete) Supply (Disabled - Incomplete) Calculator (Disabled - Incomplete) Building Layouts Eco Building Layouts (Complete) Tycoon Building Layouts (Disabled - Incomplete) Tech Building Layouts (Disabled - Incomplete) Credits (Complete)Free SharePoint 2010 Sites Templates: SharePoint Server 2010 Sites Templates: here is the list of sites templates to be downloadedVsTortoise - a TortoiseSVN add-in for Microsoft Visual Studio: VsTortoise Build 30 Beta: Note: This release does not work with custom VsTortoise toolbars. These get removed every time when you shutdown Visual Studio. (#7940) Build 30 (beta)New: Support for TortoiseSVN 1.7 added. (the download contains both setups, for TortoiseSVN 1.6 and 1.7) New: OpenModifiedDocumentDialog displays conflicted files now. New: OpenModifiedDocument allows to group items by changelist now. Fix: OpenModifiedDocumentDialog caused Visual Studio 2010 to freeze sometimes. Fix: The installer didn...nopCommerce. Open source shopping cart (ASP.NET MVC): nopcommerce 2.30: Highlight features & improvements: • Performance optimization. • Back in stock notifications. • Product special price support. • Catalog mode (based on customer role) To see the full list of fixes and changes please visit the release notes page (http://www.nopCommerce.com/releasenotes.aspx).WPF Converters: WPF Converters V1.2.0.0: support for enumerations, value types, and reference types in the expression converter's equality operators the expression converter now handles DependencyProperty.UnsetValue as argument values correctly (#4062) StyleCop conformance (more or less)Json.NET: Json.NET 4.0 Release 4: Change - JsonTextReader.Culture is now CultureInfo.InvariantCulture by default Change - KeyValurPairConverter no longer cares about the order of the key and value properties Change - Time zone conversions now use new TimeZoneInfo instead of TimeZone Fix - Fixed boolean values sometimes being capitalized when converting to XML Fix - Fixed error when deserializing ConcurrentDictionary Fix - Fixed serializing some Uris returning the incorrect value Fix - Fixed occasional error when...Media Companion: MC 3.423b Weekly: Ensure .NET 4.0 Full Framework is installed. (Available from http://www.microsoft.com/download/en/details.aspx?id=17718) Ensure the NFO ID fix is applied when transitioning from versions prior to 3.416b. (Details here) Replaced 'Rebuild' with 'Refresh' throughout entire code. Rebuild will now be known as Refresh. mc_com.exe has been fully updated TV Show Resolutions... Resolved issue #206 - having to hit save twice when updating runtime manually Shrunk cache size and lowered loading times f...Delta Engine: Delta Engine Beta Preview v0.9.1: v0.9.1 beta release with lots of refactoring, fixes, new samples and support for iOS, Android and WP7 (you need a Marketplace account however). If you want a binary release for the games (like v0.9.0), just say so in the Forum or here and we will quickly prepare one. It is just not much different from v0.9.0, so I left it out this time. See http://DeltaEngine.net/Wiki.Roadmap for details.ASP.net Awesome Samples (Web-Forms): 1.0 samples: Demos and Tutorials for ASP.net Awesome VS2008 are in .NET 3.5 VS2010 are in .NET 4.0 (demos for the ASP.net Awesome jQuery Ajax Controls)SharpMap - Geospatial Application Framework for the CLR: SharpMap-0.9-AnyCPU-Trunk-2011.11.17: This is a build of SharpMap from the 0.9 development trunk as per 2011-11-17 For most applications the AnyCPU release is the recommended, but in case you need an x86 build that is included to. For some dataproviders (GDAL/OGR, SqLite, PostGis) you need to also referense the SharpMap.Extensions assembly For SqlServer Spatial you need to reference the SharpMap.SqlServerSpatial assemblyAJAX Control Toolkit: November 2011 Release: AJAX Control Toolkit Release Notes - November 2011 Release Version 51116November 2011 release of the AJAX Control Toolkit. AJAX Control Toolkit .NET 4 - Binary – AJAX Control Toolkit for .NET 4 and sample site (Recommended). AJAX Control Toolkit .NET 3.5 - Binary – AJAX Control Toolkit for .NET 3.5 and sample site (Recommended). Notes: - The current version of the AJAX Control Toolkit is not compatible with ASP.NET 2.0. The latest version that is compatible with ASP.NET 2.0 can be found h...Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.36: Fix for issue #16908: string literals containing ASP.NET replacement syntax fail if the ASP.NET code contains the same character as the string literal delimiter. Also, we shouldn't be changing the delimiter for those literals or combining them with other literals; the developer may have specifically chosen the delimiter used because of possible content inserted by ASP.NET code. This logic is normally off; turn it on via the -aspnet command-line flag (or the Code.Settings.AllowEmbeddedAspNetBl...MVC Controls Toolkit: Mvc Controls Toolkit 1.5.5: Added: Now the DateRanteAttribute accepts complex expressions containing "Now" and "Today" as static minimum and maximum. Menu, MenuFor helpers capable of handling a "currently selected element". The developer can choose between using a standard nested menu based on a standard SimpleMenuItem class or specifying an item template based on a custom class. Added also helpers to build the tree structure containing all data items the menu takes infos from. Improved the pager. Now the developer ...New ProjectsActiveWorlds World Server Admin PowerShell SnapIn: The purpose of this PowerShell SnapIn is to provide a set of tools to administer the world server from PowerShell. It leverages the ActiveWorlds SDK .NET Wrapper to provide this functionality.Aigu: Enter special characters like you would on your mobile phone. For instance, if you want to type 'é', you just hold down 'e' and a menu will appear. Selected the desired character using the arrow keys and press 'enter'. Simple but powerful.Are you workaholic?: Are you a workaholic? Did your Doctor advice you not to stare at the computer monitor for a long time? Then this app is perfectly made for you. It runs in the background, and alerts you to take periodic rests for your eyes and body. What's more, It's open source (MS-PL).ATDIS PoC: privateAuto Version Web Assets: The AVWA project is an HTTP Module written in C# that is designed to allow for versioning of various web assets such as .CSS and .JS files. This allows you to publish new versions of these files without having to force the server or the client browsers to expire cache.Bachelor Thesis Algorithm Test Bed: Algorithm Test Bed for my Bachelor ThesisBase64: Simple application helps converting strings and files from or to Base64 string. You can use any encoding to convert while a sidebar previews decoded string for all other encodings.BoracayExpress: BoracayExpressC++ Framework for Test Driven Development: A testing framework for C++ written in C++.Class2Table: Class2Table aka Entity2Table. Easy tool that allows creation of SQL tables from .Net types.Code for Demos & Experiments: This is where I will post code from demos and presentationsCodeMaker: CodeMaker?????????: 1、?????????? 2、???? 3、????? 4、??Python????????? ConsoleCommand: ConsoleCommand provides certain .Net commands for access from javascript console engines. Included are commands to set the text and background colors, as well as list and extract resources compiled in a .Net dll. Converter: Character code conversion tools ???????? CryptoInator - self contained, self-encrypting, self-decrypting image viewer: Original developed to encrypt and store NemID images in Denmark. DAiBears: Something, something, botDelicious Notify Plugin: Lets you push a blog post straight to Delicious from Live WriterDeveloperFile: Compresses Javascripts using the YUI .NET project. Loops through the root folder and subfolders for files matching the debug extension and creates new files using the release extension. (File extensions must match exactly).DotNetNuke SharePoint File Explorer: A DotNetNuke SharePoint File ExplorerDouban FM: WP7 Douban FM appGame Lib: Game Library is a open-source game library to allow focusing on the fun part of a game. It is developed in C#, but will be ported to C++ and VB.net.Google reader notes to Delicious Export tool (WPF): Google reader discontinued note in reader features. Current google reader allows to export users old notes in JSON format, This App will parse the JSON file & upload it to it delicious , delicious is a good alternative for note in readerHtml Source Transmitter Control: This web control allows getting a source of a web page, that will displayed before submit. So, developer can store a view of the html page, that was before server exception. It helps to reproduce bugs and can be used with other logging systems.Ideopuzzle: A puzzle gameImageShack-Uploader: This project demonstrates how to upload files automated to imageshack.us and other image hosters with C#.Insert Acronym Tags: Lets you insert <acronym> and <abbr> tags into your blog entry more easily.Insert Quick Link: Allows you to paste a link into the Writer window and have the a window similar to the one in Writer where you can change what text is to appear, open in new window, etc.Insert Video Plugin: Allows you to insert a video into a blog entry from a multitude of different sitesIoCWrap: Provides a wrapper to the various IoC container implementations so that it is possible to switch to a different provider without changing any application code.kaveepoj: sharepoint projectKinect Quiz Engine: Fun quiz game for the Kinect.Klaverjas: Test application for testing different new technologies in .NET (WCF, DataServices, C# stuff, Entity...etc.)Man In The Middle: A cyberpunk themed action with puzzle and strategy elements. Made with XNA as part of a game development course at the IT University of Copenhagen by Bo Bendtsen, Jonas Flensbak, Daniel Kromand, Jess Rahbek & Darryl Woodford.MediaSelektor: Simple tool to select mediasMicajah Mindtouch Deki Wiki Copier: Small C# application to move data between 2 Deki Wiki installs or, more importantly, from a wik.is account to a locally installed systemMineFlagger: MineFlagger is a mine clearing game modeled after Microsoft’s Minesweeper. In addition to standard play, MineFlagger incorporates an AI for fun and training.myXbyqwrhjadsfasfhgf: myXbyqwrhjadsfasfhgfnatoop: natoopNauplius.KeyStore: Provides secure application key storage backed by SQL 2008 and Active Directory.ObjectDB: An object database written using C# 4 and Mono.Cecil.PaceR: PaceR is an attempt to encapsulate a lot of the common code functionality I use on different projects. Instead of recreating functionality from memory or worse, copying from older projects, I'd like to have a central location to maintain this common code. Parseq: Parseq is a Parser Combinator library written in C# (version 2.0).PowerShell Network Adapter Configuration module: PowerShell Network Adapter Configuration module is a PowerShell module which provides functions for managing network adapters using WMI.public traffic tracker: This is a university project for a .net course. We develop a public traffic tracker applications for Windows Phone 7 devices, that can give information about the actual positions of the nearest vehicle on a given line. The speciality is that we use only the GPS information of the users' WP7 devices, so this is a completely software solution without any hardware investment. The disatvantage is that for the real operation we would need a lot of active WP7 user.puyo: puyoRadioTroll: Projeto web Radio TrollRead Feed Community: Read Feed CommunityReviewer: Reviewer.dk - Dansk spil og anmeldelsessite.Rollout Sharepoint Solutions - ROSS: ROSS performs the following actions: - Delete sitecollection and restart services - 'Get Latest Version' from SourceSafe - Rebuild Solution - Install all wsp solutions - Create SiteCollections - Check for build en provisioning errors - Send email to developers if errors occurredSchool Management: school managementSQL File Executer: This project is a class library written in c# which is used for executing *.sql files in remote server. Simply one dll file. You include it in your web project, add using statement at the top of your page, pass the parameters inside. Rest, it will do.Startup Manager: Startup Manager launches all startup programs at a managed rate therefore meaning that your computer doesn't crash everytime it starts up and you can use it immediately.stetic: ...Test Infrastructure Guidance: The purpose of this project is to provide guidance to testers in using TFS effectively as an ALM solution. TFS is much more than a simple code repository. Used with Visual Studio it can form a powerful testing solution and remove a lot of pain in dealing with test infrastructure overhead.Tête-à-tête: Tete-a-tete is an address book with a built-in function to send electronic mail over the Internet.Tipeysh! - Add-in that helps you creating C/C++ header files on a single click: Are you also feel miserable when you need to create a new header file in your Visual Studio C/C++ project? Repeatedly choosing "new header file", then writing the annoying (but needed) "#ifndef" section, then writing the class name with it's "private", "protected" and "public" access modifiers... too much clicks and typewriting! Well, there is a solution: Tipeysh! is a simple, easy to use, very handy and configurable Visual Studio Add-In, compatible for both the 2005 and 2008 versions. Once ...UMN Dashboard Project: academic projUsersMOSS: UsersMOSS est une petite application permettant de consulter sur un serveur MOSS les sites web (SPWeb) les users (SPUser), et les groupes (SPGroup). Cette application utilise le modèle objet de MOSS pour inspecter le contenu des objets d'un serveur MOSS. Cette application est loin d'être professionnelle, ou même terminée, mais elle me rend très souvent service. Surtout ne l'utilisez pas sur un serveur de production car le gestion du GC n'est pas faite, ce qui peut provoquer des plantages de v...UtilityLibrary.Win32: UtilityLibrary.Win32UW iLearn: The iLearn activity inference platform is a suite of desktop and mobile tools for logging, modeling, and classifying sensor data for mobile devices. It was created at the University of Washington.VsDocGen: Dynamic javascript documentation generation directly from xml comment documented source code.Windows Live Spaces Photo Album plugin: This is going to be a plugin for Windows Live Writer that will allow you to browse a Windows Live Space Photo Album.Windows Live Writer Plugin for Amazon Books using CueCat: This Windows Live Writer Plugin is for users who use WLW and wish to use their CueCat to scan books. ItemLookups are run against Amazon via its AWS and book image, title, author, and publisher is returned. This project was first created by Scott Hanselman on MSDN's Coding4Fun! X7: X7 makes it easier for win7user to clean the system. You'll no longer have to delete useless stuff in your win7. It's developed in bat.xDT - Commander: Using this application, the user can assign shortcuts (short texts) for various links/URLs. These short texts will be typed into a Textbox to then launch/go to the target (similar to the "Run" program in Windows).

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Microsoft Introduces WebMatrix

    - by Rick Strahl
    originally published in CoDe Magazine Editorial Microsoft recently released the first CTP of a new development environment called WebMatrix, which along with some of its supporting technologies are squarely aimed at making the Microsoft Web Platform more approachable for first-time developers and hobbyists. But in the process, it also provides some updated technologies that can make life easier for existing .NET developers. Let’s face it: ASP.NET development isn’t exactly trivial unless you already have a fair bit of familiarity with sophisticated development practices. Stick a non-developer in front of Visual Studio .NET or even the Visual Web Developer Express edition and it’s not likely that the person in front of the screen will be very productive or feel inspired. Yet other technologies like PHP and even classic ASP did provide the ability for non-developers and hobbyists to become reasonably proficient in creating basic web content quickly and efficiently. WebMatrix appears to be Microsoft’s attempt to bring back some of that simplicity with a number of technologies and tools. The key is to provide a friendly and fully self-contained development environment that provides all the tools needed to build an application in one place, as well as tools that allow publishing of content and databases easily to the web server. WebMatrix is made up of several components and technologies: IIS Developer Express IIS Developer Express is a new, self-contained development web server that is fully compatible with IIS 7.5 and based on the same codebase that IIS 7.5 uses. This new development server replaces the much less compatible Cassini web server that’s been used in Visual Studio and the Express editions. IIS Express addresses a few shortcomings of the Cassini server such as the inability to serve custom ISAPI extensions (i.e., things like PHP or ASP classic for example), as well as not supporting advanced authentication. IIS Developer Express provides most of the IIS 7.5 feature set providing much better compatibility between development and live deployment scenarios. SQL Server Compact 4.0 Database access is a key component for most web-driven applications, but on the Microsoft stack this has mostly meant you have to use SQL Server or SQL Server Express. SQL Server Compact is not new-it’s been around for a few years, but it’s been severely hobbled in the past by terrible tool support and the inability to support more than a single connection in Microsoft’s attempt to avoid losing SQL Server licensing. The new release of SQL Server Compact 4.0 supports multiple connections and you can run it in ASP.NET web applications simply by installing an assembly into the bin folder of the web application. In effect, you don’t have to install a special system configuration to run SQL Compact as it is a drop-in database engine: Copy the small assembly into your BIN folder (or from the GAC if installed fully), create a connection string against a local file-based database file, and then start firing SQL requests. Additionally WebMatrix includes nice tools to edit the database tables and files, along with tools to easily upsize (and hopefully downsize in the future) to full SQL Server. This is a big win, pending compatibility and performance limits. In my simple testing the data engine performed well enough for small data sets. This is not only useful for web applications, but also for desktop applications for which a fully installed SQL engine like SQL Server would be overkill. Having a local data store in those applications that can potentially be accessed by multiple users is a welcome feature. ASP.NET Razor View Engine What? Yet another native ASP.NET view engine? We already have Web Forms and various different flavors of using that view engine with Web Forms and MVC. Do we really need another? Microsoft thinks so, and Razor is an implementation of a lightweight, script-only view engine. Unlike the Web Forms view engine, Razor works only with inline code, snippets, and markup; therefore, it is more in line with current thinking of what a view engine should represent. There’s no support for a “page model” or any of the other Web Forms features of the full-page framework, but just a lightweight scripting engine that works with plain markup plus embedded expressions and code. The markup syntax for Razor is geared for minimal typing, plus some progressive detection of where a script block/expression starts and ends. This results in a much leaner syntax than the typical ASP.NET Web Forms alligator (<% %>) tags. Razor uses the @ sign plus standard C# (or Visual Basic) block syntax to delineate code snippets and expressions. Here’s a very simple example of what Razor markup looks like along with some comment annotations: <!DOCTYPE html> <html>     <head>         <title></title>     </head>     <body>     <h1>Razor Test</h1>          <!-- simple expressions -->     @DateTime.Now     <hr />     <!-- method expressions -->     @DateTime.Now.ToString("T")          <!-- code blocks -->     @{         List<string> names = new List<string>();         names.Add("Rick");         names.Add("Markus");         names.Add("Claudio");         names.Add("Kevin");     }          <!-- structured block statements -->     <ul>     @foreach(string name in names){             <li>@name</li>     }     </ul>           <!-- Conditional code -->        @if(true) {                        <!-- Literal Text embedding in code -->        <text>         true        </text>;    }    else    {        <!-- Literal Text embedding in code -->       <text>       false       </text>;    }    </body> </html> Like the Web Forms view engine, Razor parses pages into code, and then executes that run-time compiled code. Effectively a “page” becomes a code file with markup becoming literal text written into the Response stream, code snippets becoming raw code, and expressions being written out with Response.Write(). The code generated from Razor doesn’t look much different from similar Web Forms code that only uses script tags; so although the syntax may look different, the operational model is fairly similar to the Web Forms engine minus the overhead of the large Page object model. However, there are differences: -Razor pages are based on a new base class, Microsoft.WebPages.WebPage, which is hosted in the Microsoft.WebPages assembly that houses all the Razor engine parsing and processing logic. Browsing through the assembly (in the generated ASP.NET Temporary Files folder or GAC) will give you a good idea of the functionality that Razor provides. If you look closely, a lot of the feature set matches ASP.NET MVC’s view implementation as well as many of the helper classes found in MVC. It’s not hard to guess the motivation for this sort of view engine: For beginning developers the simple markup syntax is easier to work with, although you obviously still need to have some understanding of the .NET Framework in order to create dynamic content. The syntax is easier to read and grok and much shorter to type than ASP.NET alligator tags (<% %>) and also easier to understand aesthetically what’s happening in the markup code. Razor also is a better fit for Microsoft’s vision of ASP.NET MVC: It’s a new view engine without the baggage of Web Forms attached to it. The engine is more lightweight since it doesn’t carry all the features and object model of Web Forms with it and it can be instantiated directly outside of the HTTP environment, which has been rather tricky to do for the Web Forms view engine. Having a standalone script parser is a huge win for other applications as well – it makes it much easier to create script or meta driven output generators for many types of applications from code/screen generators, to simple form letters to data merging applications with user customizability. For me personally this is very useful side effect and who knows maybe Microsoft will actually standardize they’re scripting engines (die T4 die!) on this engine. Razor also better fits the “view-based” approach where the view is supposed to be mostly a visual representation that doesn’t hold much, if any, code. While you can still use code, the code you do write has to be self-contained. Overall I wouldn’t be surprised if Razor will become the new standard view engine for MVC in the future – and in fact there have been announcements recently that Razor will become the default script engine in ASP.NET MVC 3.0. Razor can also be used in existing Web Forms and MVC applications, although that’s not working currently unless you manually configure the script mappings and add the appropriate assemblies. It’s possible to do it, but it’s probably better to wait until Microsoft releases official support for Razor scripts in Visual Studio. Once that happens, you can simply drop .cshtml and .vbhtml pages into an existing ASP.NET project and they will work side by side with classic ASP.NET pages. WebMatrix Development Environment To tie all of these three technologies together, Microsoft is shipping WebMatrix with an integrated development environment. An integrated gallery manager makes it easy to download and load existing projects, and then extend them with custom functionality. It seems to be a prominent goal to provide community-oriented content that can act as a starting point, be it via a custom templates or a complete standard application. The IDE includes a project manager that works with a single project and provides an integrated IDE/editor for editing the .cshtml and .vbhtml pages. A run button allows you to quickly run pages in the project manager in a variety of browsers. There’s no debugging support for code at this time. Note that Razor pages don’t require explicit compilation, so making a change, saving, and then refreshing your page in the browser is all that’s needed to see changes while testing an application locally. It’s essentially using the auto-compiling Web Project that was introduced with .NET 2.0. All code is compiled during run time into dynamically created assemblies in the ASP.NET temp folder. WebMatrix also has PHP Editing support with syntax highlighting. You can load various PHP-based applications from the WebMatrix Web Gallery directly into the IDE. Most of the Web Gallery applications are ready to install and run without further configuration, with Wizards taking you through installation of tools, dependencies, and configuration of the database as needed. WebMatrix leverages the Web Platform installer to pull the pieces down from websites in a tight integration of tools that worked nicely for the four or five applications I tried this out on. Click a couple of check boxes and fill in a few simple configuration options and you end up with a running application that’s ready to be customized. Nice! You can easily deploy completed applications via WebDeploy (to an IIS server) or FTP directly from within the development environment. The deploy tool also can handle automatically uploading and installing the database and all related assemblies required, making deployment a simple one-click install step. Simplified Database Access The IDE contains a database editor that can edit SQL Compact and SQL Server databases. There is also a Database helper class that facilitates database access by providing easy-to-use, high-level query execution and iteration methods: @{       var db = Database.OpenFile("FirstApp.sdf");     string sql = "select * from customers where Id > @0"; } <ul> @foreach(var row in db.Query(sql,1)){         <li>@row.FirstName @row.LastName</li> } </ul> The query function takes a SQL statement plus any number of positional (@0,@1 etc.) SQL parameters by simple values. The result is returned as a collection of rows which in turn have a row object with dynamic properties for each of the columns giving easy (though untyped) access to each of the fields. Likewise Execute and ExecuteNonQuery allow execution of more complex queries using similar parameter passing schemes. Note these queries use string-based queries rather than LINQ or Entity Framework’s strongly typed LINQ queries. While this may seem like a step back, it’s also in line with the expectations of non .NET script developers who are quite used to writing and using SQL strings in code rather than using OR/M frameworks. The only question is why was something not included from the beginning in .NET and Microsoft made developers build custom implementations of these basic building blocks. The implementation looks a lot like a DataTable-style data access mechanism, but to be fair, this is a common approach in scripting languages. This type of syntax that uses simple, static, data object methods to perform simple data tasks with one line of code are common in scripting languages and are a good match for folks working in PHP/Python, etc. Seems like Microsoft has taken great advantage of .NET 4.0’s dynamic typing to provide this sort of interface for row iteration where each row has properties for each field. FWIW, all the examples demonstrate using local SQL Compact files - I was unable to get a SQL Server connection string to work with the Database class (the connection string wasn’t accepted). However, since the code in the page is still plain old .NET, you can easily use standard ADO.NET code or even LINQ or Entity Framework models that are created outside of WebMatrix in separate assemblies as required. The good the bad the obnoxious - It’s still .NET The beauty (or curse depending on how you look at it :)) of Razor and the compilation model is that, behind it all, it’s still .NET. Although the syntax may look foreign, it’s still all .NET behind the scenes. You can easily access existing tools, helpers, and utilities simply by adding them to the project as references or to the bin folder. Razor automatically recognizes any assembly reference from assemblies in the bin folder. In the default configuration, Microsoft provides a host of helper functions in a Microsoft.WebPages assembly (check it out in the ASP.NET temp folder for your application), which includes a host of HTML Helpers. If you’ve used ASP.NET MVC before, a lot of the helpers should look familiar. Documentation at the moment is sketchy-there’s a very rough API reference you can check out here: http://www.asp.net/webmatrix/tutorials/asp-net-web-pages-api-reference Who needs WebMatrix? Uhm… good Question Clearly Microsoft is trying hard to create an environment with WebMatrix that is easy to use for newbie developers. The goal seems to be simplicity in providing a minimal development environment and an easy-to-use script engine/language that makes it easy to get started with. There’s also some focus on community features that can be used as starting points, such as Web Gallery applications and templates. The community features in particular are very nice and something that would be nice to eventually see in Visual Studio as well. The question is whether this is too little too late. Developers who have been clamoring for a simpler development environment on the .NET stack have mostly left for other simpler platforms like PHP or Python which are catering to the down and dirty developer. Microsoft will be hard pressed to win those folks-and other hardcore PHP developers-back. Regardless of how much you dress up a script engine fronted by the .NET Framework, it’s still the .NET Framework and all the complexity that drives it. While .NET is a fine solution in its breadth and features once you get a basic handle on the core features, the bar of entry to being productive with the .NET Framework is still pretty high. The MVC style helpers Microsoft provides are a good step in the right direction, but I suspect it’s not enough to shield new developers from having to delve much deeper into the Framework to get even basic applications built. Razor and its helpers is trying to make .NET more accessible but the reality is that in order to do useful stuff that goes beyond the handful of simple helpers you still are going to have to write some C# or VB or other .NET code. If the target is a hobby/amateur/non-programmer the learning curve isn’t made any easier by WebMatrix it’s just been shifted a tad bit further along in your development endeavor when you run out of canned components that are supplied either by Microsoft or the community. The database helpers are interesting and actually I’ve heard a lot of discussion from various developers who’ve been resisting .NET for a really long time perking up at the prospect of easier data access in .NET than the ridiculous amount of code it takes to do even simple data access with raw ADO.NET. It seems sad that such a simple concept and implementation should trigger this sort of response (especially since it’s practically trivial to create helpers like these or pick them up from countless libraries available), but there it is. It also shows that there are plenty of developers out there who are more interested in ‘getting stuff done’ easily than necessarily following the latest and greatest practices which are overkill for many development scenarios. Sometimes it seems that all of .NET is focused on the big life changing issues of development, rather than the bread and butter scenarios that many developers are interested in to get their work accomplished. And that in the end may be WebMatrix’s main raison d'être: To bring some focus back at Microsoft that simpler and more high level solutions are actually needed to appeal to the non-high end developers as well as providing the necessary tools for the high end developers who want to follow the latest and greatest trends. The current version of WebMatrix hits many sweet spots, but it also feels like it has a long way to go before it really can be a tool that a beginning developer or an accomplished developer can feel comfortable with. Although there are some really good ideas in the environment (like the gallery for downloading apps and components) which would be a great addition for Visual Studio as well, the rest of the development environment just feels like crippleware with required functionality missing especially debugging and Intellisense, but also general editor support. It’s not clear whether these are because the product is still in an early alpha release or whether it’s simply designed that way to be a really limited development environment. While simple can be good, nobody wants to feel left out when it comes to necessary tool support and WebMatrix just has that left out feeling to it. If anything WebMatrix’s technology pieces (which are really independent of the WebMatrix product) are what are interesting to developers in general. The compact IIS implementation is a nice improvement for development scenarios and SQL Compact 4.0 seems to address a lot of concerns that people have had and have complained about for some time with previous SQL Compact implementations. By far the most interesting and useful technology though seems to be the Razor view engine for its light weight implementation and it’s decoupling from the ASP.NET/HTTP pipeline to provide a standalone scripting/view engine that is pluggable. The first winner of this is going to be ASP.NET MVC which can now have a cleaner view model that isn’t inconsistent due to the baggage of non-implemented WebForms features that don’t work in MVC. But I expect that Razor will end up in many other applications as a scripting and code generation engine eventually. Visual Studio integration for Razor is currently missing, but is promised for a later release. The ASP.NET MVC team has already mentioned that Razor will eventually become the default MVC view engine, which will guarantee continued growth and development of this tool along those lines. And the Razor engine and support tools actually inherit many of the features that MVC pioneered, so there’s some synergy flowing both ways between Razor and MVC. As an existing ASP.NET developer who’s already familiar with Visual Studio and ASP.NET development, the WebMatrix IDE doesn’t give you anything that you want. The tools provided are minimal and provide nothing that you can’t get in Visual Studio today, except the minimal Razor syntax highlighting, so there’s little need to take a step back. With Visual Studio integration coming later there’s little reason to look at WebMatrix for tooling. It’s good to see that Microsoft is giving some thought about the ease of use of .NET as a platform For so many years, we’ve been piling on more and more new features without trying to take a step back and see how complicated the development/configuration/deployment process has become. Sometimes it’s good to take a step - or several steps - back and take another look and realize just how far we’ve come. WebMatrix is one of those reminders and one that likely will result in some positive changes on the platform as a whole. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET   IIS7  

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • xsltproc killed, out of memory

    - by David Parks
    I'm trying to split up a 13GB xml file into small ~50MB xml files with this XSLT style sheet. But this process kills xsltproc after I see it taking up over 1.7GB of memory (that's the total on the system). Is there any way to deal with huge XML files with xsltproc? Can I change my style sheet? Or should I use a different processor? Or am I just S.O.L.? <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0" xmlns:exsl="http://exslt.org/common" extension-element-prefixes="exsl" xmlns:fn="http://www.w3.org/2005/xpath-functions"> <xsl:output method="xml" indent="yes"/> <xsl:strip-space elements="*"/> <xsl:param name="block-size" select="75000"/> <xsl:template match="/"> <xsl:copy> <xsl:apply-templates select="mysqldump/database/table_data/row[position() mod $block-size = 1]" /> </xsl:copy> </xsl:template> <xsl:template match="row"> <exsl:document href="chunk-{position()}.xml"> <add> <xsl:for-each select=". | following-sibling::row[position() &lt; $block-size]" > <doc> <xsl:for-each select="field"> <field> <xsl:attribute name="name"><xsl:value-of select="./@name"/></xsl:attribute> <xsl:value-of select="."/> </field> <xsl:text>&#xa;</xsl:text> </xsl:for-each> </doc> </xsl:for-each> </add> </exsl:document> </xsl:template>

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Nagging As A Strategy For Better Linking: -z guidance

    - by user9154181
    The link-editor (ld) in Solaris 11 has a new feature that we call guidance that is intended to help you build better objects. The basic idea behind guidance is that if (and only if) you request it, the link-editor will issue messages suggesting better options and other changes you might make to your ld command to get better results. You can choose to take the advice, or you can disable specific types of guidance while acting on others. In some ways, this works like an experienced friend leaning over your shoulder and giving you advice — you're free to take it or leave it as you see fit, but you get nudged to do a better job than you might have otherwise. We use guidance to build the core Solaris OS, and it has proven to be useful, both in improving our objects, and in making sure that regressions don't creep back in later. In this article, I'm going to describe the evolution in thinking and design that led to the implementation of the -z guidance option, as well as give a brief description of how it works. The guidance feature issues non-fatal warnings. However, experience shows that once developers get used to ignoring warnings, it is inevitable that real problems will be lost in the noise and ignored or missed. This is why we have a zero tolerance policy against build noise in the core Solaris OS. In order to get maximum benefit from -z guidance while maintaining this policy, I added the -z fatal-warnings option at the same time. Much of the material presented here is adapted from the arc case: PSARC 2010/312 Link-editor guidance The History Of Unfortunate Link-Editor Defaults The Solaris link-editor is one of the oldest Unix commands. It stands to reason that this would be true — in order to write an operating system, you need the ability to compile and link code. The original link-editor (ld) had defaults that made sense at the time. As new features were needed, command line option switches were added to let the user use them, while maintaining backward compatibility for those who didn't. Backward compatibility is always a concern in system design, but is particularly important in the case of the tool chain (compilers, linker, and related tools), since it is a basic building block for the entire system. Over the years, applications have grown in size and complexity. Important concepts like dynamic linking that didn't exist in the original Unix system were invented. Object file formats changed. In the case of System V Release 4 Unix derivatives like Solaris, the ELF (Extensible Linking Format) was adopted. Since then, the ELF system has evolved to provide tools needed to manage today's larger and more complex environments. Features such as lazy loading, and direct bindings have been added. In an ideal world, many of these options would be defaults, with rarely used options that allow the user to turn them off. However, the reality is exactly the reverse: For backward compatibility, these features are all options that must be explicitly turned on by the user. This has led to a situation in which most applications do not take advantage of the many improvements that have been made in linking over the last 20 years. If their code seems to link and run without issue, what motivation does a developer have to read a complex manpage, absorb the information provided, choose the features that matter for their application, and apply them? Experience shows that only the most motivated and diligent programmers will make that effort. We know that most programs would be improved if we could just get you to use the various whizzy features that we provide, but the defaults conspire against us. We have long wanted to do something to make it easier for our users to use the linkers more effectively. There have been many conversations over the years regarding this issue, and how to address it. They always break down along the following lines: Change ld Defaults Since the world would be a better place the newer ld features were the defaults, why not change things to make it so? This idea is simple, elegant, and impossible. Doing so would break a large number of existing applications, including those of ISVs, big customers, and a plethora of existing open source packages. In each case, the owner of that code may choose to follow our lead and fix their code, or they may view it as an invitation to reconsider their commitment to our platform. Backward compatibility, and our installed base of working software, is one of our greatest assets, and not something to be lightly put at risk. Breaking backward compatibility at this level of the system is likely to do more harm than good. But, it sure is tempting. New Link-Editor One might create a new linker command, not called 'ld', leaving the old command as it is. The new one could use the same code as ld, but would offer only modern options, with the proper defaults for features such as direct binding. The resulting link-editor would be a pleasure to use. However, the approach is doomed to niche status. There is a vast pile of exiting code in the world built around the existing ld command, that reaches back to the 1970's. ld use is embedded in large and unknown numbers of makefiles, and is used by name by compilers that execute it. A Unix link-editor that is not named ld will not find a majority audience no matter how good it might be. Finally, a new linker command will eventually cease to be new, and will accumulate its own burden of backward compatibility issues. An Option To Make ld Do The Right Things Automatically This line of reasoning is best summarized by a CR filed in 2005, entitled 6239804 make it easier for ld(1) to do what's best The idea is to have a '-z best' option that unchains ld from its backward compatibility commitment, and allows it to turn on the "best" set of features, as determined by the authors of ld. The specific set of features enabled by -z best would be subject to change over time, as requirements change. This idea is more realistic than the other two, but was never implemented because it has some important issues that we could never answer to our satisfaction: The -z best proposal assumes that the user can turn it on, and trust it to select good options without the user needing to be aware of the options being applied. This is a fallacy. Features such as direct bindings require the user to do some analysis to ensure that the resulting program will still operate properly. A user who is willing to do the work to verify that what -z best does will be OK for their application is capable of turning on those features directly, and therefore gains little added benefit from -z best. The intent is that when a user opts into -z best, that they understand that z best is subject to sometimes incompatible evolution. Experience teaches us that this won't work. People will use this feature, the meaning of -z best will change, code that used to build will fail, and then there will be complaints and demands to retract the change. When (not if) this occurs, we will of course defend our actions, and point at the disclaimer. We'll win some of those debates, and lose others. Ultimately, we'll end up with -z best2 (-z better), or other compromises, and our goal of simplifying the world will have failed. The -z best idea rolls up a set of features that may or may not be related to each other into a unit that must be taken wholesale, or not at all. It could be that only a subset of what it does is compatible with a given application, in which case the user is expected to abandon -z best and instead set the options that apply to their application directly. In doing so, they lose one of the benefits of -z best, that if you use it, future versions of ld may choose a different set of options, and automatically improve the object through the act of rebuilding it. I drew two conclusions from the above history: For a link-editor, backward compatibility is vital. If a given command line linked your application 10 years ago, you have every reason to expect that it will link today, assuming that the libraries you're linking against are still available and compatible with their previous interfaces. For an application of any size or complexity, there is no substitute for the work involved in examining the code and determining which linker options apply and which do not. These options are largely orthogonal to each other, and it can be reasonable not to use any or all of them, depending on the situation, even in modern applications. It is a mistake to tie them together. The idea for -z guidance came from consideration of these points. By decoupling the advice from the act of taking the advice, we can retain the good aspects of -z best while avoiding its pitfalls: -z guidance gives advice, but the decision to take that advice remains with the user who must evaluate its merit and make a decision to take it or not. As such, we are free to change the specific guidance given in future releases of ld, without breaking existing applications. The only fallout from this will be some new warnings in the build output, which can be ignored or dealt with at the user's convenience. It does not couple the various features given into a single "take it or leave it" option, meaning that there will never be a need to offer "-zguidance2", or other such variants as things change over time. Guidance has the potential to be our final word on this subject. The user is given the flexibility to disable specific categories of guidance without losing the benefit of others, including those that might be added to future versions of the system. Although -z fatal-warnings stands on its own as a useful feature, it is of particular interest in combination with -z guidance. Used together, the guidance turns from advice to hard requirement: The user must either make the suggested change, or explicitly reject the advice by specifying a guidance exception token, in order to get a build. This is valuable in environments with high coding standards. ld Command Line Options The guidance effort resulted in new link-editor options for guidance and for turning warnings into fatal errors. Before I reproduce that text here, I'd like to highlight the strategic decisions embedded in the guidance feature: In order to get guidance, you have to opt in. We hope you will opt in, and believe you'll get better objects if you do, but our default mode of operation will continue as it always has, with full backward compatibility, and without judgement. Guidance suggestions always offers specific advice, and not vague generalizations. You can disable some guidance without turning off the entire feature. When you get guidance warnings, you can choose to take the advice, or you can specify a keyword to disable guidance for just that category. This allows you to get guidance for things that are useful to you, without being bothered about things that you've already considered and dismissed. As the world changes, we will add new guidance to steer you in the right direction. All such new guidance will come with a keyword that let's you turn it off. In order to facilitate building your code on different versions of Solaris, we quietly ignore any guidance keywords we don't recognize, assuming that they are intended for newer versions of the link-editor. If you want to see what guidance tokens ld does and does not recognize on your system, you can use the ld debugging feature as follows: % ld -Dargs -z guidance=foo,nodefs debug: debug: Solaris Linkers: 5.11-1.2275 debug: debug: arg[1] option=-D: option-argument: args debug: arg[2] option=-z: option-argument: guidance=foo,nodefs debug: warning: unrecognized -z guidance item: foo The -z fatal-warning option is straightforward, and generally useful in environments with strict coding standards. Note that the GNU ld already had this feature, and we accept their option names as synonyms: -z fatal-warnings | nofatal-warnings --fatal-warnings | --no-fatal-warnings The -z fatal-warnings and the --fatal-warnings option cause the link-editor to treat warnings as fatal errors. The -z nofatal-warnings and the --no-fatal-warnings option cause the link-editor to treat warnings as non-fatal. This is the default behavior. The -z guidance option is defined as follows: -z guidance[=item1,item2,...] Provide guidance messages to suggest ld options that can improve the quality of the resulting object, or which are otherwise considered to be beneficial. The specific guidance offered is subject to change over time as the system evolves. Obsolete guidance offered by older versions of ld may be dropped in new versions. Similarly, new guidance may be added to new versions of ld. Guidance therefore always represents current best practices. It is possible to enable guidance, while preventing specific guidance messages, by providing a list of item tokens, representing the class of guidance to be suppressed. In this way, unwanted advice can be suppressed without losing the benefit of other guidance. Unrecognized item tokens are quietly ignored by ld, allowing a given ld command line to be executed on a variety of older or newer versions of Solaris. The guidance offered by the current version of ld, and the item tokens used to disable these messages, are as follows. Specify Required Dependencies Dynamic executables and shared objects should explicitly define all of the dependencies they require. Guidance recommends the use of the -z defs option, should any symbol references remain unsatisfied when building dynamic objects. This guidance can be disabled with -z guidance=nodefs. Do Not Specify Non-Required Dependencies Dynamic executables and shared objects should not define any dependencies that do not satisfy the symbol references made by the dynamic object. Guidance recommends that unused dependencies be removed. This guidance can be disabled with -z guidance=nounused. Lazy Loading Dependencies should be identified for lazy loading. Guidance recommends the use of the -z lazyload option should any dependency be processed before either a -z lazyload or -z nolazyload option is encountered. This guidance can be disabled with -z guidance=nolazyload. Direct Bindings Dependencies should be referenced with direct bindings. Guidance recommends the use of the -B direct, or -z direct options should any dependency be processed before either of these options, or the -z nodirect option is encountered. This guidance can be disabled with -z guidance=nodirect. Pure Text Segment Dynamic objects should not contain relocations to non-writable, allocable sections. Guidance recommends compiling objects with Position Independent Code (PIC) should any relocations against the text segment remain, and neither the -z textwarn or -z textoff options are encountered. This guidance can be disabled with -z guidance=notext. Mapfile Syntax All mapfiles should use the version 2 mapfile syntax. Guidance recommends the use of the version 2 syntax should any mapfiles be encountered that use the version 1 syntax. This guidance can be disabled with -z guidance=nomapfile. Library Search Path Inappropriate dependencies that are encountered by ld are quietly ignored. For example, a 32-bit dependency that is encountered when generating a 64-bit object is ignored. These dependencies can result from incorrect search path settings, such as supplying an incorrect -L option. Although benign, this dependency processing is wasteful, and might hide a build problem that should be solved. Guidance recommends the removal of any inappropriate dependencies. This guidance can be disabled with -z guidance=nolibpath. In addition, -z guidance=noall can be used to entirely disable the guidance feature. See Chapter 7, Link-Editor Quick Reference, in the Linker and Libraries Guide for more information on guidance and advice for building better objects. Example The following example demonstrates how the guidance feature is intended to work. We will build a shared object that has a variety of shortcomings: Does not specify all it's dependencies Specifies dependencies it does not use Does not use direct bindings Uses a version 1 mapfile Contains relocations to the readonly allocable text (not PIC) This scenario is sadly very common — many shared objects have one or more of these issues. % cat hello.c #include <stdio.h> #include <unistd.h> void hello(void) { printf("hello user %d\n", getpid()); } % cat mapfile.v1 # This version 1 mapfile will trigger a guidance message % cc hello.c -o hello.so -G -M mapfile.v1 -lelf As you can see, the operation completes without error, resulting in a usable object. However, turning on guidance reveals a number of things that could be better: % cc hello.c -o hello.so -G -M mapfile.v1 -lelf -zguidance ld: guidance: version 2 mapfile syntax recommended: mapfile.v1 ld: guidance: -z lazyload option recommended before first dependency ld: guidance: -B direct or -z direct option recommended before first dependency Undefined first referenced symbol in file getpid hello.o (symbol belongs to implicit dependency /lib/libc.so.1) printf hello.o (symbol belongs to implicit dependency /lib/libc.so.1) ld: warning: symbol referencing errors ld: guidance: -z defs option recommended for shared objects ld: guidance: removal of unused dependency recommended: libelf.so.1 warning: Text relocation remains referenced against symbol offset in file .rodata1 (section) 0xa hello.o getpid 0x4 hello.o printf 0xf hello.o ld: guidance: position independent (PIC) code recommended for shared objects ld: guidance: see ld(1) -z guidance for more information Given the explicit advice in the above guidance messages, it is relatively easy to modify the example to do the right things: % cat mapfile.v2 # This version 2 mapfile will not trigger a guidance message $mapfile_version 2 % cc hello.c -o hello.so -Kpic -G -Bdirect -M mapfile.v2 -lc -zguidance There are situations in which the guidance does not fit the object being built. For instance, you want to build an object without direct bindings: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance ld: guidance: -B direct or -z direct option recommended before first dependency ld: guidance: see ld(1) -z guidance for more information It is easy to disable that specific guidance warning without losing the overall benefit from allowing the remainder of the guidance feature to operate: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance=nodirect Conclusions The linking guidelines enforced by the ld guidance feature correspond rather directly to our standards for building the core Solaris OS. I'm sure that comes as no surprise. It only makes sense that we would want to build our own product as well as we know how. Solaris is usually the first significant test for any new linker feature. We now enable guidance by default for all builds, and the effect has been very positive. Guidance helps us find suboptimal objects more quickly. Programmers get concrete advice for what to change instead of vague generalities. Even in the cases where we override the guidance, the makefile rules to do so serve as documentation of the fact. Deciding to use guidance is likely to cause some up front work for most code, as it forces you to consider using new features such as direct bindings. Such investigation is worthwhile, but does not come for free. However, the guidance suggestions offer a structured and straightforward way to tackle modernizing your objects, and once that work is done, for keeping them that way. The investment is often worth it, and will replay you in terms of better performance and fewer problems. I hope that you find guidance to be as useful as we have.

    Read the article

  • Linksys WAP54G v3.1 no access, power and link LED solid

    - by user142113
    I'm managing the Network of a small enterprise. A Linksys WAP54G v3.1 used to provide the WiFi network. I was called, because the device did not provide a WiFi network anymore. I first of all tried to ping the device via LAN, but there was no reaction. I've frequently reconnected the AP to the mains and always the POWER and the LINK LED keep solid, even if no network cable is connected. What I've done yet: Reset as documented: Pressed the RESET button for 10 seconds. After that I have tried to access the AP with a direct cable connection to my computer, that I've set to a static ip of 192.168.1.240, but i got no ping response on the default IP 192.168.1.245. Furthermore ipconfig reports "media disconnected". More complex reset method as described here http://bruceshankle.blogspot.de/2005/12/how-to-reset-linksys-wap54g.html as well had no effect. also tried to ping 192.168.1.1 without success Tried this method: http://www.daniweb.com/hardware-and-software/networking/threads/142437/linksys-wireless-access-point-problem#post680245 but there was no ping response when powering up. As well the tftp transfer timed out Finally tried to short pin 15 and 16 of the flash chip on the bottom side of the AP mainboard while booting to provoke a Checksum error. This should lead to the possibility to upload a firmware with tftp, as the AP stops booting and waits for a tftp connection on 192.168.1.1. But I've had no success. As well i've put pin 15 and 16 to ground while booting, also without an effect. After all that I still can't ping the AP, ipconfig still tells me "media disconnected". The POWER and LINK LED are solid. I would appreciate your answers

    Read the article

  • PHP install sqlite3 extension

    - by Kevin
    We are using PHP 5.3.6 here, but we used the --without-sqlite3 command when compiling PHP. (It stands in the 'Configure Command' column). But, it is very risky to recompile PHP on that server; there are many visitors. How can we install/use sqlite3? Regards, Kevin [EDIT] yum repolist gives: Loaded plugins: fastestmirror Loading mirror speeds from cached hostfile * base: mirror.nl.leaseweb.net * extras: mirror.nl.leaseweb.net * updates: mirror.nl.leaseweb.net repo id repo name status base CentOS-5 - Base 3,566 extras CentOS-5 - Extras 237 updates CentOS-5 - Updates 376 repolist: 4,179 rpm -qa | grep php gives: php-pdo-5.3.6-1.w5 php-mysql-5.3.6-1.w5 psa-php5-configurator-1.5.3-cos5.build95101022.10 php-mbstring-5.3.6-1.w5 php-imap-5.3.6-1.w5 php-cli-5.3.6-1.w5 php-gd-5.3.6-1.w5 php-5.3.6-1.w5 php-common-5.3.6-1.w5 php-xml-5.3.6-1.w5 php -i | grep sqlite gives: PHP Warning: PHP Startup: Unable to load dynamic library '/usr/lib64/php/modules/sqlite3.so' - /usr/lib64/php/modules/sqlite3.so: cannot open shared object file: No such file or directory in Unknown on line 0 Configure Command => './configure' '--build=x86_64-redhat-linux-gnu' '--host=x86_64-redhat-linux-gnu' '--target=x86_64-redhat-linux-gnu' '--program-prefix=' '--prefix=/usr' '--exec-prefix=/usr' '--bindir=/usr/bin' '--sbindir=/usr/sbin' '--sysconfdir=/etc' '--datadir=/usr/share' '--includedir=/usr/include' '--libdir=/usr/lib64' '--libexecdir=/usr/libexec' '--localstatedir=/var' '--sharedstatedir=/usr/com' '--mandir=/usr/share/man' '--infodir=/usr/share/info' '--cache-file=../config.cache' '--with-libdir=lib64' '--with-config-file-path=/etc' '--with-config-file-scan-dir=/etc/php.d' '--disable-debug' '--with-pic' '--disable-rpath' '--without-pear' '--with-bz2' '--with-exec-dir=/usr/bin' '--with-freetype-dir=/usr' '--with-png-dir=/usr' '--with-xpm-dir=/usr' '--enable-gd-native-ttf' '--without-gdbm' '--with-gettext' '--with-gmp' '--with-iconv' '--with-jpeg-dir=/usr' '--with-openssl' '--with-pcre-regex=/usr' '--with-zlib' '--with-layout=GNU' '--enable-exif' '--enable-ftp' '--enable-magic-quotes' '--enable-sockets' '--enable-sysvsem' '--enable-sysvshm' '--enable-sysvmsg' '--with-kerberos' '--enable-ucd-snmp-hack' '--enable-shmop' '--enable-calendar' '--without-mime-magic' '--without-sqlite' '--without-sqlite3' '--with-libxml-dir=/usr' '--enable-xml' '--with-system-tzdata' '--enable-force-cgi-redirect' '--enable-pcntl' '--with-imap=shared' '--with-imap-ssl' '--enable-mbstring=shared' '--enable-mbregex' '--with-gd=shared' '--enable-bcmath=shared' '--enable-dba=shared' '--with-db4=/usr' '--with-xmlrpc=shared' '--with-ldap=shared' '--with-ldap-sasl' '--with-mysql=shared,/usr' '--with-mysqli=shared,/usr/bin/mysql_config' '--enable-dom=shared' '--with-pgsql=shared' '--enable-wddx=shared' '--with-snmp=shared,/usr' '--enable-soap=shared' '--with-xsl=shared,/usr' '--enable-xmlreader=shared' '--enable-xmlwriter=shared' '--with-curl=shared,/usr' '--enable-fastcgi' '--enable-pdo=shared' '--with-pdo-odbc=shared,unixODBC,/usr' '--with-pdo-mysql=shared,/usr' '--with-pdo-pgsql=shared,/usr' '--with-pdo-sqlite=shared,/usr' '--with-pdo-dblib=shared,/usr' '--enable-json=shared' '--enable-zip=shared' '--with-readline' '--with-pspell=shared' '--enable-phar=shared' '--with-mcrypt=shared,/usr' '--with-tidy=shared,/usr' '--with-mssql=shared,/usr' '--enable-sysvmsg=shared' '--enable-sysvshm=shared' '--enable-sysvsem=shared' '--enable-posix=shared' '--with-unixODBC=shared,/usr' '--enable-fileinfo=shared' '--enable-intl=shared' '--with-icu-dir=/usr' '--with-recode=shared,/usr' /etc/php.d/pdo_sqlite.ini, /etc/php.d/sqlite3.ini, PHP Warning: Unknown: It is not safe to rely on the system's timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected 'Europe/Berlin' for 'CET/1.0/no DST' instead in Unknown on line 0 PDO drivers => mysql, sqlite pdo_sqlite PWD => /root/sqlite _SERVER["PWD"] => /root/sqlite _ENV["PWD"] => /root/sqlite

    Read the article

  • dpkg broken while upgrading Debian Etch to Lenny

    - by artvolk
    Good day! While trying to recover a box to lenny it seems I've broken things. It upgrades libc and glib after that dpkg seems to be broken. I can run apt-get, but it gets segmentation fault from dpkg: # apt-get -f install Reading package lists... Done Building dependency tree... Done 0 upgraded, 0 newly installed, 0 to remove and 316 not upgraded. 9 not fully installed or removed. Need to get 0B of archives. After unpacking 0B of additional disk space will be used. /bin/sh: line 1: 4606 Segmentation fault /usr/sbin/dpkg-preconfigure --apt E: Sub-process /usr/bin/dpkg received a segmentation fault. I can login via SSH but even ls is not working: # ls Segmentation fault Is there anything I can do remotelly via SSH? # ldd /bin/ls linux-gate.so.1 => (0xffffe000) librt.so.1 => /lib/tls/i686/cmov/librt.so.1 (0xb7fc8000) libacl.so.1 => /lib/libacl.so.1 (0xb7fc2000) libselinux.so.1 => /lib/libselinux.so.1 (0xb7fac000) libc.so.6 => /lib/i686/cmov/libc.so.6 (0xb7e51000) libpthread.so.0 => /lib/tls/i686/cmov/libpthread.so.0 (0xb7e3f000) /lib/ld-linux.so.2 (0xb7fd8000) libattr.so.1 => /lib/libattr.so.1 (0xb7e3b000) libdl.so.2 => /lib/i686/cmov/libdl.so.2 (0xb7e37000) libsepol.so.1 => /lib/libsepol.so.1 (0xb7df6000) It seems I've temporary fixed it with: # touch /etc/ld.so.nohwcap From here: http://saintaardvarkthecarpeted.com/blog/archive/2005/08/_etc_ld_so_nohwcap.html

    Read the article

  • Performance-optimizing Oracle 10g on a server that is also a Tomcat JSP app server?

    - by PKHunter
    I have inherited a simple RedHat 5 - 64bit platform. It has SCSI disks on RAID1, with 16GB of RAM. Double Core CPU. Oracle 10g, Release 2. This would be a decent platform for running the DB only, perhaps, but the same server in an "A-A mode" clustering (very simple) also runs Tomcat and there are several Java servlets running on this. Sadly there is no caching platform etc. We only use an external CDN for some html caching. I am personally more familiar with web environments on the LAMPP platform (apache, php, mysql, postgresql). PROBLEM: Because the server has both Tomcat JSP/Java and Oracle 10g running on the same server, with no caching, I have some issues of the server going down. Often, sadly. QUESTION: What are my options in terms of improving performance of all these different apps? Connection Pooling? Example, in Postgresql world we have PgBouncer, which really helps things. Does Oracle have something similar? Or is there a famous Java-based external pooler that people use in production environments? (I'm not familiar with Java) Any "SQL cache" as in the MySQL and Postgresql world? Any other kind of application cache, as "APC" or "eAccelarator" in the PHP world? The "OSCache" stuff from the Java world (JSP thingie I found on Google: http://onjava.com/pub/a/onjava/2005/01/05/jspcache.html?page=2) ... What else? Sorry if this is a noob question. I have googled and googled, but problem is I don't know what to google for, other than the broad general concepts above. So if not full answers, I would even appreciate basic pointers and I am happy to JFGI myself. Thanks!

    Read the article

  • A free standing ASP.NET Pager Web Control

    - by Rick Strahl
    Paging in ASP.NET has been relatively easy with stock controls supporting basic paging functionality. However, recently I built an MVC application and one of the things I ran into was that I HAD TO build manual paging support into a few of my pages. Dealing with list controls and rendering markup is easy enough, but doing paging is a little more involved. I ended up with a small but flexible component that can be dropped anywhere. As it turns out the task of creating a semi-generic Pager control for MVC was fairly easily. Now I’m back to working in Web Forms and thought to myself that the way I created the pager in MVC actually would also work in ASP.NET – in fact quite a bit easier since the whole thing can be conveniently wrapped up into an easily reusable control. A standalone pager would provider easier reuse in various pages and a more consistent pager display regardless of what kind of 'control’ the pager is associated with. Why a Pager Control? At first blush it might sound silly to create a new pager control – after all Web Forms has pretty decent paging support, doesn’t it? Well, sort of. Yes the GridView control has automatic paging built in and the ListView control has the related DataPager control. The built in ASP.NET paging has several issues though: Postback and JavaScript requirements If you look at paging links in ASP.NET they are always postback links with javascript:__doPostback() calls that go back to the server. While that works fine and actually has some benefit like the fact that paging saves changes to the page and post them back, it’s not very SEO friendly. Basically if you use javascript based navigation nosearch engine will follow the paging links which effectively cuts off list content on the first page. The DataPager control does support GET based links via the QueryStringParameter property, but the control is effectively tied to the ListView control (which is the only control that implements IPageableItemContainer). DataSource Controls required for Efficient Data Paging Retrieval The only way you can get paging to work efficiently where only the few records you display on the page are queried for and retrieved from the database you have to use a DataSource control - only the Linq and Entity DataSource controls  support this natively. While you can retrieve this data yourself manually, there’s no way to just assign the page number and render the pager based on this custom subset. Other than that default paging requires a full resultset for ASP.NET to filter the data and display only a subset which can be very resource intensive and wasteful if you’re dealing with largish resultsets (although I’m a firm believer in returning actually usable sets :-}). If you use your own business layer that doesn’t fit an ObjectDataSource you’re SOL. That’s a real shame too because with LINQ based querying it’s real easy to retrieve a subset of data that is just the data you want to display but the native Pager functionality doesn’t support just setting properties to display just the subset AFAIK. DataPager is not Free Standing The DataPager control is the closest thing to a decent Pager implementation that ASP.NET has, but alas it’s not a free standing component – it works off a related control and the only one that it effectively supports from the stock ASP.NET controls is the ListView control. This means you can’t use the same data pager formatting for a grid and a list view or vice versa and you’re always tied to the control. Paging Events In order to handle paging you have to deal with paging events. The events fire at specific time instances in the page pipeline and because of this you often have to handle data binding in a way to work around the paging events or else end up double binding your data sources based on paging. Yuk. Styling The GridView pager is a royal pain to beat into submission for styled rendering. The DataPager control has many more options and template layout and it renders somewhat cleaner, but it too is not exactly easy to get a decent display for. Not a Generic Solution The problem with the ASP.NET controls too is that it’s not generic. GridView, DataGrid use their own internal paging, ListView can use a DataPager and if you want to manually create data layout – well you’re on your own. IOW, depending on what you use you likely have very different looking Paging experiences. So, I figured I’ve struggled with this once too many and finally sat down and built a Pager control. The Pager Control My goal was to create a totally free standing control that has no dependencies on other controls and certainly no requirements for using DataSource controls. The idea is that you should be able to use this pager control without any sort of data requirements at all – you should just be able to set properties and be able to display a pager. The Pager control I ended up with has the following features: Completely free standing Pager control – no control or data dependencies Complete manual control – Pager can render without any data dependency Easy to use: Only need to set PageSize, ActivePage and TotalItems Supports optional filtering of IQueryable for efficient queries and Pager rendering Supports optional full set filtering of IEnumerable<T> and DataTable Page links are plain HTTP GET href Links Control automatically picks up Page links on the URL and assigns them (automatic page detection no page index changing events to hookup) Full CSS Styling support On the downside there’s no templating support for the control so the layout of the pager is relatively fixed. All elements however are stylable and there are options to control the text, and layout options such as whether to display first and last pages and the previous/next buttons and so on. To give you an idea what the pager looks like, here are two differently styled examples (all via CSS):   The markup for these two pagers looks like this: <ww:Pager runat="server" id="ItemPager" PageSize="5" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PagesTextCssClass="gridpagertext" CssClass="gridpager" RenderContainerDiv="true" ContainerDivCssClass="gridpagercontainer" MaxPagesToDisplay="6" PagesText="Item Pages:" NextText="next" PreviousText="previous" /> <ww:Pager runat="server" id="ItemPager2" PageSize="5" RenderContainerDiv="true" MaxPagesToDisplay="6" /> The latter example uses default style settings so it there’s not much to set. The first example on the other hand explicitly assigns custom styles and overrides a few of the formatting options. Styling The styling is based on a number of CSS classes of which the the main pager, pagerbutton and pagerbutton-selected classes are the important ones. Other styles like pagerbutton-next/prev/first/last are based on the pagerbutton style. The default styling shown for the red outlined pager looks like this: .pagercontainer { margin: 20px 0; background: whitesmoke; padding: 5px; } .pager { float: right; font-size: 10pt; text-align: left; } .pagerbutton,.pagerbutton-selected,.pagertext { display: block; float: left; text-align: center; border: solid 2px maroon; min-width: 18px; margin-left: 3px; text-decoration: none; padding: 4px; } .pagerbutton-selected { font-size: 130%; font-weight: bold; color: maroon; border-width: 0px; background: khaki; } .pagerbutton-first { margin-right: 12px; } .pagerbutton-last,.pagerbutton-prev { margin-left: 12px; } .pagertext { border: none; margin-left: 30px; font-weight: bold; } .pagerbutton a { text-decoration: none; } .pagerbutton:hover { background-color: maroon; color: cornsilk; } .pagerbutton-prev { background-image: url(images/prev.png); background-position: 2px center; background-repeat: no-repeat; width: 35px; padding-left: 20px; } .pagerbutton-next { background-image: url(images/next.png); background-position: 40px center; background-repeat: no-repeat; width: 35px; padding-right: 20px; margin-right: 0px; } Yup that’s a lot of styling settings although not all of them are required. The key ones are pagerbutton, pager and pager selection. The others (which are implicitly created by the control based on the pagerbutton style) are for custom markup of the ‘special’ buttons. In my apps I tend to have two kinds of pages: Those that are associated with typical ‘grid’ displays that display purely tabular data and those that have a more looser list like layout. The two pagers shown above represent these two views and the pager and gridpager styles in my standard style sheet reflect these two styles. Configuring the Pager with Code Finally lets look at what it takes to hook up the pager. As mentioned in the highlights the Pager control is completely independent of other controls so if you just want to display a pager on its own it’s as simple as dropping the control and assigning the PageSize, ActivePage and either TotalPages or TotalItems. So for this markup: <ww:Pager runat="server" id="ItemPagerManual" PageSize="5" MaxPagesToDisplay="6" /> I can use code as simple as: ItemPagerManual.PageSize = 3; ItemPagerManual.ActivePage = 4;ItemPagerManual.TotalItems = 20; Note that ActivePage is not required - it will automatically use any Page=x query string value and assign it, although you can override it as I did above. TotalItems can be any value that you retrieve from a result set or manually assign as I did above. A more realistic scenario based on a LINQ to SQL IQueryable result is even easier. In this example, I have a UserControl that contains a ListView control that renders IQueryable data. I use a User Control here because there are different views the user can choose from with each view being a different user control. This incidentally also highlights one of the nice features of the pager: Because the pager is independent of the control I can put the pager on the host page instead of into each of the user controls. IOW, there’s only one Pager control, but there are potentially many user controls/listviews that hold the actual display data. The following code demonstrates how to use the Pager with an IQueryable that loads only the records it displays: protected voidPage_Load(objectsender, EventArgs e) {     Category = Request.Params["Category"] ?? string.Empty;     IQueryable<wws_Item> ItemList = ItemRepository.GetItemsByCategory(Category);     // Update the page and filter the list down     ItemList = ItemPager.FilterIQueryable<wws_Item>(ItemList); // Render user control with a list view Control ulItemList = LoadControl("~/usercontrols/" + App.Configuration.ItemListType + ".ascx"); ((IInventoryItemListControl)ulItemList).InventoryItemList = ItemList; phItemList.Controls.Add(ulItemList); // placeholder } The code uses a business object to retrieve Items by category as an IQueryable which means that the result is only an expression tree that hasn’t execute SQL yet and can be further filtered. I then pass this IQueryable to the FilterIQueryable() helper method of the control which does two main things: Filters the IQueryable to retrieve only the data displayed on the active page Sets the Totaltems property and calculates TotalPages on the Pager and that’s it! When the Pager renders it uses those values, plus the PageSize and ActivePage properties to render the Pager. In addition to IQueryable there are also filter methods for IEnumerable<T> and DataTable, but these versions just filter the data by removing rows/items from the entire already retrieved data. Output Generated and Paging Links The output generated creates pager links as plain href links. Here’s what the output looks like: <div id="ItemPager" class="pagercontainer"> <div class="pager"> <span class="pagertext">Pages: </span><a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=1" class="pagerbutton" />1</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=2" class="pagerbutton" />2</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton" />3</a> <span class="pagerbutton-selected">4</span> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton" />5</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=6" class="pagerbutton" />6</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=20" class="pagerbutton pagerbutton-last" />20</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton pagerbutton-prev" />Prev</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton pagerbutton-next" />Next</a></div> <br clear="all" /> </div> </div> The links point back to the current page and simply append a Page= page link into the page. When the page gets reloaded with the new page number the pager automatically detects the page number and automatically assigns the ActivePage property which results in the appropriate page to be displayed. The code shown in the previous section is all that’s needed to handle paging. Note that HTTP GET based paging is different than the Postback paging ASP.NET uses by default. Postback paging preserves modified page content when clicking on pager buttons, but this control will simply load a new page – no page preservation at this time. The advantage of not using Postback paging is that the URLs generated are plain HTML links that a search engine can follow where __doPostback() links are not. Pager with a Grid The pager also works in combination with grid controls so it’s easy to bypass the grid control’s paging features if desired. In the following example I use a gridView control and binds it to a DataTable result which is also filterable by the Pager control. The very basic plain vanilla ASP.NET grid markup looks like this: <div style="width: 600px; margin: 0 auto;padding: 20px; "> <asp:DataGrid runat="server" AutoGenerateColumns="True" ID="gdItems" CssClass="blackborder" style="width: 600px;"> <AlternatingItemStyle CssClass="gridalternate" /> <HeaderStyle CssClass="gridheader" /> </asp:DataGrid> <ww:Pager runat="server" ID="Pager" CssClass="gridpager" ContainerDivCssClass="gridpagercontainer" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PageSize="8" RenderContainerDiv="true" MaxPagesToDisplay="6" /> </div> and looks like this when rendered: using custom set of CSS styles. The code behind for this code is also very simple: protected void Page_Load(object sender, EventArgs e) { string category = Request.Params["category"] ?? ""; busItem itemRep = WebStoreFactory.GetItem(); var items = itemRep.GetItemsByCategory(category) .Select(itm => new {Sku = itm.Sku, Description = itm.Description}); // run query into a DataTable for demonstration DataTable dt = itemRep.Converter.ToDataTable(items,"TItems"); // Remove all items not on the current page dt = Pager.FilterDataTable(dt,0); // bind and display gdItems.DataSource = dt; gdItems.DataBind(); } A little contrived I suppose since the list could already be bound from the list of elements, but this is to demonstrate that you can also bind against a DataTable if your business layer returns those. Unfortunately there’s no way to filter a DataReader as it’s a one way forward only reader and the reader is required by the DataSource to perform the bindings.  However, you can still use a DataReader as long as your business logic filters the data prior to rendering and provides a total item count (most likely as a second query). Control Creation The control itself is a pretty brute force ASP.NET control. Nothing clever about this other than some basic rendering logic and some simple calculations and update routines to determine which buttons need to be shown. You can take a look at the full code from the West Wind Web Toolkit’s Repository (note there are a few dependencies). To give you an idea how the control works here is the Render() method: /// <summary> /// overridden to handle custom pager rendering for runtime and design time /// </summary> /// <param name="writer"></param> protected override void Render(HtmlTextWriter writer) { base.Render(writer); if (TotalPages == 0 && TotalItems > 0) TotalPages = CalculateTotalPagesFromTotalItems(); if (DesignMode) TotalPages = 10; // don't render pager if there's only one page if (TotalPages < 2) return; if (RenderContainerDiv) { if (!string.IsNullOrEmpty(ContainerDivCssClass)) writer.AddAttribute("class", ContainerDivCssClass); writer.RenderBeginTag("div"); } // main pager wrapper writer.WriteBeginTag("div"); writer.AddAttribute("id", this.ClientID); if (!string.IsNullOrEmpty(CssClass)) writer.WriteAttribute("class", this.CssClass); writer.Write(HtmlTextWriter.TagRightChar + "\r\n"); // Pages Text writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(PagesTextCssClass)) writer.WriteAttribute("class", PagesTextCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(this.PagesText); writer.WriteEndTag("span"); // if the base url is empty use the current URL FixupBaseUrl(); // set _startPage and _endPage ConfigurePagesToRender(); // write out first page link if (ShowFirstAndLastPageLinks && _startPage != 1) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-first"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write("1"); writer.WriteEndTag("a"); writer.Write("&nbsp;"); } // write out all the page links for (int i = _startPage; i < _endPage + 1; i++) { if (i == ActivePage) { writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(SelectedPageCssClass)) writer.WriteAttribute("class", SelectedPageCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(i.ToString()); writer.WriteEndTag("span"); } else { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, i.ToString()).TrimEnd('&'); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(i.ToString()); writer.WriteEndTag("a"); } writer.Write("\r\n"); } // write out last page link if (ShowFirstAndLastPageLinks && _endPage < TotalPages) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, TotalPages.ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-last"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(TotalPages.ToString()); writer.WriteEndTag("a"); } // Previous link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(PreviousText) && ActivePage > 1) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage - 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-prev"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(PreviousText); writer.WriteEndTag("a"); } // Next link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(NextText) && ActivePage < TotalPages) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage + 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-next"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(NextText); writer.WriteEndTag("a"); } writer.WriteEndTag("div"); if (RenderContainerDiv) { if (RenderContainerDivBreak) writer.Write("<br clear=\"all\" />\r\n"); writer.WriteEndTag("div"); } } As I said pretty much brute force rendering based on the control’s property settings of which there are quite a few: You can also see the pager in the designer above. unfortunately the VS designer (both 2010 and 2008) fails to render the float: left CSS styles properly and starts wrapping after margins are applied in the special buttons. Not a big deal since VS does at least respect the spacing (the floated elements overlay). Then again I’m not using the designer anyway :-}. Filtering Data What makes the Pager easy to use is the filter methods built into the control. While this functionality is clearly not the most politically correct design choice as it violates separation of concerns, it’s very useful for typical pager operation. While I actually have filter methods that do something similar in my business layer, having it exposed on the control makes the control a lot more useful for typical databinding scenarios. Of course these methods are optional – if you have a business layer that can provide filtered page queries for you can use that instead and assign the TotalItems property manually. There are three filter method types available for IQueryable, IEnumerable and for DataTable which tend to be the most common use cases in my apps old and new. The IQueryable version is pretty simple as it can simply rely on on .Skip() and .Take() with LINQ: /// <summary> /// <summary> /// Queries the database for the ActivePage applied manually /// or from the Request["page"] variable. This routine /// figures out and sets TotalPages, ActivePage and /// returns a filtered subset IQueryable that contains /// only the items from the ActivePage. /// </summary> /// <param name="query"></param> /// <param name="activePage"> /// The page you want to display. Sets the ActivePage property when passed. /// Pass 0 or smaller to use ActivePage setting. /// </param> /// <returns></returns> public IQueryable<T> FilterIQueryable<T>(IQueryable<T> query, int activePage) where T : class, new() { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = query.Count(); if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return query; } int skip = ActivePage - 1; if (skip > 0) query = query.Skip(skip * PageSize); _TotalPages = CalculateTotalPagesFromTotalItems(); return query.Take(PageSize); } The IEnumerable<T> version simply  converts the IEnumerable to an IQuerable and calls back into this method for filtering. The DataTable version requires a little more work to manually parse and filter records (I didn’t want to add the Linq DataSetExtensions assembly just for this): /// <summary> /// Filters a data table for an ActivePage. /// /// Note: Modifies the data set permanently by remove DataRows /// </summary> /// <param name="dt">Full result DataTable</param> /// <param name="activePage">Page to display. 0 to use ActivePage property </param> /// <returns></returns> public DataTable FilterDataTable(DataTable dt, int activePage) { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = dt.Rows.Count; if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return dt; } int skip = ActivePage - 1; if (skip > 0) { for (int i = 0; i < skip * PageSize; i++ ) dt.Rows.RemoveAt(0); } while(dt.Rows.Count > PageSize) dt.Rows.RemoveAt(PageSize); return dt; } Using the Pager Control The pager as it is is a first cut I built a couple of weeks ago and since then have been tweaking a little as part of an internal project I’m working on. I’ve replaced a bunch of pagers on various older pages with this pager without any issues and have what now feels like a more consistent user interface where paging looks and feels the same across different controls. As a bonus I’m only loading the data from the database that I need to display a single page. With the preset class tags applied too adding a pager is now as easy as dropping the control and adding the style sheet for styling to be consistent – no fuss, no muss. Schweet. Hopefully some of you may find this as useful as I have or at least as a baseline to build ontop of… Resources The Pager is part of the West Wind Web & Ajax Toolkit Pager.cs Source Code (some toolkit dependencies) Westwind.css base stylesheet with .pager and .gridpager styles Pager Example Page © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Using the West Wind Web Toolkit to set up AJAX and REST Services

    - by Rick Strahl
    I frequently get questions about which option to use for creating AJAX and REST backends for ASP.NET applications. There are many solutions out there to do this actually, but when I have a choice - not surprisingly - I fall back to my own tools in the West Wind West Wind Web Toolkit. I've talked a bunch about the 'in-the-box' solutions in the past so for a change in this post I'll talk about the tools that I use in my own and customer applications to handle AJAX and REST based access to service resources using the West Wind West Wind Web Toolkit. Let me preface this by saying that I like things to be easy. Yes flexible is very important as well but not at the expense of over-complexity. The goal I've had with my tools is make it drop dead easy, with good performance while providing the core features that I'm after, which are: Easy AJAX/JSON Callbacks Ability to return any kind of non JSON content (string, stream, byte[], images) Ability to work with both XML and JSON interchangeably for input/output Access endpoints via POST data, RPC JSON calls, GET QueryString values or Routing interface Easy to use generic JavaScript client to make RPC calls (same syntax, just what you need) Ability to create clean URLS with Routing Ability to use standard ASP.NET HTTP Stack for HTTP semantics It's all about options! In this post I'll demonstrate most of these features (except XML) in a few simple and short samples which you can download. So let's take a look and see how you can build an AJAX callback solution with the West Wind Web Toolkit. Installing the Toolkit Assemblies The easiest and leanest way of using the Toolkit in your Web project is to grab it via NuGet: West Wind Web and AJAX Utilities (Westwind.Web) and drop it into the project by right clicking in your Project and choosing Manage NuGet Packages from anywhere in the Project.   When done you end up with your project looking like this: What just happened? Nuget added two assemblies - Westwind.Web and Westwind.Utilities and the client ww.jquery.js library. It also added a couple of references into web.config: The default namespaces so they can be accessed in pages/views and a ScriptCompressionModule that the toolkit optionally uses to compress script resources served from within the assembly (namely ww.jquery.js and optionally jquery.js). Creating a new Service The West Wind Web Toolkit supports several ways of creating and accessing AJAX services, but for this post I'll stick to the lower level approach that works from any plain HTML page or of course MVC, WebForms, WebPages. There's also a WebForms specific control that makes this even easier but I'll leave that for another post. So, to create a new standalone AJAX/REST service we can create a new HttpHandler in the new project either as a pure class based handler or as a generic .ASHX handler. Both work equally well, but generic handlers don't require any web.config configuration so I'll use that here. In the root of the project add a Generic Handler. I'm going to call this one StockService.ashx. Once the handler has been created, edit the code and remove all of the handler body code. Then change the base class to CallbackHandler and add methods that have a [CallbackMethod] attribute. Here's the modified base handler implementation now looks like with an added HelloWorld method: using System; using Westwind.Web; namespace WestWindWebAjax { /// <summary> /// Handler implements CallbackHandler to provide REST/AJAX services /// </summary> public class SampleService : CallbackHandler { [CallbackMethod] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } } } Notice that the class inherits from CallbackHandler and that the HelloWorld service method is marked up with [CallbackMethod]. We're done here. Services Urlbased Syntax Once you compile, the 'service' is live can respond to requests. All CallbackHandlers support input in GET and POST formats, and can return results as JSON or XML. To check our fancy HelloWorld method we can now access the service like this: http://localhost/WestWindWebAjax/StockService.ashx?Method=HelloWorld&name=Rick which produces a default JSON response - in this case a string (wrapped in quotes as it's JSON): (note by default JSON will be downloaded by most browsers not displayed - various options are available to view JSON right in the browser) If I want to return the same data as XML I can tack on a &format=xml at the end of the querystring which produces: <string>Hello Rick. Time is: 11/1/2011 12:11:13 PM</string> Cleaner URLs with Routing Syntax If you want cleaner URLs for each operation you can also configure custom routes on a per URL basis similar to the way that WCF REST does. To do this you need to add a new RouteHandler to your application's startup code in global.asax.cs one for each CallbackHandler based service you create: protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); } With this code in place you can now add RouteUrl properties to any of your service methods. For the HelloWorld method that doesn't make a ton of sense but here is what a routed clean URL might look like in definition: [CallbackMethod(RouteUrl="stocks/HelloWorld/{name}")] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } The same URL I previously used now becomes a bit shorter and more readable with: http://localhost/WestWindWebAjax/HelloWorld/Rick It's an easy way to create cleaner URLs and still get the same functionality. Calling the Service with $.getJSON() Since the result produced is JSON you can now easily consume this data using jQuery's getJSON method. First we need a couple of scripts - jquery.js and ww.jquery.js in the page: <!DOCTYPE html> <html> <head> <link href="Css/Westwind.css" rel="stylesheet" type="text/css" /> <script src="scripts/jquery.min.js" type="text/javascript"></script> <script src="scripts/ww.jquery.min.js" type="text/javascript"></script> </head> <body> Next let's add a small HelloWorld example form (what else) that has a single textbox to type a name, a button and a div tag to receive the result: <fieldset> <legend>Hello World</legend> Please enter a name: <input type="text" name="txtHello" id="txtHello" value="" /> <input type="button" id="btnSayHello" value="Say Hello (POST)" /> <input type="button" id="btnSayHelloGet" value="Say Hello (GET)" /> <div id="divHelloMessage" class="errordisplay" style="display:none;width: 450px;" > </div> </fieldset> Then to call the HelloWorld method a little jQuery is used to hook the document startup and the button click followed by the $.getJSON call to retrieve the data from the server. <script type="text/javascript"> $(document).ready(function () { $("#btnSayHelloGet").click(function () { $.getJSON("SampleService.ashx", { Method: "HelloWorld", name: $("#txtHello").val() }, function (result) { $("#divHelloMessage") .text(result) .fadeIn(1000); }); });</script> .getJSON() expects a full URL to the endpoint of our service, which is the ASHX file. We can either provide a full URL (SampleService.ashx?Method=HelloWorld&name=Rick) or we can just provide the base URL and an object that encodes the query string parameters for us using an object map that has a property that matches each parameter for the server method. We can also use the clean URL routing syntax, but using the object parameter encoding actually is safer as the parameters will get properly encoded by jQuery. The result returned is whatever the result on the server method is - in this case a string. The string is applied to the divHelloMessage element and we're done. Obviously this is a trivial example, but it demonstrates the basics of getting a JSON response back to the browser. AJAX Post Syntax - using ajaxCallMethod() The previous example allows you basic control over the data that you send to the server via querystring parameters. This works OK for simple values like short strings, numbers and boolean values, but doesn't really work if you need to pass something more complex like an object or an array back up to the server. To handle traditional RPC type messaging where the idea is to map server side functions and results to a client side invokation, POST operations can be used. The easiest way to use this functionality is to use ww.jquery.js and the ajaxCallMethod() function. ww.jquery wraps jQuery's AJAX functions and knows implicitly how to call a CallbackServer method with parameters and parse the result. Let's look at another simple example that posts a simple value but returns something more interesting. Let's start with the service method: [CallbackMethod(RouteUrl="stocks/{symbol}")] public StockQuote GetStockQuote(string symbol) { Response.Cache.SetExpires(DateTime.UtcNow.Add(new TimeSpan(0, 2, 0))); StockServer server = new StockServer(); var quote = server.GetStockQuote(symbol); if (quote == null) throw new ApplicationException("Invalid Symbol passed."); return quote; } This sample utilizes a small StockServer helper class (included in the sample) that downloads a stock quote from Yahoo's financial site via plain HTTP GET requests and formats it into a StockQuote object. Lets create a small HTML block that lets us query for the quote and display it: <fieldset> <legend>Single Stock Quote</legend> Please enter a stock symbol: <input type="text" name="txtSymbol" id="txtSymbol" value="msft" /> <input type="button" id="btnStockQuote" value="Get Quote" /> <div id="divStockDisplay" class="errordisplay" style="display:none; width: 450px;"> <div class="label-left">Company:</div> <div id="stockCompany"></div> <div class="label-left">Last Price:</div> <div id="stockLastPrice"></div> <div class="label-left">Quote Time:</div> <div id="stockQuoteTime"></div> </div> </fieldset> The final result looks something like this:   Let's hook up the button handler to fire the request and fill in the data as shown: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").show().fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, HH:mm EST")); }, onPageError); }); So we point at SampleService.ashx and the GetStockQuote method, passing a single parameter of the input symbol value. Then there are two handlers for success and failure callbacks.  The success handler is the interesting part - it receives the stock quote as a result and assigns its values to various 'holes' in the stock display elements. The data that comes back over the wire is JSON and it looks like this: { "Symbol":"MSFT", "Company":"Microsoft Corpora", "OpenPrice":26.11, "LastPrice":26.01, "NetChange":0.02, "LastQuoteTime":"2011-11-03T02:00:00Z", "LastQuoteTimeString":"Nov. 11, 2011 4:20pm" } which is an object representation of the data. JavaScript can evaluate this JSON string back into an object easily and that's the reslut that gets passed to the success function. The quote data is then applied to existing page content by manually selecting items and applying them. There are other ways to do this more elegantly like using templates, but here we're only interested in seeing how the data is returned. The data in the object is typed - LastPrice is a number and QuoteTime is a date. Note about the date value: JavaScript doesn't have a date literal although the JSON embedded ISO string format used above  ("2011-11-03T02:00:00Z") is becoming fairly standard for JSON serializers. However, JSON parsers don't deserialize dates by default and return them by string. This is why the StockQuote actually returns a string value of LastQuoteTimeString for the same date. ajaxMethodCallback always converts dates properly into 'real' dates and the example above uses the real date value along with a .formatDate() data extension (also in ww.jquery.js) to display the raw date properly. Errors and Exceptions So what happens if your code fails? For example if I pass an invalid stock symbol to the GetStockQuote() method you notice that the code does this: if (quote == null) throw new ApplicationException("Invalid Symbol passed."); CallbackHandler automatically pushes the exception message back to the client so it's easy to pick up the error message. Regardless of what kind of error occurs: Server side, client side, protocol errors - any error will fire the failure handler with an error object parameter. The error is returned to the client via a JSON response in the error callback. In the previous examples I called onPageError which is a generic routine in ww.jquery that displays a status message on the bottom of the screen. But of course you can also take over the error handling yourself: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); }, function (error, xhr) { $("#divErrorDisplay").text(error.message).fadeIn(1000); }); }); The error object has a isCallbackError, message and  stackTrace properties, the latter of which is only populated when running in Debug mode, and this object is returned for all errors: Client side, transport and server side errors. Regardless of which type of error you get the same object passed (as well as the XHR instance optionally) which makes for a consistent error retrieval mechanism. Specifying HttpVerbs You can also specify HTTP Verbs that are allowed using the AllowedHttpVerbs option on the CallbackMethod attribute: [CallbackMethod(AllowedHttpVerbs=HttpVerbs.GET | HttpVerbs.POST)] public string HelloWorld(string name) { … } If you're building REST style API's this might be useful to force certain request semantics onto the client calling. For the above if call with a non-allowed HttpVerb the request returns a 405 error response along with a JSON (or XML) error object result. The default behavior is to allow all verbs access (HttpVerbs.All). Passing in object Parameters Up to now the parameters I passed were very simple. But what if you need to send something more complex like an object or an array? Let's look at another example now that passes an object from the client to the server. Keeping with the Stock theme here lets add a method called BuyOrder that lets us buy some shares for a stock. Consider the following service method that receives an StockBuyOrder object as a parameter: [CallbackMethod] public string BuyStock(StockBuyOrder buyOrder) { var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } public class StockBuyOrder { public string Symbol { get; set; } public int Quantity { get; set; } public DateTime BuyOn { get; set; } public StockBuyOrder() { BuyOn = DateTime.Now; } } This is a contrived do-nothing example that simply echoes back what was passed in, but it demonstrates how you can pass complex data to a callback method. On the client side we now have a very simple form that captures the three values on a form: <fieldset> <legend>Post a Stock Buy Order</legend> Enter a symbol: <input type="text" name="txtBuySymbol" id="txtBuySymbol" value="GLD" />&nbsp;&nbsp; Qty: <input type="text" name="txtBuyQty" id="txtBuyQty" value="10" style="width: 50px" />&nbsp;&nbsp; Buy on: <input type="text" name="txtBuyOn" id="txtBuyOn" value="<%= DateTime.Now.ToString("d") %>" style="width: 70px;" /> <input type="button" id="btnBuyStock" value="Buy Stock" /> <div id="divStockBuyMessage" class="errordisplay" style="display:none"></div> </fieldset> The completed form and demo then looks something like this:   The client side code that picks up the input values and assigns them to object properties and sends the AJAX request looks like this: $("#btnBuyStock").click(function () { // create an object map that matches StockBuyOrder signature var buyOrder = { Symbol: $("#txtBuySymbol").val(), Quantity: $("#txtBuyQty").val() * 1, // number Entered: new Date() } ajaxCallMethod("SampleService.ashx", "BuyStock", [buyOrder], function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError); }); The code creates an object and attaches the properties that match the server side object passed to the BuyStock method. Each property that you want to update needs to be included and the type must match (ie. string, number, date in this case). Any missing properties will not be set but also not cause any errors. Pass POST data instead of Objects In the last example I collected a bunch of values from form variables and stuffed them into object variables in JavaScript code. While that works, often times this isn't really helping - I end up converting my types on the client and then doing another conversion on the server. If lots of input controls are on a page and you just want to pick up the values on the server via plain POST variables - that can be done too - and it makes sense especially if you're creating and filling the client side object only to push data to the server. Let's add another method to the server that once again lets us buy a stock. But this time let's not accept a parameter but rather send POST data to the server. Here's the server method receiving POST data: [CallbackMethod] public string BuyStockPost() { StockBuyOrder buyOrder = new StockBuyOrder(); buyOrder.Symbol = Request.Form["txtBuySymbol"]; ; int qty; int.TryParse(Request.Form["txtBuyQuantity"], out qty); buyOrder.Quantity = qty; DateTime time; DateTime.TryParse(Request.Form["txtBuyBuyOn"], out time); buyOrder.BuyOn = time; // Or easier way yet //FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } Clearly we've made this server method take more code than it did with the object parameter. We've basically moved the parameter assignment logic from the client to the server. As a result the client code to call this method is now a bit shorter since there's no client side shuffling of values from the controls to an object. $("#btnBuyStockPost").click(function () { ajaxCallMethod("SampleService.ashx", "BuyStockPost", [], // Note: No parameters - function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError, // Force all page Form Variables to be posted { postbackMode: "Post" }); }); The client simply calls the BuyStockQuote method and pushes all the form variables from the page up to the server which parses them instead. The feature that makes this work is one of the options you can pass to the ajaxCallMethod() function: { postbackMode: "Post" }); which directs the function to include form variable POST data when making the service call. Other options include PostNoViewState (for WebForms to strip out WebForms crap vars), PostParametersOnly (default), None. If you pass parameters those are always posted to the server except when None is set. The above code can be simplified a bit by using the FormVariableBinder helper, which can unbind form variables directly into an object: FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); which replaces the manual Request.Form[] reading code. It receives the object to unbind into, a string of properties to skip, and an optional prefix which is stripped off form variables to match property names. The component is similar to the MVC model binder but it's independent of MVC. Returning non-JSON Data CallbackHandler also supports returning non-JSON/XML data via special return types. You can return raw non-JSON encoded strings like this: [CallbackMethod(ReturnAsRawString=true,ContentType="text/plain")] public string HelloWorldNoJSON(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } Calling this method results in just a plain string - no JSON encoding with quotes around the result. This can be useful if your server handling code needs to return a string or HTML result that doesn't fit well for a page or other UI component. Any string output can be returned. You can also return binary data. Stream, byte[] and Bitmap/Image results are automatically streamed back to the client. Notice that you should set the ContentType of the request either on the CallbackMethod attribute or using Response.ContentType. This ensures the Web Server knows how to display your binary response. Using a stream response makes it possible to return any of data. Streamed data can be pretty handy to return bitmap data from a method. The following is a method that returns a stock history graph for a particular stock over a provided number of years: [CallbackMethod(ContentType="image/png",RouteUrl="stocks/history/graph/{symbol}/{years}")] public Stream GetStockHistoryGraph(string symbol, int years = 2,int width = 500, int height=350) { if (width == 0) width = 500; if (height == 0) height = 350; StockServer server = new StockServer(); return server.GetStockHistoryGraph(symbol,"Stock History for " + symbol,width,height,years); } I can now hook this up into the JavaScript code when I get a stock quote. At the end of the process I can assign the URL to the service that returns the image into the src property and so force the image to display. Here's the changed code: $("#btnStockQuote").click(function () { var symbol = $("#txtSymbol").val(); ajaxCallMethod("SampleService.ashx", "GetStockQuote", [symbol], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); // display a stock chart $("#imgStockHistory").attr("src", "stocks/history/graph/" + symbol + "/2"); },onPageError); }); The resulting output then looks like this: The charting code uses the new ASP.NET 4.0 Chart components via code to display a bar chart of the 2 year stock data as part of the StockServer class which you can find in the sample download. The ability to return arbitrary data from a service is useful as you can see - in this case the chart is clearly associated with the service and it's nice that the graph generation can happen off a handler rather than through a page. Images are common resources, but output can also be PDF reports, zip files for downloads etc. which is becoming increasingly more common to be returned from REST endpoints and other applications. Why reinvent? Obviously the examples I've shown here are pretty basic in terms of functionality. But I hope they demonstrate the core features of AJAX callbacks that you need to work through in most applications which is simple: return data, send back data and potentially retrieve data in various formats. While there are other solutions when it comes down to making AJAX callbacks and servicing REST like requests, I like the flexibility my home grown solution provides. Simply put it's still the easiest solution that I've found that addresses my common use cases: AJAX JSON RPC style callbacks Url based access XML and JSON Output from single method endpoint XML and JSON POST support, querystring input, routing parameter mapping UrlEncoded POST data support on callbacks Ability to return stream/raw string data Essentially ability to return ANYTHING from Service and pass anything All these features are available in various solutions but not together in one place. I've been using this code base for over 4 years now in a number of projects both for myself and commercial work and it's served me extremely well. Besides the AJAX functionality CallbackHandler provides, it's also an easy way to create any kind of output endpoint I need to create. Need to create a few simple routines that spit back some data, but don't want to create a Page or View or full blown handler for it? Create a CallbackHandler and add a method or multiple methods and you have your generic endpoints.  It's a quick and easy way to add small code pieces that are pretty efficient as they're running through a pretty small handler implementation. I can have this up and running in a couple of minutes literally without any setup and returning just about any kind of data. Resources Download the Sample NuGet: Westwind Web and AJAX Utilities (Westwind.Web) ajaxCallMethod() Documentation Using the AjaxMethodCallback WebForms Control West Wind Web Toolkit Home Page West Wind Web Toolkit Source Code © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  jQuery  AJAX   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Web Browser Control &ndash; Specifying the IE Version

    - by Rick Strahl
    I use the Internet Explorer Web Browser Control in a lot of my applications to display document type layout. HTML happens to be one of the most common document formats and displaying data in this format – even in desktop applications, is often way easier than using normal desktop technologies. One issue the Web Browser Control has that it’s perpetually stuck in IE 7 rendering mode by default. Even though IE 8 and now 9 have significantly upgraded the IE rendering engine to be more CSS and HTML compliant by default the Web Browser control will have none of it. IE 9 in particular – with its much improved CSS support and basic HTML 5 support is a big improvement and even though the IE control uses some of IE’s internal rendering technology it’s still stuck in the old IE 7 rendering by default. This applies whether you’re using the Web Browser control in a WPF application, a WinForms app, a FoxPro or VB classic application using the ActiveX control. Behind the scenes all these UI platforms use the COM interfaces and so you’re stuck by those same rules. Rendering Challenged To see what I’m talking about here are two screen shots rendering an HTML 5 doctype page that includes some CSS 3 functionality – rounded corners and border shadows - from an earlier post. One uses IE 9 as a standalone browser, and one uses a simple WPF form that includes the Web Browser control. IE 9 Browser:   Web Browser control in a WPF form: The IE 9 page displays this HTML correctly – you see the rounded corners and shadow displayed. Obviously the latter rendering using the Web Browser control in a WPF application is a bit lacking. Not only are the new CSS features missing but the page also renders in Internet Explorer’s quirks mode so all the margins, padding etc. behave differently by default, even though there’s a CSS reset applied on this page. If you’re building an application that intends to use the Web Browser control for a live preview of some HTML this is clearly undesirable. Feature Delegation via Registry Hacks Fortunately starting with Internet Explore 8 and later there’s a fix for this problem via a registry setting. You can specify a registry key to specify which rendering mode and version of IE should be used by that application. These are not global mind you – they have to be enabled for each application individually. There are two different sets of keys for 32 bit and 64 bit applications. 32 bit: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: yourapplication.exe 64 bit: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: yourapplication.exe The value to set this key to is (taken from MSDN here) as decimal values: 9999 (0x270F) Internet Explorer 9. Webpages are displayed in IE9 Standards mode, regardless of the !DOCTYPE directive. 9000 (0x2328) Internet Explorer 9. Webpages containing standards-based !DOCTYPE directives are displayed in IE9 mode. 8888 (0x22B8) Webpages are displayed in IE8 Standards mode, regardless of the !DOCTYPE directive. 8000 (0x1F40) Webpages containing standards-based !DOCTYPE directives are displayed in IE8 mode. 7000 (0x1B58) Webpages containing standards-based !DOCTYPE directives are displayed in IE7 Standards mode.   The added key looks something like this in the Registry Editor: With this in place my Html Html Help Builder application which has wwhelp.exe as its main executable now works with HTML 5 and CSS 3 documents in the same way that Internet Explorer 9 does. Incidentally I accidentally added an ‘empty’ DWORD value of 0 to my EXE name and that worked as well giving me IE 9 rendering. Although not documented I suspect 0 (or an invalid value) will default to the installed browser. Don’t have a good way to test this but if somebody could try this with IE 8 installed that would be great: What happens when setting 9000 with IE 8 installed? What happens when setting 0 with IE 8 installed? Don’t forget to add Keys for Host Environments If you’re developing your application in Visual Studio and you run the debugger you may find that your application is still not rendering right, but if you run the actual generated EXE from Explorer or the OS command prompt it works. That’s because when you run the debugger in Visual Studio it wraps your application into a debugging host container. For this reason you might want to also add another registry key for yourapp.vshost.exe on your development machine. If you’re developing in Visual FoxPro make sure you add a key for vfp9.exe to see the rendering adjustments in the Visual FoxPro development environment. Cleaner HTML - no more HTML mangling! There are a number of additional benefits to setting up rendering of the Web Browser control to the IE 9 engine (or even the IE 8 engine) beyond the obvious rendering functionality. IE 9 actually returns your HTML in something that resembles the original HTML formatting, as opposed to the IE 7 default format which mangled the original HTML content. If you do the following in the WPF application: private void button2_Click(object sender, RoutedEventArgs e) { dynamic doc = this.webBrowser.Document; MessageBox.Show(doc.body.outerHtml); } you get different output depending on the rendering mode active. With the default IE 7 rendering you get: <BODY><DIV> <H1>Rounded Corners and Shadows - Creating Dialogs in CSS</H1> <DIV class=toolbarcontainer><A class=hoverbutton href="./"><IMG src="../../css/images/home.gif"> Home</A> <A class=hoverbutton href="RoundedCornersAndShadows.htm"><IMG src="../../css/images/refresh.gif"> Refresh</A> </DIV> <DIV class=containercontent> <FIELDSET><LEGEND>Plain Box</LEGEND><!-- Simple Box with rounded corners and shadow --> <DIV style="BORDER-BOTTOM: steelblue 2px solid; BORDER-LEFT: steelblue 2px solid; WIDTH: 550px; BORDER-TOP: steelblue 2px solid; BORDER-RIGHT: steelblue 2px solid" class="roundbox boxshadow"> <DIV style="BACKGROUND: khaki" class="boxcontenttext roundbox">Simple Rounded Corner Box. </DIV></DIV></FIELDSET> <FIELDSET><LEGEND>Box with Header</LEGEND> <DIV style="BORDER-BOTTOM: steelblue 2px solid; BORDER-LEFT: steelblue 2px solid; WIDTH: 550px; BORDER-TOP: steelblue 2px solid; BORDER-RIGHT: steelblue 2px solid" class="roundbox boxshadow"> <DIV class="gridheaderleft roundbox-top">Box with a Header</DIV> <DIV style="BACKGROUND: khaki" class="boxcontenttext roundbox-bottom">Simple Rounded Corner Box. </DIV></DIV></FIELDSET> <FIELDSET><LEGEND>Dialog Style Window</LEGEND> <DIV style="POSITION: relative; WIDTH: 450px" id=divDialog class="dialog boxshadow" jQuery16107208195684204002="2"> <DIV style="POSITION: relative" class=dialog-header> <DIV class=closebox></DIV>User Sign-in <DIV class=closebox jQuery16107208195684204002="3"></DIV></DIV> <DIV class=descriptionheader>This dialog is draggable and closable</DIV> <DIV class=dialog-content><LABEL>Username:</LABEL> <INPUT name=txtUsername value=" "> <LABEL>Password</LABEL> <INPUT name=txtPassword value=" "> <HR> <INPUT id=btnLogin value=Login type=button> </DIV> <DIV class=dialog-statusbar>Ready</DIV></DIV></FIELDSET> </DIV> <SCRIPT type=text/javascript>     $(document).ready(function () {         $("#divDialog")             .draggable({ handle: ".dialog-header" })             .closable({ handle: ".dialog-header",                 closeHandler: function () {                     alert("Window about to be closed.");                     return true;  // true closes - false leaves open                 }             });     }); </SCRIPT> </DIV></BODY> Now lest you think I’m out of my mind and create complete whacky HTML rooted in the last century, here’s the IE 9 rendering mode output which looks a heck of a lot cleaner and a lot closer to my original HTML of the page I’m accessing: <body> <div>         <h1>Rounded Corners and Shadows - Creating Dialogs in CSS</h1>     <div class="toolbarcontainer">         <a class="hoverbutton" href="./"> <img src="../../css/images/home.gif"> Home</a>         <a class="hoverbutton" href="RoundedCornersAndShadows.htm"> <img src="../../css/images/refresh.gif"> Refresh</a>     </div>         <div class="containercontent">     <fieldset>         <legend>Plain Box</legend>                <!-- Simple Box with rounded corners and shadow -->             <div style="border: 2px solid steelblue; width: 550px;" class="roundbox boxshadow">                              <div style="background: khaki;" class="boxcontenttext roundbox">                     Simple Rounded Corner Box.                 </div>             </div>     </fieldset>     <fieldset>         <legend>Box with Header</legend>         <div style="border: 2px solid steelblue; width: 550px;" class="roundbox boxshadow">                          <div class="gridheaderleft roundbox-top">Box with a Header</div>             <div style="background: khaki;" class="boxcontenttext roundbox-bottom">                 Simple Rounded Corner Box.             </div>         </div>     </fieldset>       <fieldset>         <legend>Dialog Style Window</legend>         <div style="width: 450px; position: relative;" id="divDialog" class="dialog boxshadow">             <div style="position: relative;" class="dialog-header">                 <div class="closebox"></div>                 User Sign-in             <div class="closebox"></div></div>             <div class="descriptionheader">This dialog is draggable and closable</div>                    <div class="dialog-content">                             <label>Username:</label>                 <input name="txtUsername" value=" " type="text">                 <label>Password</label>                 <input name="txtPassword" value=" " type="text">                                 <hr/>                                 <input id="btnLogin" value="Login" type="button">                        </div>             <div class="dialog-statusbar">Ready</div>         </div>     </fieldset>     </div> <script type="text/javascript">     $(document).ready(function () {         $("#divDialog")             .draggable({ handle: ".dialog-header" })             .closable({ handle: ".dialog-header",                 closeHandler: function () {                     alert("Window about to be closed.");                     return true;  // true closes - false leaves open                 }             });     }); </script>        </div> </body> IOW, in IE9 rendering mode IE9 is much closer (but not identical) to the original HTML from the page on the Web that we’re reading from. As a side note: Unfortunately, the browser feature emulation can't be applied against the Html Help (CHM) Engine in Windows which uses the Web Browser control (or COM interfaces anyway) to render Html Help content. I tried setting up hh.exe which is the help viewer, to use IE 9 rendering but a help file generated with CSS3 features will simply show in IE 7 mode. Bummer - this would have been a nice quick fix to allow help content served from CHM files to look better. HTML Editing leaves HTML formatting intact In the same vane, if you do any inline HTML editing in the control by setting content to be editable, IE 9’s control does a much more reasonable job of creating usable and somewhat valid HTML. It also leaves the original content alone other than the text your are editing or adding. No longer is the HTML output stripped of excess spaces and reformatted in IEs format. So if I do: private void button3_Click(object sender, RoutedEventArgs e) { dynamic doc = this.webBrowser.Document; doc.body.contentEditable = true; } and then make some changes to the document by typing into it using IE 9 mode, the document formatting stays intact and only the affected content is modified. The created HTML is reasonably clean (although it does lack proper XHTML formatting for things like <br/> <hr/>). This is very different from IE 7 mode which mangled the HTML as soon as the page was loaded into the control. Any editing you did stripped out all white space and lost all of your existing XHTML formatting. In IE 9 mode at least *most* of your original formatting stays intact. This is huge! In Html Help Builder I have supported HTML editing for a long time but the HTML mangling by the Web Browser control made it very difficult to edit the HTML later. Previously IE would mangle the HTML by stripping out spaces, upper casing all tags and converting many XHTML safe tags to its HTML 3 tags. Now IE leaves most of my document alone while editing, and creates cleaner and more compliant markup (with exception of self-closing elements like BR/HR). The end result is that I now have HTML editing in place that's much cleaner and actually capable of being manually edited. Caveats, Caveats, Caveats It wouldn't be Internet Explorer if there weren't some major compatibility issues involved in using this various browser version interaction. The biggest thing I ran into is that there are odd differences in some of the COM interfaces and what they return. I specifically ran into a problem with the document.selection.createRange() function which with IE 7 compatibility returns an expected text range object. When running in IE 8 or IE 9 mode however. I could not retrieve a valid text range with this code where loEdit is the WebBrowser control: loRange = loEdit.document.selection.CreateRange() The loRange object returned (here in FoxPro) had a length property of 0 but none of the other properties of the TextRange or TextRangeCollection objects were available. I figured this was due to some changed security settings but even after elevating the Intranet Security Zone and mucking with the other browser feature flags pertaining to security I had no luck. In the end I relented and used a JavaScript function in my editor document that returns a selection range object: function getselectionrange() { var range = document.selection.createRange(); return range; } and call that JavaScript function from my host applications code: *** Use a function in the document to get around HTML Editing issues loRange = loEdit.document.parentWindow.getselectionrange(.f.) and that does work correctly. This wasn't a big deal as I'm already loading a support script file into the editor page so all I had to do is add the function to this existing script file. You can find out more how to call script code in the Web Browser control from a host application in a previous post of mine. IE 8 and 9 also clamp down the security environment a little more than the default IE 7 control, so there may be other issues you run into. Other than the createRange() problem above I haven't seen anything else that is breaking in my code so far though and that's encouraging at least since it uses a lot of HTML document manipulation for the custom editor I've created (and would love to replace - any PROFESSIONAL alternatives anybody?) Registry Key Installation for your Application It’s important to remember that this registry setting is made per application, so most likely this is something you want to set up with your installer. Also remember that 32 and 64 bit settings require separate settings in the registry so if you’re creating your installer you most likely will want to set both keys in the registry preemptively for your application. I use Tarma Installer for all of my application installs and in Tarma I configure registry keys for both and set a flag to only install the latter key group in the 64 bit version: Because this setting is application specific you have to do this for every application you install unfortunately, but this also means that you can safely configure this setting in the registry because it is after only applied to your application. Another problem with install based installation is version detection. If IE 8 is installed I’d want 8000 for the value, if IE 9 is installed I want 9000. I can do this easily in code but in the installer this is much more difficult. I don’t have a good solution for this at the moment, but given that the app works with IE 7 mode now, IE 9 mode is just a bonus for the moment. If IE 9 is not installed and 9000 is used the default rendering will remain in use.   It sure would be nice if we could specify the IE rendering mode as a property, but I suspect the ActiveX container has to know before it loads what actual version to load up and once loaded can only load a single version of IE. This would account for this annoying application level configuration… Summary The registry feature emulation has been available for quite some time, but I just found out about it today and started experimenting around with it. I’m stoked to see that this is available as I’d pretty much given up in ever seeing any better rendering in the Web Browser control. Now at least my apps can take advantage of newer HTML features. Now if we could only get better HTML Editing support somehow <snicker>… ah can’t have everything.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  Windows  

    Read the article

  • SQL Server 2012 - AlwaysOn

    - by Claus Jandausch
    Ich war nicht nur irritiert, ich war sogar regelrecht schockiert - und für einen kurzen Moment sprachlos (was nur selten der Fall ist). Gerade eben hatte mich jemand gefragt "Wann Oracle denn etwas Vergleichbares wie AlwaysOn bieten würde - und ob überhaupt?" War ich hier im falschen Film gelandet? Ich konnte nicht anders, als meinen Unmut kundzutun und zu erklären, dass die Fragestellung normalerweise anders herum läuft. Zugegeben - es mag vielleicht strittige Punkte geben im Vergleich zwischen Oracle und SQL Server - bei denen nicht unbedingt immer Oracle die Nase vorn haben muss - aber das Thema Clustering für Hochverfügbarkeit (HA), Disaster Recovery (DR) und Skalierbarkeit gehört mit Sicherheit nicht dazu. Dieses Erlebnis hakte ich am Nachgang als Einzelfall ab, der so nie wieder vorkommen würde. Bis ich kurz darauf eines Besseren belehrt wurde und genau die selbe Frage erneut zu hören bekam. Diesmal sogar im Exadata-Umfeld und einem Oracle Stretch Cluster. Einmal ist keinmal, doch zweimal ist einmal zu viel... Getreu diesem alten Motto war mir klar, dass man das so nicht länger stehen lassen konnte. Ich habe keine Ahnung, wie die Microsoft Marketing Abteilung es geschafft hat, unter dem AlwaysOn Brading eine innovative Technologie vermuten zu lassen - aber sie hat ihren Job scheinbar gut gemacht. Doch abgesehen von einem guten Marketing, stellt sich natürlich die Frage, was wirklich dahinter steckt und wie sich das Ganze mit Oracle vergleichen lässt - und ob überhaupt? Damit wären wir wieder bei der ursprünglichen Frage angelangt.  So viel zum Hintergrund dieses Blogbeitrags - von meiner Antwort handelt der restliche Blog. "Windows was the God ..." Um den wahren Unterschied zwischen Oracle und Microsoft verstehen zu können, muss man zunächst das bedeutendste Microsoft Dogma kennen. Es lässt sich schlicht und einfach auf den Punkt bringen: "Alles muss auf Windows basieren." Die Überschrift dieses Absatzes ist kein von mir erfundener Ausspruch, sondern ein Zitat. Konkret stammt es aus einem längeren Artikel von Kurt Eichenwald in der Vanity Fair aus dem August 2012. Er lautet Microsoft's Lost Decade und sei jedem ans Herz gelegt, der die "Microsoft-Maschinerie" unter Steve Ballmer und einige ihrer Kuriositäten besser verstehen möchte. "YOU TALKING TO ME?" Microsoft C.E.O. Steve Ballmer bei seiner Keynote auf der 2012 International Consumer Electronics Show in Las Vegas am 9. Januar   Manche Dinge in diesem Artikel mögen überspitzt dargestellt erscheinen - sind sie aber nicht. Vieles davon kannte ich bereits aus eigener Erfahrung und kann es nur bestätigen. Anderes hat sich mir erst so richtig erschlossen. Insbesondere die folgenden Passagen führten zum Aha-Erlebnis: “Windows was the god—everything had to work with Windows,” said Stone... “Every little thing you want to write has to build off of Windows (or other existing roducts),” one software engineer said. “It can be very confusing, …” Ich habe immer schon darauf hingewiesen, dass in einem SQL Server Failover Cluster die Microsoft Datenbank eigentlich nichts Nenneswertes zum Geschehen beiträgt, sondern sich voll und ganz auf das Windows Betriebssystem verlässt. Deshalb muss man auch die Windows Server Enterprise Edition installieren, soll ein Failover Cluster für den SQL Server eingerichtet werden. Denn hier werden die Cluster Services geliefert - nicht mit dem SQL Server. Er ist nur lediglich ein weiteres Server Produkt, für das Windows in Ausfallszenarien genutzt werden kann - so wie Microsoft Exchange beispielsweise, oder Microsoft SharePoint, oder irgendein anderes Server Produkt das auf Windows gehostet wird. Auch Oracle kann damit genutzt werden. Das Stichwort lautet hier: Oracle Failsafe. Nur - warum sollte man das tun, wenn gleichzeitig eine überlegene Technologie wie die Oracle Real Application Clusters (RAC) zur Verfügung steht, die dann auch keine Windows Enterprise Edition voraussetzen, da Oracle die eigene Clusterware liefert. Welche darüber hinaus für kürzere Failover-Zeiten sorgt, da diese Cluster-Technologie Datenbank-integriert ist und sich nicht auf "Dritte" verlässt. Wenn man sich also schon keine technischen Vorteile mit einem SQL Server Failover Cluster erkauft, sondern zusätzlich noch versteckte Lizenzkosten durch die Lizenzierung der Windows Server Enterprise Edition einhandelt, warum hat Microsoft dann in den vergangenen Jahren seit SQL Server 2000 nicht ebenfalls an einer neuen und innovativen Lösung gearbeitet, die mit Oracle RAC mithalten kann? Entwickler hat Microsoft genügend? Am Geld kann es auch nicht liegen? Lesen Sie einfach noch einmal die beiden obenstehenden Zitate und sie werden den Grund verstehen. Anders lässt es sich ja auch gar nicht mehr erklären, dass AlwaysOn aus zwei unterschiedlichen Technologien besteht, die beide jedoch wiederum auf dem Windows Server Failover Clustering (WSFC) basieren. Denn daraus ergeben sich klare Nachteile - aber dazu später mehr. Um AlwaysOn zu verstehen, sollte man sich zunächst kurz in Erinnerung rufen, was Microsoft bisher an HA/DR (High Availability/Desaster Recovery) Lösungen für SQL Server zur Verfügung gestellt hat. Replikation Basiert auf logischer Replikation und Pubisher/Subscriber Architektur Transactional Replication Merge Replication Snapshot Replication Microsoft's Replikation ist vergleichbar mit Oracle GoldenGate. Oracle GoldenGate stellt jedoch die umfassendere Technologie dar und bietet High Performance. Log Shipping Microsoft's Log Shipping stellt eine einfache Technologie dar, die vergleichbar ist mit Oracle Managed Recovery in Oracle Version 7. Das Log Shipping besitzt folgende Merkmale: Transaction Log Backups werden von Primary nach Secondary/ies geschickt Einarbeitung (z.B. Restore) auf jedem Secondary individuell Optionale dritte Server Instanz (Monitor Server) für Überwachung und Alarm Log Restore Unterbrechung möglich für Read-Only Modus (Secondary) Keine Unterstützung von Automatic Failover Database Mirroring Microsoft's Database Mirroring wurde verfügbar mit SQL Server 2005, sah aus wie Oracle Data Guard in Oracle 9i, war funktional jedoch nicht so umfassend. Für ein HA/DR Paar besteht eine 1:1 Beziehung, um die produktive Datenbank (Principle DB) abzusichern. Auf der Standby Datenbank (Mirrored DB) werden alle Insert-, Update- und Delete-Operationen nachgezogen. Modi Synchron (High-Safety Modus) Asynchron (High-Performance Modus) Automatic Failover Unterstützt im High-Safety Modus (synchron) Witness Server vorausgesetzt     Zur Frage der Kontinuität Es stellt sich die Frage, wie es um diesen Technologien nun im Zusammenhang mit SQL Server 2012 bestellt ist. Unter Fanfaren seinerzeit eingeführt, war Database Mirroring das erklärte Mittel der Wahl. Ich bin kein Produkt Manager bei Microsoft und kann hierzu nur meine Meinung äußern, aber zieht man den SQL AlwaysOn Team Blog heran, so sieht es nicht gut aus für das Database Mirroring - zumindest nicht langfristig. "Does AlwaysOn Availability Group replace Database Mirroring going forward?” “The short answer is we recommend that you migrate from the mirroring configuration or even mirroring and log shipping configuration to using Availability Group. Database Mirroring will still be available in the Denali release but will be phased out over subsequent releases. Log Shipping will continue to be available in future releases.” Damit wären wir endlich beim eigentlichen Thema angelangt. Was ist eine sogenannte Availability Group und was genau hat es mit der vielversprechend klingenden Bezeichnung AlwaysOn auf sich?   SQL Server 2012 - AlwaysOn Zwei HA-Features verstekcne sich hinter dem “AlwaysOn”-Branding. Einmal das AlwaysOn Failover Clustering aka SQL Server Failover Cluster Instances (FCI) - zum Anderen die AlwaysOn Availability Groups. Failover Cluster Instances (FCI) Entspricht ungefähr dem Stretch Cluster Konzept von Oracle Setzt auf Windows Server Failover Clustering (WSFC) auf Bietet HA auf Instanz-Ebene AlwaysOn Availability Groups (Verfügbarkeitsgruppen) Ähnlich der Idee von Consistency Groups, wie in Storage-Level Replikations-Software von z.B. EMC SRDF Abhängigkeiten zu Windows Server Failover Clustering (WSFC) Bietet HA auf Datenbank-Ebene   Hinweis: Verwechseln Sie nicht eine SQL Server Datenbank mit einer Oracle Datenbank. Und auch nicht eine Oracle Instanz mit einer SQL Server Instanz. Die gleichen Begriffe haben hier eine andere Bedeutung - nicht selten ein Grund, weshalb Oracle- und Microsoft DBAs schnell aneinander vorbei reden. Denken Sie bei einer SQL Server Datenbank eher an ein Oracle Schema, das kommt der Sache näher. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema. Wenn Sie die genauen Unterschiede kennen möchten, finden Sie eine detaillierte Beschreibung in meinem Buch "Oracle10g Release 2 für Windows und .NET", erhältich bei Lehmanns, Amazon, etc.   Windows Server Failover Clustering (WSFC) Wie man sieht, basieren beide AlwaysOn Technologien wiederum auf dem Windows Server Failover Clustering (WSFC), um einerseits Hochverfügbarkeit auf Ebene der Instanz zu gewährleisten und andererseits auf der Datenbank-Ebene. Deshalb nun eine kurze Beschreibung der WSFC. Die WSFC sind ein mit dem Windows Betriebssystem geliefertes Infrastruktur-Feature, um HA für Server Anwendungen, wie Microsoft Exchange, SharePoint, SQL Server, etc. zu bieten. So wie jeder andere Cluster, besteht ein WSFC Cluster aus einer Gruppe unabhängiger Server, die zusammenarbeiten, um die Verfügbarkeit einer Applikation oder eines Service zu erhöhen. Falls ein Cluster-Knoten oder -Service ausfällt, kann der auf diesem Knoten bisher gehostete Service automatisch oder manuell auf einen anderen im Cluster verfügbaren Knoten transferriert werden - was allgemein als Failover bekannt ist. Unter SQL Server 2012 verwenden sowohl die AlwaysOn Avalability Groups, als auch die AlwaysOn Failover Cluster Instances die WSFC als Plattformtechnologie, um Komponenten als WSFC Cluster-Ressourcen zu registrieren. Verwandte Ressourcen werden in eine Ressource Group zusammengefasst, die in Abhängigkeit zu anderen WSFC Cluster-Ressourcen gebracht werden kann. Der WSFC Cluster Service kann jetzt die Notwendigkeit zum Neustart der SQL Server Instanz erfassen oder einen automatischen Failover zu einem anderen Server-Knoten im WSFC Cluster auslösen.   Failover Cluster Instances (FCI) Eine SQL Server Failover Cluster Instanz (FCI) ist eine einzelne SQL Server Instanz, die in einem Failover Cluster betrieben wird, der aus mehreren Windows Server Failover Clustering (WSFC) Knoten besteht und so HA (High Availability) auf Ebene der Instanz bietet. Unter Verwendung von Multi-Subnet FCI kann auch Remote DR (Disaster Recovery) unterstützt werden. Eine weitere Option für Remote DR besteht darin, eine unter FCI gehostete Datenbank in einer Availability Group zu betreiben. Hierzu später mehr. FCI und WSFC Basis FCI, das für lokale Hochverfügbarkeit der Instanzen genutzt wird, ähnelt der veralteten Architektur eines kalten Cluster (Aktiv-Passiv). Unter SQL Server 2008 wurde diese Technologie SQL Server 2008 Failover Clustering genannt. Sie nutzte den Windows Server Failover Cluster. In SQL Server 2012 hat Microsoft diese Basistechnologie unter der Bezeichnung AlwaysOn zusammengefasst. Es handelt sich aber nach wie vor um die klassische Aktiv-Passiv-Konfiguration. Der Ablauf im Failover-Fall ist wie folgt: Solange kein Hardware-oder System-Fehler auftritt, werden alle Dirty Pages im Buffer Cache auf Platte geschrieben Alle entsprechenden SQL Server Services (Dienste) in der Ressource Gruppe werden auf dem aktiven Knoten gestoppt Die Ownership der Ressource Gruppe wird auf einen anderen Knoten der FCI transferriert Der neue Owner (Besitzer) der Ressource Gruppe startet seine SQL Server Services (Dienste) Die Connection-Anforderungen einer Client-Applikation werden automatisch auf den neuen aktiven Knoten mit dem selben Virtuellen Network Namen (VNN) umgeleitet Abhängig vom Zeitpunkt des letzten Checkpoints, kann die Anzahl der Dirty Pages im Buffer Cache, die noch auf Platte geschrieben werden müssen, zu unvorhersehbar langen Failover-Zeiten führen. Um diese Anzahl zu drosseln, besitzt der SQL Server 2012 eine neue Fähigkeit, die Indirect Checkpoints genannt wird. Indirect Checkpoints ähnelt dem Fast-Start MTTR Target Feature der Oracle Datenbank, das bereits mit Oracle9i verfügbar war.   SQL Server Multi-Subnet Clustering Ein SQL Server Multi-Subnet Failover Cluster entspricht vom Konzept her einem Oracle RAC Stretch Cluster. Doch dies ist nur auf den ersten Blick der Fall. Im Gegensatz zu RAC ist in einem lokalen SQL Server Failover Cluster jeweils nur ein Knoten aktiv für eine Datenbank. Für die Datenreplikation zwischen geografisch entfernten Sites verlässt sich Microsoft auf 3rd Party Lösungen für das Storage Mirroring.     Die Verbesserung dieses Szenario mit einer SQL Server 2012 Implementierung besteht schlicht darin, dass eine VLAN-Konfiguration (Virtual Local Area Network) nun nicht mehr benötigt wird, so wie dies bisher der Fall war. Das folgende Diagramm stellt dar, wie der Ablauf mit SQL Server 2012 gehandhabt wird. In Site A und Site B wird HA jeweils durch einen lokalen Aktiv-Passiv-Cluster sichergestellt.     Besondere Aufmerksamkeit muss hier der Konfiguration und dem Tuning geschenkt werden, da ansonsten völlig inakzeptable Failover-Zeiten resultieren. Dies liegt darin begründet, weil die Downtime auf Client-Seite nun nicht mehr nur von der reinen Failover-Zeit abhängt, sondern zusätzlich von der Dauer der DNS Replikation zwischen den DNS Servern. (Rufen Sie sich in Erinnerung, dass wir gerade von Multi-Subnet Clustering sprechen). Außerdem ist zu berücksichtigen, wie schnell die Clients die aktualisierten DNS Informationen abfragen. Spezielle Konfigurationen für Node Heartbeat, HostRecordTTL (Host Record Time-to-Live) und Intersite Replication Frequeny für Active Directory Sites und Services werden notwendig. Default TTL für Windows Server 2008 R2: 20 Minuten Empfohlene Einstellung: 1 Minute DNS Update Replication Frequency in Windows Umgebung: 180 Minuten Empfohlene Einstellung: 15 Minuten (minimaler Wert)   Betrachtet man diese Werte, muss man feststellen, dass selbst eine optimale Konfiguration die rigiden SLAs (Service Level Agreements) heutiger geschäftskritischer Anwendungen für HA und DR nicht erfüllen kann. Denn dies impliziert eine auf der Client-Seite erlebte Failover-Zeit von insgesamt 16 Minuten. Hierzu ein Auszug aus der SQL Server 2012 Online Dokumentation: Cons: If a cross-subnet failover occurs, the client recovery time could be 15 minutes or longer, depending on your HostRecordTTL setting and the setting of your cross-site DNS/AD replication schedule.    Wir sind hier an einem Punkt unserer Überlegungen angelangt, an dem sich erklärt, weshalb ich zuvor das "Windows was the God ..." Zitat verwendet habe. Die unbedingte Abhängigkeit zu Windows wird zunehmend zum Problem, da sie die Komplexität einer Microsoft-basierenden Lösung erhöht, anstelle sie zu reduzieren. Und Komplexität ist das Letzte, was sich CIOs heutzutage wünschen.  Zur Ehrenrettung des SQL Server 2012 und AlwaysOn muss man sagen, dass derart lange Failover-Zeiten kein unbedingtes "Muss" darstellen, sondern ein "Kann". Doch auch ein "Kann" kann im unpassenden Moment unvorhersehbare und kostspielige Folgen haben. Die Unabsehbarkeit ist wiederum Ursache vieler an der Implementierung beteiligten Komponenten und deren Abhängigkeiten, wie beispielsweise drei Cluster-Lösungen (zwei von Microsoft, eine 3rd Party Lösung). Wie man die Sache auch dreht und wendet, kommt man an diesem Fakt also nicht vorbei - ganz unabhängig von der Dauer einer Downtime oder Failover-Zeiten. Im Gegensatz zu AlwaysOn und der hier vorgestellten Version eines Stretch-Clusters, vermeidet eine entsprechende Oracle Implementierung eine derartige Komplexität, hervorgerufen duch multiple Abhängigkeiten. Den Unterschied machen Datenbank-integrierte Mechanismen, wie Fast Application Notification (FAN) und Fast Connection Failover (FCF). Für Oracle MAA Konfigurationen (Maximum Availability Architecture) sind Inter-Site Failover-Zeiten im Bereich von Sekunden keine Seltenheit. Wenn Sie dem Link zur Oracle MAA folgen, finden Sie außerdem eine Reihe an Customer Case Studies. Auch dies ist ein wichtiges Unterscheidungsmerkmal zu AlwaysOn, denn die Oracle Technologie hat sich bereits zigfach in höchst kritischen Umgebungen bewährt.   Availability Groups (Verfügbarkeitsgruppen) Die sogenannten Availability Groups (Verfügbarkeitsgruppen) sind - neben FCI - der weitere Baustein von AlwaysOn.   Hinweis: Bevor wir uns näher damit beschäftigen, sollten Sie sich noch einmal ins Gedächtnis rufen, dass eine SQL Server Datenbank nicht die gleiche Bedeutung besitzt, wie eine Oracle Datenbank, sondern eher einem Oracle Schema entspricht. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema.   Eine Verfügbarkeitsgruppe setzt sich zusammen aus einem Set mehrerer Benutzer-Datenbanken, die im Falle eines Failover gemeinsam als Gruppe behandelt werden. Eine Verfügbarkeitsgruppe unterstützt ein Set an primären Datenbanken (primäres Replikat) und einem bis vier Sets von entsprechenden sekundären Datenbanken (sekundäre Replikate).       Es können jedoch nicht alle SQL Server Datenbanken einer AlwaysOn Verfügbarkeitsgruppe zugeordnet werden. Der SQL Server Spezialist Michael Otey zählt in seinem SQL Server Pro Artikel folgende Anforderungen auf: Verfügbarkeitsgruppen müssen mit Benutzer-Datenbanken erstellt werden. System-Datenbanken können nicht verwendet werden Die Datenbanken müssen sich im Read-Write Modus befinden. Read-Only Datenbanken werden nicht unterstützt Die Datenbanken in einer Verfügbarkeitsgruppe müssen Multiuser Datenbanken sein Sie dürfen nicht das AUTO_CLOSE Feature verwenden Sie müssen das Full Recovery Modell nutzen und es muss ein vollständiges Backup vorhanden sein Eine gegebene Datenbank kann sich nur in einer einzigen Verfügbarkeitsgruppe befinden und diese Datenbank düerfen nicht für Database Mirroring konfiguriert sein Microsoft empfiehl außerdem, dass der Verzeichnispfad einer Datenbank auf dem primären und sekundären Server identisch sein sollte Wie man sieht, eignen sich Verfügbarkeitsgruppen nicht, um HA und DR vollständig abzubilden. Die Unterscheidung zwischen der Instanzen-Ebene (FCI) und Datenbank-Ebene (Availability Groups) ist von hoher Bedeutung. Vor kurzem wurde mir gesagt, dass man mit den Verfügbarkeitsgruppen auf Shared Storage verzichten könne und dadurch Kosten spart. So weit so gut ... Man kann natürlich eine Installation rein mit Verfügbarkeitsgruppen und ohne FCI durchführen - aber man sollte sich dann darüber bewusst sein, was man dadurch alles nicht abgesichert hat - und dies wiederum für Desaster Recovery (DR) und SLAs (Service Level Agreements) bedeutet. Kurzum, um die Kombination aus beiden AlwaysOn Produkten und der damit verbundene Komplexität kommt man wohl in der Praxis nicht herum.    Availability Groups und WSFC AlwaysOn hängt von Windows Server Failover Clustering (WSFC) ab, um die aktuellen Rollen der Verfügbarkeitsreplikate einer Verfügbarkeitsgruppe zu überwachen und zu verwalten, und darüber zu entscheiden, wie ein Failover-Ereignis die Verfügbarkeitsreplikate betrifft. Das folgende Diagramm zeigt de Beziehung zwischen Verfügbarkeitsgruppen und WSFC:   Der Verfügbarkeitsmodus ist eine Eigenschaft jedes Verfügbarkeitsreplikats. Synychron und Asynchron können also gemischt werden: Availability Modus (Verfügbarkeitsmodus) Asynchroner Commit-Modus Primäres replikat schließt Transaktionen ohne Warten auf Sekundäres Synchroner Commit-Modus Primäres Replikat wartet auf Commit von sekundärem Replikat Failover Typen Automatic Manual Forced (mit möglichem Datenverlust) Synchroner Commit-Modus Geplanter, manueller Failover ohne Datenverlust Automatischer Failover ohne Datenverlust Asynchroner Commit-Modus Nur Forced, manueller Failover mit möglichem Datenverlust   Der SQL Server kennt keinen separaten Switchover Begriff wie in Oracle Data Guard. Für SQL Server werden alle Role Transitions als Failover bezeichnet. Tatsächlich unterstützt der SQL Server keinen Switchover für asynchrone Verbindungen. Es gibt nur die Form des Forced Failover mit möglichem Datenverlust. Eine ähnliche Fähigkeit wie der Switchover unter Oracle Data Guard ist so nicht gegeben.   SQL Sever FCI mit Availability Groups (Verfügbarkeitsgruppen) Neben den Verfügbarkeitsgruppen kann eine zweite Failover-Ebene eingerichtet werden, indem SQL Server FCI (auf Shared Storage) mit WSFC implementiert wird. Ein Verfügbarkeitesreplikat kann dann auf einer Standalone Instanz gehostet werden, oder einer FCI Instanz. Zum Verständnis: Die Verfügbarkeitsgruppen selbst benötigen kein Shared Storage. Diese Kombination kann verwendet werden für lokale HA auf Ebene der Instanz und DR auf Datenbank-Ebene durch Verfügbarkeitsgruppen. Das folgende Diagramm zeigt dieses Szenario:   Achtung! Hier handelt es sich nicht um ein Pendant zu Oracle RAC plus Data Guard, auch wenn das Bild diesen Eindruck vielleicht vermitteln mag - denn alle sekundären Knoten im FCI sind rein passiv. Es existiert außerdem eine weitere und ernsthafte Einschränkung: SQL Server Failover Cluster Instanzen (FCI) unterstützen nicht das automatische AlwaysOn Failover für Verfügbarkeitsgruppen. Jedes unter FCI gehostete Verfügbarkeitsreplikat kann nur für manuelles Failover konfiguriert werden.   Lesbare Sekundäre Replikate Ein oder mehrere Verfügbarkeitsreplikate in einer Verfügbarkeitsgruppe können für den lesenden Zugriff konfiguriert werden, wenn sie als sekundäres Replikat laufen. Dies ähnelt Oracle Active Data Guard, jedoch gibt es Einschränkungen. Alle Abfragen gegen die sekundäre Datenbank werden automatisch auf das Snapshot Isolation Level abgebildet. Es handelt sich dabei um eine Versionierung der Rows. Microsoft versuchte hiermit die Oracle MVRC (Multi Version Read Consistency) nachzustellen. Tatsächlich muss man die SQL Server Snapshot Isolation eher mit Oracle Flashback vergleichen. Bei der Implementierung des Snapshot Isolation Levels handelt sich um ein nachträglich aufgesetztes Feature und nicht um einen inhärenten Teil des Datenbank-Kernels, wie im Falle Oracle. (Ich werde hierzu in Kürze einen weiteren Blogbeitrag verfassen, wenn ich mich mit der neuen SQL Server 2012 Core Lizenzierung beschäftige.) Für die Praxis entstehen aus der Abbildung auf das Snapshot Isolation Level ernsthafte Restriktionen, derer man sich für den Betrieb in der Praxis bereits vorab bewusst sein sollte: Sollte auf der primären Datenbank eine aktive Transaktion zu dem Zeitpunkt existieren, wenn ein lesbares sekundäres Replikat in die Verfügbarkeitsgruppe aufgenommen wird, werden die Row-Versionen auf der korrespondierenden sekundären Datenbank nicht sofort vollständig verfügbar sein. Eine aktive Transaktion auf dem primären Replikat muss zuerst abgeschlossen (Commit oder Rollback) und dieser Transaktions-Record auf dem sekundären Replikat verarbeitet werden. Bis dahin ist das Isolation Level Mapping auf der sekundären Datenbank unvollständig und Abfragen sind temporär geblockt. Microsoft sagt dazu: "This is needed to guarantee that row versions are available on the secondary replica before executing the query under snapshot isolation as all isolation levels are implicitly mapped to snapshot isolation." (SQL Storage Engine Blog: AlwaysOn: I just enabled Readable Secondary but my query is blocked?)  Grundlegend bedeutet dies, dass ein aktives lesbares Replikat nicht in die Verfügbarkeitsgruppe aufgenommen werden kann, ohne das primäre Replikat vorübergehend stillzulegen. Da Leseoperationen auf das Snapshot Isolation Transaction Level abgebildet werden, kann die Bereinigung von Ghost Records auf dem primären Replikat durch Transaktionen auf einem oder mehreren sekundären Replikaten geblockt werden - z.B. durch eine lang laufende Abfrage auf dem sekundären Replikat. Diese Bereinigung wird auch blockiert, wenn die Verbindung zum sekundären Replikat abbricht oder der Datenaustausch unterbrochen wird. Auch die Log Truncation wird in diesem Zustant verhindert. Wenn dieser Zustand längere Zeit anhält, empfiehlt Microsoft das sekundäre Replikat aus der Verfügbarkeitsgruppe herauszunehmen - was ein ernsthaftes Downtime-Problem darstellt. Die Read-Only Workload auf den sekundären Replikaten kann eingehende DDL Änderungen blockieren. Obwohl die Leseoperationen aufgrund der Row-Versionierung keine Shared Locks halten, führen diese Operatioen zu Sch-S Locks (Schemastabilitätssperren). DDL-Änderungen durch Redo-Operationen können dadurch blockiert werden. Falls DDL aufgrund konkurrierender Lese-Workload blockiert wird und der Schwellenwert für 'Recovery Interval' (eine SQL Server Konfigurationsoption) überschritten wird, generiert der SQL Server das Ereignis sqlserver.lock_redo_blocked, welches Microsoft zum Kill der blockierenden Leser empfiehlt. Auf die Verfügbarkeit der Anwendung wird hierbei keinerlei Rücksicht genommen.   Keine dieser Einschränkungen existiert mit Oracle Active Data Guard.   Backups auf sekundären Replikaten  Über die sekundären Replikate können Backups (BACKUP DATABASE via Transact-SQL) nur als copy-only Backups einer vollständigen Datenbank, Dateien und Dateigruppen erstellt werden. Das Erstellen inkrementeller Backups ist nicht unterstützt, was ein ernsthafter Rückstand ist gegenüber der Backup-Unterstützung physikalischer Standbys unter Oracle Data Guard. Hinweis: Ein möglicher Workaround via Snapshots, bleibt ein Workaround. Eine weitere Einschränkung dieses Features gegenüber Oracle Data Guard besteht darin, dass das Backup eines sekundären Replikats nicht ausgeführt werden kann, wenn es nicht mit dem primären Replikat kommunizieren kann. Darüber hinaus muss das sekundäre Replikat synchronisiert sein oder sich in der Synchronisation befinden, um das Beackup auf dem sekundären Replikat erstellen zu können.   Vergleich von Microsoft AlwaysOn mit der Oracle MAA Ich komme wieder zurück auf die Eingangs erwähnte, mehrfach an mich gestellte Frage "Wann denn - und ob überhaupt - Oracle etwas Vergleichbares wie AlwaysOn bieten würde?" und meine damit verbundene (kurze) Irritation. Wenn Sie diesen Blogbeitrag bis hierher gelesen haben, dann kennen Sie jetzt meine darauf gegebene Antwort. Der eine oder andere Punkt traf dabei nicht immer auf Jeden zu, was auch nicht der tiefere Sinn und Zweck meiner Antwort war. Wenn beispielsweise kein Multi-Subnet mit im Spiel ist, sind alle diesbezüglichen Kritikpunkte zunächst obsolet. Was aber nicht bedeutet, dass sie nicht bereits morgen schon wieder zum Thema werden könnten (Sag niemals "Nie"). In manch anderes Fettnäpfchen tritt man wiederum nicht unbedingt in einer Testumgebung, sondern erst im laufenden Betrieb. Erst recht nicht dann, wenn man sich potenzieller Probleme nicht bewusst ist und keine dedizierten Tests startet. Und wer AlwaysOn erfolgreich positionieren möchte, wird auch gar kein Interesse daran haben, auf mögliche Schwachstellen und den besagten Teufel im Detail aufmerksam zu machen. Das ist keine Unterstellung - es ist nur menschlich. Außerdem ist es verständlich, dass man sich in erster Linie darauf konzentriert "was geht" und "was gut läuft", anstelle auf das "was zu Problemen führen kann" oder "nicht funktioniert". Wer will schon der Miesepeter sein? Für mich selbst gesprochen, kann ich nur sagen, dass ich lieber vorab von allen möglichen Einschränkungen wissen möchte, anstelle sie dann nach einer kurzen Zeit der heilen Welt schmerzhaft am eigenen Leib erfahren zu müssen. Ich bin davon überzeugt, dass es Ihnen nicht anders geht. Nachfolgend deshalb eine Zusammenfassung all jener Punkte, die ich im Vergleich zur Oracle MAA (Maximum Availability Architecture) als unbedingt Erwähnenswert betrachte, falls man eine Evaluierung von Microsoft AlwaysOn in Betracht zieht. 1. AlwaysOn ist eine komplexe Technologie Der SQL Server AlwaysOn Stack ist zusammengesetzt aus drei verschiedenen Technlogien: Windows Server Failover Clustering (WSFC) SQL Server Failover Cluster Instances (FCI) SQL Server Availability Groups (Verfügbarkeitsgruppen) Man kann eine derartige Lösung nicht als nahtlos bezeichnen, wofür auch die vielen von Microsoft dargestellten Einschränkungen sprechen. Während sich frühere SQL Server Versionen in Richtung eigener HA/DR Technologien entwickelten (wie Database Mirroring), empfiehlt Microsoft nun die Migration. Doch weshalb dieser Schwenk? Er führt nicht zu einem konsisten und robusten Angebot an HA/DR Technologie für geschäftskritische Umgebungen.  Liegt die Antwort in meiner These begründet, nach der "Windows was the God ..." noch immer gilt und man die Nachteile der allzu engen Kopplung mit Windows nicht sehen möchte? Entscheiden Sie selbst ... 2. Failover Cluster Instanzen - Kein RAC-Pendant Die SQL Server und Windows Server Clustering Technologie basiert noch immer auf dem veralteten Aktiv-Passiv Modell und führt zu einer Verschwendung von Systemressourcen. In einer Betrachtung von lediglich zwei Knoten erschließt sich auf Anhieb noch nicht der volle Mehrwert eines Aktiv-Aktiv Clusters (wie den Real Application Clusters), wie er von Oracle bereits vor zehn Jahren entwickelt wurde. Doch kennt man die Vorzüge der Skalierbarkeit durch einfaches Hinzufügen weiterer Cluster-Knoten, die dann alle gemeinsam als ein einziges logisches System zusammenarbeiten, versteht man was hinter dem Motto "Pay-as-you-Grow" steckt. In einem Aktiv-Aktiv Cluster geht es zwar auch um Hochverfügbarkeit - und ein Failover erfolgt zudem schneller, als in einem Aktiv-Passiv Modell - aber es geht eben nicht nur darum. An dieser Stelle sei darauf hingewiesen, dass die Oracle 11g Standard Edition bereits die Nutzung von Oracle RAC bis zu vier Sockets kostenfrei beinhaltet. Möchten Sie dazu Windows nutzen, benötigen Sie keine Windows Server Enterprise Edition, da Oracle 11g die eigene Clusterware liefert. Sie kommen in den Genuss von Hochverfügbarkeit und Skalierbarkeit und können dazu die günstigere Windows Server Standard Edition nutzen. 3. SQL Server Multi-Subnet Clustering - Abhängigkeit zu 3rd Party Storage Mirroring  Die SQL Server Multi-Subnet Clustering Architektur unterstützt den Aufbau eines Stretch Clusters, basiert dabei aber auf dem Aktiv-Passiv Modell. Das eigentlich Problematische ist jedoch, dass man sich zur Absicherung der Datenbank auf 3rd Party Storage Mirroring Technologie verlässt, ohne Integration zwischen dem Windows Server Failover Clustering (WSFC) und der darunterliegenden Mirroring Technologie. Wenn nun im Cluster ein Failover auf Instanzen-Ebene erfolgt, existiert keine Koordination mit einem möglichen Failover auf Ebene des Storage-Array. 4. Availability Groups (Verfügbarkeitsgruppen) - Vier, oder doch nur Zwei? Ein primäres Replikat erlaubt bis zu vier sekundäre Replikate innerhalb einer Verfügbarkeitsgruppe, jedoch nur zwei im Synchronen Commit Modus. Während dies zwar einen Vorteil gegenüber dem stringenten 1:1 Modell unter Database Mirroring darstellt, fällt der SQL Server 2012 damit immer noch weiter zurück hinter Oracle Data Guard mit bis zu 30 direkten Stanbdy Zielen - und vielen weiteren durch kaskadierende Ziele möglichen. Damit eignet sich Oracle Active Data Guard auch für die Bereitstellung einer Reader-Farm Skalierbarkeit für Internet-basierende Unternehmen. Mit AwaysOn Verfügbarkeitsgruppen ist dies nicht möglich. 5. Availability Groups (Verfügbarkeitsgruppen) - kein asynchrones Switchover  Die Technologie der Verfügbarkeitsgruppen wird auch als geeignetes Mittel für administrative Aufgaben positioniert - wie Upgrades oder Wartungsarbeiten. Man muss sich jedoch einem gravierendem Defizit bewusst sein: Im asynchronen Verfügbarkeitsmodus besteht die einzige Möglichkeit für Role Transition im Forced Failover mit Datenverlust! Um den Verlust von Daten durch geplante Wartungsarbeiten zu vermeiden, muss man den synchronen Verfügbarkeitsmodus konfigurieren, was jedoch ernstzunehmende Auswirkungen auf WAN Deployments nach sich zieht. Spinnt man diesen Gedanken zu Ende, kommt man zu dem Schluss, dass die Technologie der Verfügbarkeitsgruppen für geplante Wartungsarbeiten in einem derartigen Umfeld nicht effektiv genutzt werden kann. 6. Automatisches Failover - Nicht immer möglich Sowohl die SQL Server FCI, als auch Verfügbarkeitsgruppen unterstützen automatisches Failover. Möchte man diese jedoch kombinieren, wird das Ergebnis kein automatisches Failover sein. Denn ihr Zusammentreffen im Failover-Fall führt zu Race Conditions (Wettlaufsituationen), weshalb diese Konfiguration nicht länger das automatische Failover zu einem Replikat in einer Verfügbarkeitsgruppe erlaubt. Auch hier bestätigt sich wieder die tiefere Problematik von AlwaysOn, mit einer Zusammensetzung aus unterschiedlichen Technologien und der Abhängigkeit zu Windows. 7. Problematische RTO (Recovery Time Objective) Microsoft postioniert die SQL Server Multi-Subnet Clustering Architektur als brauchbare HA/DR Architektur. Bedenkt man jedoch die Problematik im Zusammenhang mit DNS Replikation und den möglichen langen Wartezeiten auf Client-Seite von bis zu 16 Minuten, sind strenge RTO Anforderungen (Recovery Time Objectives) nicht erfüllbar. Im Gegensatz zu Oracle besitzt der SQL Server keine Datenbank-integrierten Technologien, wie Oracle Fast Application Notification (FAN) oder Oracle Fast Connection Failover (FCF). 8. Problematische RPO (Recovery Point Objective) SQL Server ermöglicht Forced Failover (erzwungenes Failover), bietet jedoch keine Möglichkeit zur automatischen Übertragung der letzten Datenbits von einem alten zu einem neuen primären Replikat, wenn der Verfügbarkeitsmodus asynchron war. Oracle Data Guard hingegen bietet diese Unterstützung durch das Flush Redo Feature. Dies sichert "Zero Data Loss" und beste RPO auch in erzwungenen Failover-Situationen. 9. Lesbare Sekundäre Replikate mit Einschränkungen Aufgrund des Snapshot Isolation Transaction Level für lesbare sekundäre Replikate, besitzen diese Einschränkungen mit Auswirkung auf die primäre Datenbank. Die Bereinigung von Ghost Records auf der primären Datenbank, wird beeinflusst von lang laufenden Abfragen auf der lesabaren sekundären Datenbank. Die lesbare sekundäre Datenbank kann nicht in die Verfügbarkeitsgruppe aufgenommen werden, wenn es aktive Transaktionen auf der primären Datenbank gibt. Zusätzlich können DLL Änderungen auf der primären Datenbank durch Abfragen auf der sekundären blockiert werden. Und imkrementelle Backups werden hier nicht unterstützt.   Keine dieser Restriktionen existiert unter Oracle Data Guard.

    Read the article

  • An Xml Serializable PropertyBag Dictionary Class for .NET

    - by Rick Strahl
    I don't know about you but I frequently need property bags in my applications to store and possibly cache arbitrary data. Dictionary<T,V> works well for this although I always seem to be hunting for a more specific generic type that provides a string key based dictionary. There's string dictionary, but it only works with strings. There's Hashset<T> but it uses the actual values as keys. In most key value pair situations for me string is key value to work off. Dictionary<T,V> works well enough, but there are some issues with serialization of dictionaries in .NET. The .NET framework doesn't do well serializing IDictionary objects out of the box. The XmlSerializer doesn't support serialization of IDictionary via it's default serialization, and while the DataContractSerializer does support IDictionary serialization it produces some pretty atrocious XML. What doesn't work? First off Dictionary serialization with the Xml Serializer doesn't work so the following fails: [TestMethod] public void DictionaryXmlSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXml(bag)); } public string ToXml(object obj) { if (obj == null) return null; StringWriter sw = new StringWriter(); XmlSerializer ser = new XmlSerializer(obj.GetType()); ser.Serialize(sw, obj); return sw.ToString(); } The error you get with this is: System.NotSupportedException: The type System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.Object, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]] is not supported because it implements IDictionary. Got it! BTW, the same is true with binary serialization. Running the same code above against the DataContractSerializer does work: [TestMethod] public void DictionaryDataContextSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXmlDcs(bag)); } public string ToXmlDcs(object value, bool throwExceptions = false) { var ser = new DataContractSerializer(value.GetType(), null, int.MaxValue, true, false, null); MemoryStream ms = new MemoryStream(); ser.WriteObject(ms, value); return Encoding.UTF8.GetString(ms.ToArray(), 0, (int)ms.Length); } This DOES work but produces some pretty heinous XML (formatted with line breaks and indentation here): <ArrayOfKeyValueOfstringanyType xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <KeyValueOfstringanyType> <Key>key</Key> <Value i:type="a:string" xmlns:a="http://www.w3.org/2001/XMLSchema">Value</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key2</Key> <Value i:type="a:decimal" xmlns:a="http://www.w3.org/2001/XMLSchema">100.10</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key3</Key> <Value i:type="a:guid" xmlns:a="http://schemas.microsoft.com/2003/10/Serialization/">2cd46d2a-a636-4af4-979b-e834d39b6d37</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key4</Key> <Value i:type="a:dateTime" xmlns:a="http://www.w3.org/2001/XMLSchema">2011-09-19T17:17:05.4406999-07:00</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key5</Key> <Value i:type="a:boolean" xmlns:a="http://www.w3.org/2001/XMLSchema">true</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key7</Key> <Value i:type="a:base64Binary" xmlns:a="http://www.w3.org/2001/XMLSchema">Ki1C</Value> </KeyValueOfstringanyType> </ArrayOfKeyValueOfstringanyType> Ouch! That seriously hurts the eye! :-) Worse though it's extremely verbose with all those repetitive namespace declarations. It's good to know that it works in a pinch, but for a human readable/editable solution or something lightweight to store in a database it's not quite ideal. Why should I care? As a little background, in one of my applications I have a need for a flexible property bag that is used on a free form database field on an otherwise static entity. Basically what I have is a standard database record to which arbitrary properties can be added in an XML based string field. I intend to expose those arbitrary properties as a collection from field data stored in XML. The concept is pretty simple: When loading write the data to the collection, when the data is saved serialize the data into an XML string and store it into the database. When reading the data pick up the XML and if the collection on the entity is accessed automatically deserialize the XML into the Dictionary. (I'll talk more about this in another post). While the DataContext Serializer would work, it's verbosity is problematic both for size of the generated XML strings and the fact that users can manually edit this XML based property data in an advanced mode. A clean(er) layout certainly would be preferable and more user friendly. Custom XMLSerialization with a PropertyBag Class So… after a bunch of experimentation with different serialization formats I decided to create a custom PropertyBag class that provides for a serializable Dictionary. It's basically a custom Dictionary<TType,TValue> implementation with the keys always set as string keys. The result are PropertyBag<TValue> and PropertyBag (which defaults to the object type for values). The PropertyBag<TType> and PropertyBag classes provide these features: Subclassed from Dictionary<T,V> Implements IXmlSerializable with a cleanish XML format ToXml() and FromXml() methods to export and import to and from XML strings Static CreateFromXml() method to create an instance It's simple enough as it's merely a Dictionary<string,object> subclass but that supports serialization to a - what I think at least - cleaner XML format. The class is super simple to use: [TestMethod] public void PropertyBagTwoWayObjectSerializationTest() { var bag = new PropertyBag(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42,45,66 } ); bag.Add("Key8", null); bag.Add("Key9", new ComplexObject() { Name = "Rick", Entered = DateTime.Now, Count = 10 }); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag["key"] as string == "Value"); Assert.IsInstanceOfType( bag["Key3"], typeof(Guid)); Assert.IsNull(bag["Key8"]); //Assert.IsNull(bag["Key10"]); Assert.IsInstanceOfType(bag["Key9"], typeof(ComplexObject)); } This uses the PropertyBag class which uses a PropertyBag<string,object> - which means it returns untyped values of type object. I suspect for me this will be the most common scenario as I'd want to store arbitrary values in the PropertyBag rather than one specific type. The same code with a strongly typed PropertyBag<decimal> looks like this: [TestMethod] public void PropertyBagTwoWayValueTypeSerializationTest() { var bag = new PropertyBag<decimal>(); bag.Add("key", 10M); bag.Add("Key1", 100.10M); bag.Add("Key2", 200.10M); bag.Add("Key3", 300.10M); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag.Get("Key1") == 100.10M); Assert.IsTrue(bag.Get("Key3") == 300.10M); } and produces typed results of type decimal. The types can be either value or reference types the combination of which actually proved to be a little more tricky than anticipated due to null and specific string value checks required - getting the generic typing right required use of default(T) and Convert.ChangeType() to trick the compiler into playing nice. Of course the whole raison d'etre for this class is the XML serialization. You can see in the code above that we're doing a .ToXml() and .FromXml() to serialize to and from string. The XML produced for the first example looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value>Value</value> </item> <item> <key>Key2</key> <value type="decimal">100.10</value> </item> <item> <key>Key3</key> <value type="___System.Guid"> <guid>f7a92032-0c6d-4e9d-9950-b15ff7cd207d</guid> </value> </item> <item> <key>Key4</key> <value type="datetime">2011-09-26T17:45:58.5789578-10:00</value> </item> <item> <key>Key5</key> <value type="boolean">true</value> </item> <item> <key>Key7</key> <value type="base64Binary">Ki1C</value> </item> <item> <key>Key8</key> <value type="nil" /> </item> <item> <key>Key9</key> <value type="___Westwind.Tools.Tests.PropertyBagTest+ComplexObject"> <ComplexObject> <Name>Rick</Name> <Entered>2011-09-26T17:45:58.5789578-10:00</Entered> <Count>10</Count> </ComplexObject> </value> </item> </properties>   The format is a bit cleaner than the DataContractSerializer. Each item is serialized into <key> <value> pairs. If the value is a string no type information is written. Since string tends to be the most common type this saves space and serialization processing. All other types are attributed. Simple types are mapped to XML types so things like decimal, datetime, boolean and base64Binary are encoded using their Xml type values. All other types are embedded with a hokey format that describes the .NET type preceded by a three underscores and then are encoded using the XmlSerializer. You can see this best above in the ComplexObject encoding. For custom types this isn't pretty either, but it's more concise than the DCS and it works as long as you're serializing back and forth between .NET clients at least. The XML generated from the second example that uses PropertyBag<decimal> looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value type="decimal">10</value> </item> <item> <key>Key1</key> <value type="decimal">100.10</value> </item> <item> <key>Key2</key> <value type="decimal">200.10</value> </item> <item> <key>Key3</key> <value type="decimal">300.10</value> </item> </properties>   How does it work As I mentioned there's nothing fancy about this solution - it's little more than a subclass of Dictionary<T,V> that implements custom Xml Serialization and a couple of helper methods that facilitate getting the XML in and out of the class more easily. But it's proven very handy for a number of projects for me where dynamic data storage is required. Here's the code: /// <summary> /// Creates a serializable string/object dictionary that is XML serializable /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> [XmlRoot("properties")] public class PropertyBag : PropertyBag<object> { /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml">Serialize</param> /// <returns></returns> public static PropertyBag CreateFromXml(string xml) { var bag = new PropertyBag(); bag.FromXml(xml); return bag; } } /// <summary> /// Creates a serializable string for generic types that is XML serializable. /// /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> /// <typeparam name="TValue">Must be a reference type. For value types use type object</typeparam> [XmlRoot("properties")] public class PropertyBag<TValue> : Dictionary<string, TValue>, IXmlSerializable { /// <summary> /// Not implemented - this means no schema information is passed /// so this won't work with ASMX/WCF services. /// </summary> /// <returns></returns> public System.Xml.Schema.XmlSchema GetSchema() { return null; } /// <summary> /// Serializes the dictionary to XML. Keys are /// serialized to element names and values as /// element values. An xml type attribute is embedded /// for each serialized element - a .NET type /// element is embedded for each complex type and /// prefixed with three underscores. /// </summary> /// <param name="writer"></param> public void WriteXml(System.Xml.XmlWriter writer) { foreach (string key in this.Keys) { TValue value = this[key]; Type type = null; if (value != null) type = value.GetType(); writer.WriteStartElement("item"); writer.WriteStartElement("key"); writer.WriteString(key as string); writer.WriteEndElement(); writer.WriteStartElement("value"); string xmlType = XmlUtils.MapTypeToXmlType(type); bool isCustom = false; // Type information attribute if not string if (value == null) { writer.WriteAttributeString("type", "nil"); } else if (!string.IsNullOrEmpty(xmlType)) { if (xmlType != "string") { writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } } else { isCustom = true; xmlType = "___" + value.GetType().FullName; writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } // Actual deserialization if (!isCustom) { if (value != null) writer.WriteValue(value); } else { XmlSerializer ser = new XmlSerializer(value.GetType()); ser.Serialize(writer, value); } writer.WriteEndElement(); // value writer.WriteEndElement(); // item } } /// <summary> /// Reads the custom serialized format /// </summary> /// <param name="reader"></param> public void ReadXml(System.Xml.XmlReader reader) { this.Clear(); while (reader.Read()) { if (reader.NodeType == XmlNodeType.Element && reader.Name == "key") { string xmlType = null; string name = reader.ReadElementContentAsString(); // item element reader.ReadToNextSibling("value"); if (reader.MoveToNextAttribute()) xmlType = reader.Value; reader.MoveToContent(); TValue value; if (xmlType == "nil") value = default(TValue); // null else if (string.IsNullOrEmpty(xmlType)) { // value is a string or object and we can assign TValue to value string strval = reader.ReadElementContentAsString(); value = (TValue) Convert.ChangeType(strval, typeof(TValue)); } else if (xmlType.StartsWith("___")) { while (reader.Read() && reader.NodeType != XmlNodeType.Element) { } Type type = ReflectionUtils.GetTypeFromName(xmlType.Substring(3)); //value = reader.ReadElementContentAs(type,null); XmlSerializer ser = new XmlSerializer(type); value = (TValue)ser.Deserialize(reader); } else value = (TValue)reader.ReadElementContentAs(XmlUtils.MapXmlTypeToType(xmlType), null); this.Add(name, value); } } } /// <summary> /// Serializes this dictionary to an XML string /// </summary> /// <returns>XML String or Null if it fails</returns> public string ToXml() { string xml = null; SerializationUtils.SerializeObject(this, out xml); return xml; } /// <summary> /// Deserializes from an XML string /// </summary> /// <param name="xml"></param> /// <returns>true or false</returns> public bool FromXml(string xml) { this.Clear(); // if xml string is empty we return an empty dictionary if (string.IsNullOrEmpty(xml)) return true; var result = SerializationUtils.DeSerializeObject(xml, this.GetType()) as PropertyBag<TValue>; if (result != null) { foreach (var item in result) { this.Add(item.Key, item.Value); } } else // null is a failure return false; return true; } /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml"></param> /// <returns></returns> public static PropertyBag<TValue> CreateFromXml(string xml) { var bag = new PropertyBag<TValue>(); bag.FromXml(xml); return bag; } } } The code uses a couple of small helper classes SerializationUtils and XmlUtils for mapping Xml types to and from .NET, both of which are from the WestWind,Utilities project (which is the same project where PropertyBag lives) from the West Wind Web Toolkit. The code implements ReadXml and WriteXml for the IXmlSerializable implementation using old school XmlReaders and XmlWriters (because it's pretty simple stuff - no need for XLinq here). Then there are two helper methods .ToXml() and .FromXml() that basically allow your code to easily convert between XML and a PropertyBag object. In my code that's what I use to actually to persist to and from the entity XML property during .Load() and .Save() operations. It's sweet to be able to have a string key dictionary and then be able to turn around with 1 line of code to persist the whole thing to XML and back. Hopefully some of you will find this class as useful as I've found it. It's a simple solution to a common requirement in my applications and I've used the hell out of it in the  short time since I created it. Resources You can find the complete code for the two classes plus the helpers in the Subversion repository for Westwind.Utilities. You can grab the source files from there or download the whole project. You can also grab the full Westwind.Utilities assembly from NuGet and add it to your project if that's easier for you. PropertyBag Source Code SerializationUtils and XmlUtils Westwind.Utilities Assembly on NuGet (add from Visual Studio) © Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using HTML 5 SessionState to save rendered Page Content

    - by Rick Strahl
    HTML 5 SessionState and LocalStorage are very useful and super easy to use to manage client side state. For building rich client side or SPA style applications it's a vital feature to be able to cache user data as well as HTML content in order to swap pages in and out of the browser's DOM. What might not be so obvious is that you can also use the sessionState and localStorage objects even in classic server rendered HTML applications to provide caching features between pages. These APIs have been around for a long time and are supported by most relatively modern browsers and even all the way back to IE8, so you can use them safely in your Web applications. SessionState and LocalStorage are easy The APIs that make up sessionState and localStorage are very simple. Both object feature the same API interface which  is a simple, string based key value store that has getItem, setItem, removeitem, clear and  key methods. The objects are also pseudo array objects and so can be iterated like an array with  a length property and you have array indexers to set and get values with. Basic usage  for storing and retrieval looks like this (using sessionStorage, but the syntax is the same for localStorage - just switch the objects):// set var lastAccess = new Date().getTime(); if (sessionStorage) sessionStorage.setItem("myapp_time", lastAccess.toString()); // retrieve in another page or on a refresh var time = null; if (sessionStorage) time = sessionStorage.getItem("myapp_time"); if (time) time = new Date(time * 1); else time = new Date(); sessionState stores data that is browser session specific and that has a liftetime of the active browser session or window. Shut down the browser or tab and the storage goes away. localStorage uses the same API interface, but the lifetime of the data is permanently stored in the browsers storage area until deleted via code or by clearing out browser cookies (not the cache). Both sessionStorage and localStorage space is limited. The spec is ambiguous about this - supposedly sessionStorage should allow for unlimited size, but it appears that most WebKit browsers support only 2.5mb for either object. This means you have to be careful what you store especially since other applications might be running on the same domain and also use the storage mechanisms. That said 2.5mb worth of character data is quite a bit and would go a long way. The easiest way to get a feel for how sessionState and localStorage work is to look at a simple example. You can go check out the following example online in Plunker: http://plnkr.co/edit/0ICotzkoPjHaWa70GlRZ?p=preview which looks like this: Plunker is an online HTML/JavaScript editor that lets you write and run Javascript code and similar to JsFiddle, but a bit cleaner to work in IMHO (thanks to John Papa for turning me on to it). The sample has two text boxes with counts that update session/local storage every time you click the related button. The counts are 'cached' in Session and Local storage. The point of these examples is that both counters survive full page reloads, and the LocalStorage counter survives a complete browser shutdown and restart. Go ahead and try it out by clicking the Reload button after updating both counters and then shutting down the browser completely and going back to the same URL (with the same browser). What you should see is that reloads leave both counters intact at the counted values, while a browser restart will leave only the local storage counter intact. The code to deal with the SessionStorage (and LocalStorage not shown here) in the example is isolated into a couple of wrapper methods to simplify the code: function getSessionCount() { var count = 0; if (sessionStorage) { var count = sessionStorage.getItem("ss_count"); count = !count ? 0 : count * 1; } $("#txtSession").val(count); return count; } function setSessionCount(count) { if (sessionStorage) sessionStorage.setItem("ss_count", count.toString()); } These two functions essentially load and store a session counter value. The two key methods used here are: sessionStorage.getItem(key); sessionStorage.setItem(key,stringVal); Note that the value given to setItem and return by getItem has to be a string. If you pass another type you get an error. Don't let that limit you though - you can easily enough store JSON data in a variable so it's quite possible to pass complex objects and store them into a single sessionStorage value:var user = { name: "Rick", id="ricks", level=8 } sessionStorage.setItem("app_user",JSON.stringify(user)); to retrieve it:var user = sessionStorage.getItem("app_user"); if (user) user = JSON.parse(user); Simple! If you're using the Chrome Developer Tools (F12) you can also check out the session and local storage state on the Resource tab:   You can also use this tool to refresh or remove entries from storage. What we just looked at is a purely client side implementation where a couple of counters are stored. For rich client centric AJAX applications sessionStorage and localStorage provide a very nice and simple API to store application state while the application is running. But you can also use these storage mechanisms to manage server centric HTML applications when you combine server rendering with some JavaScript to perform client side data caching. You can both store some state information and data on the client (ie. store a JSON object and carry it forth between server rendered HTML requests) or you can use it for good old HTTP based caching where some rendered HTML is saved and then restored later. Let's look at the latter with a real life example. Why do I need Client-side Page Caching for Server Rendered HTML? I don't know about you, but in a lot of my existing server driven applications I have lists that display a fair amount of data. Typically these lists contain links to then drill down into more specific data either for viewing or editing. You can then click on a link and go off to a detail page that provides more concise content. So far so good. But now you're done with the detail page and need to get back to the list, so you click on a 'bread crumbs trail' or an application level 'back to list' button and… …you end up back at the top of the list - the scroll position, the current selection in some cases even filters conditions - all gone with the wind. You've left behind the state of the list and are starting from scratch in your browsing of the list from the top. Not cool! Sound familiar? This a pretty common scenario with server rendered HTML content where it's so common to display lists to drill into, only to lose state in the process of returning back to the original list. Look at just about any traditional forums application, or even StackOverFlow to see what I mean here. Scroll down a bit to look at a post or entry, drill in then use the bread crumbs or tab to go back… In some cases returning to the top of a list is not a big deal. On StackOverFlow that sort of works because content is turning around so quickly you probably want to actually look at the top posts. Not always though - if you're browsing through a list of search topics you're interested in and drill in there's no way back to that position. Essentially anytime you're actively browsing the items in the list, that's when state becomes important and if it's not handled the user experience can be really disrupting. Content Caching If you're building client centric SPA style applications this is a fairly easy to solve problem - you tend to render the list once and then update the page content to overlay the detail content, only hiding the list temporarily until it's used again later. It's relatively easy to accomplish this simply by hiding content on the page and later making it visible again. But if you use server rendered content, hanging on to all the detail like filters, selections and scroll position is not quite as easy. Or is it??? This is where sessionStorage comes in handy. What if we just save the rendered content of a previous page, and then restore it when we return to this page based on a special flag that tells us to use the cached version? Let's see how we can do this. A real World Use Case Recently my local ISP asked me to help out with updating an ancient classifieds application. They had a very busy, local classifieds app that was originally an ASP classic application. The old app was - wait for it: frames based - and even though I lobbied against it, the decision was made to keep the frames based layout to allow rapid browsing of the hundreds of posts that are made on a daily basis. The primary reason they wanted this was precisely for the ability to quickly browse content item by item. While I personally hate working with Frames, I have to admit that the UI actually works well with the frames layout as long as you're running on a large desktop screen. You can check out the frames based desktop site here: http://classifieds.gorge.net/ However when I rebuilt the app I also added a secondary view that doesn't use frames. The main reason for this of course was for mobile displays which work horribly with frames. So there's a somewhat mobile friendly interface to the interface, which ditches the frames and uses some responsive design tweaking for mobile capable operation: http://classifeds.gorge.net/mobile  (or browse the base url with your browser width under 800px)   Here's what the mobile, non-frames view looks like:   As you can see this means that the list of classifieds posts now is a list and there's a separate page for drilling down into the item. And of course… originally we ran into that usability issue I mentioned earlier where the browse, view detail, go back to the list cycle resulted in lost list state. Originally in mobile mode you scrolled through the list, found an item to look at and drilled in to display the item detail. Then you clicked back to the list and BAM - you've lost your place. Because there are so many items added on a daily basis the full list is never fully loaded, but rather there's a "Load Additional Listings"  entry at the button. Not only did we originally lose our place when coming back to the list, but any 'additionally loaded' items are no longer there because the list was now rendering  as if it was the first page hit. The additional listings, and any filters, the selection of an item all were lost. Major Suckage! Using Client SessionStorage to cache Server Rendered Content To work around this problem I decided to cache the rendered page content from the list in SessionStorage. Anytime the list renders or is updated with Load Additional Listings, the page HTML is cached and stored in Session Storage. Any back links from the detail page or the login or write entry forms then point back to the list page with a back=true query string parameter. If the server side sees this parameter it doesn't render the part of the page that is cached. Instead the client side code retrieves the data from the sessionState cache and simply inserts it into the page. It sounds pretty simple, and the overall the process is really easy, but there are a few gotchas that I'll discuss in a minute. But first let's look at the implementation. Let's start with the server side here because that'll give a quick idea of the doc structure. As I mentioned the server renders data from an ASP.NET MVC view. On the list page when returning to the list page from the display page (or a host of other pages) looks like this: https://classifieds.gorge.net/list?back=True The query string value is a flag, that indicates whether the server should render the HTML. Here's what the top level MVC Razor view for the list page looks like:@model MessageListViewModel @{ ViewBag.Title = "Classified Listing"; bool isBack = !string.IsNullOrEmpty(Request.QueryString["back"]); } <form method="post" action="@Url.Action("list")"> <div id="SizingContainer"> @if (!isBack) { @Html.Partial("List_CommandBar_Partial", Model) <div id="PostItemContainer" class="scrollbox" xstyle="-webkit-overflow-scrolling: touch;"> @Html.Partial("List_Items_Partial", Model) @if (Model.RequireLoadEntry) { <div class="postitem loadpostitems" style="padding: 15px;"> <div id="LoadProgress" class="smallprogressright"></div> <div class="control-progress"> Load additional listings... </div> </div> } </div> } </div> </form> As you can see the query string triggers a conditional block that if set is simply not rendered. The content inside of #SizingContainer basically holds  the entire page's HTML sans the headers and scripts, but including the filter options and menu at the top. In this case this makes good sense - in other situations the fact that the menu or filter options might be dynamically updated might make you only cache the list rather than essentially the entire page. In this particular instance all of the content works and produces the proper result as both the list along with any filter conditions in the form inputs are restored. Ok, let's move on to the client. On the client there are two page level functions that deal with saving and restoring state. Like the counter example I showed earlier, I like to wrap the logic to save and restore values from sessionState into a separate function because they are almost always used in several places.page.saveData = function(id) { if (!sessionStorage) return; var data = { id: id, scroll: $("#PostItemContainer").scrollTop(), html: $("#SizingContainer").html() }; sessionStorage.setItem("list_html",JSON.stringify(data)); }; page.restoreData = function() { if (!sessionStorage) return; var data = sessionStorage.getItem("list_html"); if (!data) return null; return JSON.parse(data); }; The data that is saved is an object which contains an ID which is the selected element when the user clicks and a scroll position. These two values are used to reset the scroll position when the data is used from the cache. Finally the html from the #SizingContainer element is stored, which makes for the bulk of the document's HTML. In this application the HTML captured could be a substantial bit of data. If you recall, I mentioned that the server side code renders a small chunk of data initially and then gets more data if the user reads through the first 50 or so items. The rest of the items retrieved can be rather sizable. Other than the JSON deserialization that's Ok. Since I'm using SessionStorage the storage space has no immediate limits. Next is the core logic to handle saving and restoring the page state. At first though this would seem pretty simple, and in some cases it might be, but as the following code demonstrates there are a few gotchas to watch out for. Here's the relevant code I use to save and restore:$( function() { … var isBack = getUrlEncodedKey("back", location.href); if (isBack) { // remove the back key from URL setUrlEncodedKey("back", "", location.href); var data = page.restoreData(); // restore from sessionState if (!data) { // no data - force redisplay of the server side default list window.location = "list"; return; } $("#SizingContainer").html(data.html); var el = $(".postitem[data-id=" + data.id + "]"); $(".postitem").removeClass("highlight"); el.addClass("highlight"); $("#PostItemContainer").scrollTop(data.scroll); setTimeout(function() { el.removeClass("highlight"); }, 2500); } else if (window.noFrames) page.saveData(null); // save when page loads $("#SizingContainer").on("click", ".postitem", function() { var id = $(this).attr("data-id"); if (!id) return true; if (window.noFrames) page.saveData(id); var contentFrame = window.parent.frames["Content"]; if (contentFrame) contentFrame.location.href = "show/" + id; else window.location.href = "show/" + id; return false; }); … The code starts out by checking for the back query string flag which triggers restoring from the client cache. If cached the cached data structure is read from sessionStorage. It's important here to check if data was returned. If the user had back=true on the querystring but there is no cached data, he likely bookmarked this page or otherwise shut down the browser and came back to this URL. In that case the server didn't render any detail and we have no cached data, so all we can do is redirect to the original default list view using window.location. If we continued the page would render no data - so make sure to always check the cache retrieval result. Always! If there is data the it's loaded and the data.html data is restored back into the document by simply injecting the HTML back into the document's #SizingContainer element:$("#SizingContainer").html(data.html); It's that simple and it's quite quick even with a fully loaded list of additional items and on a phone. The actual HTML data is stored to the cache on every page load initially and then again when the user clicks on an element to navigate to a particular listing. The former ensures that the client cache always has something in it, and the latter updates with additional information for the selected element. For the click handling I use a data-id attribute on the list item (.postitem) in the list and retrieve the id from that. That id is then used to navigate to the actual entry as well as storing that Id value in the saved cached data. The id is used to reset the selection by searching for the data-id value in the restored elements. The overall process of this save/restore process is pretty straight forward and it doesn't require a bunch of code, yet it yields a huge improvement in the usability of the site on mobile devices (or anybody who uses the non-frames view). Some things to watch out for As easy as it conceptually seems to simply store and retrieve cached content, you have to be quite aware what type of content you are caching. The code above is all that's specific to cache/restore cycle and it works, but it took a few tweaks to the rest of the script code and server code to make it all work. There were a few gotchas that weren't immediately obvious. Here are a few things to pay attention to: Event Handling Logic Timing of manipulating DOM events Inline Script Code Bookmarking to the Cache Url when no cache exists Do you have inline script code in your HTML? That script code isn't going to run if you restore from cache and simply assign or it may not run at the time you think it would normally in the DOM rendering cycle. JavaScript Event Hookups The biggest issue I ran into with this approach almost immediately is that originally I had various static event handlers hooked up to various UI elements that are now cached. If you have an event handler like:$("#btnSearch").click( function() {…}); that works fine when the page loads with server rendered HTML, but that code breaks when you now load the HTML from cache. Why? Because the elements you're trying to hook those events to may not actually be there - yet. Luckily there's an easy workaround for this by using deferred events. With jQuery you can use the .on() event handler instead:$("#SelectionContainer").on("click","#btnSearch", function() {…}); which monitors a parent element for the events and checks for the inner selector elements to handle events on. This effectively defers to runtime event binding, so as more items are added to the document bindings still work. For any cached content use deferred events. Timing of manipulating DOM Elements Along the same lines make sure that your DOM manipulation code follows the code that loads the cached content into the page so that you don't manipulate DOM elements that don't exist just yet. Ideally you'll want to check for the condition to restore cached content towards the top of your script code, but that can be tricky if you have components or other logic that might not all run in a straight line. Inline Script Code Here's another small problem I ran into: I use a DateTime Picker widget I built a while back that relies on the jQuery date time picker. I also created a helper function that allows keyboard date navigation into it that uses JavaScript logic. Because MVC's limited 'object model' the only way to embed widget content into the page is through inline script. This code broken when I inserted the cached HTML into the page because the script code was not available when the component actually got injected into the page. As the last bullet - it's a matter of timing. There's no good work around for this - in my case I pulled out the jQuery date picker and relied on native <input type="date" /> logic instead - a better choice these days anyway, especially since this view is meant to be primarily to serve mobile devices which actually support date input through the browser (unlike desktop browsers of which only WebKit seems to support it). Bookmarking Cached Urls When you cache HTML content you have to make a decision whether you cache on the client and also not render that same content on the server. In the Classifieds app I didn't render server side content so if the user comes to the page with back=True and there is no cached content I have to a have a Plan B. Typically this happens when somebody ends up bookmarking the back URL. The easiest and safest solution for this scenario is to ALWAYS check the cache result to make sure it exists and if not have a safe URL to go back to - in this case to the plain uncached list URL which amounts to effectively redirecting. This seems really obvious in hindsight, but it's easy to overlook and not see a problem until much later, when it's not obvious at all why the page is not rendering anything. Don't use <body> to replace Content Since we're practically replacing all the HTML in the page it may seem tempting to simply replace the HTML content of the <body> tag. Don't. The body tag usually contains key things that should stay in the page and be there when it loads. Specifically script tags and elements and possibly other embedded content. It's best to create a top level DOM element specifically as a placeholder container for your cached content and wrap just around the actual content you want to replace. In the app above the #SizingContainer is that container. Other Approaches The approach I've used for this application is kind of specific to the existing server rendered application we're running and so it's just one approach you can take with caching. However for server rendered content caching this is a pattern I've used in a few apps to retrofit some client caching into list displays. In this application I took the path of least resistance to the existing server rendering logic. Here are a few other ways that come to mind: Using Partial HTML Rendering via AJAXInstead of rendering the page initially on the server, the page would load empty and the client would render the UI by retrieving the respective HTML and embedding it into the page from a Partial View. This effectively makes the initial rendering and the cached rendering logic identical and removes the server having to decide whether this request needs to be rendered or not (ie. not checking for a back=true switch). All the logic related to caching is made on the client in this case. Using JSON Data and Client RenderingThe hardcore client option is to do the whole UI SPA style and pull data from the server and then use client rendering or databinding to pull the data down and render using templates or client side databinding with knockout/angular et al. As with the Partial Rendering approach the advantage is that there's no difference in the logic between pulling the data from cache or rendering from scratch other than the initial check for the cache request. Of course if the app is a  full on SPA app, then caching may not be required even - the list could just stay in memory and be hidden and reactivated. I'm sure there are a number of other ways this can be handled as well especially using  AJAX. AJAX rendering might simplify the logic, but it also complicates search engine optimization since there's no content loaded initially. So there are always tradeoffs and it's important to look at all angles before deciding on any sort of caching solution in general. State of the Session SessionState and LocalStorage are easy to use in client code and can be integrated even with server centric applications to provide nice caching features of content and data. In this post I've shown a very specific scenario of storing HTML content for the purpose of remembering list view data and state and making the browsing experience for lists a bit more friendly, especially if there's dynamically loaded content involved. If you haven't played with sessionStorage or localStorage I encourage you to give it a try. There's a lot of cool stuff that you can do with this beyond the specific scenario I've covered here… Resources Overview of localStorage (also applies to sessionStorage) Web Storage Compatibility Modernizr Test Suite© Rick Strahl, West Wind Technologies, 2005-2013Posted in JavaScript  HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • SQL – Migrate Database from SQL Server to NuoDB – A Quick Tutorial

    - by Pinal Dave
    Data is growing exponentially and every organization with growing data is thinking of next big innovation in the world of Big Data. Big data is a indeed a future for every organization at one point of the time. Just like every other next big thing, big data has its own challenges and issues. The biggest challenge associated with the big data is to find the ideal platform which supports the scalability and growth of the data. If you are a regular reader of this blog, you must be familiar with NuoDB. I have been working with NuoDB for a while and their recent release is the best thus far. NuoDB is an elastically scalable SQL database that can run on local host, datacenter and cloud-based resources. A key feature of the product is that it does not require sharding (read more here). Last week, I was able to install NuoDB in less than 90 seconds and have explored their Explorer and Admin sections. You can read about my experiences in these posts: SQL – Step by Step Guide to Download and Install NuoDB – Getting Started with NuoDB SQL – Quick Start with Admin Sections of NuoDB – Manage NuoDB Database SQL – Quick Start with Explorer Sections of NuoDB – Query NuoDB Database Many SQL Authority readers have been following me in my journey to evaluate NuoDB. One of the frequently asked questions I’ve received from you is if there is any way to migrate data from SQL Server to NuoDB. The fact is that there is indeed a way to do so and NuoDB provides a fantastic tool which can help users to do it. NuoDB Migrator is a command line utility that supports the migration of Microsoft SQL Server, MySQL, Oracle, and PostgreSQL schemas and data to NuoDB. The migration to NuoDB is a three-step process: NuoDB Migrator generates a schema for a target NuoDB database It loads data into the target NuoDB database It dumps data from the source database Let’s see how we can migrate our data from SQL Server to NuoDB using a simple three-step approach. But before we do that we will create a sample database in MSSQL and later we will migrate the same database to NuoDB: Setup Step 1: Build a sample data CREATE DATABASE [Test]; CREATE TABLE [Department]( [DepartmentID] [smallint] NOT NULL, [Name] VARCHAR(100) NOT NULL, [GroupName] VARCHAR(100) NOT NULL, [ModifiedDate] [datetime] NOT NULL, CONSTRAINT [PK_Department_DepartmentID] PRIMARY KEY CLUSTERED ( [DepartmentID] ASC ) ) ON [PRIMARY]; INSERT INTO Department SELECT * FROM AdventureWorks2012.HumanResources.Department; Note that I am using the SQL Server AdventureWorks database to build this sample table but you can build this sample table any way you prefer. Setup Step 2: Install Java 64 bit Before you can begin the migration process to NuoDB, make sure you have 64-bit Java installed on your computer. This is due to the fact that the NuoDB Migrator tool is built in Java. You can download 64-bit Java for Windows, Mac OSX, or Linux from the following link: http://java.com/en/download/manual.jsp. One more thing to remember is that you make sure that the path in your environment settings is set to your JAVA_HOME directory or else the tool will not work. Here is how you can do it: Go to My Computer >> Right Click >> Select Properties >> Click on Advanced System Settings >> Click on Environment Variables >> Click on New and enter the following values. Variable Name: JAVA_HOME Variable Value: C:\Program Files\Java\jre7 Make sure you enter your Java installation directory in the Variable Value field. Setup Step 3: Install JDBC driver for SQL Server. There are two JDBC drivers available for SQL Server.  Select the one you prefer to use by following one of the two links below: Microsoft JDBC Driver jTDS JDBC Driver In this example we will be using jTDS JDBC driver. Once you download the driver, move the driver to your NuoDB installation folder. In my case, I have moved the JAR file of the driver into the C:\Program Files\NuoDB\tools\migrator\jar folder as this is my NuoDB installation directory. Now we are all set to start the three-step migration process from SQL Server to NuoDB: Migration Step 1: NuoDB Schema Generation Here is the command I use to generate a schema of my SQL Server Database in NuoDB. First I go to the folder C:\Program Files\NuoDB\tools\migrator\bin and execute the nuodb-migrator.bat file. Note that my database name is ‘test’. Additionally my username and password is also ‘test’. You can see that my SQL Server database is running on my localhost on port 1433. Additionally, the schema of the table is ‘dbo’. nuodb-migrator schema –source.driver=net.sourceforge.jtds.jdbc.Driver –source.url=jdbc:jtds:sqlserver://localhost:1433/ –source.username=test –source.password=test –source.catalog=test –source.schema=dbo –output.path=/tmp/schema.sql The above script will generate a schema of all my SQL Server tables and will put it in the folder C:\tmp\schema.sql . You can open the schema.sql file and execute this file directly in your NuoDB instance. You can follow the link here to see how you can execute the SQL script in NuoDB. Please note that if you have not yet created the schema in the NuoDB database, you should create it before executing this step. Step 2: Generate the Dump File of the Data Once you have recreated your schema in NuoDB from SQL Server, the next step is very easy. Here we create a CSV format dump file, which will contain all the data from all the tables from the SQL Server database. The command to do so is very similar to the above command. Be aware that this step may take a bit of time based on your database size. nuodb-migrator dump –source.driver=net.sourceforge.jtds.jdbc.Driver –source.url=jdbc:jtds:sqlserver://localhost:1433/ –source.username=test –source.password=test –source.catalog=test –source.schema=dbo –output.type=csv –output.path=/tmp/dump.cat Once the above command is successfully executed you can find your CSV file in the C:\tmp\ folder. However, you do not have to do anything manually. The third and final step will take care of completing the migration process. Migration Step 3: Load the Data into NuoDB After building schema and taking a dump of the data, the very next step is essential and crucial. It will take the CSV file and load it into the NuoDB database. nuodb-migrator load –target.url=jdbc:com.nuodb://localhost:48004/mytest –target.schema=dbo –target.username=test –target.password=test –input.path=/tmp/dump.cat Please note that in the above script we are now targeting the NuoDB database, which we have already created with the name of “MyTest”. If the database does not exist, create it manually before executing the above script. I have kept the username and password as “test”, but please make sure that you create a more secure password for your database for security reasons. Voila!  You’re Done That’s it. You are done. It took 3 setup and 3 migration steps to migrate your SQL Server database to NuoDB.  You can now start exploring the database and build excellent, scale-out applications. In this blog post, I have done my best to come up with simple and easy process, which you can follow to migrate your app from SQL Server to NuoDB. Download NuoDB I strongly encourage you to download NuoDB and go through my 3-step migration tutorial from SQL Server to NuoDB. Additionally here are two very important blog post from NuoDB CTO Seth Proctor. He has written excellent blog posts on the concept of the Administrative Domains. NuoDB has this concept of an Administrative Domain, which is a collection of hosts that can run one or multiple databases.  Each database has its own TEs and SMs, but all are managed within the Admin Console for that particular domain. http://www.nuodb.com/techblog/2013/03/11/getting-started-provisioning-a-domain/ http://www.nuodb.com/techblog/2013/03/14/getting-started-running-a-database/ Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: NuoDB

    Read the article

  • BI Applications overview

    - by sv744
    Welcome to Oracle BI applications blog! This blog will talk about various features, general roadmap, description of functionality and implementation steps related to Oracle BI applications. In the first post we start with an overview of the BI apps and will delve deeper into some of the topics below in the upcoming weeks and months. If there are other topics you would like us to talk about, pl feel free to provide feedback on that. The Oracle BI applications are a set of pre-built applications that enable pervasive BI by providing role-based insight for each functional area, including sales, service, marketing, contact center, finance, supplier/supply chain, HR/workforce, and executive management. For example, Sales Analytics includes role-based applications for sales executives, sales management, as well as front-line sales reps, each of whom have different needs. The applications integrate and transform data from a range of enterprise sources—including Siebel, Oracle, PeopleSoft, SAP, and others—into actionable intelligence for each business function and user role. This blog  starts with the key benefits and characteristics of Oracle BI applications. In a series of subsequent blogs, each of these points will be explained in detail. Why BI apps? Demonstrate the value of BI to a business user, show reports / dashboards / model that can answer their business questions as part of the sales cycle. Demonstrate technical feasibility of BI project and significantly lower risk and improve success Build Vs Buy benefit Don’t have to start with a blank sheet of paper. Help consolidate disparate systems Data integration in M&A situations Insulate BI consumers from changes in the OLTP Present OLTP data and highlight issues of poor data / missing data – and improve data quality and accuracy Prebuilt Integrations BI apps support prebuilt integrations against leading ERP sources: Fusion Applications, E- Business Suite, Peoplesoft, JD Edwards, Siebel, SAP Co-developed with inputs from functional experts in BI and Applications teams. Out of the box dimensional model to source model mappings Multi source and Multi Instance support Rich Data Model    BI apps have a very rich dimensionsal data model built over 10 years that incorporates best practises from BI modeling perspective as well as reflect the source system complexities  Thanks for reading a long post, and be on the lookout for future posts.  We will look forward to your valuable feedback on these topics as well as suggestions on what other topics would you like us to cover. I Conformed dimensional model across all business subject areas allows cross functional reporting, e.g. customer / supplier 360 Over 360 fact tables across 7 product areas CRM – 145, SCM – 47, Financials – 28, Procurement – 20, HCM – 27, Projects – 18, Campus Solutions – 21, PLM - 56 Supported by 300 physical dimensions Support for extensive calendars; Gregorian, enterprise and ledger based Conformed data model and metrics for real time vs warehouse based reporting  Multi-tenant enabled Extensive BI related transformations BI apps ETL and data integration support various transformations required for dimensional models and reporting requirements. All these have been distilled into common patterns and abstracted logic which can be readily reused across different modules Slowly Changing Dimension support Hierarchy flattening support Row / Column Hybrid Hierarchy Flattening As Is vs. As Was hierarchy support Currency Conversion :-  Support for 3 corporate, CRM, ledger and transaction currencies UOM conversion Internationalization / Localization Dynamic Data translations Code standardization (Domains) Historical Snapshots Cycle and process lifecycle computations Balance Facts Equalization of GL accounting chartfields/segments Standardized values for categorizing GL accounts Reconciliation between GL and subledgers to track accounted/transferred/posted transactions to GL Materialization of data only available through costly and complex APIs e.g. Fusion Payroll, EBS / Fusion Accruals Complex event Interpretation of source data – E.g. o    What constitutes a transfer o    Deriving supervisors via position hierarchy o    Deriving primary assignment in PSFT o    Categorizing and transposition to measures of Payroll Balances to specific metrics to support side by side comparison of measures of for example Fixed Salary, Variable Salary, Tax, Bonus, Overtime Payments. o    Counting of Events – E.g. converting events to fact counters so that for example the number of hires can easily be added up and compared alongside the total transfers and terminations. Multi pass processing of multiple sources e.g. headcount, salary, promotion, performance to allow side to side comparison. Adding value to data to aid analysis through banding, additional domain classifications and groupings to allow higher level analytical reporting and data discovery Calculation of complex measures examples: o    COGs, DSO, DPO, Inventory turns  etc o    Transfers within a Hierarchy or out of / into a hierarchy relative to view point in hierarchy. Configurability and Extensibility support  BI apps offer support for extensibility for various entities as automated extensibility or part of extension methodology Key Flex fields and Descriptive Flex support  Extensible attribute support (JDE)  Conformed Domains ETL Architecture BI apps offer a modular adapter architecture which allows support of multiple product lines into a single conformed model Multi Source Multi Technology Orchestration – creates load plan taking into account task dependencies and customers deployment to generate a plan based on a customers of multiple complex etl tasks Plan optimization allowing parallel ETL tasks Oracle: Bit map indexes and partition management High availability support    Follow the sun support. TCO BI apps support several utilities / capabilities that help with overall total cost of ownership and ensure a rapid implementation Improved cost of ownership – lower cost to deploy On-going support for new versions of the source application Task based setups flows Data Lineage Functional setup performed in Web UI by Functional person Configuration Test to Production support Security BI apps support both data and object security enabling implementations to quickly configure the application as per the reporting security needs Fine grain object security at report / dashboard and presentation catalog level Data Security integration with source systems  Extensible to support external data security rules Extensive Set of KPIs Over 7000 base and derived metrics across all modules Time series calculations (YoY, % growth etc) Common Currency and UOM reporting Cross subject area KPIs (analyzing HR vs GL data, drill from GL to AP/AR, etc) Prebuilt reports and dashboards 3000+ prebuilt reports supporting a large number of industries Hundreds of role based dashboards Dynamic currency conversion at dashboard level Highly tuned Performance The BI apps have been tuned over the years for both a very performant ETL and dashboard performance. The applications use best practises and advanced database features to enable the best possible performance. Optimized data model for BI and analytic queries Prebuilt aggregates& the ability for customers to create their own aggregates easily on warehouse facts allows for scalable end user performance Incremental extracts and loads Incremental Aggregate build Automatic table index and statistics management Parallel ETL loads Source system deletes handling Low latency extract with Golden Gate Micro ETL support Bitmap Indexes Partitioning support Modularized deployment, start small and add other subject areas seamlessly Source Specfic Staging and Real Time Schema Support for source specific operational reporting schema for EBS, PSFT, Siebel and JDE Application Integrations The BI apps also allow for integration with source systems as well as other applications that provide value add through BI and enable BI consumption during operational decision making Embedded dashboards for Fusion, EBS and Siebel applications Action Link support Marketing Segmentation Sales Predictor Dashboard Territory Management External Integrations The BI apps data integration choices include support for loading extenral data External data enrichment choices : UNSPSC, Item class etc. Extensible Spend Classification Broad Deployment Choices Exalytics support Databases :  Oracle, Exadata, Teradata, DB2, MSSQL ETL tool of choice : ODI (coming), Informatica Extensible and Customizable Extensible architecture and Methodology to add custom and external content Upgradable across releases

    Read the article

< Previous Page | 208 209 210 211 212 213 214 215 216 217  | Next Page >