Search Results

Search found 5504 results on 221 pages for 'late binding'.

Page 214/221 | < Previous Page | 210 211 212 213 214 215 216 217 218 219 220 221  | Next Page >

  • Exception thrown while accessing HTML DataTable in backing bean

    - by Denzil
    Hi folks, I am building a simple application in JSF with the CrUD functionality. I am trying to implement edit functionality using the tomahawk component .I am unable to retrieve the selected row in my backing bean. Here's my JSP file snip: <t:dataTable id="data" binding="#{selectOneRowList.dataTable}" styleClass="scrollerTable" headerClass="standardTable_Header" footerClass="standardTable_Header" rowClasses="standardTable_Row1,standardTable_Row2" columnClasses="standardTable_Column,standardTable_ColumnCentered,standardTable_Column" var="car" value="#{selectOneRowList.list}" sortColumn="#{selectOneRowList.sortColumn}" sortAscending="#{selectOneRowList.sortAscending}" preserveDataModel="false" preserveSort="true" preserveRowStates="true" rows="10" > <h:column> <f:facet name="header"> <h:outputText value="Select"/> </f:facet> <t:selectOneRow groupName="selection" id="hugo" value="#{selectOneRowList.selectedRowIndex}" onchange="submit();" immediate="true" valueChangeListener="#{selectOneRowList.processRowSelection}"/> </h:column> <h:column> <f:facet name="header"> </f:facet> <h:outputText value="#{car.id}" /> </h:column> <h:column> <f:facet name="header"> <h:outputText value="Cars" /> </f:facet> <h:outputText value="#{car.type}" /> </h:column> <t:column sortable="true"> <f:facet name="header"> <h:outputText value="Color" /> </f:facet> <h:outputText value="#{car.color}" /> </t:column> </t:dataTable> Here's my backing bean SelectOneRowList.java : public void editCar(ActionEvent event) { System.out.println("Row number ## " + _selectedRowIndex.toString() + " selected!"); System.out.println("Datatable ::"+ dataTable); System.out.println("Row Count ::" + dataTable.getRowCount()); dataItem = (SimpleCar) getDataTable().getRowData(); //selectedCar = (SimpleCar) _list.get(Integer.parseInt(_selectedRowIndex.toString())); selectedCar = (SimpleCar) dataTable.getRowData(); System.out.println(dataTable.getRowData()); } My DTO{Data Transfer Object} which is SimpleCar.java contains the variables ID, type, color and their respective setters/getters. The dataItem variable is of type "SimpleCar". The dataTable is of type HTMLDataTable. I am able to get the the first 3 SOP's but the 4th SOP isn't printed. I receive the following exception on the server : javax.faces.el.EvaluationException: Exception while invoking expression #{selectOneRowList.editCar} org.apache.myfaces.el.MethodBindingImpl.invoke(MethodBindingImpl.java:156) javax.faces.component.UICommand.broadcast(UICommand.java:89) javax.faces.component.UIViewRoot._broadcastForPhase(UIViewRoot.java:97) javax.faces.component.UIViewRoot.processApplication(UIViewRoot.java:171) org.apache.myfaces.lifecycle.InvokeApplicationExecutor.execute(InvokeApplicationExecutor.java:32) org.apache.myfaces.lifecycle.LifecycleImpl.executePhase(LifecycleImpl.java:95) org.apache.myfaces.lifecycle.LifecycleImpl.execute(LifecycleImpl.java:70) javax.faces.webapp.FacesServlet.service(FacesServlet.java:139) org.apache.myfaces.webapp.filter.ExtensionsFilter.doFilter(ExtensionsFilter.java:341) On click of the edit button the editCar method in my backing bean is invoked. I need to get the data of the selected row in my backing bean. Why is the exception occurring ? The above example is taken from the tomawhawk examples WAR distributed on the website. I have gone through many links including the ones on BalusC but none of them have helped. Regards,

    Read the article

  • Templates and inheritance

    - by mariusz
    Hello, I have a big problem. I use additional controls for Wpf. One of them is Telerik RadWindow This control is already templated. Now I want to create custom Window with will inherit from RadWindow, and make custom template, eg. One base window will contains grid and two buttons, second base window will contain two grids (master - detail). The problem is that templates do not support inheritance. Perhaps is another way to template only the content of Winodow? My code, that doesn't work (empty window appears, so template doesn't apply) <Style TargetType="{x:Type local:TBaseRjWindow}"> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type local:TBaseRjContent}"> <Border Background="{TemplateBinding Background}" BorderBrush="{TemplateBinding BorderBrush}" BorderThickness="{TemplateBinding BorderThickness}"> <Grid Name="mGrid"> <Grid.ColumnDefinitions> <ColumnDefinition /> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition /> <RowDefinition MaxHeight="40" MinHeight="30" /> <RowDefinition MaxHeight="40" MinHeight="30" /> <RowDefinition Height="Auto" /> <RowDefinition MaxHeight="40" MinHeight="30" /> </Grid.RowDefinitions> <telerik:RadGridView Margin="10,10,10,10" Name="grid" Grid.Row="0" Grid.Column="0" VerticalAlignment="Stretch" HorizontalAlignment="Stretch" ScrollMode="Deferred" AutoGenerateColumns="False" Width="Auto" > </telerik:RadGridView> <telerik:RadDataPager Grid.Row="1" Grid.Column="0" x:Name="radDataPager" PageSize="50" AutoEllipsisMode="None" DisplayMode="First, Previous, Next, Text" Margin="10,0,10,0"/> <StackPanel Grid.Row="1" Grid.Column="0" Margin="5 5 5 5" HorizontalAlignment="Left" Orientation="Horizontal" Height="20" Width="Auto" VerticalAlignment="Center" > <telerik:RadButton x:Name="btAdd" Margin="5 0 5 0" Content="Dodaj" /> <telerik:RadButton x:Name="btEdit" Margin="5 0 5 0" Content="Edytuj" /> <telerik:RadButton x:Name="btDelete" Margin="5 0 5 0" Content="Usun" /> </StackPanel> <StackPanel Name="addFields" Background="LightGray" Visibility="Collapsed" VerticalAlignment="Top" Grid.Row="2" Grid.Column="0" Width="Auto" Height="Auto" Orientation="Horizontal"> <GroupBox Header="Szczegoly" Margin="2 2 2 2" > <Grid VerticalAlignment="Top" DataContext="{Binding SelectedItem, ElementName=grid}" Name="_gAddFields" Margin="0 0 0 0" Width="Auto" Height="Auto" > </Grid> </GroupBox> </StackPanel> <StackPanel Grid.Row="3" Grid.Column="0" Margin="5 5 5 5" HorizontalAlignment="Right" Orientation="Horizontal" Height="25" Width="Auto" VerticalAlignment="Center" > <telerik:RadButton x:Name="btSave" IsDefault="True" Width="60" Margin="5 0 5 0" Content="Zapisz" /> <telerik:RadButton x:Name="btOK" IsDefault="True" Width="60" Margin="5 0 5 0" Content="Akceptuj" /> <telerik:RadButton x:Name="btCancel" IsCancel="True" Width="60" Margin="5 0 5 0" Content="Anuluj" /> </StackPanel> </Grid> </Border> </ControlTemplate> </Setter.Value> </Setter> </Style> Please help

    Read the article

  • Reinitialize the current month name, when i click button

    - by EswaraMoorthyNEC
    Hi,In my richCalendar.jsp page, first time i click the showCurrentMonth button and display the current month using rich:calendar. i select some other month i click SelectedMonth button. I show the selected month name. My problem is : I go to any other page. then i come visit the richCalendar.jsp and again click showCurrentMonth button, this time the rich:calendar show the already selected month instead of current month . Each time, i want to show current month when i click showCurrentMonth. richCalendar.jsp <body> <h:form id="calendarForm" binding="#{CalenderBean.initForm}"> <rich:panel> <a4j:outputPanel id="calendarOutputPanel"> <h:panelGrid> <a4j:commandButton value="showCurrentMonth" action="#{CalenderBean.showCurrentMonthAction}" reRender="monthlyPanelGridId,monthlyCalendarId,calendarOutputPanel"/> <h:panelGrid id="monthlyPanelGridId" rendered="#{CalenderBean.monthlyCalendarRendered}" > <rich:calendar boundaryDatesMode="scroll" id="monthlyCalendarId" showWeekDaysBar="false" oncurrentdateselected="event.rich.component.selectDate(event.rich.date)" showFooter="false" popup="false" value="#{CalenderBean.selectedMonth}"/> </h:panelGrid> <h:panelGrid id = "SearchButtonGrid"> <a4j:commandButton id="SelectedMonth" value="SelectedMonth" action="#{CalenderBean.selectedMonthButtonAction}" reRender="calendarOutputPanel"/> <h:outputText value="#{CalenderBean.selectedMonthName}" /> </h:panelGrid> </h:panelGrid> </a4j:outputPanel> <rich:panel></h:form></body> CalenderBean.java import java.util.Calendar; import java.util.Date; import javax.faces.component.html.HtmlForm; public class CalenderBean { private HtmlForm initForm; private boolean monthlyCalendarRendered; private Date selectedMonth; private String selectedMonthName; public CalenderBean() { } public String showCurrentMonthAction() { monthlyCalendarRendered = true; Calendar calendar = Calendar.getInstance(); int startingDate = calendar.getActualMinimum(Calendar.DAY_OF_MONTH); calendar.set(Calendar.DATE, startingDate); selectedMonth = calendar.getTime(); return ""; } public String selectedMonthButtonAction() { selectedMonthName = selectedMonth.toString(); return ""; } public HtmlForm getInitForm() { selectedMonth = null; monthlyCalendarRendered = false; return initForm; } public void setInitForm(HtmlForm initForm){ this.initForm = initForm; } public boolean isMonthlyCalendarRendered(){ return monthlyCalendarRendered; } public void setMonthlyCalendarRendered(boolean monthlyCalendarRendered){ this.monthlyCalendarRendered = monthlyCalendarRendered; } public Date getSelectedMonth(){ return selectedMonth; } public void setSelectedMonth(Date selectedMonth){ this.selectedMonth = selectedMonth; } public String getSelectedMonthName(){ return selectedMonthName; } public void setSelectedMonthName(String selectedMonthName){ this.selectedMonthName = selectedMonthName; } } First time i visit this page perfectly show the current month. Then i go to any othe page and then come to see this page, click showCurrentMonth button not show the current month. Help me. Thanks in advance.

    Read the article

  • Is this a right way to use NHibernate?

    - by Venemo
    I spent the rest of the evening reading StackOverflow questions and also some blog entries and links about the subject. All of them turned out to be very helpful, but I still feel that they don't really answer my question. So, I'm developing a simple web application. I'd like to create a reusable data access layer which I can later reuse in other solutions. 99% of these will be web applications. This seems to be a good excuse for me to learn NHibernate and some of the patterns around it. My goals are the following: I don't want the business logic layer to know ANYTHING about the inner workings of the database, nor NHibernate itself. I want the business logic layer to have the least possible number of assumptions about the data access layer. I want the data access layer as simplistic and easy-to-use as possible. This is going to be a simple project, so I don't want to overcomplicate anything. I want the data access layer to be as non-intrusive as possible. Will all this in mind, I decided to use the popular repository pattern. I read about this subject on this site and on various dev blogs, and I heard some stuff about the unit of work pattern. I also looked around and checked out various implementations. (Including FubuMVC contrib, and SharpArchitecture, and stuff on some blogs.) I found out that most of these operate with the same principle: They create a "unit of work" which is instantiated when a repository is instantiated, they start a transaction, do stuff, and commit, and then start all over again. So, only one ISession per Repository and that's it. Then the client code needs to instantiate a repository, do stuff with it, and then dispose. This usage pattern doesn't meet my need of being as simplistic as possible, so I began thinking about something else. I found out that NHibernate already has something which makes custom "unit of work" implementations unnecessary, and that is the CurrentSessionContext class. If I configure the session context correctly, and do the clean up when necessary, I'm good to go. So, I came up with this: I have a static class called NHibernateHelper. Firstly, it has a static property called CurrentSessionFactory, which upon first call, instantiates a session factory and stores it in a static field. (One ISessionFactory per one AppDomain is good enough.) Then, more importantly, it has a CurrentSession static property, which checks if there is an ISession bound to the current session context, and if not, creates one, and binds it, and it returns with the ISession bound to the current session context. Because it will be used mostly with WebSessionContext (so, one ISession per HttpRequest, although for the unit tests, I configured ThreadStaticSessionContext), it should work seamlessly. And after creating and binding an ISession, it hooks an event handler to the HttpContext.Current.ApplicationInstance.EndRequest event, which takes care of cleaning up the ISession after the request ends. (Of course, it only does this if it is really running in a web environment.) So, with all this set up, the NHibernateHelper will always be able to return a valid ISession, so there is no need to instantiate a Repository instance for the "unit of work" to operate properly. Instead, the Repository is a static class which operates with the ISession from the NHibernateHelper.CurrentSession property, and exposes some functionality through that. I'm curious, what do you think about this? Is it a valid way of thinking, or am I completely off track here?

    Read the article

  • Why do I get error "prefix [..] is not defined" when I try to use my jsf custom tag?

    - by Roman
    I created a jsf custom tag (I'm not sure that it's correct, I could miss something easily, so I attached code below). Now I'm trying to use this tag but I get an error: error on line 28 at column 49: Namespace prefix gc on ganttchart is not defined So, here is the xhtml-page: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:ui="http://java.sun.com/jsf/facelets" xmlns:h="http://java.sun.com/jsf/html" xmlns:f="http://java.sun.com/jsf/core" xmlns:gc="http://myganttchart.org"> <body> <ui:composition template="/masterpage.xhtml"> <ui:define name="title">Gantt chart test</ui:define> <ui:define name="content"> <f:view> <gc:ganttchart width="300" height="100" rendered="true"/> ... </f:view> </ui:define> </ui:composition> </body> </html> And here is tld-file (it's placed in WEB-INF/): <taglib xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.1"> <tlib-version> 1.0 </tlib-version> <short-name> oext </short-name> <uri> http://myganttchart.org </uri> <tag> <name>ganttchart</name> <tag-class>usermanagement.support.ganttchart.GanttChartTag</tag-class> <body-content>empty</body-content> <attribute> <name>binding</name> <deferred-value> <type>javax.faces.component.UIComponent</type> </deferred-value> </attribute> ... </tag> </tablib> Here is a part of tag-class code: public class GanttChartTag extends UIComponentELTag { private ValueExpression width; private ValueExpression height; private ValueExpression styleClass; public String getComponentType () { return "org.myganttchart"; } public String getRendererType () { return null; } ... } Correspondent block from faces-config: <component> <component-type>org.myganttchart</component-type> <component-class>usermanagement.support.ganttchart.UIGanttChart</component-class> </component> And the last part if UIGanttChart: public class UIGanttChart extends UIOutput { public UIGanttChart() { setRendererType (null); } //some test code public void encodeBegin(FacesContext context) throws IOException { ResponseWriter writer = context.getResponseWriter (); writer.startElement("img", this); writer.writeAttribute("src", "no-img", "source"); writer.writeAttribute("width", getAttributes ().get ("width"), "width"); writer.writeAttribute("height", getAttributes ().get ("height"), "height"); writer.writeAttribute("class", ".someclass", "styleClass"); writer.endElement("img"); } } So, what did I miss?

    Read the article

  • IE7 doesn't render part of page until the window resizes or switch between tabs

    - by BlackMael
    I have a problem with IE7. I have a fixed layout for keeping the header and a sidepanel fixed on a page leaving only the "main content" area switch can happily scroll it's content. This layout works perfectly fine for IE6 and IE8, but sometimes one page may start "hiding" the content that should be showing in the "main content" area. The page finishes loading just fine. For a split second IE7 will render the main content just fine and then it will immediately hide it from view.. somewhere.. It would also seem that it only experiences this problem when there is enough content to force the "main content" area to scroll. By resizing the window or switching to another open tab and back again will cause IE7 to show the page as it was intended. Note the same problem does occur with IE8 in compatibility mode, but the page is rendered correctly in IE8 mode. If need be I can attach the basic CSS styling I use, but I first want to see if this is a known issue with IE7. Does IE7 have issues with positioned layout and overflow scrolling that is sometimes likes to forgot to finish rendering the page correctly until some window redraw event forces to finish rendering? Please remember, this exact same layout is used across multiple pages in the site as it is set up in a master page. It is just (in this case) one page that is experiencing this problem. Other pages with the exact same layout do render correctly. Even if the main content is full enough to also scroll. UPDATE: A related question which doesn't have an answer at this point. LATE UPDATE: Adding example masterpage and css Please note this same layout is the same for all the pages in the application. My problem with IE7 only occurs on one such page. All other pages have happily render correctly in IE7. Just one page, using the exact same layout, has issues where it sometimes hides the content in the "work-space" div. The master page <%@ Master Language="VB" CodeFile="MasterPage.master.vb" Inherits="shared_templates_MasterPage" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title></title> <link rel="Stylesheet" type="text/css" href="~/common/yui/2.7.0/build/reset-fonts/reset-fonts.css" runat="server" /> <link rel="Stylesheet" type="text/css" href="~/shared/css/layout.css" runat="server" /> <asp:ContentPlaceHolder ID="head" runat="server" /> </head> <body> <form id="form1" runat="server"> <asp:ScriptManager ID="ScriptManager1" runat="server" /> <div id="app-header"> </div> <div id="side-panel"> </div> <div id="work-space"> <asp:ContentPlaceHolder ID="WorkSpaceContentPlaceHolder" runat="server" /> </div> <div id="status-bar"> <asp:ContentPlaceHolder ID="StatusBarContentPlaceHolder" runat="server" /> </div> </form> </body> </html> The layout.css html { overflow: hidden; } body { overflow: hidden; padding: 0; margin: 0; width: 100%; height: 100%; background-color: white; } body, table, td, th, select, textarea, input { font-family: Tahoma, Arial, Sans-Serif; font-size: 9pt; } p { padding-left: 1em; margin-bottom: 1em; } #app-header { position: absolute; top: 0; left: 0; width: 100%; height: 80px; background-color: #dcdcdc; border-bottom: solid 4px #000; } #side-panel { position: absolute; top: 84px; left: 0px; bottom: 0px; overflow: auto; padding: 0; margin: 0; width: 227px; background-color: #AABCCA; border-right: solid 1px black; background-repeat: repeat-x; padding-top: 5px; } #work-space { position: absolute; top: 84px; left: 232px; right: 0px; padding: 0; margin: 0; bottom: 22px; overflow: auto; background-color: White; } #status-bar { position: absolute; height: 20px; left: 228px; right: 0px; padding: 0; margin: 0; bottom: 0px; border-top: solid 1px #c0c0c0; background-color: #f0f0f0; } The Default.aspx <%@ Page Title="Test" Language="VB" MasterPageFile="~/shared/templates/MasterPage.master" AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_Default" %> <asp:Content ID="WorkspaceContent" ContentPlaceHolderID="WorkSpaceContentPlaceHolder" Runat="Server"> Workspace <asp:ListView ID="DemoListView" runat="server" DataSourceID="DemoObjectDataSource" ItemPlaceholderID="DemoPlaceHolder"> <LayoutTemplate> <table style="border: 1px solid #a0a0a0; width: 600px"> <colgroup> <col width="80" /> <col /> <col width="80" /> <col width="120" /> </colgroup> <tbody> <asp:PlaceHolder ID="DemoPlaceHolder" runat="server" /> </tbody> </table> </LayoutTemplate> <ItemTemplate> <tr> <th><%#Eval("ID")%></th> <td><%#Eval("Name")%></td> <td><%#Eval("Size")%></td> <td><%#Eval("CreatedOn", "{0:yyyy-MM-dd HH:mm:ss}")%></td> </tr> </ItemTemplate> </asp:ListView> <asp:ObjectDataSource ID="DemoObjectDataSource" runat="server" OldValuesParameterFormatString="original_{0}" SelectMethod="GetData" TypeName="DemoLogic"> <SelectParameters> <asp:Parameter Name="path" Type="String" /> </SelectParameters> </asp:ObjectDataSource> </asp:Content> <asp:Content ID="StatusContent" ContentPlaceHolderID="StatusBarContentPlaceHolder" Runat="Server"> Ready OK. </asp:Content>

    Read the article

  • Resolve naming conflict in included XSDs for JAXB compilation

    - by Jason Faust
    I am currently trying to compile with JAXB (IBM build 2.1.3) a pair of schema files into the same package. Each will compile on it's own, but when trying to compile them together i get a element naming conflict due to includes. My question is; is there a way to specify with an external binding a resolution to the naming collision. Example files follow. In the example the offending element is called "Common", which is defined in both incA and incB: incA.xsd <?xml version="1.0" encoding="UTF-8"?> <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.example.org/" xmlns:tns="http://www.example.org/" elementFormDefault="qualified"> <complexType name="TypeA"> <sequence> <element name="ElementA" type="string"></element> </sequence> </complexType> <!-- Conflicting element --> <element name="Common" type="tns:TypeA"></element> </schema> incB.xsd <?xml version="1.0" encoding="UTF-8"?> <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.example.org/" xmlns:tns="http://www.example.org/" elementFormDefault="qualified"> <complexType name="TypeB"> <sequence> <element name="ElementB" type="int"></element> </sequence> </complexType> <!-- Conflicting element --> <element name="Common" type="tns:TypeB"></element> </schema> A.xsd <?xml version="1.0" encoding="UTF-8"?> <schema targetNamespace="http://www.example.org/" elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://www.example.org/"> <include schemaLocation="incA.xsd"></include> <complexType name="A"> <sequence> <element ref="tns:Common"></element> </sequence> </complexType> </schema> B.xsd <?xml version="1.0" encoding="UTF-8"?> <schema targetNamespace="http://www.example.org/" elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://www.example.org/"> <include schemaLocation="incB.xsd"></include> <complexType name="B"> <sequence> <element ref="tns:Common"></element> </sequence> </complexType> </schema> Compiler error when both are compiled from one evocation of xjb: [ERROR] 'Common' is already defined line 9 of file:/C:/temp/incB.xsd [ERROR] (related to above error) the first definition appears here line 9 of file:/C:/temp/incA.xsd (For reference, this is a generalization to resolve an issue with compiling the OAGIS8 SP3 package)

    Read the article

  • Yet another bug of JSF?

    - by Nitesh Panchal
    Hello, Again i see that the @PostConstruct is firing every time even though no binding attribute is used. See this code :- <?xml version='1.0' encoding='UTF-8' ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.com/jsf/html" xmlns:ui="http://java.sun.com/jsf/facelets" xmlns:c="http://java.sun.com/jsp/jstl/core"> <h:head> <title>Facelet Title</title> </h:head> <h:body> <h:form> <c:forEach var="item" items="#{TestBean.listItems}"> <h:outputText value="#{item}"/> </c:forEach> <h:commandButton value="Click" actionListener="#{TestBean.actionListener}"/> </h:form> </h:body> </html> And this is the simplest possible bean in JSF :- package managedBeans; import java.io.Serializable; import java.util.ArrayList; import java.util.List; import javax.annotation.PostConstruct; import javax.faces.bean.ManagedBean; import javax.faces.bean.ViewScoped; @ManagedBean(name="TestBean") @ViewScoped public class TestBean implements Serializable { private List<String> listItems; public List<String> getListItems() { return listItems; } public void setListItems(List<String> listItems) { this.listItems = listItems; } public TestBean() { } @PostConstruct public void init(){ System.out.println("Post Construct fired!"); listItems = new ArrayList<String>(); listItems.add("Mango"); listItems.add("Apple"); listItems.add("Banana"); } public void actionListener(){ System.out.println("Action Listener fired!"); } } Do you see any behaviour that should cause postconstruct callback to fire each time? I think JSF 2.0 is highly unstable. If it has to fire PostConstruct each and every time what purpose does @ViewScoped serve. Why not to use @RequestScoped only? I thought i have made some mistake in my application. But when i created this simplest possible in JSF, i still get this error. Am i not understanding the scopes of JSF? or are they not testing it properly? Further, if you remove c:forEach and replace it with ui:repeat, then it works fine. Waiting for replies to confirm whether it is bug or it is intentional to stop the programmers from using jstl?

    Read the article

  • How can I display the clicked products by user on a list in another view?

    - by Avar
    I am using MVC3 Viewmodel pattern with Entity Framework on my webbapplication. My Index View is list of products with image, price and description and etc. Products with the information I mentioned above is in div boxes with a button that says "buy". I will be working with 2 views one that is the Index View that will display all the products and the other view that will display the products that got clicked by the buy button. What I am trying to achieve is when a user click on buy button the products should get stored in the other view that is cart view and be displayed. I have problems on how to begin the coding for that part. The index View with products is done and now its the buy button function left to do but I have no idea how to start. This is my IndexController: private readonly HomeRepository repository = new HomeRepository(); public ActionResult Index() { var Productlist = repository.GetAllProducts(); var model = new HomeIndexViewModel() { Productlist = new List<ProductsViewModel>() }; foreach (var Product in Productlist) { FillProductToModel(model, Product); } return View(model); } private void FillProductToModel(HomeIndexViewModel model, ProductImages productimage) { var productViewModel = new ProductsViewModel { Description = productimage.Products.Description, ProductId = productimage.Products.Id, price = productimage.Products.Price, Name = productimage.Products.Name, Image = productimage.ImageUrl, }; model.Productlist.Add(productViewModel); } In my ActionResult Index I am using my repository to get the products and then I am binding the data from the products to my ViewModel so I can use the ViewModel inside my view. Thats how I am displaying all the products in my View. This is my Index View: @model Avan.ViewModels.HomeIndexViewModel @foreach (var item in Model.Productlist) { <div id="productholder@(item.ProductId)" class="productholder"> <img src="@Html.DisplayFor(modelItem => item.Image)" alt="" /> <div class="productinfo"> <h2>@Html.DisplayFor(modelItem => item.Name)</h2> <p>@Html.DisplayFor(modelItem => item.Description)</p> @Html.Hidden("ProductId", item.ProductId, new { @id = "ProductId" }) </div> <div class="productprice"> <h2>@Html.DisplayFor(modelItem => item.price)</h2> <input type="button" value="Läs mer" class="button" id="button@(item.ProductId)"> @Html.ActionLink("x", "Cart", new { id = item.ProductId }) // <- temp its going to be a button </div> </div> } Since I can get the product ID per product I can use the ID in my controller to get the data from the database. But I still I have no idea how I can do that so when somebody click on the buy button I store the ID where? and how do I use it so I can achieve what I want to do? Right now I have been trying to do following thing in my IndexController: public ActionResult cart(int id) { var SelectedProducts = repository.GetProductByID(id); return View(); } What I did here is that I get the product by the id. So when someone press on the temp "x" Actionlink I will recieve the product. All I know is that something like that is needed to achieve what im trying to do but after that I have no idea what to do and in what kind of structure I should do it. Any kind of help is appreciated alot! Short Scenario: looking at the Index I see 5 products, I choose to buy 3 products so I click on three "Buy" buttons. Now I click on the "Cart" that is located on the nav menu. New View pops up and I see the three products that I clicked to buy.

    Read the article

  • How to use JAXB to process messages from two separate schemas (with same rootelement name)

    - by sairn
    Hi We have a client that is sending xml messages that are produced from two separate schemas. We would like to process them in a single application, since the content is related. We cannot modify the client's schema that they are using to produce the XML messages... We can modify our own copies of the two schema (or binding.jxb) -- if it helps -- in order to enable our JAXB processing of messages created from the two separate schemas. Unfortunately, both schemas have the same root element name (see below). QUESTION: Does JAXB prohibit absolutely the processing two schemas that have the same root element name? -- If so, I will stop my "easter egg" hunt for a solution to this... ---Or, is there some workaround that would enable us to use JAXB for processing these XML messages produced from two different schemas? schema1 (note the root element name: "A"): <?xml version="1.0" encoding="UTF-8"?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"> <xsd:element name="A"> <xsd:complexType> <xsd:sequence> <xsd:element name="AA"> <xsd:complexType> <xsd:sequence> <xsd:element name="AAA1" type="xsd:string" /> <xsd:element name="AAA2" type="xsd:string" /> <xsd:element name="AAA3" type="xsd:string" /> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="BB"> <xsd:complexType> <xsd:sequence> <xsd:element name="BBB1" type="xsd:string" /> <xsd:element name="BBB2" type="xsd:string" /> </xsd:sequence> </xsd:complexType> </xsd:element> </xsd:sequence> </xsd:complexType> </xsd:element> </xsd:schema> schema2 (note, again, using the same root element name: "A") <?xml version="1.0" encoding="UTF-8"?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"> <xsd:element name="A"> <xsd:complexType> <xsd:sequence> <xsd:element name="CCC"> <xsd:complexType> <xsd:sequence> <xsd:element name="DDD1" type="xsd:string" /> <xsd:element name="DDD2" type="xsd:string" /> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="EEE"> <xsd:complexType> <xsd:sequence> <xsd:element name="EEE1"> <xsd:complexType> <xsd:sequence> <xsd:element name="FFF1" type="xsd:string" /> <xsd:element name="FFF2" type="xsd:string" /> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="EEE2" type="xsd:string" /> </xsd:sequence> </xsd:complexType> </xsd:element> </xsd:sequence> </xsd:complexType> </xsd:element> </xsd:schema>

    Read the article

  • Is asp.net caching my sql results?

    - by Christian W
    I have the following method in an App_Code/Globals.cs file: public static XmlDataSource getXmlSourceFromOrgid(int orgid) { XmlDataSource xds = new XmlDataSource(); var ctx = new SensusDataContext(); SqlConnection c = new SqlConnection(ctx.Connection.ConnectionString); c.Open(); SqlCommand cmd = new SqlCommand(String.Format("select orgid, tekst, dbo.GetOrgTreeXML({0}) as Subtree from tblOrg where OrgID = {0}", orgid), c); var rdr = cmd.ExecuteReader(); rdr.Read(); StringBuilder sb = new StringBuilder(); sb.AppendFormat("&lt;node orgid=\"{0}\" tekst=\"{1}\"&gt;",rdr.GetInt32(0),rdr.GetString(1)); sb.Append(rdr.GetString(2)); sb.Append("&lt;/node&gt;"); xds.Data = sb.ToString(); xds.ID = "treedata"; rdr.Close(); c.Close(); return xds; } This gives me an XML-structure to use with the asp.net treeview control (I also use the CssFriendly extender to get nicer code) My problem is that if I logon on my pc with a code that gives me access on a lower level in the tree hierarchy (it's an orgianization hierarchy), it somehow "remembers" what level i logon at. So when my coworker tests from her computer with another code, giving access to another place in the tree, she get's the same tree as me. (The tree is supposed to show your own level and down.) I have added a html-comment to show what orgid it passes to the function, and the orgid passed is correct. So either the treeview caches something serverside, or the sqlquery caches it's result somehow... Any ideas? Sql function: ALTER function [dbo].[GetOrgTreeXML](@orgid int) returns XML begin RETURN (select org.orgid as '@orgid', org.tekst as '@tekst', [dbo].GetOrgTreeXML(org.orgid) from tblOrg org where (@orgid is null and Eier is null) or Eier=@orgid for XML PATH('NODE'), TYPE) end Extra code as requested: int orgid = int.Parse(Session["org"].ToString()); string orgname = context.Orgs.Where(q => q.OrgID == orgid).First().Tekst; debuglit.Text = String.Format("<!-- Id: {0} \n name: {1} -->", orgid, orgname); var orgxml = Globals.getXmlSourceFromOrgid(orgid); tvNavtree.DataSource = orgxml; tvNavtree.DataBind(); Where "debuglit" is a asp:Literal in the aspx file. EDIT: I have narrowed it down. All functions returns correct values. It just doesn't bind to it. I suspect the CssFriendly adapter to have something to do with it. I disabled the CssFriendly adapter and the problem persists... Stepping through it in debug it's correct all the way, with the stepper standing on "tvNavtree.DataBind();" I can hover the pointer over the tvNavtree.Datasource and see that it actually has the correct data. So something must be faulting in the binding process...

    Read the article

  • Visualising a 'Smarties' lid using XAML (WPF/Silverlight, Visual Studio/Blend)

    - by Mr. Disappointment
    Hi folks, First off, to clarify something in the title which could well be ambiguous/misleading, I'd like to inform you of my definition of 'Smarties', as I know often products are available all over - only under a different alias. Smarties are a candy product in the UK, little chocolate drops covered in a crispy shell which are distributed in a card tube, this tube used to have a plastic lid/top with an individual letter on the underside (they've taken a more economical approach as of late), the lid/top of the old-style tube is the main element of this question. Familiarisation Link Lid View Link Okay, now with the seller-type pitch out of the way (no, I don't work for Nestlé ;)), hopefully the question is becoming rather clear. Essentially, I'd like to recreate one of these lids using XAML, ultimately to be utilised in a Silverlight web application. That is, I'd like to result in a reusable control, of which the following is true: It looks like a Smarties lid. The colour can be specified. The letter can be specified. The control can be rotated to display either side. The second two seem trivial, but we must bare in mind that the background colour specified will almost, if not always, be the same as the foreground, leaving a visibility issue where the character content is concerned; as for the rotation, I'm hoping this kind of functionality is reasonably available, and acceptable to implement. So, to put this out there, consider a control named SmartiesLid which derives from ToggleButton (appropriate?) and further plotted out using a style in a resource dictionary which applies to it, as follows: <Style TargetType="local:SmartiesLid"> <Setter Property="Background" Value="Red"/> <Setter Property="Foreground" Value="Red"/> <Setter Property="VerticalContentAlignment" Value="Center"/> <Setter Property="HorizontalContentAlignment" Value="Center"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="local:SmartiesLid"> <Grid x:Name="LayoutRoot"> <Grid.ColumnDefinitions> <ColumnDefinition Width=".05*"/> <ColumnDefinition/> <ColumnDefinition/> <ColumnDefinition Width=".05*"/> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition Height=".05*"/> <RowDefinition/> <RowDefinition/> <RowDefinition Height=".05*"/> <RowDefinition Height=".1*"/> </Grid.RowDefinitions> <Ellipse Grid.RowSpan="4" Grid.ColumnSpan="4" Fill="{TemplateBinding Background}" Stroke="Transparent"/> <Ellipse Grid.RowSpan="2" Grid.ColumnSpan="2" Grid.Column="1" Grid.Row="1" Fill="{TemplateBinding Background}" Stroke="Transparent"> <Ellipse.Effect> <DropShadowEffect Direction="280" ShadowDepth="6" BlurRadius="6"/> </Ellipse.Effect> </Ellipse> <TextBlock Grid.RowSpan="2" Grid.ColumnSpan="2" Grid.Column="1" Grid.Row="1" Name="LetterTextBlock" Text="{TemplateBinding Content}" Foreground="{TemplateBinding Foreground}" FontSize="190" HorizontalAlignment="Center" VerticalAlignment="Center"> </TextBlock> <!-- <Path Stretch="Fill" Grid.Row="3" Grid.RowSpan="2" Grid.Column="1" Grid.ColumnSpan="2" Fill="Black" Data="..."> How to craw the lid 'tab'? </Path> --> </Grid> <ControlTemplate.Resources> <TranslateTransform x:Key="IndentTransform" X="10" /> <RotateTransform x:Key="RotateTransform" Angle="0" /> <Storyboard x:Key="MouseOver"> </Storyboard> <Storyboard x:Key="MouseLeave"> </Storyboard> </ControlTemplate.Resources> <ControlTemplate.Triggers> <Trigger Property="IsMouseOver" Value="true"> <Trigger.EnterActions> <BeginStoryboard Storyboard="{StaticResource MouseOver}"/> </Trigger.EnterActions> <Trigger.ExitActions> <BeginStoryboard Storyboard="{StaticResource MouseLeave}"/> </Trigger.ExitActions> </Trigger> <Trigger Property="IsPressed" Value="true"> <Setter TargetName="LayoutRoot" Property="RenderTransform" Value="{StaticResource IndentTransform}"/> </Trigger> <Trigger Property="IsChecked" Value="true"> <Setter TargetName="LayoutRoot" Property="RenderTransform" Value="{StaticResource RotateTransform}"/> </Trigger> <Trigger Property="IsEnabled" Value="False"> <Setter Property="Foreground" Value="Gray"/> <Setter Property="Opacity" Value="0.5"/> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Style> With this in mind, can anyone give input on, in decreasing order of my incompetence in an area: Designing the overall look and feel of the damn thing (I'm no designer, and while I could hack away at this single control for days and potentially get something relatively useful, it's always a gamble). The particular barrier for me here is 'pathing' the tab of the lid, as you will see in the XAML as an element commented out. Should Path be used, or would it be more appropriate to transform a rectangle with rounded corners, or any specific suggestions? Bevelling the individually displayed letter; as detailed above, when the colour of both the foreground and background are the same then this will be invisible if no effects are applied, also for a decent level of realism I'd like to be able to apply such an effect/s. So far use of DropShadow and Balder3DEngine have fulfilled my requirements for graphics in XAML, how achievable is a bevel effect? Rotating the control on mouse-click, that is, showing the opposing face. Is this going to be possible using a style and XAML only for the design? Or is it that ugliness may rear it's head in the form of code-behind to show/hide embedded controls? Should the faces be separate controls and later somehow combined? Allowing the control to size dynamically. I'm supposing I will be able to convert a solid, absolute layout to a nice generic one when I actually have the former in place. Obviously this entails sizing the centralised letter and the lid 'tab', but that's it really, other than keeping the aspect ratio equal (since the ellipses grow nicely with the grid). Any suggestions to approaching this would be greatly appreciated, particularly with a dynamically growing font - I've done that before in a web-imaging scenario using code and System.Drawing, and wouldn't like to approach it in even a similar way. By the way, the reason I specify both WPF and Silverlight is that, from my current knowledge, the inputs being written targeting either of these will be fairly transferable for similar output by the other, albeit not without alterations in either scenario. The resulting application is in fact destined to be written in Silverlight, however, so I don't fancy inviting anything from WPF which will guarantee my only being able to convert 90% of it. I'll go give this little project a start, maybe in Blend(?), hopefully can catch up with some advice shortly. Thanks, Mr. D EDIT: Next question, ought this to be broken up into separate questions? :/

    Read the article

  • map<string, vector<string>> reassignment of vector value

    - by user2950936
    I am trying to write a program that takes lines from an input file, sorts the lines into 'signatures' for the purpose of combining all words that are anagrams of each other. I have to use a map, storing the 'signatures' as the keys and storing all words that match those signatures into a vector of strings. Afterwards I must print all words that are anagrams of each other on the same line. Here is what I have so far: #include <iostream> #include <string> #include <algorithm> #include <map> #include <fstream> using namespace std; string signature(const string&); void printMap(const map<string, vector<string>>&); int main(){ string w1,sig1; vector<string> data; map<string, vector<string>> anagrams; map<string, vector<string>>::iterator it; ifstream myfile; myfile.open("words.txt"); while(getline(myfile, w1)) { sig1=signature(w1); anagrams[sig1]=data.push_back(w1); //to my understanding this should always work, } //either by inserting a new element/key or //by pushing back the new word into the vector<string> data //variable at index sig1, being told that the assignment operator //cannot be used in this way with these data types myfile.close(); printMap(anagrams); return 0; } string signature(const string& w) { string sig; sig=sort(w.begin(), w.end()); return sig; } void printMap(const map& m) { for(string s : m) { for(int i=0;i<m->second.size();i++) cout << m->second.at(); cout << endl; } } The first explanation is working, didn't know it was that simple! However now my print function is giving me: prob2.cc: In function âvoid printMap(const std::map<std::basic_string<char>, std::vector<std::basic_string<char> > >&)â: prob2.cc:43:36: error: cannot bind âstd::basic_ostream<char>::__ostream_type {aka std::basic_ostream<char>}â lvalue to âstd::basic_ostream<char>&&â In file included from /opt/centos/devtoolset-1.1/root/usr/lib/gcc/x86_64-redhat-linux/4.7.2/../../../../include/c++/4.7.2/iostream:40:0, Tried many variations and they always complain about binding void printMap(const map<string, vector<string>> &mymap) { for(auto &c : mymap) cout << c.first << endl << c.second << endl; }

    Read the article

  • Imitate Google suggest with Ajax and php

    - by phil
    I want to imitate Google suggest with the following code, which means: step 1: When user types in search box, the query string will be processed by a server php file and query suggestion string is returned(using Ajax object). step 2:When user clicks on a query suggestion, it will fill into the search box (autocomplete). Step 1 is achieved while step 2 is not. I think the problem lies in the .click() method. My intention is to use .click() binding a onclick event to the dynamically created <li> element. Any idea? <script src="jquery-1.4.2.js"> </script> <style> #search,#suggest,ul,li{margin: 0; padding:0; width: 200px;} ul{ list-style-type: none;} .border{border: solid red 1px; } </style> <p>My first language is:</p> <input type="text" width="200px" id="search" onkeyup="main(this.value)" value="" /> <ul id="suggest"></ul> <script type="text/javascript"> function main(str) { //setup Ajax object var request=new XMLHttpRequest(); request.open("GET","language.php?q="+str,true) //core function request.onreadystatechange=function() { if ( request.readyState==4 && request.status==200) { if (str=="") {$('li').remove(); $('ul').removeClass('border');return;} $('li').remove(); array=request.responseText.split(","); for (i=0;i<array.length;i++) { //create HTML element of <li> $('#suggest').append($('<li>',{id: 'li'+i, html: array[i]})); //style ul $('ul').addClass('border'); //I THINK HERE IS THE PROBLEM! $('li'+i).click(function(){ $("#search").html(array[i]);}); } } } request.send(); } </script> PHP: <?php $q=$_GET[q]; $a[]='english'; $a[]='chinese'; $a[]='japanese'; $a[]='eeeeee'; //lookup all hints from array if length of q>0 if (strlen($q) > 0) { $hint=""; for($i=0; $i<count($a); $i++) { if (strtolower($q)==strtolower(substr($a[$i],0,strlen($q)))) { if ($hint=="") { $hint=$a[$i]; } else { $hint=$hint." , ".$a[$i]; } } } } // Set output to "no suggestion" if no hint were found // or to the correct values if ($hint == "") { $response="no suggestion"; } else { $response=$hint; } //output the response echo $response; ?>

    Read the article

  • WCF service is not getting called

    - by Cheranga
    I have a web solution and I have a WCF service project inside it. We need to support "cookieless". so in the web.config, it's set as <sessionState mode="SQLServer" sqlConnectionString="Data Source=ds;Initial Catalog=db;User Id=uid;Password=pwd" allowCustomSqlDatabase="true" cookieless="true" timeout="720" regenerateExpiredSessionId="false"/> The WCF service will be supporting sessions, so we have also set "aspNetCompatibilityEnabled" to true in web.config. <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true"/> The service and interfaces are as follows, [ServiceContract(SessionMode=SessionMode.Allowed)] public interface ICDOCService { } [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class CDOCService : ICDOCService { } The problem we are facing is we cannot access the service from any client application. (web app, WCF test client) The following error is showing, when we access it via WCF Test client, Failed to invoke the service. Possible causes: The service is offline or inaccessible; the client-side configuration does not match the proxy; the existing proxy is invalid. Refer to the stack trace for more detail. You can try to recover by starting a new proxy, restoring to default configuration, or refreshing the service. The content type text/html; charset=UTF-8 of the response message does not match the content type of the binding (multipart/related; type="application/xop+xml"). If using a custom encoder, be sure that the IsContentTypeSupported method is implemented properly. The first 1024 bytes of the response were: <HTML> <HEAD> <link rel="alternate" type="text/xml" href="http://localhost:53721/Services/CDOCService.svc?disco"/> <STYLE type="text/css">#content{ FONT-SIZE: 0.7em; PADDING-BOTTOM: 2em; MARGIN-LEFT: 30px}BODY{MARGIN-TOP: 0px; MARGIN-LEFT: 0px; COLOR: #000000; FONT-FAMILY: Verdana; BACKGROUND-COLOR: white}P{MARGIN-TOP: 0px; MARGIN-BOTTOM: 12px; COLOR: #000000; FONT-FAMILY: Verdana}PRE{BORDER-RIGHT: #f0f0e0 1px solid; PADDING-RIGHT: 5px; BORDER-TOP: #f0f0e0 1px solid; MARGIN-TOP: -5px; PADDING-LEFT: 5px; FONT-SIZE: 1.2em; PADDING-BOTTOM: 5px; BORDER-LEFT: #f0f0e0 1px solid; PADDING-TOP: 5px; BORDER-BOTTOM: #f0f0e0 1px solid; FONT-FAMILY: Courier New; BACKGROUND-COLOR: #e5e5cc}.heading1{MARGIN-TOP: 0px; PADDING-LEFT: 15px; FONT-WEIGHT: normal; FONT-SIZE: 26px; MARGIN-BOTTOM: 0px; PADDING-BOTTOM: 3px; MARGIN-LEFT: -30px; WIDTH: 100%; COLOR: #ffffff; PADDING-TOP: 10px; FONT-FAMILY: Tahoma; BACKGROUND-COLOR: #003366}.intro{MARGIN-LEFT: -15px} </STYLE> <TITLE>CDOCService Service</TITLE></HEAD><BODY><DIV id="content"><P '. Server stack trace: at System.ServiceModel.Channels.HttpChannelUtilities.ValidateRequestReplyResponse(HttpWebRequest request, HttpWebResponse response, HttpChannelFactory factory, WebException responseException, ChannelBinding channelBinding) at System.ServiceModel.Channels.HttpChannelFactory.HttpRequestChannel.HttpChannelRequest.WaitForReply(TimeSpan timeout) at System.ServiceModel.Channels.RequestChannel.Request(Message message, TimeSpan timeout) at System.ServiceModel.Dispatcher.RequestChannelBinder.Request(Message message, TimeSpan timeout) at System.ServiceModel.Channels.ServiceChannel.Call(String action, Boolean oneway, ProxyOperationRuntime operation, Object[] ins, Object[] outs, TimeSpan timeout) at System.ServiceModel.Channels.ServiceChannel.Call(String action, Boolean oneway, ProxyOperationRuntime operation, Object[] ins, Object[] outs) at System.ServiceModel.Channels.ServiceChannelProxy.InvokeService(IMethodCallMessage methodCall, ProxyOperationRuntime operation) at System.ServiceModel.Channels.ServiceChannelProxy.Invoke(IMessage message) Exception rethrown at [0]: at System.Runtime.Remoting.Proxies.RealProxy.HandleReturnMessage(IMessage reqMsg, IMessage retMsg) at System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(MessageData& msgData, Int32 type) at ICDOCService.GetCDOCCount(String institutionID, String mrnID, String userID, String callingSystemID, String securityToken) at CDOCServiceClient.GetCDOCCount(String institutionID, String mrnID, String userID, String callingSystemID, String securityToken)

    Read the article

  • How do I Insert Record MVVM through WCF

    - by DG KOL
    Hello, I’m new in MVVM Pattern (Using Galasoft MVVM Light toolkit). I’ve created a Test Project where I want to fetch some records from Database through WCF. This is working fine but I’ve failed to insert new record from View; Here is My Code: Database Table Name: TestUser (First Name, LastName) WCF (NWCustomer) Two Methods Public List<TestUser> GetAllUsers() [“LINQ2SQL Operation”] Public bool AddUser(TestUser testuser) Public bool AddUser(TestUser testuser) { try { using (DBDataContext db = new DBDataContext()) { TestUser test = new TestUser() { FirstName = testuser.FirstName, LastName = testuser.LastName }; db.TestUser.InsertOnSubmit(test); db.SubmitChanges(); } } catch (Exception ex) { return false; } return true; } Silverlight Project MODEL consists ITestUserService.cs TestUserService.cs public void AddTestTable(TestTableViewModel testuser, Action<bool> callback) { NWCustomerClient client = new NWCustomerClient("BasicHttpBinding_NWCustomer"); client.AddTestUserCompleted += (s, e) => { var userCallback = e.UserState as Action<bool>; if (userCallback == null) { return; } if (e.Error == null) { userCallback(e.Result); return; } userCallback(false); }; client.AddTestUserAsync(testuser.Model); } VIEWMODEL TestUserViewModel public TestUser User { get; private set; } public const string DirtyVisibilityPropertyName = "DirtyVisibility"; private Visibility _dirty = Visibility.Collapsed; public Visibility DirtyVisibility { get { return _dirty; } set { if (_dirty == value) { return; } _dirty = value; RaisePropertyChanged(DirtyVisibilityPropertyName); } } public TestUserViewModel (TestUser user) { User = user; user.PropertyChanged += (s, e) => { DirtyVisibility = Visibility.Visible; }; } MainViewModel public ObservableCollection<TestUserViewModel> TestTables { get; private set; } public const string ErrorMessagePropertyName = "ErrorMessage"; private string _errorMessage = string.Empty; public string ErrorMessage { get { return _errorMessage; } set { if (_errorMessage == value) { return; } _errorMessage = value; RaisePropertyChanged(ErrorMessagePropertyName); } } private ITestUserService _service; public RelayCommand< TestUserViewModel> AddTestUserRecord { get; private set; } public MainTestTableViewModel (ICustomerService service) { _service = service; TestTables = new ObservableCollection<TestTableViewModel>(); service.GetAllTestTable(HandleResult); } private void HandleResult(IEnumerable<TestTable> result, Exception ex) { TestTables.Clear(); if (ex != null) { //Error return; } if (result == null) { return; } foreach (var test in result) { var table = new TestTableViewModel(test); TestTables.Add(table); } } XAML <Grid x:Name="LayoutRoot"> <StackPanel> <TextBox Text="FirstName" /> <TextBox Text="LastName" /> <Button Content="Add Record" Command="{Binding AddTestUserRecord}" /> </StackPanel> </Grid> I want to add records into TestTable (Database Table). How do I insert record? In XAML two text box and a button control is present. Thanking you. DG

    Read the article

  • customizing into a reusable component in flex

    - by Fresher4Flex
    need to make a reusable custom component from the existing code here. So that I can use this code to make this effect(view stack) to work in any direction. In the code it has user specified height and works from downside. I need to make this component customizable, something like user is able do it in any direction.I need it urgently. I appreciate your help. 1)main Application: <?xml version="1.0" encoding="utf-8"?> <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute" xmlns:sh="windowShade.*"> <sh:Shade id="i1" height="15" headerHeight="14" thisHeight="215" alwaysOnTop="false" y="{this.height - 14}"/> </mx:WindowedApplication> 2)Custom Comp: Shade.mxml <?xml version="1.0" encoding="utf-8"?> <mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%" height="300" creationComplete="init()" verticalScrollPolicy="off" verticalGap="0" > <mx:Script> <![CDATA[ import mx.core.Container; import mx.core.Application; import mx.controls.Alert; import mx.effects.easing.*; import mx.binding.utils.BindingUtils; /** * Need host to adjust this object to Top */ public var alwaysOnTop:Boolean = false; /** * User can custom the height of this component */ public var thisHeight:int = 0; /** * User can custom the header height of this component */ [Bindable] public var headerHeight:int = 14; /** * The bindable value of this height */ [Bindable] public var tHeight:int = 0; /** * The bindable value of parent height */ [Bindable] public var pHeight:int = 0; /** * Initialize method */ private function init():void { if (this.thisHeight > 0 ) this.height = this.thisHeight; BindingUtils.bindProperty(this, "tHeight",this,"height" ); BindingUtils.bindProperty(this, "pHeight",this.parent,"height" ); } /** * Toggle button */ private function toggleBtn(e:MouseEvent):void { if (this.alwaysOnTop) { var container:Container = Application.application as Container; container.setChildIndex(this.parent, container.numChildren - 1 ); } if ( vs.selectedIndex == 0 ) panelOut.play(); else panelIn.play(); } ]]> </mx:Script> <mx:Move id="panelOut" target="{this}" yTo="{ pHeight - this.tHeight }" effectEnd="vs.selectedIndex = 1" duration="600" easingFunction="Back.easeOut"/> <mx:Move id="panelIn" target="{this}" yTo="{ this.pHeight - headerHeight }" effectEnd="vs.selectedIndex = 0" duration="600" easingFunction="Back.easeIn"/> <mx:VBox horizontalAlign="center" width="100%"> <mx:ViewStack id="vs" width="100%"> <mx:VBox horizontalAlign="center" > <mx:Label text="VBox 1"/> <mx:Image source="@Embed('/windowShade/add.png')" click="toggleBtn(event)"/> </mx:VBox> <mx:VBox horizontalAlign="center"> <mx:Label text="2nd VBox"/> <mx:Image source="@Embed('/windowShade/back.png')" click="toggleBtn(event)"/> </mx:VBox> </mx:ViewStack> </mx:VBox> <mx:VBox id="drawer" height="100%" width="100%" backgroundColor="#000000"> </mx:VBox> </mx:VBox>

    Read the article

  • How can I keep my MVC Views, models, and model binders as clean as possible?

    - by MBonig
    I'm rather new to MVC and as I'm getting into the whole framework more and more I'm finding the modelbinders are becoming tough to maintain. Let me explain... I am writing a basic CRUD-over-database app. My domain models are going to be very rich. In an attempt to keep my controllers as thin as possible I've set it up so that on Create/Edit commands the parameter for the action is a richly populated instance of my domain model. To do this I've implemented a custom model binder. As a result, though, this custom model binder is very specific to the view and the model. I've decided to just override the DefaultModelBinder that ships with MVC 2. In the case where the field being bound to my model is just a textbox (or something as simple), I just delegate to the base method. However, when I'm working with a dropdown or something more complex (the UI dictates that date and time are separate data entry fields but for the model it is one Property), I have to perform some checks and some manual data munging. The end result of this is that I have some pretty tight ties between the View and Binder. I'm architecturally fine with this but from a code maintenance standpoint, it's a nightmare. For example, my model I'm binding here is of type Log (this is the object I will get as a parameter on my Action). The "ServiceStateTime" is a property on Log. The form values of "log.ServiceStartDate" and "log.ServiceStartTime" are totally arbitrary and come from two textboxes on the form (Html.TextBox("log.ServiceStartTime",...)) protected override object GetPropertyValue(ControllerContext controllerContext, ModelBindingContext bindingContext, PropertyDescriptor propertyDescriptor, IModelBinder propertyBinder) { if (propertyDescriptor.Name == "ServiceStartTime") { string date = bindingContext.ValueProvider.GetValue("log.ServiceStartDate").ConvertTo(typeof (string)) as string; string time = bindingContext.ValueProvider.GetValue("log.ServiceStartTime").ConvertTo(typeof (string)) as string; DateTime dateTime = DateTime.Parse(date + " " + time); return dateTime; } if (propertyDescriptor.Name == "ServiceEndTime") { string date = bindingContext.ValueProvider.GetValue("log.ServiceEndDate").ConvertTo(typeof(string)) as string; string time = bindingContext.ValueProvider.GetValue("log.ServiceEndTime").ConvertTo(typeof(string)) as string; DateTime dateTime = DateTime.Parse(date + " " + time); return dateTime; } The Log.ServiceEndTime is a similar field. This doesn't feel very DRY to me. First, if I refactor the ServiceStartTime or ServiceEndTime into different field names, the text strings may get missed (although my refactoring tool of choice, R#, is pretty good at this sort of thing, it wouldn't cause a build-time failure and would only get caught by manual testing). Second, if I decided to arbitrarily change the descriptors "log.ServiceStartDate" and "log.ServiceStartTime", I would run into the same problem. To me, runtime silent errors are the worst kind of error out there. So, I see a couple of options to help here and would love to get some input from people who have come across some of these issues: Refactor any text strings in common between the view and model binders out into const strings attached to the ViewModel object I pass from controller to the aspx/ascx view. This pollutes the ViewModel object, though. Provide unit tests around all of the interactions. I'm a big proponent of unit tests and haven't started fleshing this option out but I've got a gut feeling that it won't save me from foot-shootings. If it matters, the Log and other entities in the system are persisted to the database using Fluent NHibernate. I really want to keep my controllers as thin as possible. So, any suggestions here are greatly welcomed! Thanks

    Read the article

  • Create Views for object properties in model in MVC 3 application?

    - by Anders Svensson
    I have an Asp.Net MVC 3 application with a database "Consultants", accessed by EF. Now, the Consultant table in the db has a one-to-many relationship to several other tables for CV type information (work experience, etc). So a user should be able to fill in their name etc once, but should be able to add a number of "work experiences", and so on. But these foreign key tables are complex objects in the model, and when creating the Create View I only get the simple properties as editor fields. How do I go about designing the View or Views so that the complex objects can be filled in as well? I picture a View in my mind where the simple properties are simple fields, and then some sort of control where you can click "add work experience", and as many as needed would be added. But how would I do that and still utilize the model binding? In fact, I don't know how to go about it at all. (BTW, Program and Language stand for things like software experience in general, and natural language competence, not programming languages, in case you're wondering about the relationships there). Any ideas greatly appreciated! Here's the Create View created by the add View command by default: @{ ViewBag.Title = "Create"; } <h2>Create</h2> <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script> @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>Consultant</legend> <div class="editor-label"> @Html.LabelFor(model => model.FirstName) </div> <div class="editor-field"> @Html.EditorFor(model => model.FirstName) @Html.ValidationMessageFor(model => model.FirstName) </div> <div class="editor-label"> @Html.LabelFor(model => model.LastName) </div> <div class="editor-field"> @Html.EditorFor(model => model.LastName) @Html.ValidationMessageFor(model => model.LastName) </div> <div class="editor-label"> @Html.LabelFor(model => model.UserName) </div> <div class="editor-field"> @Html.EditorFor(model => model.UserName) @Html.ValidationMessageFor(model => model.UserName) </div> <div class="editor-label"> @Html.LabelFor(model => model.Description) </div> <div class="editor-field"> @Html.EditorFor(model => model.Description) @Html.ValidationMessageFor(model => model.Description) </div> <p> <input type="submit" value="Create" /> </p> </fieldset> } <div> @Html.ActionLink("Back to List", "Index") </div> And here's the EF database diagram:

    Read the article

  • ASP.NET MVC Paging/Sorting/Filtering a list using ModelMetadata

    - by rajbk
    This post looks at how to control paging, sorting and filtering when displaying a list of data by specifying attributes in your Model using the ASP.NET MVC framework and the excellent MVCContrib library. It also shows how to hide/show columns and control the formatting of data using attributes.  This uses the Northwind database. A sample project is attached at the end of this post. Let’s start by looking at a class called ProductViewModel. The properties in the class are decorated with attributes. The OrderBy attribute tells the system that the Model can be sorted using that property. The SearchFilter attribute tells the system that filtering is allowed on that property. Filtering type is set by the  FilterType enum which currently supports Equals and Contains. The ScaffoldColumn property specifies if a column is hidden or not The DisplayFormat specifies how the data is formatted. public class ProductViewModel { [OrderBy(IsDefault = true)] [ScaffoldColumn(false)] public int? ProductID { get; set; }   [SearchFilter(FilterType.Contains)] [OrderBy] [DisplayName("Product Name")] public string ProductName { get; set; }   [OrderBy] [DisplayName("Unit Price")] [DisplayFormat(DataFormatString = "{0:c}")] public System.Nullable<decimal> UnitPrice { get; set; }   [DisplayName("Category Name")] public string CategoryName { get; set; }   [SearchFilter] [ScaffoldColumn(false)] public int? CategoryID { get; set; }   [SearchFilter] [ScaffoldColumn(false)] public int? SupplierID { get; set; }   [OrderBy] public bool Discontinued { get; set; } } Before we explore the code further, lets look at the UI.  The UI has a section for filtering the data. The column headers with links are sortable. Paging is also supported with the help of a pager row. The pager is rendered using the MVCContrib Pager component. The data is displayed using a customized version of the MVCContrib Grid component. The customization was done in order for the Grid to be aware of the attributes mentioned above. Now, let’s look at what happens when we perform actions on this page. The diagram below shows the process: The form on the page has its method set to “GET” therefore we see all the parameters in the query string. The query string is shown in blue above. This query gets routed to an action called Index with parameters of type ProductViewModel and PageSortOptions. The parameters in the query string get mapped to the input parameters using model binding. The ProductView object created has the information needed to filter data while the PageAndSorting object is used for paging and sorting the data. The last block in the figure above shows how the filtered and paged list is created. We receive a product list from our product repository (which is of type IQueryable) and first filter it by calliing the AsFiltered extension method passing in the productFilters object and then call the AsPagination extension method passing in the pageSort object. The AsFiltered extension method looks at the type of the filter instance passed in. It skips properties in the instance that do not have the SearchFilter attribute. For properties that have the SearchFilter attribute, it adds filter expression trees to filter against the IQueryable data. The AsPagination extension method looks at the type of the IQueryable and ensures that the column being sorted on has the OrderBy attribute. If it does not find one, it looks for the default sort field [OrderBy(IsDefault = true)]. It is required that at least one attribute in your model has the [OrderBy(IsDefault = true)]. This because a person could be performing paging without specifying an order by column. As you may recall the LINQ Skip method now requires that you call an OrderBy method before it. Therefore we need a default order by column to perform paging. The extension method adds a order expressoin tree to the IQueryable and calls the MVCContrib AsPagination extension method to page the data. Implementation Notes Auto Postback The search filter region auto performs a get request anytime the dropdown selection is changed. This is implemented using the following jQuery snippet $(document).ready(function () { $("#productSearch").change(function () { this.submit(); }); }); Strongly Typed View The code used in the Action method is shown below: public ActionResult Index(ProductViewModel productFilters, PageSortOptions pageSortOptions) { var productPagedList = productRepository.GetProductsProjected().AsFiltered(productFilters).AsPagination(pageSortOptions);   var productViewFilterContainer = new ProductViewFilterContainer(); productViewFilterContainer.Fill(productFilters.CategoryID, productFilters.SupplierID, productFilters.ProductName);   var gridSortOptions = new GridSortOptions { Column = pageSortOptions.Column, Direction = pageSortOptions.Direction };   var productListContainer = new ProductListContainerModel { ProductPagedList = productPagedList, ProductViewFilterContainer = productViewFilterContainer, GridSortOptions = gridSortOptions };   return View(productListContainer); } As you see above, the object that is returned to the view is of type ProductListContainerModel. This contains all the information need for the view to render the Search filter section (including dropdowns),  the Html.Pager (MVCContrib) and the Html.Grid (from MVCContrib). It also stores the state of the search filters so that they can recreate themselves when the page reloads (Viewstate, I miss you! :0)  The class diagram for the container class is shown below.   Custom MVCContrib Grid The MVCContrib grid default behavior was overridden so that it would auto generate the columns and format the columns based on the metadata and also make it aware of our custom attributes (see MetaDataGridModel in the sample code). The Grid ensures that the ShowForDisplay on the column is set to true This can also be set by the ScaffoldColumn attribute ref: http://bradwilson.typepad.com/blog/2009/10/aspnet-mvc-2-templates-part-2-modelmetadata.html) Column headers are set using the DisplayName attribute Column sorting is set using the OrderBy attribute. The data is formatted using the DisplayFormat attribute. Generic Extension methods for Sorting and Filtering The extension method AsFiltered takes in an IQueryable<T> and uses expression trees to query against the IQueryable data. The query is constructed using the Model metadata and the properties of the T filter (productFilters in our case). Properties in the Model that do not have the SearchFilter attribute are skipped when creating the filter expression tree.  It returns an IQueryable<T>. The extension method AsPagination takes in an IQuerable<T> and first ensures that the column being sorted on has the OrderBy attribute. If not, we look for the default OrderBy column ([OrderBy(IsDefault = true)]). We then build an expression tree to sort on this column. We finally hand off the call to the MVCContrib AsPagination which returns an IPagination<T>. This type as you can see in the class diagram above is passed to the view and used by the MVCContrib Grid and Pager components. Custom Provider To get the system to recognize our custom attributes, we create our MetadataProvider as mentioned in this article (http://bradwilson.typepad.com/blog/2010/01/why-you-dont-need-modelmetadataattributes.html) protected override ModelMetadata CreateMetadata(IEnumerable<Attribute> attributes, Type containerType, Func<object> modelAccessor, Type modelType, string propertyName) { ModelMetadata metadata = base.CreateMetadata(attributes, containerType, modelAccessor, modelType, propertyName);   SearchFilterAttribute searchFilterAttribute = attributes.OfType<SearchFilterAttribute>().FirstOrDefault(); if (searchFilterAttribute != null) { metadata.AdditionalValues.Add(Globals.SearchFilterAttributeKey, searchFilterAttribute); }   OrderByAttribute orderByAttribute = attributes.OfType<OrderByAttribute>().FirstOrDefault(); if (orderByAttribute != null) { metadata.AdditionalValues.Add(Globals.OrderByAttributeKey, orderByAttribute); }   return metadata; } We register our MetadataProvider in Global.asax.cs. protected void Application_Start() { AreaRegistration.RegisterAllAreas();   RegisterRoutes(RouteTable.Routes);   ModelMetadataProviders.Current = new MvcFlan.QueryModelMetaDataProvider(); } Bugs, Comments and Suggestions are welcome! You can download the sample code below. This code is purely experimental. Use at your own risk. Download Sample Code (VS 2010 RTM) MVCNorthwindSales.zip

    Read the article

  • Using LINQ Distinct: With an Example on ASP.NET MVC SelectListItem

    - by Joe Mayo
    One of the things that might be surprising in the LINQ Distinct standard query operator is that it doesn’t automatically work properly on custom classes. There are reasons for this, which I’ll explain shortly. The example I’ll use in this post focuses on pulling a unique list of names to load into a drop-down list. I’ll explain the sample application, show you typical first shot at Distinct, explain why it won’t work as you expect, and then demonstrate a solution to make Distinct work with any custom class. The technologies I’m using are  LINQ to Twitter, LINQ to Objects, Telerik Extensions for ASP.NET MVC, ASP.NET MVC 2, and Visual Studio 2010. The function of the example program is to show a list of people that I follow.  In Twitter API vernacular, these people are called “Friends”; though I’ve never met most of them in real life. This is part of the ubiquitous language of social networking, and Twitter in particular, so you’ll see my objects named accordingly. Where Distinct comes into play is because I want to have a drop-down list with the names of the friends appearing in the list. Some friends are quite verbose, which means I can’t just extract names from each tweet and populate the drop-down; otherwise, I would end up with many duplicate names. Therefore, Distinct is the appropriate operator to eliminate the extra entries from my friends who tend to be enthusiastic tweeters. The sample doesn’t do anything with the drop-down list and I leave that up to imagination for what it’s practical purpose could be; perhaps a filter for the list if I only want to see a certain person’s tweets or maybe a quick list that I plan to combine with a TextBox and Button to reply to a friend. When the program runs, you’ll need to authenticate with Twitter, because I’m using OAuth (DotNetOpenAuth), for authentication, and then you’ll see the drop-down list of names above the grid with the most recent tweets from friends. Here’s what the application looks like when it runs: As you can see, there is a drop-down list above the grid. The drop-down list is where most of the focus of this article will be. There is some description of the code before we talk about the Distinct operator, but we’ll get there soon. This is an ASP.NET MVC2 application, written with VS 2010. Here’s the View that produces this screen: <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<TwitterFriendsViewModel>" %> <%@ Import Namespace="DistinctSelectList.Models" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">     Home Page </asp:Content><asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">     <fieldset>         <legend>Twitter Friends</legend>         <div>             <%= Html.DropDownListFor(                     twendVM => twendVM.FriendNames,                     Model.FriendNames,                     "<All Friends>") %>         </div>         <div>             <% Html.Telerik().Grid<TweetViewModel>(Model.Tweets)                    .Name("TwitterFriendsGrid")                    .Columns(cols =>                     {                         cols.Template(col =>                             { %>                                 <img src="<%= col.ImageUrl %>"                                      alt="<%= col.ScreenName %>" />                         <% });                         cols.Bound(col => col.ScreenName);                         cols.Bound(col => col.Tweet);                     })                    .Render(); %>         </div>     </fieldset> </asp:Content> As shown above, the Grid is from Telerik’s Extensions for ASP.NET MVC. The first column is a template that renders the user’s Avatar from a URL provided by the Twitter query. Both the Grid and DropDownListFor display properties that are collections from a TwitterFriendsViewModel class, shown below: using System.Collections.Generic; using System.Web.Mvc; namespace DistinctSelectList.Models { /// /// For finding friend info on screen /// public class TwitterFriendsViewModel { /// /// Display names of friends in drop-down list /// public List FriendNames { get; set; } /// /// Display tweets in grid /// public List Tweets { get; set; } } } I created the TwitterFreindsViewModel. The two Lists are what the View consumes to populate the DropDownListFor and Grid. Notice that FriendNames is a List of SelectListItem, which is an MVC class. Another custom class I created is the TweetViewModel (the type of the Tweets List), shown below: namespace DistinctSelectList.Models { /// /// Info on friend tweets /// public class TweetViewModel { /// /// User's avatar /// public string ImageUrl { get; set; } /// /// User's Twitter name /// public string ScreenName { get; set; } /// /// Text containing user's tweet /// public string Tweet { get; set; } } } The initial Twitter query returns much more information than we need for our purposes and this a special class for displaying info in the View.  Now you know about the View and how it’s constructed. Let’s look at the controller next. The controller for this demo performs authentication, data retrieval, data manipulation, and view selection. I’ll skip the description of the authentication because it’s a normal part of using OAuth with LINQ to Twitter. Instead, we’ll drill down and focus on the Distinct operator. However, I’ll show you the entire controller, below,  so that you can see how it all fits together: using System.Linq; using System.Web.Mvc; using DistinctSelectList.Models; using LinqToTwitter; namespace DistinctSelectList.Controllers { [HandleError] public class HomeController : Controller { private MvcOAuthAuthorization auth; private TwitterContext twitterCtx; /// /// Display a list of friends current tweets /// /// public ActionResult Index() { auth = new MvcOAuthAuthorization(InMemoryTokenManager.Instance, InMemoryTokenManager.AccessToken); string accessToken = auth.CompleteAuthorize(); if (accessToken != null) { InMemoryTokenManager.AccessToken = accessToken; } if (auth.CachedCredentialsAvailable) { auth.SignOn(); } else { return auth.BeginAuthorize(); } twitterCtx = new TwitterContext(auth); var friendTweets = (from tweet in twitterCtx.Status where tweet.Type == StatusType.Friends select new TweetViewModel { ImageUrl = tweet.User.ProfileImageUrl, ScreenName = tweet.User.Identifier.ScreenName, Tweet = tweet.Text }) .ToList(); var friendNames = (from tweet in friendTweets select new SelectListItem { Text = tweet.ScreenName, Value = tweet.ScreenName }) .Distinct() .ToList(); var twendsVM = new TwitterFriendsViewModel { Tweets = friendTweets, FriendNames = friendNames }; return View(twendsVM); } public ActionResult About() { return View(); } } } The important part of the listing above are the LINQ to Twitter queries for friendTweets and friendNames. Both of these results are used in the subsequent population of the twendsVM instance that is passed to the view. Let’s dissect these two statements for clarification and focus on what is happening with Distinct. The query for friendTweets gets a list of the 20 most recent tweets (as specified by the Twitter API for friend queries) and performs a projection into the custom TweetViewModel class, repeated below for your convenience: var friendTweets = (from tweet in twitterCtx.Status where tweet.Type == StatusType.Friends select new TweetViewModel { ImageUrl = tweet.User.ProfileImageUrl, ScreenName = tweet.User.Identifier.ScreenName, Tweet = tweet.Text }) .ToList(); The LINQ to Twitter query above simplifies what we need to work with in the View and the reduces the amount of information we have to look at in subsequent queries. Given the friendTweets above, the next query performs another projection into an MVC SelectListItem, which is required for binding to the DropDownList.  This brings us to the focus of this blog post, writing a correct query that uses the Distinct operator. The query below uses LINQ to Objects, querying the friendTweets collection to get friendNames: var friendNames = (from tweet in friendTweets select new SelectListItem { Text = tweet.ScreenName, Value = tweet.ScreenName }) .Distinct() .ToList(); The above implementation of Distinct seems normal, but it is deceptively incorrect. After running the query above, by executing the application, you’ll notice that the drop-down list contains many duplicates.  This will send you back to the code scratching your head, but there’s a reason why this happens. To understand the problem, we must examine how Distinct works in LINQ to Objects. Distinct has two overloads: one without parameters, as shown above, and another that takes a parameter of type IEqualityComparer<T>.  In the case above, no parameters, Distinct will call EqualityComparer<T>.Default behind the scenes to make comparisons as it iterates through the list. You don’t have problems with the built-in types, such as string, int, DateTime, etc, because they all implement IEquatable<T>. However, many .NET Framework classes, such as SelectListItem, don’t implement IEquatable<T>. So, what happens is that EqualityComparer<T>.Default results in a call to Object.Equals, which performs reference equality on reference type objects.  You don’t have this problem with value types because the default implementation of Object.Equals is bitwise equality. However, most of your projections that use Distinct are on classes, just like the SelectListItem used in this demo application. So, the reason why Distinct didn’t produce the results we wanted was because we used a type that doesn’t define its own equality and Distinct used the default reference equality. This resulted in all objects being included in the results because they are all separate instances in memory with unique references. As you might have guessed, the solution to the problem is to use the second overload of Distinct that accepts an IEqualityComparer<T> instance. If you were projecting into your own custom type, you could make that type implement IEqualityComparer<T>, but SelectListItem belongs to the .NET Framework Class Library.  Therefore, the solution is to create a custom type to implement IEqualityComparer<T>, as in the SelectListItemComparer class, shown below: using System.Collections.Generic; using System.Web.Mvc; namespace DistinctSelectList.Models { public class SelectListItemComparer : EqualityComparer { public override bool Equals(SelectListItem x, SelectListItem y) { return x.Value.Equals(y.Value); } public override int GetHashCode(SelectListItem obj) { return obj.Value.GetHashCode(); } } } The SelectListItemComparer class above doesn’t implement IEqualityComparer<SelectListItem>, but rather derives from EqualityComparer<SelectListItem>. Microsoft recommends this approach for consistency with the behavior of generic collection classes. However, if your custom type already derives from a base class, go ahead and implement IEqualityComparer<T>, which will still work. EqualityComparer is an abstract class, that implements IEqualityComparer<T> with Equals and GetHashCode abstract methods. For the purposes of this application, the SelectListItem.Value property is sufficient to determine if two items are equal.   Since SelectListItem.Value is type string, the code delegates equality to the string class. The code also delegates the GetHashCode operation to the string class.You might have other criteria in your own object and would need to define what it means for your object to be equal. Now that we have an IEqualityComparer<SelectListItem>, let’s fix the problem. The code below modifies the query where we want distinct values: var friendNames = (from tweet in friendTweets select new SelectListItem { Text = tweet.ScreenName, Value = tweet.ScreenName }) .Distinct(new SelectListItemComparer()) .ToList(); Notice how the code above passes a new instance of SelectListItemComparer as the parameter to the Distinct operator. Now, when you run the application, the drop-down list will behave as you expect, showing only a unique set of names. In addition to Distinct, other LINQ Standard Query Operators have overloads that accept IEqualityComparer<T>’s, You can use the same techniques as shown here, with SelectListItemComparer, with those other operators as well. Now you know how to resolve problems with getting Distinct to work properly and also have a way to fix problems with other operators that require equality comparisons. @JoeMayo

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • CodePlex Daily Summary for Sunday, February 28, 2010

    CodePlex Daily Summary for Sunday, February 28, 2010New ProjectsESB Toolkit Extensions: ESB Extensions is a solution containing multiple .Net Projects and artifacts: Unit Tests, Itineraries, Business Rules, Binding Files, and C# Class ...Event-Based Components Binder: The Binder automatically connects output-pins to input-pins of Event-Based Components based on message type information and naming conventions. ...Haze Anti-Virus: Haze Anti-Virus is a anti virus written in C# and has features such a realtime process watching and a Process Blacklist, and is able to download Da...latex2mathml: A .NET 2.0 library written in C# which allows the conversion of LaTeX documents to XHTML+MathML format. A stand-alone converter is included. The li...Project Lyrebird: Project lyrebird is a attempt to create a all-purpose media player. It is designed to be simple, yet powerful. Its written in C#QueryToGrid Module for DotNetNuke®: This is a module that allows you to execute and display the results of T-SQL queries in DotNetNuke using your choice of AJAX grids.Reusable Library Demo: A demonstration of reusable abstractions for enterprise application developerSharePoint 2010 Conference Samples: This project contains source code from various SharePoint 2010 conferences where Scot Hillier presented.Silverlight Photo Blogger: Silverlight Photo Blogger gives you the tools you need to capture and blog about your travels in a rich and interactive web experience. Enjoy som...SMTP Test: Several times we are faced with applications that send email, the SMTP Tester principle objective is to test various possibilities of sendingSolution Tools - tools for Visual Studio solutions and projects: Solution Tools are a collection of tools that you can use with your Visual Studio Solutions and projects.New ReleasesAgile Poker Cards for Windows Mobile: Agile Poker Cards v1.1.0.0: Agile Poker Cards v1.1.0.0 Use this application to display poker cards in a planning session on a Windows Mobile device. Release notes Added new ...BuildTools - Toolset for automated builds: BuildTools 2.0 Feb 2010 Milestone: The Feb 2010 Milestone release is a complete rewrite of the old codebase in Visual Studio 2010 RC. It features MSBuild tasks for generating build v...Composure: NHibernate-Trunk-2010-02-25-VS2010.NET4 Alpha1: Recent NHibernate-Trunk conversion for Visual Studio 2010 Beta2 against .NET 4.0. Although all of the tests pass (other than the "Ignored"), this ...Employee Scheduler: Employee Scheduler 2.4: Extract the files to a directory and run Lab Hours.exe. Add an employee. Double click an employee to modify their times. Please contact me through ...ESB Toolkit Extensions: Tellago BizTalk ESB 2.0 Toolkit Extensions: Windows Installer file that installs Library on a BizTalk ESB 2.0 system. This Install automatically configures the esb.config to use the new compo...Haze Anti-Virus: Haze Anti-Virus Binary v1.0.3: This is the Compiled version of Haze Anti-Virus, please let me know about any bugs, thanks Please Note that Database updating is currently not avai...Haze Anti-Virus: Haze Anti-Virus Source v1.0.3: This is the source for Haze Anti-VirusHOG Project: HOG Visual Studio Template: This is Visual Studio HOG Template. Created by the great tool: Solution FactoryHOG Project: Template user guide: HOW TOiTuner - The iTunes Companion: iTuner 1.1.3711: Two new features are available: the Automated Librarian and Playlist Exporter. The iTuner Automated Librarian automatically cleans the iTunes libr...johanleino.codeplex.com: SilverlightMultiLevelNavigationExample: The source code for SilverlightMultiLevelNavigationExample (VS 2010)MDownloader: MDownloader-0.15.3.56128: Fixed filefactory provider implementation after site changes.MiniTwitter: 1.09: MiniTwitter 1.09 更新内容 変更 スクロール位置がトップ以外の時は自動更新や発言時に位置を保持するように変更 タブ毎にスクロール位置が変わらないように変更 URL に ? や ! が含まれている時は短縮 URL に変換するように変更NMock3: NMock3 - Beta 4, .NET 3.5: This release includes the most current version of the NMock2 project code from Source Forge. Please start providing feedback on the tutorials. The...QueryUnit: QueryUnitPOC v. 0.0.0.7: - This version fixes problems related to the fact that in previous releases you had to specify expected values using locale-specific formats. Now e...RapidWebDev - .NET Enterprise Software Development Infrastructure: RapidWebDev 1.51: This is a hot-fix version for 1.5 which is added a new restful web service for concrete data and fixed some major bugs. The change list is as follo...Rawr: Rawr 2.3.11: - Load from Armory code cleaned up. - Tiny Abomination in a Jar's proc how now been more accurately modeled. - You should now be able to reload...Resharper Settings Manager: RSM v1.2: Changes Added Default Settings File option. The selected settings file will be loaded automatically for solutions with no settings sharing. Added...Reusable Library Demo: Reusable Library Demo v1.0.0: A demonstration of reusable abstractions for enterprise application developerRounded Corners / DIV Container: MJC RoundedDiv 3.2: This is the first public release on Codeplex.com. Versions previous to 3.2 were created before this control was made available on Codeplex.com.SharePoint 2010 Conference Samples: Samples: Download the samples from the conferencesSharePoint Outlook Connector: Version 1.2.2.8: Saving email message as list item and attachments as attachment of the list item functionality has been addedSharePoint URL Ping Tool: Url Ping Tool Solution: A solution that contain one fram fature that will add a link under Site Administration section in the Site Settings page.SMTP Test: Fist SMTP Tester: First ReleaseSolution Tools - tools for Visual Studio solutions and projects: SolutionTools binary: Initial release of the tool. Turns out, this project was just a big waste of effort - use Project Linker instead!Solution Tools - tools for Visual Studio solutions and projects: SolutionTools source - don't use this tool: Initial release of the tool. Turns out, this project was just a big waste of effort - use Project Linker instead! Anyway, here's the source code...Spark View Engine: Spark v1.1 RC1: Overview This build is a preview of v1.1. Among other changes it provides support for ASP.NET MVC 2 RC2. Spark v1.1 release will be created soon ...Sprite Sheet Packer: 2.0 Release: I'm calling this a full new release because I can. Refactored all of the build logic to sspack.exe. This allows you to run this from the command l...SPSF SharePoint Software Factory: SPSF SharePoint Software Factory 2.4.3: New features: WSPBuilder support, Simple Application now with optional multilanguage support, Extending deployment skript for large deployments Fix...TortoiseHg: Beta for TortoiseHg 1.0 (0.9.31201): Beta for TortoiseHg 1.0 (0.9.31201) Please backup your user Mercurial.ini file and then uninstall any 0.9.X release before installing Use the x86...UI Compiler .NET - JavaScript compiler/minifier built on Google Closure Compiler: UI Compiler .NET 1.5 Beta: UI Compiler .NET does not include Java. To be able to run Google Closure Compiler locally you must make sure that Java 6 is installed. If Java 6 (o...VCC: Latest build, v2.1.30227.0: Automatic drop of latest buildVisual Studio DSite: File Encryption and Decryption (Visual Basic 2008): This program will create an encrypted copy of the file specified. Also decrypt the file specified. This program contains the source code but if yo...Visual Studio DSite: Visual C++ 2008 CLR Console Application Random Int: This source code includes an example of generating a random integer between the numbers 1-100.Weather Forecast Control: MJC MyWeather 2.2: This is the first public release on Codeplex.com. Versions previous to 2.2 were created before this control was made available on Codeplex.com.Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)Microsoft SQL Server Community & SamplesASP.NETDotNetNuke® Community EditionBlogEngine.NETMost Active ProjectsDinnerNow.netRawrBlogEngine.NETMapWindow GISSLARToolkit - Silverlight Augmented Reality ToolkitCommon Context Adapterspatterns & practices – Enterprise LibrarySharpMap - Geospatial Application Framework for the CLRNB_Store - Free DotNetNuke Ecommerce Catalog ModuleRapid Entity Framework. (ORM). CTP 2

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

< Previous Page | 210 211 212 213 214 215 216 217 218 219 220 221  | Next Page >