Search Results

Search found 16367 results on 655 pages for 'msdn library'.

Page 217/655 | < Previous Page | 213 214 215 216 217 218 219 220 221 222 223 224  | Next Page >

  • GetLongPathName Undeclared

    - by iwizardpro
    When I try to compile my code with the function GetLongPathName(), the compiler tells me that the function is undeclared. I have already read the MSDN documentation located @ http://msdn.microsoft.com/en-us/library/aa364980%28VS.85%29.aspx. But, even though I included those header files, I am still getting the undeclared function error. Which header file(s) am I supposed to include when using the function? #include <Windows.h> #include <WinBase.h> #define DLLEXPORT extern "C" __declspec(dllexport) DLLEXPORT char* file_get_long(char* path_original) { long length = 0; TCHAR* buffer = NULL; if(!path_original) { return "-10"; } length = GetLongPathName(path_original, NULL, 0); if(length == 0) { return "-10"; } buffer = new TCHAR[length]; length = GetLongPathName(path_original, buffer, length); if(length == 0) { return "-10"; } return buffer; } And, if it makes a difference, I am currently compiling using Dev-C++ on a Windows Vista 64-bit.

    Read the article

  • Serializing a class containing a custom class

    - by Netfangled
    I want to serialize an object as xml that contains other custom classes. From what I understand (I've been reading MSDN and SO mostly), the XmlSerializer doesn't take this into account. This is the line that's confusing me: XML serialization serializes only the public fields and property values of an object into an XML stream. XML serialization does not include type information. For example, if you have a Book object that exists in the Library namespace, there is no guarantee that it will be deserialized into an object of the same type. Taken from MSDN, here For example, I want to serialize an object of type Order, but it contains a list of Products, and each one contains an object of type Category: class Order { List<Product> products; } class Product { Category type; } class Category { string name; string description; } And I want my Order object to be serialized like so: <Order> <Product> <Category Name=""> <Description></Description> </Category> </Product> <Product> <Category Name=""> <Description></Description> </Category> </Product> <Order> Does the XmlSerializer already do this? If not, is there another class that does or do I have to define the serialization process myself?

    Read the article

  • Semaphore - What is the use of initial count?

    - by Sandbox
    http://msdn.microsoft.com/en-us/library/system.threading.semaphoreslim.aspx To create a semaphore, I need to provide an initial count and maximum count. MSDN states that an initial count is - The initial number of requests for the semaphore that can be granted concurrently. While it states that maximum count is The maximum number of requests for the semaphore that can be granted concurrently. I can understand that the maximum count is the maximum number of threads that can access a resource concurrently. But, what is the use of initial count? If I create a semaphore with an initial count of 0 and a maximum count of 2, none of my threadpool threads are able to access the resource. If I set the initial count as 1 and maximum count as 2 then only thread pool thread can access the resource. It is only when I set both initial count and maximum count as 2, 2 threads are able to access the resource concurrently. So, I am really confused about the significance of initial count? SemaphoreSlim semaphoreSlim = new SemaphoreSlim(0, 2); //all threadpool threads wait SemaphoreSlim semaphoreSlim = new SemaphoreSlim(1, 2);//only one thread has access to the resource at a time SemaphoreSlim semaphoreSlim = new SemaphoreSlim(2, 2);//two threadpool threads can access the resource concurrently

    Read the article

  • FreeText COUNT query on multiple tables is super slow

    - by Eric P
    I have two tables: **Product** ID Name SKU **Brand** ID Name Product table has about 120K records Brand table has 30K records I need to find count of all the products with name and brand matching a specific keyword. I use freetext 'contains' like this: SELECT count(*) FROM Product inner join Brand on Product.BrandID = Brand.ID WHERE (contains(Product.Name, 'pants') or contains(Brand.Name, 'pants')) This query takes about 17 secs. I rebuilt the FreeText index before running this query. If I only check for Product.Name. They query is less then 1 sec. Same, if I only check the Brand.Name. The issue occurs if I use OR condition. If I switch query to use LIKE: SELECT count(*) FROM Product inner join Brand on Product.BrandID = Brand.ID WHERE Product.Name LIKE '%pants%' or Brand.Name LIKE '%pants%' It takes 1 secs. I read on MSDN that: http://msdn.microsoft.com/en-us/library/ms187787.aspx To search on multiple tables, use a joined table in your FROM clause to search on a result set that is the product of two or more tables. So I added an INNER JOINED table to FROM: SELECT count(*) FROM (select Product.Name ProductName, Product.SKU ProductSKU, Brand.Name as BrandName FROM Product inner join Brand on product.BrandID = Brand.ID) as TempTable WHERE contains(TempTable.ProductName, 'pants') or contains(TempTable.BrandName, 'pants') This results in error: Cannot use a CONTAINS or FREETEXT predicate on column 'ProductName' because it is not full-text indexed. So the question is - why OR condition could be causing such as slow query?

    Read the article

  • .NET WebRequest.PreAuthenticate not quite what it sounds like

    - by Rick Strahl
    I’ve run into the  problem a few times now: How to pre-authenticate .NET WebRequest calls doing an HTTP call to the server – essentially send authentication credentials on the very first request instead of waiting for a server challenge first? At first glance this sound like it should be easy: The .NET WebRequest object has a PreAuthenticate property which sounds like it should force authentication credentials to be sent on the first request. Looking at the MSDN example certainly looks like it does: http://msdn.microsoft.com/en-us/library/system.net.webrequest.preauthenticate.aspx Unfortunately the MSDN sample is wrong. As is the text of the Help topic which incorrectly leads you to believe that PreAuthenticate… wait for it - pre-authenticates. But it doesn’t allow you to set credentials that are sent on the first request. What this property actually does is quite different. It doesn’t send credentials on the first request but rather caches the credentials ONCE you have already authenticated once. Http Authentication is based on a challenge response mechanism typically where the client sends a request and the server responds with a 401 header requesting authentication. So the client sends a request like this: GET /wconnect/admin/wc.wc?_maintain~ShowStatus HTTP/1.1 Host: rasnote User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506) Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en,de;q=0.7,en-us;q=0.3 Accept-Encoding: gzip,deflate Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7 Keep-Alive: 300 Connection: keep-alive and the server responds with: HTTP/1.1 401 Unauthorized Cache-Control: private Content-Type: text/html; charset=utf-8 Server: Microsoft-IIS/7.5 WWW-Authenticate: basic realm=rasnote" X-AspNet-Version: 2.0.50727 WWW-Authenticate: Negotiate WWW-Authenticate: NTLM WWW-Authenticate: Basic realm="rasnote" X-Powered-By: ASP.NET Date: Tue, 27 Oct 2009 00:58:20 GMT Content-Length: 5163 plus the actual error message body. The client then is responsible for re-sending the current request with the authentication token information provided (in this case Basic Auth): GET /wconnect/admin/wc.wc?_maintain~ShowStatus HTTP/1.1 Host: rasnote User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506) Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en,de;q=0.7,en-us;q=0.3 Accept-Encoding: gzip,deflate Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7 Keep-Alive: 300 Connection: keep-alive Cookie: TimeTrakker=2HJ1998WH06696; WebLogCommentUser=Rick Strahl|http://www.west-wind.com/|[email protected]; WebStoreUser=b8bd0ed9 Authorization: Basic cgsf12aDpkc2ZhZG1zMA== Once the authorization info is sent the server responds with the actual page result. Now if you use WebRequest (or WebClient) the default behavior is to re-authenticate on every request that requires authorization. This means if you look in  Fiddler or some other HTTP client Proxy that captures requests you’ll see that each request re-authenticates: Here are two requests fired back to back: and you can see the 401 challenge, the 200 response for both requests. If you watch this same conversation between a browser and a server you’ll notice that the first 401 is also there but the subsequent 401 requests are not present. WebRequest.PreAuthenticate And this is precisely what the WebRequest.PreAuthenticate property does: It’s a caching mechanism that caches the connection credentials for a given domain in the active process and resends it on subsequent requests. It does not send credentials on the first request but it will cache credentials on subsequent requests after authentication has succeeded: string url = "http://rasnote/wconnect/admin/wc.wc?_maintain~ShowStatus"; HttpWebRequest req = HttpWebRequest.Create(url) as HttpWebRequest; req.PreAuthenticate = true; req.Credentials = new NetworkCredential("rick", "secret", "rasnote"); req.AuthenticationLevel = System.Net.Security.AuthenticationLevel.MutualAuthRequested; req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; WebResponse resp = req.GetResponse(); resp.Close(); req = HttpWebRequest.Create(url) as HttpWebRequest; req.PreAuthenticate = true; req.Credentials = new NetworkCredential("rstrahl", "secret", "rasnote"); req.AuthenticationLevel = System.Net.Security.AuthenticationLevel.MutualAuthRequested; req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; resp = req.GetResponse(); which results in the desired sequence: where only the first request doesn’t send credentials. This is quite useful as it saves quite a few round trips to the server – bascially it saves one auth request request for every authenticated request you make. In most scenarios I think you’d want to send these credentials this way but one downside to this is that there’s no way to log out the client. Since the client always sends the credentials once authenticated only an explicit operation ON THE SERVER can undo the credentials by forcing another login explicitly (ie. re-challenging with a forced 401 request). Forcing Basic Authentication Credentials on the first Request On a few occasions I’ve needed to send credentials on a first request – mainly to some oddball third party Web Services (why you’d want to use Basic Auth on a Web Service is beyond me – don’t ask but it’s not uncommon in my experience). This is true of certain services that are using Basic Authentication (especially some Apache based Web Services) and REQUIRE that the authentication is sent right from the first request. No challenge first. Ugly but there it is. Now the following works only with Basic Authentication because it’s pretty straight forward to create the Basic Authorization ‘token’ in code since it’s just an unencrypted encoding of the user name and password into base64. As you might guess this is totally unsecure and should only be used when using HTTPS/SSL connections (i’m not in this example so I can capture the Fiddler trace and my local machine doesn’t have a cert installed, but for production apps ALWAYS use SSL with basic auth). The idea is that you simply add the required Authorization header to the request on your own along with the authorization string that encodes the username and password: string url = "http://rasnote/wconnect/admin/wc.wc?_maintain~ShowStatus"; HttpWebRequest req = HttpWebRequest.Create(url) as HttpWebRequest; string user = "rick"; string pwd = "secret"; string domain = "www.west-wind.com"; string auth = "Basic " + Convert.ToBase64String(System.Text.Encoding.Default.GetBytes(user + ":" + pwd)); req.PreAuthenticate = true; req.AuthenticationLevel = System.Net.Security.AuthenticationLevel.MutualAuthRequested;req.Headers.Add("Authorization", auth); req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; WebResponse resp = req.GetResponse(); resp.Close(); This works and causes the request to immediately send auth information to the server. However, this only works with Basic Auth because you can actually create the authentication credentials easily on the client because it’s essentially clear text. The same doesn’t work for Windows or Digest authentication since you can’t easily create the authentication token on the client and send it to the server. Another issue with this approach is that PreAuthenticate has no effect when you manually force the authentication. As far as Web Request is concerned it never sent the authentication information so it’s not actually caching the value any longer. If you run 3 requests in a row like this: string url = "http://rasnote/wconnect/admin/wc.wc?_maintain~ShowStatus"; HttpWebRequest req = HttpWebRequest.Create(url) as HttpWebRequest; string user = "ricks"; string pwd = "secret"; string domain = "www.west-wind.com"; string auth = "Basic " + Convert.ToBase64String(System.Text.Encoding.Default.GetBytes(user + ":" + pwd)); req.PreAuthenticate = true; req.Headers.Add("Authorization", auth); req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; WebResponse resp = req.GetResponse(); resp.Close(); req = HttpWebRequest.Create(url) as HttpWebRequest; req.PreAuthenticate = true; req.Credentials = new NetworkCredential(user, pwd, domain); req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; resp = req.GetResponse(); resp.Close(); req = HttpWebRequest.Create(url) as HttpWebRequest; req.PreAuthenticate = true; req.Credentials = new NetworkCredential(user, pwd, domain); req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; resp = req.GetResponse(); you’ll find the trace looking like this: where the first request (the one we explicitly add the header to) authenticates, the second challenges, and any subsequent ones then use the PreAuthenticate credential caching. In effect you’ll end up with one extra 401 request in this scenario, which is still better than 401 challenges on each request. Getting Access to WebRequest in Classic .NET Web Service Clients If you’re running a classic .NET Web Service client (non-WCF) one issue with the above is how do you get access to the WebRequest to actually add the custom headers to do the custom Authentication described above? One easy way is to implement a partial class that allows you add headers with something like this: public partial class TaxService { protected NameValueCollection Headers = new NameValueCollection(); public void AddHttpHeader(string key, string value) { this.Headers.Add(key,value); } public void ClearHttpHeaders() { this.Headers.Clear(); } protected override WebRequest GetWebRequest(Uri uri) { HttpWebRequest request = (HttpWebRequest) base.GetWebRequest(uri); request.Headers.Add(this.Headers); return request; } } where TaxService is the name of the .NET generated proxy class. In code you can then call AddHttpHeader() anywhere to add additional headers which are sent as part of the GetWebRequest override. Nice and simple once you know where to hook it. For WCF there’s a bit more work involved by creating a message extension as described here: http://weblogs.asp.net/avnerk/archive/2006/04/26/Adding-custom-headers-to-every-WCF-call-_2D00_-a-solution.aspx. FWIW, I think that HTTP header manipulation should be readily available on any HTTP based Web Service client DIRECTLY without having to subclass or implement a special interface hook. But alas a little extra work is required in .NET to make this happen Not a Common Problem, but when it happens… This has been one of those issues that is really rare, but it’s bitten me on several occasions when dealing with oddball Web services – a couple of times in my own work interacting with various Web Services and a few times on customer projects that required interaction with credentials-first services. Since the servers determine the protocol, we don’t have a choice but to follow the protocol. Lovely following standards that implementers decide to ignore, isn’t it? :-}© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  Web Services  

    Read the article

  • How to use jQuery Date Range Picker plugin in asp.net

    - by alaa9jo
    I stepped by this page: http://www.filamentgroup.com/lab/date_range_picker_using_jquery_ui_16_and_jquery_ui_css_framework/ and let me tell you,this is one of the best and coolest daterangepicker in the web in my opinion,they did a great job with extending the original jQuery UI DatePicker.Of course I made enhancements to the original plugin (fixed few bugs) and added a new option (Clear) to clear the textbox. In this article I well use that updated plugin and show you how to use it in asp.net..you will definitely like it. So,What do I need? 1- jQuery library : you can use 1.3.2 or 1.4.2 which is the latest version so far,in my article I will use the latest version. 2- jQuery UI library (1.8): As I mentioned earlier,daterangepicker plugin is based on the original jQuery UI DatePicker so that library should be included into your page. 3- jQuery DateRangePicker plugin : you can go to the author page or use the modified one (it's included in the attachment),in this article I will use the modified one. 4- Visual Studio 2005 or later : very funny :D,in my article I will use VS 2008. Note: in the attachment,I included all CSS and JS files so don't worry. How to use it? First thing,you will have to include all of the CSS and JS files into your page like this: <script src="Scripts/jquery-1.4.2.min.js" type="text/javascript"></script> <script src="Scripts/jquery-ui-1.8.custom.min.js" type="text/javascript"></script> <script src="Scripts/daterangepicker.jQuery.js" type="text/javascript"></script> <link href="CSS/redmond/jquery-ui-1.8.custom.css" rel="stylesheet" type="text/css" /> <link href="CSS/ui.daterangepicker.css" rel="stylesheet" type="text/css" /> <style type="text/css"> .ui-daterangepicker { font-size: 10px; } </style> Then add this html: <asp:TextBox ID="TextBox1" runat="server" Font-Size="10px"></asp:TextBox><asp:Button ID="SubmitButton" runat="server" Text="Submit" OnClick="SubmitButton_Click" /> <span>First Date:</span><asp:Label ID="FirstDate" runat="server"></asp:Label> <span>Second Date:</span><asp:Label ID="SecondDate" runat="server"></asp:Label> As you can see,it includes TextBox1 which we are going to attach the daterangepicker to it,2 labels to show you later on by code on how to read the date from the textbox and set it to the labels Now we have to attach the daterangepicker to the textbox by using jQuery (Note:visit the author's website for more info on daterangerpicker's options and how to use them): <script type="text/javascript"> $(function() { $("#<%= TextBox1.ClientID %>").attr("readonly", "readonly"); $("#<%= TextBox1.ClientID %>").attr("unselectable", "on"); $("#<%= TextBox1.ClientID %>").daterangepicker({ presetRanges: [], arrows: true, dateFormat: 'd M, yy', clearValue: '', datepickerOptions: { changeMonth: true, changeYear: true} }); }); </script> Finally,add this C# code: protected void SubmitButton_Click(object sender, EventArgs e) { if (TextBox1.Text.Trim().Length == 0) { return; } string selectedDate = TextBox1.Text; if (selectedDate.Contains("-")) { DateTime startDate; DateTime endDate; string[] splittedDates = selectedDate.Split("-".ToCharArray(), StringSplitOptions.RemoveEmptyEntries); if (splittedDates.Count() == 2 && DateTime.TryParse(splittedDates[0], out startDate) && DateTime.TryParse(splittedDates[1], out endDate)) { FirstDate.Text = startDate.ToShortDateString(); SecondDate.Text = endDate.ToShortDateString(); } else { //maybe the client has modified/altered the input i.e. hacking tools } } else { DateTime selectedDateObj; if (DateTime.TryParse(selectedDate, out selectedDateObj)) { FirstDate.Text = selectedDateObj.ToShortDateString(); SecondDate.Text = string.Empty; } else { //maybe the client has modified/altered the input i.e. hacking tools } } } This is the way on how to read from the textbox,That's it!. FAQ: 1-Why did you add this code?: <style type="text/css"> .ui-daterangepicker { font-size: 10px; } </style> A:For two reasons: 1)To show the Daterangepicker in a smaller size because it's original size is huge 2)To show you how to control the size of it. 2- Can I change the theme? A: yes you can,you will notice that I'm using Redmond theme which you will find it in jQuery UI website,visit their website and download a different theme,you may also have to make modifications to the css of daterangepicker,it's all yours. 3- Why did you add a font size to the textbox? A: To make the design look better,try to remove it and see by your self. 4- Can I register the script at codebehind? A: yes you can 5- I see you have added these two lines,what they do? $("#<%= TextBox1.ClientID %>").attr("readonly", "readonly"); $("#<%= TextBox1.ClientID %>").attr("unselectable", "on"); A:The first line will make the textbox not editable by the user,the second will block the blinking typing cursor from appearing if the user clicked on the textbox,you will notice that both lines are necessary to be used together,you can't just use one of them...for logical reasons of course. Finally,I hope everyone liked the article and as always,your feedbacks are always welcomed and if anyone have any suggestions or made any modifications that might be useful for anyone else then please post it at at the author's website and post a reference to your post here.

    Read the article

  • Install the Ajax Control Toolkit from NuGet

    - by Stephen Walther
    The Ajax Control Toolkit is now available from NuGet. This makes it super easy to add the latest version of the Ajax Control Toolkit to any Web Forms application. If you haven’t used NuGet yet, then you are missing out on a great tool which you can use with Visual Studio to add new features to an application. You can use NuGet with both ASP.NET MVC and ASP.NET Web Forms applications. NuGet is compatible with both Websites and Web Applications and it works with both C# and VB.NET applications. For example, I habitually use NuGet to add the latest version of ELMAH, Entity Framework, jQuery, jQuery UI, and jQuery Templates to applications that I create. To download NuGet, visit the NuGet website at: http://NuGet.org Imagine, for example, that you want to take advantage of the Ajax Control Toolkit RoundedCorners extender to create cross-browser compatible rounded corners in a Web Forms application. Follow these steps. Right click on your project in the Solution Explorer window and select the option Add Library Package Reference. In the Add Library Package Reference dialog, select the Online tab and enter AjaxControlToolkit in the search box: Click the Install button and the latest version of the Ajax Control Toolkit will be installed. Installing the Ajax Control Toolkit makes several modifications to your application. First, a reference to the Ajax Control Toolkit is added to your application. In a Web Application Project, you can see the new reference in the References folder: Installing the Ajax Control Toolkit NuGet package also updates your Web.config file. The tag prefix ajaxToolkit is registered so that you can easily use Ajax Control Toolkit controls within any page without adding a @Register directive to the page. <configuration> <system.web> <compilation debug="true" targetFramework="4.0" /> <pages> <controls> <add tagPrefix="ajaxToolkit" assembly="AjaxControlToolkit" namespace="AjaxControlToolkit" /> </controls> </pages> </system.web> </configuration> You should do a rebuild of your application by selecting the Visual Studio menu option Build, Rebuild Solution so that Visual Studio picks up on the new controls (You won’t get Intellisense for the Ajax Control Toolkit controls until you do a build). After you add the Ajax Control Toolkit to your application, you can start using any of the 40 Ajax Control Toolkit controls in your application (see http://www.asp.net/ajax/ajaxcontroltoolkit/samples/ for a reference for the controls). <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm1.aspx.cs" Inherits="WebApplication1.WebForm1" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title>Rounded Corners</title> <style type="text/css"> #pnl1 { background-color: gray; width: 200px; color:White; font: 14pt Verdana; } #pnl1_contents { padding: 10px; } </style> </head> <body> <form id="form1" runat="server"> <div> <asp:Panel ID="pnl1" runat="server"> <div id="pnl1_contents"> I have rounded corners! </div> </asp:Panel> <ajaxToolkit:ToolkitScriptManager ID="sm1" runat="server" /> <ajaxToolkit:RoundedCornersExtender TargetControlID="pnl1" runat="server" /> </div> </form> </body> </html> The page contains the following three controls: Panel – The Panel control named pnl1 contains the content which appears with rounded corners. ToolkitScriptManager – Every page which uses the Ajax Control Toolkit must contain a single ToolkitScriptManager. The ToolkitScriptManager loads all of the JavaScript files used by the Ajax Control Toolkit. RoundedCornersExtender – This Ajax Control Toolkit extender targets the Panel control. It makes the Panel control appear with rounded corners. You can control the “roundiness” of the corners by modifying the Radius property. Notice that you get Intellisense when typing the Ajax Control Toolkit tags. As soon as you type <ajaxToolkit, all of the available Ajax Control Toolkit controls appear: When you open the page in a browser, then the contents of the Panel appears with rounded corners. The advantage of using the RoundedCorners extender is that it is cross-browser compatible. It works great with Internet Explorer, Opera, Firefox, Chrome, and Safari even though different browsers implement rounded corners in different ways. The RoundedCorners extender even works with an ancient browser such as Internet Explorer 6. Getting the Latest Version of the Ajax Control Toolkit The Ajax Control Toolkit continues to evolve at a rapid pace. We are hard at work at fixing bugs and adding new features to the project. We plan to have a new release of the Ajax Control Toolkit each month. The easiest way to get the latest version of the Ajax Control Toolkit is to use NuGet. You can open the NuGet Add Library Package Reference dialog at any time to update the Ajax Control Toolkit to the latest version.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Setting up and using Bing Translate API Service for Machine Translation

    - by Rick Strahl
    Last week I spent quite a bit of time trying to set up the Bing Translate API service. I can honestly say this was one of the most screwed up developer experiences I've had in a long while - specifically related to the byzantine sign up process that Microsoft has in place. Not only is it nearly impossible to find decent documentation on the required signup process, some of the links in the docs are just plain wrong, and some of the account pages you need to access the actual account information once signed up are not linked anywhere from the administration UI. To make things even harder is the fact that the APIs changed a while back, with a completely new authentication scheme that's described and not directly linked documentation topic also made for a very frustrating search experience. It's a bummer that this is the case too, because the actual API itself is easy to use and works very well - fast and reasonably accurate (as accurate as you can expect machine translation to be). But the sign up process is a pain in the ass doubtlessly leaving many people giving up in frustration. In this post I'll try to hit all the points needed to set up to use the Bing Translate API in one place since such a document seems to be missing from Microsoft. Hopefully the API folks at Microsoft will get their shit together and actually provide this sort of info on their site… Signing Up The first step required is to create a Windows Azure MarketPlace account. Go to: https://datamarket.azure.com/ Sign in with your Windows Live Id If you don't have an account you will be taken to a registration page which you have to fill out. Follow the links and complete the registration. Once you're signed in you can start adding services. Click on the Data Link on the main page Select Microsoft Translator from the list This adds the Microsoft Bing Translator to your services. Pricing The page shows the pricing matrix and the free service which provides 2 megabytes for translations a month for free. Prices go up steeply from there. Pricing is determined by actual bytes of the result translations used. Max translations are 1000 characters so at minimum this means you get around 2000 translations a month for free. However most translations are probable much less so you can expect larger number of translations to go through. For testing or low volume translations this should be just fine. Once signed up there are no further instructions and you're left in limbo on the MS site. Register your Application Once you've created the Data association with Translator the next step is registering your application. To do this you need to access your developer account. Go to https://datamarket.azure.com/developer/applications/register Provide a ClientId, which is effectively the unique string identifier for your application (not your customer id!) Provide your name The client secret was auto-created and this becomes your 'password' For the redirect url provide any https url: https://microsoft.com works Give this application a description of your choice so you can identify it in the list of apps Now, once you've registered your application, keep track of the ClientId and ClientSecret - those are the two keys you need to authenticate before you can call the Translate API. Oddly the applications page is hidden from the Azure Portal UI. I couldn't find a direct link from anywhere on the site back to this page where I can examine my developer application keys. To find them you can go to: https://datamarket.azure.com/developer/applications You can come back here to look at your registered applications and pick up the ClientID and ClientSecret. Fun eh? But we're now ready to actually call the API and do some translating. Using the Bing Translate API The good news is that after this signup hell, using the API is pretty straightforward. To use the translation API you'll need to actually use two services: You need to call an authentication API service first, before you can call the actual translator API. These two APIs live on different domains, and the authentication API returns JSON data while the translator service returns XML. So much for consistency. Authentication The first step is authentication. The service uses oAuth authentication with a  bearer token that has to be passed to the translator API. The authentication call retrieves the oAuth token that you can then use with the translate API call. The bearer token has a short 10 minute life time, so while you can cache it for successive calls, the token can't be cached for long periods. This means for Web backend requests you typically will have to authenticate each time unless you build a more elaborate caching scheme that takes the timeout into account (perhaps using the ASP.NET Cache object). For low volume operations you can probably get away with simply calling the auth API for every translation you do. To call the Authentication API use code like this:/// /// Retrieves an oAuth authentication token to be used on the translate /// API request. The result string needs to be passed as a bearer token /// to the translate API. /// /// You can find client ID and Secret (or register a new one) at: /// https://datamarket.azure.com/developer/applications/ /// /// The client ID of your application /// The client secret or password /// public string GetBingAuthToken(string clientId = null, string clientSecret = null) { string authBaseUrl = https://datamarket.accesscontrol.windows.net/v2/OAuth2-13; if (string.IsNullOrEmpty(clientId) || string.IsNullOrEmpty(clientSecret)) { ErrorMessage = Resources.Resources.Client_Id_and_Client_Secret_must_be_provided; return null; } var postData = string.Format("grant_type=client_credentials&client_id={0}" + "&client_secret={1}" + "&scope=http://api.microsofttranslator.com", HttpUtility.UrlEncode(clientId), HttpUtility.UrlEncode(clientSecret)); // POST Auth data to the oauth API string res, token; try { var web = new WebClient(); web.Encoding = Encoding.UTF8; res = web.UploadString(authBaseUrl, postData); } catch (Exception ex) { ErrorMessage = ex.GetBaseException().Message; return null; } var ser = new JavaScriptSerializer(); var auth = ser.Deserialize<BingAuth>(res); if (auth == null) return null; token = auth.access_token; return token; } private class BingAuth { public string token_type { get; set; } public string access_token { get; set; } } This code basically takes the client id and secret and posts it at the oAuth endpoint which returns a JSON string. Here I use the JavaScript serializer to deserialize the JSON into a custom object I created just for deserialization. You can also use JSON.NET and dynamic deserialization if you are already using JSON.NET in your app in which case you don't need the extra type. In my library that houses this component I don't, so I just rely on the built in serializer. The auth method returns a long base64 encoded string which can be used as a bearer token in the translate API call. Translation Once you have the authentication token you can use it to pass to the translate API. The auth token is passed as an Authorization header and the value is prefixed with a 'Bearer ' prefix for the string. Here's what the simple Translate API call looks like:/// /// Uses the Bing API service to perform translation /// Bing can translate up to 1000 characters. /// /// Requires that you provide a CLientId and ClientSecret /// or set the configuration values for these two. /// /// More info on setup: /// http://www.west-wind.com/weblog/ /// /// Text to translate /// Two letter culture name /// Two letter culture name /// Pass an access token retrieved with GetBingAuthToken. /// If not passed the default keys from .config file are used if any /// public string TranslateBing(string text, string fromCulture, string toCulture, string accessToken = null) { string serviceUrl = "http://api.microsofttranslator.com/V2/Http.svc/Translate"; if (accessToken == null) { accessToken = GetBingAuthToken(); if (accessToken == null) return null; } string res; try { var web = new WebClient(); web.Headers.Add("Authorization", "Bearer " + accessToken); string ct = "text/plain"; string postData = string.Format("?text={0}&from={1}&to={2}&contentType={3}", HttpUtility.UrlEncode(text), fromCulture, toCulture, HttpUtility.UrlEncode(ct)); web.Encoding = Encoding.UTF8; res = web.DownloadString(serviceUrl + postData); } catch (Exception e) { ErrorMessage = e.GetBaseException().Message; return null; } // result is a single XML Element fragment var doc = new XmlDocument(); doc.LoadXml(res); return doc.DocumentElement.InnerText; } The first of this code deals with ensuring the auth token exists. You can either pass the token into the method manually or let the method automatically retrieve the auth code on its own. In my case I'm using this inside of a Web application and in that situation I simply need to re-authenticate every time as there's no convenient way to manage the lifetime of the auth cookie. The auth token is added as an Authorization HTTP header prefixed with 'Bearer ' and attached to the request. The text to translate, the from and to language codes and a result format are passed on the query string of this HTTP GET request against the Translate API. The translate API returns an XML string which contains a single element with the translated string. Using the Wrapper Methods It should be pretty obvious how to use these two methods but here are a couple of test methods that demonstrate the two usage scenarios:[TestMethod] public void TranslateBingWithAuthTest() { var translate = new TranslationServices(); string clientId = DbResourceConfiguration.Current.BingClientId; string clientSecret = DbResourceConfiguration.Current.BingClientSecret; string auth = translate.GetBingAuthToken(clientId, clientSecret); Assert.IsNotNull(auth); string text = translate.TranslateBing("Hello World we're back home!", "en", "de",auth); Assert.IsNotNull(text, translate.ErrorMessage); Console.WriteLine(text); } [TestMethod] public void TranslateBingIntegratedTest() { var translate = new TranslationServices(); string text = translate.TranslateBing("Hello World we're back home!","en","de"); Assert.IsNotNull(text, translate.ErrorMessage); Console.WriteLine(text); } Other API Methods The Translate API has a number of methods available and this one is the simplest one but probably also the most common one that translates a single string. You can find additional methods for this API here: http://msdn.microsoft.com/en-us/library/ff512419.aspx Soap and AJAX APIs are also available and documented on MSDN: http://msdn.microsoft.com/en-us/library/dd576287.aspx These links will be your starting points for calling other methods in this API. Dual Interface I've talked about my database driven localization provider here in the past, and it's for this tool that I added the Bing localization support. Basically I have a localization administration form that allows me to translate individual strings right out of the UI, using both Google and Bing APIs: As you can see in this example, the results from Google and Bing can vary quite a bit - in this case Google is stumped while Bing actually generated a valid translation. At other times it's the other way around - it's pretty useful to see multiple translations at the same time. Here I can choose from one of the values and driectly embed them into the translated text field. Lost in Translation There you have it. As I mentioned using the API once you have all the bureaucratic crap out of the way calling the APIs is fairly straight forward and reasonably fast, even if you have to call the Auth API for every call. Hopefully this post will help out a few of you trying to navigate the Microsoft bureaucracy, at least until next time Microsoft upends everything and introduces new ways to sign up again. Until then - happy translating… Related Posts Translation method Source on Github Translating with Google Translate without Google API Keys Creating a data-driven ASP.NET Resource Provider© Rick Strahl, West Wind Technologies, 2005-2013Posted in Localization  ASP.NET  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Convert Video and Remove Commercials in Windows 7 Media Center with MCEBuddy 1.1

    - by DigitalGeekery
    Today look at MCEBuddy for Windows 7 Media Center. This handy app automatically takes your recorded TV files and converts them to MP4, AVI, WMV, or MPEG format. It even has the option to cut out those annoying commercials during the conversion process. Installation and Configuration Download and extract MCE Buddy. (Download link below) Run the setup.exe file and take all the default settings.   Open MCEBuddy Configuration by going to Start > All Programs > MCEBuddy > MCEBuddy Configuration.   Video Paths The MCEBuddy application is comprised of a single window. The first step you’ll want to take is to define your Source and Destination paths. The “Source” will most likely be your Recorded TV directory. The Destination should NOT be the same as the Source folder. Note: The Recorded TV directory in Windows 7 Media Center will only display and play WTV & DVR-MS files. To watch the converted MP4, AVI, WMV, or MPEG files in Windows Media Center you’ll need to add them to your Video Library or Movie Library. Video Conversion Next, choose your preferred format for conversion from the “Convert to” drop down list. The default is MP4 with the H.264 codec. You’ll find a wide variety of formats. The first set of conversion options in the drop down list will resize the video to 720 pixels wide. The next two sections maintain the original size, and the final section is for a variety of portable devices.   Next, you’ll see a group of check boxes below the “Convert to” drop down list. The Commercial Skipping option will cut the commercials while converting the file. Sort By Series will create a sub-folder in your Destination folder for each TV show. Delete Original will delete the WTV file after conversion is complete. (This option is not recommended unless you are sure your files are converting properly and you no longer need the WTV file.) Start Minimized is ideal if you want to run MCEBuddy on Windows startup. Note: MCEBuddy installs and uses Comskip for commercial cutting by default. However, if you have ShowAnalyzer installed, it will use that application instead. Advanced Options To choose a specific time of day to perform the conversions, click the checkbox under the “Advanced Options,” and select the starting and ending times for conversion. For example, convert between 2 hours and 5 hours would be between 2 am and 5am. If you want MCEBuddy to constantly look for and immediately convert new recordings, leave the box unchecked.   The “Video age” option lets you choose a specific number of days to wait before performing the conversion. This can be useful if you want to watch the recordings first and delete those you don’t wish to convert. You can also choose the “Sub Directories” if you’d like MCEBuddy to convert files that are in a sub-folder in your “Source” directory. Second Conversion As you might expect, this option allows MCEBuddy to perform a second conversion of your file. This can be useful if you want to use your first conversion to create a higher quality MP4 or AVI file for playback on a larger screen, and a second one for a portable device such as Zune or iPhone. The same options from the first conversion are also available for the second. You’ll want to choose a separate Destination folder for the second conversion.   Start and Monitor Progress To start converting your video files, simply press the “Start” button at the bottom. You’ll be able to follow the progress in the “Current Activity” section. When all the video files have finished converting, or there are no current files to convert, MCEBuddy will display a “Started – Idle” status. Click “Stop” if you don’t want MCEBuddy to continue scanning for new files.   Conclusion MCEBuddy 1.1 will convert all WTV files in it’s source folder. If you want to pick and choose which recordings to convert, you may want to define a source folder different than the Recorded TV folder and then just copy or move the files you wish to convert into the new source folder. The conversion process does take a good bit of time. If you choose the commercial skipping and second conversion options it can take several hours to fully convert one TV recording. Overall, MCEBuddy makes a nice Media Center addition for those that want to save some space with smaller size files, convert Recorded TV files for their portable device, or automatically remove commercials. If you’re looking for a different method to skip commercials check out our post on how to skip commercials in Windows 7 Media Center. Download MCEBuddy 1.1 Similar Articles Productive Geek Tips Using Netflix Watchnow in Windows Vista Media Center (Gmedia)How To Skip Commercials in Windows 7 Media CenterHow To Convert Video Files to MP3 with VLCStartup Customizations for Media Center in Windows 7Add Folders to the Movie Library in Windows 7 Media Center TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional The Ultimate Excel Cheatsheet Convert the Quick Launch Bar into a Super Application Launcher Automate Tasks in Linux with Crontab Discover New Bundled Feeds in Google Reader Play Music in Chrome by Simply Dragging a File 15 Great Illustrations by Chow Hon Lam

    Read the article

  • Metro, Authentication, and the ASP.NET Web API

    - by Stephen.Walther
    Imagine that you want to create a Metro style app written with JavaScript and you want to communicate with a remote web service. For example, you are creating a movie app which retrieves a list of movies from a movies service. In this situation, how do you authenticate your Metro app and the Metro user so not just anyone can call the movies service? How can you identify the user making the request so you can return user specific data from the service? The Windows Live SDK supports a feature named Single Sign-On. When a user logs into a Windows 8 machine using their Live ID, you can authenticate the user’s identity automatically. Even better, when the Metro app performs a call to a remote web service, you can pass an authentication token to the remote service and prevent unauthorized access to the service. The documentation for Single Sign-On is located here: http://msdn.microsoft.com/en-us/library/live/hh826544.aspx In this blog entry, I describe the steps that you need to follow to use Single Sign-On with a (very) simple movie app. We build a Metro app which communicates with a web service created using the ASP.NET Web API. Creating the Visual Studio Solution Let’s start by creating a Visual Studio solution which contains two projects: a Windows Metro style Blank App project and an ASP.NET MVC 4 Web Application project. Name the Metro app MovieApp and the ASP.NET MVC application MovieApp.Services. When you create the ASP.NET MVC application, select the Web API template: After you create the two projects, your Visual Studio Solution Explorer window should look like this: Configuring the Live SDK You need to get your hands on the Live SDK and register your Metro app. You can download the latest version of the SDK (version 5.2) from the following address: http://www.microsoft.com/en-us/download/details.aspx?id=29938 After you download the Live SDK, you need to visit the following website to register your Metro app: https://manage.dev.live.com/build Don’t let the title of the website — Windows Push Notifications & Live Connect – confuse you, this is the right place. Follow the instructions at the website to register your Metro app. Don’t forget to follow the instructions in Step 3 for updating the information in your Metro app’s manifest. After you register, your client secret is displayed. Record this client secret because you will need it later (we use it with the web service): You need to configure one more thing. You must enter your Redirect Domain by visiting the following website: https://manage.dev.live.com/Applications/Index Click on your application name, click Edit Settings, click the API Settings tab, and enter a value for the Redirect Domain field. You can enter any domain that you please just as long as the domain has not already been taken: For the Redirect Domain, I entered http://superexpertmovieapp.com. Create the Metro MovieApp Next, we need to create the MovieApp. The MovieApp will: 1. Use Single Sign-On to log the current user into Live 2. Call the MoviesService web service 3. Display the results in a ListView control Because we use the Live SDK in the MovieApp, we need to add a reference to it. Right-click your References folder in the Solution Explorer window and add the reference: Here’s the HTML page for the Metro App: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>MovieApp</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- Live SDK --> <script type="text/javascript" src="/LiveSDKHTML/js/wl.js"></script> <!-- WebServices references --> <link href="/css/default.css" rel="stylesheet" /> <script src="/js/default.js"></script> </head> <body> <div id="tmplMovie" data-win-control="WinJS.Binding.Template"> <div class="movieItem"> <span data-win-bind="innerText:title"></span> <br /><span data-win-bind="innerText:director"></span> </div> </div> <div id="lvMovies" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplMovie') }"> </div> </body> </html> The HTML page above contains a Template and ListView control. These controls are used to display the movies when the movies are returned from the movies service. Notice that the page includes a reference to the Live script that we registered earlier: <!-- Live SDK --> <script type="text/javascript" src="/LiveSDKHTML/js/wl.js"></script> The JavaScript code looks like this: (function () { "use strict"; var REDIRECT_DOMAIN = "http://superexpertmovieapp.com"; var WEBSERVICE_URL = "http://localhost:49743/api/movies"; function init() { WinJS.UI.processAll().done(function () { // Get element and control references var lvMovies = document.getElementById("lvMovies").winControl; // Login to Windows Live var scopes = ["wl.signin"]; WL.init({ scope: scopes, redirect_uri: REDIRECT_DOMAIN }); WL.login().then( function(response) { // Get the authentication token var authenticationToken = response.session.authentication_token; // Call the web service var options = { url: WEBSERVICE_URL, headers: { authenticationToken: authenticationToken } }; WinJS.xhr(options).done( function (xhr) { var movies = JSON.parse(xhr.response); var listMovies = new WinJS.Binding.List(movies); lvMovies.itemDataSource = listMovies.dataSource; }, function (xhr) { console.log(xhr.statusText); } ); }, function(response) { throw WinJS.ErrorFromName("Failed to login!"); } ); }); } document.addEventListener("DOMContentLoaded", init); })(); There are two constants which you need to set to get the code above to work: REDIRECT_DOMAIN and WEBSERVICE_URL. The REDIRECT_DOMAIN is the domain that you entered when registering your app with Live. The WEBSERVICE_URL is the path to your web service. You can get the correct value for WEBSERVICE_URL by opening the Project Properties for the MovieApp.Services project, clicking the Web tab, and getting the correct URL. The port number is randomly generated. In my code, I used the URL  “http://localhost:49743/api/movies”. Assuming that the user is logged into Windows 8 with a Live account, when the user runs the MovieApp, the user is logged into Live automatically. The user is logged in with the following code: // Login to Windows Live var scopes = ["wl.signin"]; WL.init({ scope: scopes, redirect_uri: REDIRECT_DOMAIN }); WL.login().then(function(response) { // Do something }); The scopes setting determines what the user has permission to do. For example, access the user’s SkyDrive or access the user’s calendar or contacts. The available scopes are listed here: http://msdn.microsoft.com/en-us/library/live/hh243646.aspx In our case, we only need the wl.signin scope which enables Single Sign-On. After the user signs in, you can retrieve the user’s Live authentication token. The authentication token is passed to the movies service to authenticate the user. Creating the Movies Service The Movies Service is implemented as an API controller in an ASP.NET MVC 4 Web API project. Here’s what the MoviesController looks like: using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using JWTSample; using MovieApp.Services.Models; namespace MovieApp.Services.Controllers { public class MoviesController : ApiController { const string CLIENT_SECRET = "NtxjF2wu7JeY1unvVN-lb0hoeWOMUFoR"; // GET api/values public HttpResponseMessage Get() { // Authenticate // Get authenticationToken var authenticationToken = Request.Headers.GetValues("authenticationToken").FirstOrDefault(); if (authenticationToken == null) { return new HttpResponseMessage(HttpStatusCode.Unauthorized); } // Validate token var d = new Dictionary<int, string>(); d.Add(0, CLIENT_SECRET); try { var myJWT = new JsonWebToken(authenticationToken, d); } catch { return new HttpResponseMessage(HttpStatusCode.Unauthorized); } // Return results return Request.CreateResponse( HttpStatusCode.OK, new List<Movie> { new Movie {Title="Star Wars", Director="Lucas"}, new Movie {Title="King Kong", Director="Jackson"}, new Movie {Title="Memento", Director="Nolan"} } ); } } } Because the Metro app performs an HTTP GET request, the MovieController Get() action is invoked. This action returns a set of three movies when, and only when, the authentication token is validated. The Movie class looks like this: using Newtonsoft.Json; namespace MovieApp.Services.Models { public class Movie { [JsonProperty(PropertyName="title")] public string Title { get; set; } [JsonProperty(PropertyName="director")] public string Director { get; set; } } } Notice that the Movie class uses the JsonProperty attribute to change Title to title and Director to director to make JavaScript developers happy. The Get() method validates the authentication token before returning the movies to the Metro app. To get authentication to work, you need to provide the client secret which you created at the Live management site. If you forgot to write down the secret, you can get it again here: https://manage.dev.live.com/Applications/Index The client secret is assigned to a constant at the top of the MoviesController class. The MoviesController class uses a helper class named JsonWebToken to validate the authentication token. This class was created by the Windows Live team. You can get the source code for the JsonWebToken class from the following GitHub repository: https://github.com/liveservices/LiveSDK/blob/master/Samples/Asp.net/AuthenticationTokenSample/JsonWebToken.cs You need to add an additional reference to your MVC project to use the JsonWebToken class: System.Runtime.Serialization. You can use the JsonWebToken class to get a unique and validated user ID like this: var user = myJWT.Claims.UserId; If you need to store user specific information then you can use the UserId property to uniquely identify the user making the web service call. Running the MovieApp When you first run the Metro MovieApp, you get a screen which asks whether the app should have permission to use Single Sign-On. This screen never appears again after you give permission once. Actually, when I first ran the app, I get the following error: According to the error, the app is blocked because “We detected some suspicious activity with your Online Id account. To help protect you, we’ve temporarily blocked your account.” This appears to be a bug in the current preview release of the Live SDK and there is more information about this bug here: http://social.msdn.microsoft.com/Forums/en-US/messengerconnect/thread/866c495f-2127-429d-ab07-842ef84f16ae/ If you click continue, and continue running the app, the error message does not appear again.  Summary The goal of this blog entry was to describe how you can validate Metro apps and Metro users when performing a call to a remote web service. First, I explained how you can create a Metro app which takes advantage of Single Sign-On to authenticate the current user against Live automatically. You learned how to register your Metro app with Live and how to include an authentication token in an Ajax call. Next, I explained how you can validate the authentication token – retrieved from the request header – in a web service. I discussed how you can use the JsonWebToken class to validate the authentication token and retrieve the unique user ID.

    Read the article

  • CodePlex Daily Summary for Sunday, March 07, 2010

    CodePlex Daily Summary for Sunday, March 07, 2010New ProjectsAlgorithminator: Universal .NET algorithm visualizer, which helps you to illustrate any algorithm, written in any .NET language. Still in development.ALToolkit: Contains a set of handy .NET components/classes. Currently it contains: * A Numeric Text Box (an Extended NumericUpDown) * A Splash Screen base fo...Automaton Home: Automaton is a home automation software built with a n-Tier, MVVM pattern utilzing WCF, EF, WPF, Silverlight and XBAP.Developer Controls: Developer Controls contains various controls to help build applications that can script/write code.Dynamic Reference Manager: Dynamic Reference Manager is a set (more like a small group) of classes and attributes written in C# that allows any .NET program to reference othe...indiologic: Utilities of an IndioNeural Cryptography in F#: This project is my magistracy resulting work. It is intended to be an example of using neural networks in cryptography. Hashing functions are chose...Particle Filter Visualization: Particle Filter Visualization Program for the Intel Science and Engineering FairPólya: Efficient, immutable, polymorphic collections. .Net lacks them, we provide them*. * By we, we mean I; and by efficient, I mean hopefully so.project euler solutions from mhinze: mhinze project euler solutionsSilverlight 4 and WCF multi layer: Silverlight 4 and WCF multi layersqwarea: Project for a browser-based, minimalistic, massively multiplayer strategy game. Part of the "Génie logiciel et Cloud Computing" course of the ENS (...SuperSocket: SuperSocket, a socket application framework can build FTP/SMTP/POP server easilyToast (for ASP.NET MVC): Dynamic, developer & designer friendly content injection, compression and optimization for ASP.NET MVCNew ReleasesALToolkit: ALToolkit 1.0: Binary release of the libraries containing: NumericTextBox SplashScreen Based on the VB.NET code, but that doesn't really matter.Blacklist of Providers: 1.0-Milestone 1: Blacklist of Providers.Milestone 1In this development release implemented - Main interface (Work Item #5453) - Database (Work Item #5523)C# Linear Hash Table: Linear Hash Table b2: Now includes a default constructor, and will throw an exception if capacity is not set to a power of 2 or loadToMaintain is below 1.Composure: CassiniDev-Trunk-40745-VS2010.rc1.NET4: A simple port of the CassiniDev portable web server project for Visual Studio 2010 RC1 built against .NET 4.0. The WCF tests currently fail unless...Developer Controls: DevControls: These are the version 1.0 releases of these controls. Download the individually or all together (in a .zip file). More releases coming soon!Dynamic Reference Manager: DRM Alpha1: This is the first release. I'm calling it Alpha because I intend implementing other functions, but I do not intend changing the way current functio...ESB Toolkit Extensions: Tellago SOA ESB Extenstions v0.3: Windows Installer file that installs Library on a BizTalk ESB 2.0 system. This Install automatically configures the esb.config to use the new compo...GKO Libraries: GKO Libraries 0.1 Alpha: 0.1 AlphaHome Access Plus+: v3.0.3.0: Version 3.0.3.0 Release Change Log: Added Announcement Box Removed script files that aren't needed Fixed & issue in directory path Stylesheet...Icarus Scene Engine: Icarus Scene Engine 1.10.306.840: Icarus Professional, Icarus Player, the supporting software for Icarus Scene Engine, with some included samples, and the start of a tutorial (with ...mavjuz WndLpt: wndlpt-0.2.5: New: Response to 5 LPT inputs "test i 1" New: Reaction to 12 LPT outputs "test q 8" New: Reaction to all LPT pins "test pin 15" New: Syntax: ...Neural Cryptography in F#: Neural Cryptography 0.0.1: The most simple version of this project. It has a neural network that works just like logical AND and a possibility to recreate neural network from...Password Provider: 1.0.3: This release fixes a bug which caused the program to crash when double clicking on a generic item.RoTwee: RoTwee 6.2.0.0: New feature is as next. 16649 Add hashtag for tweet of tune.Now you can tweet your playing tune with hashtag.Visual Studio DSite: Picture Viewer (Visual C++ 2008): This example source code allows you to view any picture you want in the click of a button. All you got to do is click the button and browser via th...WatchersNET CKEditor™ Provider for DotNetNuke: CKEditor Provider 1.8.00: Whats New File Browser: Folders & Files View reworked File Browser: Folders & Files View reworked File Browser: Folders are displayed as TreeVi...WSDLGenerator: WSDLGenerator 0.0.0.4: - replaced CommonLibrary.dll by CommandLineParser.dll - added better support for custom complex typesMost Popular ProjectsMetaSharpSilverlight ToolkitASP.NET Ajax LibraryAll-In-One Code FrameworkWindows 7 USB/DVD Download Toolニコ生アラートWindows Double ExplorerVirtual Router - Wifi Hot Spot for Windows 7 / 2008 R2Caliburn: An Application Framework for WPF and SilverlightArkSwitchMost Active ProjectsUmbraco CMSRawrSDS: Scientific DataSet library and toolsBlogEngine.NETjQuery Library for SharePoint Web Servicespatterns & practices – Enterprise LibraryIonics Isapi Rewrite FilterFarseer Physics EngineFasterflect - A Fast and Simple Reflection APIFluent Assertions

    Read the article

  • Load and Web Performance Testing using Visual Studio Ultimate 2010-Part 3

    - by Tarun Arora
    Welcome back once again, in Part 1 of Load and Web Performance Testing using Visual Studio 2010 I talked about why Performance Testing the application is important, the test tools available in Visual Studio Ultimate 2010 and various test rig topologies, in Part 2 of Load and Web Performance Testing using Visual Studio 2010 I discussed the details of web performance & load tests as well as why it’s important to follow a goal based pattern while performance testing your application. In part 3 I’ll be discussing Test Result Analysis, Test Result Drill through, Test Report Generation, Test Run Comparison, Asp.net Profiler and some closing thoughts. Test Results – I see some creepy worms! In Part 2 we put together a web performance test and a load test, lets run the test to see load test to see how the Web site responds to the load simulation. While the load test is running you will be able to see close to real time analysis in the Load Test Analyser window. You can use the Load Test Analyser to conduct load test analysis in three ways: Monitor a running load test - A condensed set of the performance counter data is maintained in memory. To prevent the results memory requirements from growing unbounded, up to 200 samples for each performance counter are maintained. This includes 100 evenly spaced samples that span the current elapsed time of the run and the most recent 100 samples.         After the load test run is completed - The test controller spools all collected performance counter data to a database while the test is running. Additional data, such as timing details and error details, is loaded into the database when the test completes. The performance data for a completed test is loaded from the database and analysed by the Load Test Analyser. Below you can see a screen shot of the summary view, this provides key results in a format that is compact and easy to read. You can also print the load test summary, this is generated after the test has completed or been stopped.         Analyse the load test results of a previously run load test – We’ll see this in the section where i discuss comparison between two test runs. The performance counters can be plotted on the graphs. You also have the option to highlight a selected part of the test and view details, drill down to the user activity chart where you can hover over to see more details of the test run.   Generate Report => Test Run Comparisons The level of reports you can generate using the Load Test Analyser is astonishing. You have the option to create excel reports and conduct side by side analysis of two test results or to track trend analysis. The tools also allows you to export the graph data either to MS Excel or to a CSV file. You can view the ASP.NET profiler report to conduct further analysis as well. View Data and Diagnostic Attachments opens the Choose Diagnostic Data Adapter Attachment dialog box to select an adapter to analyse the result type. For example, you can select an IntelliTrace adapter, click OK and open the IntelliTrace summary for the test agent that was used in the load test.   Compare results This creates a set of reports that compares the data from two load test results using tables and bar charts. I have taken these screen shots from the MSDN documentation, I would highly recommend exploring the wealth of knowledge available on MSDN. Leaving Thoughts While load testing the application with an excessive load for a longer duration of time, i managed to bring the IIS to its knees by piling up a huge queue of requests waiting to be processed. This clearly means that the IIS had run out of threads as all the threads were busy processing existing request, one easy way of fixing this is by increasing the default number of allocated threads, but this might escalate the problem. The better suggestion is to try and drill down to the actual root cause of the problem. When ever the garbage collection runs it stops processing any pages so all requests that come in during that period are queued up, but realistically the garbage collection completes in fraction of a a second. To understand this better lets look at the .net heap, it is divided into large heap and small heap, anything greater than 85kB in size will be allocated to the Large object heap, the Large object heap is non compacting and remember large objects are expensive to move around, so if you are allocating something in the large object heap, make sure that you really need it! The small object heap on the other hand is divided into generations, so all objects that are supposed to be short-lived are suppose to live in Gen-0 and the long living objects eventually move to Gen-2 as garbage collection goes through.  As you can see in the picture below all < 85 KB size objects are first assigned to Gen-0, when Gen-0 fills up and a new object comes in and finds Gen-0 full, the garbage collection process is started, the process checks for all the dead objects and assigns them as the valid candidate for deletion to free up memory and promotes all the remaining objects in Gen-0 to Gen-1. So in the future when ever you clean up Gen-1 you have to clean up Gen-0 as well. When you fill up Gen – 0 again, all of Gen – 1 dead objects are drenched and rest are moved to Gen-2 and Gen-0 objects are moved to Gen-1 to free up Gen-0, but by this time your Garbage collection process has started to take much more time than it usually takes. Now as I mentioned earlier when garbage collection is being run all page requests that come in during that period are queued up. Does this explain why possibly page requests are getting queued up, apart from this it could also be the case that you are waiting for a long running database process to complete.      Lets explore the heap a bit more… What is really a case of crisis is when the objects are living long enough to make it to Gen-2 and then dying, this is definitely a high cost operation. But sometimes you need objects in memory, for example when you cache data you hold on to the objects because you need to use them right across the user session, which is acceptable. But if you wanted to see what extreme caching can do to your server then write a simple application that chucks in a lot of data in cache, run a load test over it for about 10-15 minutes, forcing a lot of data in memory causing the heap to run out of memory. If you get to such a state where you start running out of memory the IIS as a mode of recovery restarts the worker process. It is great way to free up all your memory in the heap but this would clear the cache. The problem with this is if the customer had 10 items in their shopping basket and that data was stored in the application cache, the user basket will now be empty forcing them either to get frustrated and go to a competitor website or if the customer is really patient, give it another try! How can you address this, well two ways of addressing this; 1. Workaround – A x86 bit processor only allows a maximum of 4GB of RAM, this means the machine effectively has around 3.4 GB of RAM available, the OS needs about 1.5 GB of RAM to run efficiently, the IIS and .net framework also need their share of memory, leaving you a heap of around 800 MB to play with. Because Team builds by default build your application in ‘Compile as any mode’ it means the application is build such that it will run in x86 bit mode if run on a x86 bit processor and run in a x64 bit mode if run on a x64 but processor. The problem with this is not all applications are really x64 bit compatible specially if you are using com objects or external libraries. So, as a quick win if you compiled your application in x86 bit mode by changing the compile as any selection to compile as x86 in the team build, you will be able to run your application on a x64 bit machine in x86 bit mode (WOW – By running Windows on Windows) and what that means is, you could use 8GB+ worth of RAM, if you take away everything else your application will roughly get a heap size of at least 4 GB to play with, which is immense. If you need a heap size of more than 4 GB you have either build a software for NASA or there is something fundamentally wrong in your application. 2. Solution – Now that you have put a workaround in place the IIS will not restart the worker process that regularly, which means you can take a breather and start working to get to the root cause of this memory leak. But this begs a question “How do I Identify possible memory leaks in my application?” Well i won’t say that there is one single tool that can tell you where the memory leak is, but trust me, ‘Performance Profiling’ is a great start point, it definitely gets you started in the right direction, let’s have a look at how. Performance Wizard - Start the Performance Wizard and select Instrumentation, this lets you measure function call counts and timings. Before running the performance session right click the performance session settings and chose properties from the context menu to bring up the Performance session properties page and as shown in the screen shot below, check the check boxes in the group ‘.NET memory profiling collection’ namely ‘Collect .NET object allocation information’ and ‘Also collect the .NET Object lifetime information’.    Now if you fire off the profiling session on your pages you will notice that the results allows you to view ‘Object Lifetime’ which shows you the number of objects that made it to Gen-0, Gen-1, Gen-2, Large heap, etc. Another great feature about the profile is that if your application has > 5% cases where objects die right after making to the Gen-2 storage a threshold alert is generated to alert you. Since you have the option to also view the most expensive methods and by capturing the IntelliTrace data you can drill in to narrow down to the line of code that is the root cause of the problem. Well now that we have seen how crucial memory management is and how easy Visual Studio Ultimate 2010 makes it for us to identify and reproduce the problem with the best of breed tools in the product. Caching One of the main ways to improve performance is Caching. Which basically means you tell the web server that instead of going to the database for each request you keep the data in the webserver and when the user asks for it you serve it from the webserver itself. BUT that can have consequences! Let’s look at some code, trust me caching code is not very intuitive, I define a cache key for almost all searches made through the common search page and cache the results. The approach works fine, first time i get the data from the database and second time data is served from the cache, significant performance improvement, EXCEPT when two users try to do the same operation and run into each other. But it is easy to handle this by adding the lock as you can see in the snippet below. So, as long as a user comes in and finds that the cache is empty, the user locks and starts to get the cache no more concurrency issues. But lets say you are processing 10 requests per second, by the time i have locked the operation to get the results from the database, 9 other users came in and found that the cache key is null so after i have come out and populated the cache they will still go in to get the results again. The application will still be faster because the next set of 10 users and so on would continue to get data from the cache. BUT if we added another null check after locking to build the cache and before actual call to the db then the 9 users who follow me would not make the extra trip to the database at all and that would really increase the performance, but didn’t i say that the code won’t be very intuitive, may be you should leave a comment you don’t want another developer to come in and think what a fresher why is he checking for the cache key null twice !!! The downside of caching is, you are storing the data outside of the database and the data could be wrong because the updates applied to the database would make the data cached at the web server out of sync. So, how do you invalidate the cache? Well if you only had one way of updating the data lets say only one entry point to the data update you can write some logic to say that every time new data is entered set the cache object to null. But this approach will not work as soon as you have several ways of feeding data to the system or your system is scaled out across a farm of web servers. The perfect solution to this is Micro Caching which means you cache the query for a set time duration and invalidate the cache after that set duration. The advantage is every time the user queries for that data with in the time span for which you have cached the results there are no calls made to the database and the data is served right from the server which makes the response immensely quick. Now figuring out the appropriate time span for which you micro cache the query results really depends on the application. Lets say your website gets 10 requests per second, if you retain the cache results for even 1 minute you will have immense performance gains. You would reduce 90% hits to the database for searching. Ever wondered why when you go to e-bookers.com or xpedia.com or yatra.com to book a flight and you click on the book button because the fare seems too exciting and you get an error message telling you that the fare is not valid any more. Yes, exactly => That is a cache failure! These travel sites or price compare engines are not going to hit the database every time you hit the compare button instead the results will be served from the cache, because the query results are micro cached, its a perfect trade-off, by micro caching the results the site gains 100% performance benefits but every once in a while annoys a customer because the fare has expired. But the trade off works in the favour of these sites as they are still able to process up to 30+ page requests per second which means cater to the site traffic by may be losing 1 customer every once in a while to a competitor who is also using a similar caching technique what are the odds that the user will not come back to their site sooner or later? Recap   Resources Below are some Key resource you might like to review. I would highly recommend the documentation, walkthroughs and videos available on MSDN. You can always make use of Fiddler to debug Web Performance Tests. Some community test extensions and plug ins available on Codeplex might also be of interest to you. The Road Ahead Thank you for taking the time out and reading this blog post, you may also want to read Part I and Part II if you haven’t so far. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Questions/Feedback/Suggestions, etc please leave a comment. Next ‘Load Testing in the cloud’, I’ll be working on exploring the possibilities of running Test controller/Agents in the Cloud. See you on the other side! Thank You!   Share this post : CodeProject

    Read the article

  • Rendering ASP.NET MVC Razor Views outside of MVC revisited

    - by Rick Strahl
    Last year I posted a detailed article on how to render Razor Views to string both inside of ASP.NET MVC and outside of it. In that article I showed several different approaches to capture the rendering output. The first and easiest is to use an existing MVC Controller Context to render a view by simply passing the controller context which is fairly trivial and I demonstrated a simple ViewRenderer class that simplified the process down to a couple lines of code. However, if no Controller Context is available the process is not quite as straight forward and I referenced an old, much more complex example that uses my RazorHosting library, which is a custom self-contained implementation of the Razor templating engine that can be hosted completely outside of ASP.NET. While it works inside of ASP.NET, it’s an awkward solution when running inside of ASP.NET, because it requires a bit of setup to run efficiently.Well, it turns out that I missed something in the original article, namely that it is possible to create a ControllerContext, if you have a controller instance, even if MVC didn’t create that instance. Creating a Controller Instance outside of MVCThe trick to make this work is to create an MVC Controller instance – any Controller instance – and then configure a ControllerContext through that instance. As long as an HttpContext.Current is available it’s possible to create a fully functional controller context as Razor can get all the necessary context information from the HttpContextWrapper().The key to make this work is the following method:/// <summary> /// Creates an instance of an MVC controller from scratch /// when no existing ControllerContext is present /// </summary> /// <typeparam name="T">Type of the controller to create</typeparam> /// <returns>Controller Context for T</returns> /// <exception cref="InvalidOperationException">thrown if HttpContext not available</exception> public static T CreateController<T>(RouteData routeData = null) where T : Controller, new() { // create a disconnected controller instance T controller = new T(); // get context wrapper from HttpContext if available HttpContextBase wrapper = null; if (HttpContext.Current != null) wrapper = new HttpContextWrapper(System.Web.HttpContext.Current); else throw new InvalidOperationException( "Can't create Controller Context if no active HttpContext instance is available."); if (routeData == null) routeData = new RouteData(); // add the controller routing if not existing if (!routeData.Values.ContainsKey("controller") && !routeData.Values.ContainsKey("Controller")) routeData.Values.Add("controller", controller.GetType().Name .ToLower() .Replace("controller", "")); controller.ControllerContext = new ControllerContext(wrapper, routeData, controller); return controller; }This method creates an instance of a Controller class from an existing HttpContext which means this code should work from anywhere within ASP.NET to create a controller instance that’s ready to be rendered. This means you can use this from within an Application_Error handler as I needed to or even from within a WebAPI controller as long as it’s running inside of ASP.NET (ie. not self-hosted). Nice.So using the ViewRenderer class from the previous article I can now very easily render an MVC view outside of the context of MVC. Here’s what I ended up in my Application’s custom error HttpModule: protected override void OnDisplayError(WebErrorHandler errorHandler, ErrorViewModel model) { var Response = HttpContext.Current.Response; Response.ContentType = "text/html"; Response.StatusCode = errorHandler.OriginalHttpStatusCode; var context = ViewRenderer.CreateController<ErrorController>().ControllerContext; var renderer = new ViewRenderer(context); string html = renderer.RenderView("~/Views/Shared/GenericError.cshtml", model); Response.Write(html); }That’s pretty sweet, because it’s now possible to use ViewRenderer just about anywhere in any ASP.NET application, not only inside of controller code. This also allows the constructor for the ViewRenderer from the last article to work without a controller context parameter, using a generic view as a base for the controller context when not passed:public ViewRenderer(ControllerContext controllerContext = null) { // Create a known controller from HttpContext if no context is passed if (controllerContext == null) { if (HttpContext.Current != null) controllerContext = CreateController<ErrorController>().ControllerContext; else throw new InvalidOperationException( "ViewRenderer must run in the context of an ASP.NET " + "Application and requires HttpContext.Current to be present."); } Context = controllerContext; }In this case I use the ErrorController class which is a generic controller instance that exists in the same assembly as my ViewRenderer class and that works just fine since ‘generically’ rendered views tend to not rely on anything from the controller other than the model which is explicitly passed.While these days most of my apps use MVC I do still have a number of generic pieces in most of these applications where Razor comes in handy. This includes modules like the above, which when they error often need to display error output. In other cases I need to generate string template output for emailing or logging data to disk. Being able to render simply render an arbitrary View to and pass in a model makes this super nice and easy at least within the context of an ASP.NET application!You can check out the updated ViewRenderer class below to render your ‘generic views’ from anywhere within your ASP.NET applications. Hope some of you find this useful.ResourcesViewRenderer Class in Westwind.Web.Mvc Library (Github)Original ViewRenderer ArticleRazor Hosting Library (GitHub)Original Razor Hosting Article© Rick Strahl, West Wind Technologies, 2005-2013Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Azure WNS to Win8 - Push Notifications for Metro Apps

    - by JoshReuben
    Background The Windows Azure Toolkit for Windows 8 allows you to build a Windows Azure Cloud Service that can send Push Notifications to registered Metro apps via Windows Notification Service (WNS). Some configuration is required - you need to: Register the Metro app for Windows Live Application Management Provide Package SID & Client Secret to WNS Modify the Azure Cloud App cscfg file and the Metro app package.appxmanifest file to contain matching Metro package name, SID and client secret. The Mechanism: These notifications take the form of XAML Tile, Toast, Raw or Badge UI notifications. The core engine is provided via the WNS nuget recipe, which exposes an API for constructing payloads and posting notifications to WNS. An application receives push notifications by requesting a notification channel from WNS, which returns a channel URI that the application then registers with a cloud service. In the cloud service, A WnsAccessTokenProvider authenticates with WNS by providing its credentials, the package SID and secret key, and receives in return an access token that the provider caches and can reuse for multiple notification requests. The cloud service constructs a notification request by filling out a template class that contains the information that will be sent with the notification, including text and image references. Using the channel URI of a registered client, the cloud service can then send a notification whenever it has an update for the user. The package contains the NotificationSendUtils class for submitting notifications. The Windows Azure Toolkit for Windows 8 (WAT) provides the PNWorker sample pair of solutions - The Azure server side contains a WebRole & a WorkerRole. The WebRole allows submission of new push notifications into an Azure Queue which the WorkerRole extracts and processes. Further background resources: http://watwindows8.codeplex.com/ - Windows Azure Toolkit for Windows 8 http://watwindows8.codeplex.com/wikipage?title=Push%20Notification%20Worker%20Sample - WAT WNS sample setup http://watwindows8.codeplex.com/wikipage?title=Using%20the%20Windows%208%20Cloud%20Application%20Services%20Application – using Windows 8 with Cloud Application Services A bit of Configuration Register the Metro apps for Windows Live Application Management From the current app manifest of your metro app Publish tab, copy the Package Display Name and the Publisher From: https://manage.dev.live.com/Build/ Package name: <-- we need to change this Client secret: keep this Package Security Identifier (SID): keep this Verify the app here: https://manage.dev.live.com/Applications/Index - so this step is done "If you wish to send push notifications in your application, provide your Package Security Identifier (SID) and client secret to WNS." Provide Package SID & Client Secret to WNS http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx - How to authenticate with WNS https://appdev.microsoft.com/StorePortals/en-us/Account/Signup/PurchaseSubscription - register app with dashboard - need registration code or register a new account & pay $170 shekels http://msdn.microsoft.com/en-us/library/windows/apps/hh868184.aspx - Registering for a Windows Store developer account http://msdn.microsoft.com/en-us/library/windows/apps/hh868187.aspx - Picking a Microsoft account for the Windows Store The WNS Nuget Recipe The WNS Recipe is a nuget package that provides an API for authenticating against WNS, constructing payloads and posting notifications to WNS. After installing this package, a WnsRecipe assembly is added to project references. To send notifications using WNS, first register the application at the Windows Push Notifications & Live Connect portal to obtain Package Security Identifier (SID) and a secret key that your cloud service uses to authenticate with WNS. An application receives push notifications by requesting a notification channel from WNS, which returns a channel URI that the application then registers with a cloud service. In the cloud service, the WnsAccessTokenProvider authenticates with WNS by providing its credentials, the package SID and secret key, and receives in return an access token that the provider caches and can reuse for multiple notification requests. The cloud service constructs a notification request by filling out a template class that contains the information that will be sent with the notification, including text and image references.Using the channel URI of a registered client, the cloud service can then send a notification whenever it has an update for the user. var provider = new WnsAccessTokenProvider(clientId, clientSecret); var notification = new ToastNotification(provider) {     ToastType = ToastType.ToastText02,     Text = new List<string> { "blah"} }; notification.Send(channelUri); the WNS Recipe is instrumented to write trace information via a trace listener – configuratively or programmatically from Application_Start(): WnsDiagnostics.Enable(); WnsDiagnostics.TraceSource.Listeners.Add(new DiagnosticMonitorTraceListener()); WnsDiagnostics.TraceSource.Switch.Level = SourceLevels.Verbose; The WAT PNWorker Sample The Azure server side contains a WebRole & a WorkerRole. The WebRole allows submission of new push notifications into an Azure Queue which the WorkerRole extracts and processes. Overview of Push Notification Worker Sample The toolkit includes a sample application based on the same solution structure as the one created by theWindows 8 Cloud Application Services project template. The sample demonstrates how to off-load the job of sending Windows Push Notifications using a Windows Azure worker role. You can find the source code in theSamples\PNWorker folder. This folder contains a full version of the sample application showing how to use Windows Push Notifications using ASP.NET Membership as the authentication mechanism. The sample contains two different solution files: WATWindows.Azure.sln: This solution must be opened with Visual Studio 2010 and contains the projects related to the Windows Azure web and worker roles. WATWindows.Client.sln: This solution must be opened with Visual Studio 11 and contains the Windows Metro style application project. Only Visual Studio 2010 supports Windows Azure cloud projects so you currently need to use this edition to launch the server application. This will change in a future release of the Windows Azure tools when support for Visual Studio 11 is enabled. Important: Setting up the PNWorker Sample Before running the PNWorker sample, you need to register the application and configure it: 1. Register the app: To register your application, go to the Windows Live Application Management site for Metro style apps at https://manage.dev.live.com/build and sign in with your Windows Live ID. In the Windows Push Notifications & Live Connect page, enter the following information. Package Display Name PNWorker.Sample Publisher CN=127.0.0.1, O=TESTING ONLY, OU=Windows Azure DevFabric 2. 3. Once you register the application, make a note of the values shown in the portal for Client Secret,Package Name and Package SID. 4. Configure the app - double-click the SetupSample.cmd file located inside the Samples\PNWorker folder to launch a tool that will guide you through the process of configuring the sample. setup runs a PowerShell script that requires running with administration privileges to allow the scripts to execute in your machine. When prompted, enter the Client Secret, Package Name, and Package Security Identifier you obtained previously and wait until the tool finishes configuring your sample. Running the PNWorker Sample To run this sample, you must run both the client and the server application projects. 1. Open Visual Studio 2010 as an administrator. Open the WATWindows.Azure.sln solution. Set the start-up project of the solution as the cloud project. Run the app in the dev fabric to test. 2. Open Visual Studio 11 and open the WATWindows.Client.sln solution. Run the Metro client application. In the client application, click Reopen channel and send to server. à the application opens the channel and registers it with the cloud application, & the Output area shows the channel URI. 3. Refresh the WebRole's Push Notifications page to see the UI list the newly registered client. 4. Send notifications to the client application by clicking the Send Notification button. Setup 3 command files + 1 powershell script: SetupSample.cmd –> SetupWPNS.vbs –> SetupWPNS.cmd –> SetupWPNS.UpdateWPNSCredentialsInServiceConfiguration.ps1 appears to set PackageName – from manifest Client Id package security id (SID) – from registration Client Secret – from registration The following configs are modified: WATWindows\ServiceConfiguration.Cloud.cscfg WATWindows\ServiceConfiguration.Local.cscfg WATWindows.Client\package.appxmanifest WatWindows.Notifications A class library – it references the following WNS DLL: C:\WorkDev\CountdownValue\AzureToolkits\WATWindows8\Samples\PNWorker\packages\WnsRecipe.0.0.3.0\lib\net40\WnsRecipe.dll NotificationJobRequest A DataContract for triggering notifications:     using System.Runtime.Serialization; using Microsoft.Windows.Samples.Notifications;     [DataContract]     [KnownType(typeof(WnsAccessTokenProvider))] public class NotificationJobRequest     {               [DataMember] public bool ProcessAsync { get; set; }          [DataMember] public string Payload { get; set; }         [DataMember] public string ChannelUrl { get; set; }         [DataMember] public NotificationType NotificationType { get; set; }         [DataMember] public IAccessTokenProvider AccessTokenProvider { get; set; }         [DataMember] public NotificationSendOptions NotificationSendOptions{ get; set; }     } Investigated these types: WnsAccessTokenProvider – a DataContract that contains the client Id and client secret NotificationType – an enum that can be: Tile, Toast, badge, Raw IAccessTokenProvider – get or reset the access token NotificationSendOptions – SecondsTTL, NotificationPriority (enum), isCache, isRequestForStatus, Tag   There is also a NotificationJobSerializer class which basically wraps a DataContractSerializer serialization / deserialization of NotificationJobRequest The WNSNotificationJobProcessor class This class wraps the NotificationSendUtils API – it periodically extracts any NotificationJobRequest objects from a CloudQueue and submits them to WNS. The ProcessJobMessageRequest method – this is the punchline: it will deserialize a CloudQueueMessage into a NotificationJobRequest & send pass its contents to NotificationUtils to SendAsynchronously / SendSynchronously, (and then dequeue the message).     public override void ProcessJobMessageRequest(CloudQueueMessage notificationJobMessageRequest)         { Trace.WriteLine("Processing a new Notification Job Request", "Information"); NotificationJobRequest pushNotificationJob =                 NotificationJobSerializer.Deserialize(notificationJobMessageRequest.AsString); if (pushNotificationJob != null)             { if (pushNotificationJob.ProcessAsync)                 { Trace.WriteLine("Sending the notification asynchronously", "Information"); NotificationSendUtils.SendAsynchronously( new Uri(pushNotificationJob.ChannelUrl),                         pushNotificationJob.AccessTokenProvider,                         pushNotificationJob.Payload,                         result => this.ProcessSendResult(pushNotificationJob, result),                         result => this.ProcessSendResultError(pushNotificationJob, result),                         pushNotificationJob.NotificationType,                         pushNotificationJob.NotificationSendOptions);                 } else                 { Trace.WriteLine("Sending the notification synchronously", "Information"); NotificationSendResult result = NotificationSendUtils.Send( new Uri(pushNotificationJob.ChannelUrl),                         pushNotificationJob.AccessTokenProvider,                         pushNotificationJob.Payload,                         pushNotificationJob.NotificationType,                         pushNotificationJob.NotificationSendOptions); this.ProcessSendResult(pushNotificationJob, result);                 }             } else             { Trace.WriteLine("Could not deserialize the notification job", "Error");             } this.queue.DeleteMessage(notificationJobMessageRequest);         } Investigation of NotificationSendUtils class - This is the engine – it exposes Send and a SendAsyncronously overloads that take the following params from the NotificationJobRequest: Channel Uri AccessTokenProvider Payload NotificationType NotificationSendOptions WebRole WebRole is a large MVC project – it references WatWindows.Notifications as well as the following WNS DLL: \AzureToolkits\WATWindows8\Samples\PNWorker\packages\WnsRecipe.0.0.3.0\lib\net40\NotificationsExtensions.dll Controllers\PushNotificationController.cs Notification related namespaces:     using Notifications;     using NotificationsExtensions;     using NotificationsExtensions.BadgeContent;     using NotificationsExtensions.RawContent;     using NotificationsExtensions.TileContent;     using NotificationsExtensions.ToastContent;     using Windows.Samples.Notifications; TokenProvider – initialized from the Azure RoleEnvironment:   IAccessTokenProvider tokenProvider = new WnsAccessTokenProvider(         RoleEnvironment.GetConfigurationSettingValue("WNSPackageSID"),         RoleEnvironment.GetConfigurationSettingValue("WNSClientSecret")); SendNotification method – calls QueuePushMessage method to create and serialize a NotificationJobRequest and enqueue it in a CloudQueue [HttpPost]         public ActionResult SendNotification(             [ModelBinder(typeof(NotificationTemplateModelBinder))] INotificationContent notification,             string channelUrl,             NotificationPriority priority = NotificationPriority.Normal)         {             var payload = notification.GetContent();             var options = new NotificationSendOptions()             {                 Priority = priority             };             var notificationType =                 notification is IBadgeNotificationContent ? NotificationType.Badge :                 notification is IRawNotificationContent ? NotificationType.Raw :                 notification is ITileNotificationContent ? NotificationType.Tile :                 NotificationType.Toast;             this.QueuePushMessage(payload, channelUrl, notificationType, options);             object response = new             {                 Status = "Queued for delivery to WNS"             };             return this.Json(response);         } GetSendTemplate method: Create the cshtml partial rendering based on the notification type     [HttpPost]         public ActionResult GetSendTemplate(NotificationTemplateViewModel templateOptions)         {             PartialViewResult result = null;             switch (templateOptions.NotificationType)             {                 case "Badge":                     templateOptions.BadgeGlyphValueContent = Enum.GetNames(typeof( GlyphValue));                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;                 case "Raw":                     ViewBag.ViewData = templateOptions;                     result = PartialView("_Raw");                     break;                 case "Toast":                     templateOptions.TileImages = this.blobClient.GetAllBlobsInContainer(ConfigReader.GetConfigValue("TileImagesContainer")).OrderBy(i => i.FileName).ToList();                     templateOptions.ToastAudioContent = Enum.GetNames(typeof( ToastAudioContent));                     templateOptions.Priorities = Enum.GetNames(typeof( NotificationPriority));                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;                 case "Tile":                     templateOptions.TileImages = this.blobClient.GetAllBlobsInContainer(ConfigReader.GetConfigValue("TileImagesContainer")).OrderBy(i => i.FileName).ToList();                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;             }             return result;         } Investigated these types: ToastAudioContent – an enum of different Win8 sound effects for toast notifications GlyphValue – an enum of different Win8 icons for badge notifications · Infrastructure\NotificationTemplateModelBinder.cs WNS Namespace references     using NotificationsExtensions.BadgeContent;     using NotificationsExtensions.RawContent;     using NotificationsExtensions.TileContent;     using NotificationsExtensions.ToastContent; Various NotificationFactory derived types can server as bindable models in MVC for creating INotificationContent types. Default values are also set for IWideTileNotificationContent & IToastNotificationContent. Type factoryType = null;             switch (notificationType)             {                 case "Badge":                     factoryType = typeof(BadgeContentFactory);                     break;                 case "Tile":                     factoryType = typeof(TileContentFactory);                     break;                 case "Toast":                     factoryType = typeof(ToastContentFactory);                     break;                 case "Raw":                     factoryType = typeof(RawContentFactory);                     break;             } Investigated these types: BadgeContentFactory – CreateBadgeGlyph, CreateBadgeNumeric (???) TileContentFactory – many notification content creation methods , apparently one for every tile layout type ToastContentFactory – many notification content creation methods , apparently one for every toast layout type RawContentFactory – passing strings WorkerRole WNS Namespace references using Notifications; using Notifications.WNS; using Windows.Samples.Notifications; OnStart() Method – on Worker Role startup, initialize the NotificationJobSerializer, the CloudQueue, and the WNSNotificationJobProcessor _notificationJobSerializer = new NotificationJobSerializer(); _cloudQueueClient = this.account.CreateCloudQueueClient(); _pushNotificationRequestsQueue = _cloudQueueClient.GetQueueReference(ConfigReader.GetConfigValue("RequestQueueName")); _processor = new WNSNotificationJobProcessor(_notificationJobSerializer, _pushNotificationRequestsQueue); Run() Method – poll the Azure Queue for NotificationJobRequest messages & process them:   while (true)             { Trace.WriteLine("Checking for Messages", "Information"); try                 { Parallel.ForEach( this.pushNotificationRequestsQueue.GetMessages(this.batchSize), this.processor.ProcessJobMessageRequest);                 } catch (Exception e)                 { Trace.WriteLine(e.ToString(), "Error");                 } Trace.WriteLine(string.Format("Sleeping for {0} seconds", this.pollIntervalMiliseconds / 1000)); Thread.Sleep(this.pollIntervalMiliseconds);                                            } How I learned to appreciate Win8 There is really only one application architecture for Windows 8 apps: Metro client side and Azure backend – and that is a good thing. With WNS, tier integration is so automated that you don’t even have to leverage a HTTP push API such as SignalR. This is a pretty powerful development paradigm, and has changed the way I look at Windows 8 for RAD business apps. When I originally looked at Win8 and the WinRT API, my first opinion on Win8 dev was as follows – GOOD:WinRT, WRL, C++/CX, WinJS, XAML (& ease of Direct3D integration); BAD: low projected market penetration,.NET lobotomized (Only 8% of .NET 4.5 classes can be used in Win8 non-desktop apps - http://bit.ly/HRuJr7); UGLY:Metro pascal tiles! Perhaps my 80s teenage years gave me a punk reactionary sense of revulsion towards the Partridge Family 70s style that Metro UX seems to have appropriated: On second thought though, it simplifies UI dev to a single paradigm (although UX guys will need to change career) – you will not find an easier app dev environment. Speculation: If LightSwitch is going to support HTML5 client app generation, then its a safe guess to say that vnext will support Win8 Metro XAML - a much easier port from Silverlight XAML. Given the VS2012 LightSwitch integration as a thumbs up from the powers that be at MS, and given that Win8 C#/XAML Metro apps tend towards a streamlined 'golden straight-jacket' cookie cutter app dev style with an Azure back-end supporting Win8 push notifications... --> its easy to extrapolate than LightSwitch vnext could well be the Win8 Metro XAML to Azure RAD tool of choice! The hook is already there - :) Why else have the space next to the HTML Client box? This high level of application development abstraction will facilitate rapid app cookie-cutter architecture-infrastructure frameworks for wrapping any app. This will allow me to avoid too much XAML code-monkeying around & focus on my area of interest: Technical Computing.

    Read the article

  • Simple Excel Export with EPPlus

    - by Jesse Taber
    Originally posted on: http://geekswithblogs.net/GruffCode/archive/2013/10/30/simple-excel-export-with-epplus.aspxAnyone I’ve ever met who works with an application that sits in front of a lot of data loves it when they can get that data exported to an Excel file for them to mess around with offline. As both developer and end user of a little website project that I’ve been working on, I found myself wanting to be able to get a bunch of the data that the application was collecting into an Excel file. The great thing about being both an end user and a developer on a project is that you can build the features that you really want! While putting this feature together I came across the fantastic EPPlus library. This library is certainly very well known and popular, but I was so impressed with it that I thought it was worth a quick blog post. This library is extremely powerful; it lets you create and manipulate Excel 2007/2010 spreadsheets in .NET code with a high degree of flexibility. My only gripe with the project is that they are not touting how insanely easy it is to build a basic Excel workbook from a simple data source. If I were running this project the approach I’m about to demonstrate in this post would be front and center on the landing page for the project because it shows how easy it really is to get started and serves as a good way to ease yourself in to some of the more advanced features. The website in question uses RavenDB, which means that we’re dealing with POCOs to model the data throughout all layers of the application. I love working like this so when it came time to figure out how to export some of this data to an Excel spreadsheet I wanted to find a way to take an IEnumerable<T> and just have it dumped to Excel with each item in the collection being modeled as a single row in the Excel worksheet. Consider the following class: public class Employee { public int Id { get; set; } public string Name { get; set; } public decimal HourlyRate { get; set; } public DateTime HireDate { get; set; } } Now let’s say we have a collection of these represented as an IEnumerable<Employee> and we want to be able to output it to an Excel file for offline querying/manipulation. As it turns out, this is dead simple to do with EPPlus. Have a look: public void ExportToExcel(IEnumerable<Employee> employees, FileInfo targetFile) { using (var excelFile = new ExcelPackage(targetFile)) { var worksheet = excelFile.Workbook.Worksheets.Add("Sheet1"); worksheet.Cells["A1"].LoadFromCollection(Collection: employees, PrintHeaders: true); excelFile.Save(); } } That’s it. Let’s break down what’s going on here: Create a ExcelPackage to model the workbook (Excel file). Note that the ‘targetFile’ value here is a FileInfo object representing the location on disk where I want the file to be saved. Create a worksheet within the workbook. Get a reference to the top-leftmost cell (addressed as A1) and invoke the ‘LoadFromCollection’ method, passing it our collection of Employee objects. Behind the scenes this is reflecting over the properties of the type provided and pulling out any public members to become columns in the resulting Excel output. The ‘PrintHeaders’ parameter tells EPPlus to grab the name of the property and put it in the first row. Save the Excel file All of the heavy lifting here is being done by the ‘LoadFromCollection’ method, and that’s a good thing. Now, this was really easy to do, but it has some limitations. Using this approach you get a very plain, un-styled Excel worksheet. The column widths are all set to the default. The number format for all cells is ‘General’ (which proves particularly interesting if you have a DateTime property in your data source). I’m a “no frills” guy, so I wasn’t bothered at all by trading off simplicity for style and formatting. That said, EPPlus has tons of samples that you can download that illustrate how to apply styles and formatting to cells and a ton of other advanced features that are way beyond the scope of this post.

    Read the article

  • Metro: Creating an IndexedDbDataSource for WinJS

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can create custom data sources which you can use with the controls in the WinJS library. In particular, I explain how you can create an IndexedDbDataSource which you can use to store and retrieve data from an IndexedDB database. If you want to skip ahead, and ignore all of the fascinating content in-between, I’ve included the complete code for the IndexedDbDataSource at the very bottom of this blog entry. What is IndexedDB? IndexedDB is a database in the browser. You can use the IndexedDB API with all modern browsers including Firefox, Chrome, and Internet Explorer 10. And, of course, you can use IndexedDB with Metro style apps written with JavaScript. If you need to persist data in a Metro style app written with JavaScript then IndexedDB is a good option. Each Metro app can only interact with its own IndexedDB databases. And, IndexedDB provides you with transactions, indices, and cursors – the elements of any modern database. An IndexedDB database might be different than the type of database that you normally use. An IndexedDB database is an object-oriented database and not a relational database. Instead of storing data in tables, you store data in object stores. You store JavaScript objects in an IndexedDB object store. You create new IndexedDB object stores by handling the upgradeneeded event when you attempt to open a connection to an IndexedDB database. For example, here’s how you would both open a connection to an existing database named TasksDB and create the TasksDB database when it does not already exist: var reqOpen = window.indexedDB.open(“TasksDB”, 2); reqOpen.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); }; reqOpen.onsuccess = function () { var db = reqOpen.result; // Do something with db }; When you call window.indexedDB.open(), and the database does not already exist, then the upgradeneeded event is raised. In the code above, the upgradeneeded handler creates a new object store named tasks. The new object store has an auto-increment column named id which acts as the primary key column. If the database already exists with the right version, and you call window.indexedDB.open(), then the success event is raised. At that point, you have an open connection to the existing database and you can start doing something with the database. You use asynchronous methods to interact with an IndexedDB database. For example, the following code illustrates how you would add a new object to the tasks object store: var transaction = db.transaction(“tasks”, “readwrite”); var reqAdd = transaction.objectStore(“tasks”).add({ name: “Feed the dog” }); reqAdd.onsuccess = function() { // Tasks added successfully }; The code above creates a new database transaction, adds a new task to the tasks object store, and handles the success event. If the new task gets added successfully then the success event is raised. Creating a WinJS IndexedDbDataSource The most powerful control in the WinJS library is the ListView control. This is the control that you use to display a collection of items. If you want to display data with a ListView control, you need to bind the control to a data source. The WinJS library includes two objects which you can use as a data source: the List object and the StorageDataSource object. The List object enables you to represent a JavaScript array as a data source and the StorageDataSource enables you to represent the file system as a data source. If you want to bind an IndexedDB database to a ListView then you have a choice. You can either dump the items from the IndexedDB database into a List object or you can create a custom data source. I explored the first approach in a previous blog entry. In this blog entry, I explain how you can create a custom IndexedDB data source. Implementing the IListDataSource Interface You create a custom data source by implementing the IListDataSource interface. This interface contains the contract for the methods which the ListView needs to interact with a data source. The easiest way to implement the IListDataSource interface is to derive a new object from the base VirtualizedDataSource object. The VirtualizedDataSource object requires a data adapter which implements the IListDataAdapter interface. Yes, because of the number of objects involved, this is a little confusing. Your code ends up looking something like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); The code above is used to create a new class named IndexedDbDataSource which derives from the base VirtualizedDataSource class. In the constructor for the new class, the base class _baseDataSourceConstructor() method is called. A data adapter is passed to the _baseDataSourceConstructor() method. The code above creates a new method exposed by the IndexedDbDataSource named nuke(). The nuke() method deletes all of the objects from an object store. The code above also overrides a method named remove(). Our derived remove() method accepts any type of key and removes the matching item from the object store. Almost all of the work of creating a custom data source goes into building the data adapter class. The data adapter class implements the IListDataAdapter interface which contains the following methods: · change() · getCount() · insertAfter() · insertAtEnd() · insertAtStart() · insertBefore() · itemsFromDescription() · itemsFromEnd() · itemsFromIndex() · itemsFromKey() · itemsFromStart() · itemSignature() · moveAfter() · moveBefore() · moveToEnd() · moveToStart() · remove() · setNotificationHandler() · compareByIdentity Fortunately, you are not required to implement all of these methods. You only need to implement the methods that you actually need. In the case of the IndexedDbDataSource, I implemented the getCount(), itemsFromIndex(), insertAtEnd(), and remove() methods. If you are creating a read-only data source then you really only need to implement the getCount() and itemsFromIndex() methods. Implementing the getCount() Method The getCount() method returns the total number of items from the data source. So, if you are storing 10,000 items in an object store then this method would return the value 10,000. Here’s how I implemented the getCount() method: getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); } The first thing that you should notice is that the getCount() method returns a WinJS promise. This is a requirement. The getCount() method is asynchronous which is a good thing because all of the IndexedDB methods (at least the methods implemented in current browsers) are also asynchronous. The code above retrieves an object store and then uses the IndexedDB count() method to get a count of the items in the object store. The value is returned from the promise by calling complete(). Implementing the itemsFromIndex method When a ListView displays its items, it calls the itemsFromIndex() method. By default, it calls this method multiple times to get different ranges of items. Three parameters are passed to the itemsFromIndex() method: the requestIndex, countBefore, and countAfter parameters. The requestIndex indicates the index of the item from the database to show. The countBefore and countAfter parameters represent hints. These are integer values which represent the number of items before and after the requestIndex to retrieve. Again, these are only hints and you can return as many items before and after the request index as you please. Here’s how I implemented the itemsFromIndex method: itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); } In the code above, a cursor is used to iterate through the objects in an object store. You fetch the next item in the cursor by calling either the cursor.continue() or cursor.advance() method. The continue() method moves forward by one object and the advance() method moves forward a specified number of objects. Each time you call continue() or advance(), the success event is raised again. If the cursor is null then you know that you have reached the end of the cursor and you can return the results. Some things to be careful about here. First, the return value from the itemsFromIndex() method must implement the IFetchResult interface. In particular, you must return an object which has an items, offset, and totalCount property. Second, each item in the items array must implement the IListItem interface. Each item should have a key and a data property. Implementing the insertAtEnd() Method When creating the IndexedDbDataSource, I wanted to go beyond creating a simple read-only data source and support inserting and deleting objects. If you want to support adding new items with your data source then you need to implement the insertAtEnd() method. Here’s how I implemented the insertAtEnd() method for the IndexedDbDataSource: insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); } When implementing the insertAtEnd() method, you need to be careful to return an object which implements the IItem interface. In particular, you should return an object that has a key and a data property. The key must be a string and it uniquely represents the new item added to the data source. The value of the data property represents the new item itself. Implementing the remove() Method Finally, you use the remove() method to remove an item from the data source. You call the remove() method with the key of the item which you want to remove. Implementing the remove() method in the case of the IndexedDbDataSource was a little tricky. The problem is that an IndexedDB object store uses an integer key and the VirtualizedDataSource requires a string key. For that reason, I needed to override the remove() method in the derived IndexedDbDataSource class like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); When you call remove(), you end up calling a method of the IndexedDbDataAdapter named removeInternal() . Here’s what the removeInternal() method looks like: setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); } The removeInternal() method calls the IndexedDB delete() method to delete an item from the object store. If the item is deleted successfully then the _notificationHandler.remove() method is called. Because we are not implementing the standard IListDataAdapter remove() method, we need to notify the data source (and the ListView control bound to the data source) that an item has been removed. The way that you notify the data source is by calling the _notificationHandler.remove() method. Notice that we get the _notificationHandler in the code above by implementing another method in the IListDataAdapter interface: the setNotificationHandler() method. You can raise the following types of notifications using the _notificationHandler: · beginNotifications() · changed() · endNotifications() · inserted() · invalidateAll() · moved() · removed() · reload() These methods are all part of the IListDataNotificationHandler interface in the WinJS library. Implementing the nuke() Method I wanted to implement a method which would remove all of the items from an object store. Therefore, I created a method named nuke() which calls the IndexedDB clear() method: nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); } Notice that the nuke() method calls the _notificationHandler.reload() method to notify the ListView to reload all of the items from its data source. Because we are implementing a custom method here, we need to use the _notificationHandler to send an update. Using the IndexedDbDataSource To illustrate how you can use the IndexedDbDataSource, I created a simple task list app. You can add new tasks, delete existing tasks, and nuke all of the tasks. You delete an item by selecting an item (swipe or right-click) and clicking the Delete button. Here’s the HTML page which contains the ListView, the form for adding new tasks, and the buttons for deleting and nuking tasks: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>DataSources</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- DataSources references --> <link href="indexedDb.css" rel="stylesheet" /> <script type="text/javascript" src="indexedDbDataSource.js"></script> <script src="indexedDb.js"></script> </head> <body> <div id="tmplTask" data-win-control="WinJS.Binding.Template"> <div class="taskItem"> Id: <span data-win-bind="innerText:id"></span> <br /><br /> Name: <span data-win-bind="innerText:name"></span> </div> </div> <div id="lvTasks" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplTask'), selectionMode: 'single' }"></div> <form id="frmAdd"> <fieldset> <legend>Add Task</legend> <label>New Task</label> <input id="inputTaskName" required /> <button>Add</button> </fieldset> </form> <button id="btnNuke">Nuke</button> <button id="btnDelete">Delete</button> </body> </html> And here is the JavaScript code for the TaskList app: /// <reference path="//Microsoft.WinJS.1.0.RC/js/base.js" /> /// <reference path="//Microsoft.WinJS.1.0.RC/js/ui.js" /> function init() { WinJS.UI.processAll().done(function () { var lvTasks = document.getElementById("lvTasks").winControl; // Bind the ListView to its data source var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; // Wire-up Add, Delete, Nuke buttons document.getElementById("frmAdd").addEventListener("submit", function (evt) { evt.preventDefault(); tasksDataSource.beginEdits(); tasksDataSource.insertAtEnd(null, { name: document.getElementById("inputTaskName").value }).done(function (newItem) { tasksDataSource.endEdits(); document.getElementById("frmAdd").reset(); lvTasks.ensureVisible(newItem.index); }); }); document.getElementById("btnDelete").addEventListener("click", function () { if (lvTasks.selection.count() == 1) { lvTasks.selection.getItems().done(function (items) { tasksDataSource.remove(items[0].data.id); }); } }); document.getElementById("btnNuke").addEventListener("click", function () { tasksDataSource.nuke(); }); // This method is called to initialize the IndexedDb database function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } }); } document.addEventListener("DOMContentLoaded", init); The IndexedDbDataSource is created and bound to the ListView control with the following two lines of code: var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; The IndexedDbDataSource is created with four parameters: the name of the database to create, the version of the database to create, the name of the object store to create, and a function which contains code to initialize the new database. The upgrade function creates a new object store named tasks with an auto-increment property named id: function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } The Complete Code for the IndexedDbDataSource Here’s the complete code for the IndexedDbDataSource: (function () { /************************************************ * The IndexedDBDataAdapter enables you to work * with a HTML5 IndexedDB database. *************************************************/ var IndexedDbDataAdapter = WinJS.Class.define( function (dbName, dbVersion, objectStoreName, upgrade, error) { this._dbName = dbName; // database name this._dbVersion = dbVersion; // database version this._objectStoreName = objectStoreName; // object store name this._upgrade = upgrade; // database upgrade script this._error = error || function (evt) { console.log(evt.message); }; }, { /******************************************* * IListDataAdapter Interface Methods ********************************************/ getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); }, itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); }, insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); }, setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, /***************************************** * IndexedDbDataSource Method ******************************************/ removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); }, nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); }, /******************************************* * Private Methods ********************************************/ _ensureDbOpen: function () { var that = this; // Try to get cached Db if (that._cachedDb) { return WinJS.Promise.wrap(that._cachedDb); } // Otherwise, open the database return new WinJS.Promise(function (complete, error, progress) { var reqOpen = window.indexedDB.open(that._dbName, that._dbVersion); reqOpen.onerror = function (evt) { error(); }; reqOpen.onupgradeneeded = function (evt) { that._upgrade(evt); that._notificationHandler.invalidateAll(); }; reqOpen.onsuccess = function () { that._cachedDb = reqOpen.result; complete(that._cachedDb); }; }); }, _getObjectStore: function (type) { type = type || "readonly"; var that = this; return new WinJS.Promise(function (complete, error) { that._ensureDbOpen().then(function (db) { var transaction = db.transaction(that._objectStoreName, type); complete(transaction.objectStore(that._objectStoreName)); }); }); }, _get: function (key) { return new WinJS.Promise(function (complete, error) { that._getObjectStore().done(function (store) { var reqGet = store.get(key); reqGet.onerror = that._error; reqGet.onsuccess = function (item) { complete(item); }; }); }); } } ); var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); WinJS.Namespace.define("DataSources", { IndexedDbDataSource: IndexedDbDataSource }); })(); Summary In this blog post, I provided an overview of how you can create a new data source which you can use with the WinJS library. I described how you can create an IndexedDbDataSource which you can use to bind a ListView control to an IndexedDB database. While describing how you can create a custom data source, I explained how you can implement the IListDataAdapter interface. You also learned how to raise notifications — such as a removed or invalidateAll notification — by taking advantage of the methods of the IListDataNotificationHandler interface.

    Read the article

  • Preview and Purchase Ebooks with Kindle for PC

    - by Matthew Guay
    Want to look over a new book, or buy it immediately in ebook format?  Here’s how you can preview and purchase most new books from your PC the easy way. Most new books, including almost all New York Times Bestsellers, are available in ebook format from Amazon’s Kindle store.  The Kindle store also includes numerous free ebooks, including out-of-print classics and a surprising amount of recent books.  With the free Kindle for PC reader, you can read any of these ebooks without having to purchase a Kindle device. Preview Ebooks Before you Purchase Sometimes, it can be hard to know if you want to purchase a new book without reading some of it first.  With Kindle for PC, however, you can download a sample of any ebook available for free.  The sample usually includes the table of contents, forward or introduction, and often part or all of the first chapter. To get an ebook sample, find the book you want in the Kindle store (link below). Now, under the Try it free box, select the correct computer or device to send the sample to, and click Send Sample now. Amazon will thank you for your order, even though this is only a free preview.  Click the Go to Kindle for PC button to open Kindle and read your ebook preview.   Or, if Kindle is already running, press the Refresh button in the top right corner to check for new ebooks and previews. Kindle will synchronize and download the previews you selected. The most recently downloaded items show up on the top left.  All sample books have a red “Sample” bar on the bottom of their cover, and they also include links to Buy or view more info about it on it’s cover.  Double-click your sample to start reading it. Your ebook sample will usually open at the introduction or beginning of the first chapter, but you can also view the index, cover, and more. When you reach the end of the sample book, you can click a link to buy the book or view more details about it.  Strangely, both of these links currently take you to the ebook’s page on Amazon.com, but perhaps in the future the Buy link will directly let you purchase the book. Or, you can also click Buy Now on a sample book directly from your Kindle library. If you clicked one of these links, you will be returned to the ebook’s page on Amazon.  Choose the PC or Kindle you want the book delivered to, and this time, select Buy Now with 1-Click. Add your payment info if you’re not already setup for 1-Click Shopping, and then you’ll be shown the same Thank you page as before.  Refresh Kindle for PC, and your new ebook will automatically download.  Strangely, the sample ebook is not automatically removed, so you can right-click on the sample and select Delete this Book.  Additionally, your last-read page in the sample is not synced to the purchased book, so you may have to find your place again. Now, enjoy your full ebook! Download Free Books for Kindle The Kindle Store has an amazing amount of free ebooks.  Some free books may only be free for a limited time as a promotion, while others, such as old classics, may always be free.  Either which way, once you download it, you can keep it forever. When you find a free ebook you want, select the Kindle or PC you want to download it to and click “Buy now with 1-Click”.  Notice that this book shows it’s price is $0.00, but the button still says Buy now.  Rest assured, if the book’s price show up as $0.00, you will not be charged anything for downloading it. Your ebook will download as usual after your next refresh.  Note that you can still download the sample first if you want, but since the book is free, just download the whole thing and delete it if you don’t want it. Redownload your Purchased or Free Books If you install Kindle on a new PC or delete a book from your library, you can always re-download it from your Amazon account.  Browse to the Manage your Kindle page on Amazon (link below) sign in with your Amazon account, and scroll down to the list of your purchased content. Select the book you wish to download, then choose the Kindle or PC you want to download it to and press Go. Note: There is a “Delete this title” button right below this.  If you press the Delete button, you will not ever be able to re-download it. Or, you can download the book directly from the Archived Items tab in Kindle on your other PC. And, if you have your Kindle content on multiple computers, your reading will be synced via Whispersync.  You can start reading on your desktop, and then resume where you left off from your laptop. Conclusion With these tips and tricks, it is much easier to preview and purchase new books, find and download free ebooks, and re-download any you’ve deleted from your PC.  Have fun filling up your digital library! Links Manage your Kindle account Similar Articles Productive Geek Tips Read Mobi eBooks on Kindle for PCRead Kindle Books On Your Computer with Kindle for PCHow to See Where a TinyUrl Is Really Linking ToEdit Microsoft Word 2007 Documents in Print PreviewWhy Can’t I Turn the Details/Preview Panes On or Off in Windows Vista Explorer? TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Whoa ! Use Printflush to Solve Printing Problems Icelandic Volcano Webcams Open Multiple Links At One Go NachoFoto Searches Images in Real-time Office 2010 Product Guides

    Read the article

  • How to build the Darling projrct on Ubuntu 13.10?

    - by mirror27
    The Darling project is an open source Darwin/OS X emulation layer for Linux. I downloaded the source code with git and tried to build it with cmake but it failed. The document says I need these packages: clang 3.1+ GCC 4.6+ (yes, you still need GCC for header files) libkqueue libbsd gnustep-base ("Foundation") gnustep-gui ("Cocoa") gnustep-corebase ("CoreFoundation") libobjc2 libudev openssl libasound libav libgc but I could not find them on apt or in software center. Also cmake showed this result: No build type selected, default to Debug This is a 64-bit build Building ObjC ABI 2 You have called ADD_LIBRARY for library Carbon without any source files. This typically indicates a problem with your CMakeLists.txt file You have called ADD_LIBRARY for library AppKit without any source files. This typically indicates a problem with your CMakeLists.txt file You have called ADD_LIBRARY for library auto without any source files. This typically indicates a problem with your CMakeLists.txt file CMake Error: The following variables are used in this project, but they are set to NOTFOUND. Please set them or make sure they are set and tested correctly in the CMake files: LIBGNUSTEPCOREBASE_INCLUDE_DIR used as include directory in directory /home/mirror/work/darling/darling/src/motool used as include directory in directory /home/mirror/work/darling/darling/src/util used as include directory in directory /home/mirror/work/darling/darling/src/libmach-o used as include directory in directory /home/mirror/work/darling/darling/src/libdyld used as include directory in directory /home/mirror/work/darling/darling/src/dyld used as include directory in directory /home/mirror/work/darling/darling/src/dyld used as include directory in directory /home/mirror/work/darling/darling/src/libSystem used as include directory in directory /home/mirror/work/darling/darling/src/libltdl used as include directory in directory /home/mirror/work/darling/darling/src/Cocoa used as include directory in directory /home/mirror/work/darling/darling/src/libobjcdarwin used as include directory in directory /home/mirror/work/darling/darling/src/CoreFoundation used as include directory in directory /home/mirror/work/darling/darling/src/libncurses used as include directory in directory /home/mirror/work/darling/darling/src/CoreSecurity used as include directory in directory /home/mirror/work/darling/darling/src/CoreServices used as include directory in directory /home/mirror/work/darling/darling/src/ExceptionHandling used as include directory in directory /home/mirror/work/darling/darling/src/IOKit used as include directory in directory /home/mirror/work/darling/darling/src/Foundation used as include directory in directory /home/mirror/work/darling/darling/src/Carbon used as include directory in directory /home/mirror/work/darling/darling/src/CoreVideo used as include directory in directory /home/mirror/work/darling/darling/src/OpenGL used as include directory in directory /home/mirror/work/darling/darling/src/thin used as include directory in directory /home/mirror/work/darling/darling/src/thin used as include directory in directory /home/mirror/work/darling/darling/src/libstdc++darwin LIBKQUEUE_INCLUDE_DIR used as include directory in directory /home/mirror/work/darling/darling/src/motool used as include directory in directory /home/mirror/work/darling/darling/src/util used as include directory in directory /home/mirror/work/darling/darling/src/libmach-o used as include directory in directory /home/mirror/work/darling/darling/src/libdyld used as include directory in directory /home/mirror/work/darling/darling/src/dyld used as include directory in directory /home/mirror/work/darling/darling/src/dyld used as include directory in directory /home/mirror/work/darling/darling/src/libSystem used as include directory in directory /home/mirror/work/darling/darling/src/libltdl used as include directory in directory /home/mirror/work/darling/darling/src/Cocoa used as include directory in directory /home/mirror/work/darling/darling/src/libobjcdarwin used as include directory in directory /home/mirror/work/darling/darling/src/CoreFoundation used as include directory in directory /home/mirror/work/darling/darling/src/libncurses used as include directory in directory /home/mirror/work/darling/darling/src/CoreSecurity used as include directory in directory /home/mirror/work/darling/darling/src/CoreServices used as include directory in directory /home/mirror/work/darling/darling/src/ExceptionHandling used as include directory in directory /home/mirror/work/darling/darling/src/IOKit used as include directory in directory /home/mirror/work/darling/darling/src/Foundation used as include directory in directory /home/mirror/work/darling/darling/src/Carbon used as include directory in directory /home/mirror/work/darling/darling/src/CoreVideo used as include directory in directory /home/mirror/work/darling/darling/src/OpenGL used as include directory in directory /home/mirror/work/darling/darling/src/thin used as include directory in directory /home/mirror/work/darling/darling/src/thin used as include directory in directory /home/mirror/work/darling/darling/src/libstdc++darwin LIBOBJC2_INCLUDE_DIR used as include directory in directory /home/mirror/work/darling/darling/src/motool used as include directory in directory /home/mirror/work/darling/darling/src/util used as include directory in directory /home/mirror/work/darling/darling/src/libmach-o used as include directory in directory /home/mirror/work/darling/darling/src/libdyld used as include directory in directory /home/mirror/work/darling/darling/src/dyld used as include directory in directory /home/mirror/work/darling/darling/src/dyld used as include directory in directory /home/mirror/work/darling/darling/src/libSystem used as include directory in directory /home/mirror/work/darling/darling/src/libltdl used as include directory in directory /home/mirror/work/darling/darling/src/Cocoa used as include directory in directory /home/mirror/work/darling/darling/src/libobjcdarwin used as include directory in directory /home/mirror/work/darling/darling/src/CoreFoundation used as include directory in directory /home/mirror/work/darling/darling/src/libncurses used as include directory in directory /home/mirror/work/darling/darling/src/CoreSecurity used as include directory in directory /home/mirror/work/darling/darling/src/CoreServices used as include directory in directory /home/mirror/work/darling/darling/src/ExceptionHandling used as include directory in directory /home/mirror/work/darling/darling/src/IOKit used as include directory in directory /home/mirror/work/darling/darling/src/Foundation used as include directory in directory /home/mirror/work/darling/darling/src/Carbon used as include directory in directory /home/mirror/work/darling/darling/src/CoreVideo used as include directory in directory /home/mirror/work/darling/darling/src/OpenGL used as include directory in directory /home/mirror/work/darling/darling/src/thin used as include directory in directory /home/mirror/work/darling/darling/src/thin used as include directory in directory /home/mirror/work/darling/darling/src/libstdc++darwin Configuring incomplete, errors occurred! How can I build the Darling project?

    Read the article

  • Windows Azure: Announcing release of Windows Azure SDK 2.2 (with lots of goodies)

    - by ScottGu
    Earlier today I blogged about a big update we made today to Windows Azure, and some of the great new features it provides. Today I’m also excited to also announce the release of the Windows Azure SDK 2.2. Today’s SDK release adds even more great features including: Visual Studio 2013 Support Integrated Windows Azure Sign-In support within Visual Studio Remote Debugging Cloud Services with Visual Studio Firewall Management support within Visual Studio for SQL Databases Visual Studio 2013 RTM VM Images for MSDN Subscribers Windows Azure Management Libraries for .NET Updated Windows Azure PowerShell Cmdlets and ScriptCenter The below post has more details on what’s available in today’s Windows Azure SDK 2.2 release.  Also head over to Channel 9 to see the new episode of the Visual Studio Toolbox show that will be available shortly, and which highlights these features in a video demonstration. Visual Studio 2013 Support Version 2.2 of the Window Azure SDK is the first official version of the SDK to support the final RTM release of Visual Studio 2013. If you installed the 2.1 SDK with the Preview of Visual Studio 2013 we recommend that you upgrade your projects to SDK 2.2.  SDK 2.2 also works side by side with the SDK 2.0 and SDK 2.1 releases on Visual Studio 2012: Integrated Windows Azure Sign In within Visual Studio Integrated Windows Azure Sign-In support within Visual Studio is one of the big improvements added with this Windows Azure SDK release.  Integrated sign-in support enables developers to develop/test/manage Windows Azure resources within Visual Studio without having to download or use management certificates.  You can now just right-click on the “Windows Azure” icon within the Server Explorer inside Visual Studio and choose the “Connect to Windows Azure” context menu option to connect to Windows Azure: Doing this will prompt you to enter the email address of the account you wish to sign-in with: You can use either a Microsoft Account (e.g. Windows Live ID) or an Organizational account (e.g. Active Directory) as the email.  The dialog will update with an appropriate login prompt depending on which type of email address you enter: Once you sign-in you’ll see the Windows Azure resources that you have permissions to manage show up automatically within the Visual Studio Server Explorer (and you can start using them): With this new integrated sign in experience you are now able to publish web apps, deploy VMs and cloud services, use Windows Azure diagnostics, and fully interact with your Windows Azure services within Visual Studio without the need for a management certificate.  All of the authentication is handled using the Windows Azure Active Directory associated with your Windows Azure account (details on this can be found in my earlier blog post). Integrating authentication this way end-to-end across the Service Management APIs + Dev Tools + Management Portal + PowerShell automation scripts enables a much more secure and flexible security model within Windows Azure, and makes it much more convenient to securely manage multiple developers + administrators working on a project.  It also allows organizations and enterprises to use the same authentication model that they use for their developers on-premises in the cloud.  It also ensures that employees who leave an organization immediately lose access to their company’s cloud based resources once their Active Directory account is suspended. Filtering/Subscription Management Once you login within Visual Studio, you can filter which Windows Azure subscriptions/regions are visible within the Server Explorer by right-clicking the “Filter Services” context menu within the Server Explorer.  You can also use the “Manage Subscriptions” context menu to mange your Windows Azure Subscriptions: Bringing up the “Manage Subscriptions” dialog allows you to see which accounts you are currently using, as well as which subscriptions are within them: The “Certificates” tab allows you to continue to import and use management certificates to manage Windows Azure resources as well.  We have not removed any functionality with today’s update – all of the existing scenarios that previously supported management certificates within Visual Studio continue to work just fine.  The new integrated sign-in support provided with today’s release is purely additive. Note: the SQL Database node and the Mobile Service node in Server Explorer do not support integrated sign-in at this time. Therefore, you will only see databases and mobile services under those nodes if you have a management certificate to authorize access to them.  We will enable them with integrated sign-in in a future update. Remote Debugging Cloud Resources within Visual Studio Today’s Windows Azure SDK 2.2 release adds support for remote debugging many types of Windows Azure resources. With live, remote debugging support from within Visual Studio, you are now able to have more visibility than ever before into how your code is operating live in Windows Azure.  Let’s walkthrough how to enable remote debugging for a Cloud Service: Remote Debugging of Cloud Services To enable remote debugging for your cloud service, select Debug as the Build Configuration on the Common Settings tab of your Cloud Service’s publish dialog wizard: Then click the Advanced Settings tab and check the Enable Remote Debugging for all roles checkbox: Once your cloud service is published and running live in the cloud, simply set a breakpoint in your local source code: Then use Visual Studio’s Server Explorer to select the Cloud Service instance deployed in the cloud, and then use the Attach Debugger context menu on the role or to a specific VM instance of it: Once the debugger attaches to the Cloud Service, and a breakpoint is hit, you’ll be able to use the rich debugging capabilities of Visual Studio to debug the cloud instance remotely, in real-time, and see exactly how your app is running in the cloud. Today’s remote debugging support is super powerful, and makes it much easier to develop and test applications for the cloud.  Support for remote debugging Cloud Services is available as of today, and we’ll also enable support for remote debugging Web Sites shortly. Firewall Management Support with SQL Databases By default we enable a security firewall around SQL Databases hosted within Windows Azure.  This ensures that only your application (or IP addresses you approve) can connect to them and helps make your infrastructure secure by default.  This is great for protection at runtime, but can sometimes be a pain at development time (since by default you can’t connect/manage the database remotely within Visual Studio if the security firewall blocks your instance of VS from connecting to it). One of the cool features we’ve added with today’s release is support that makes it easy to enable and configure the security firewall directly within Visual Studio.  Now with the SDK 2.2 release, when you try and connect to a SQL Database using the Visual Studio Server Explorer, and a firewall rule prevents access to the database from your machine, you will be prompted to add a firewall rule to enable access from your local IP address: You can simply click Add Firewall Rule and a new rule will be automatically added for you. In some cases, the logic to detect your local IP may not be sufficient (for example: you are behind a corporate firewall that uses a range of IP addresses) and you may need to set up a firewall rule for a range of IP addresses in order to gain access. The new Add Firewall Rule dialog also makes this easy to do.  Once connected you’ll be able to manage your SQL Database directly within the Visual Studio Server Explorer: This makes it much easier to work with databases in the cloud. Visual Studio 2013 RTM Virtual Machine Images Available for MSDN Subscribers Last week we released the General Availability Release of Visual Studio 2013 to the web.  This is an awesome release with a ton of new features. With today’s Windows Azure update we now have a set of pre-configured VM images of VS 2013 available within the Windows Azure Management Portal for use by MSDN customers.  This enables you to create a VM in the cloud with VS 2013 pre-installed on it in with only a few clicks: Windows Azure now provides the fastest and easiest way to get started doing development with Visual Studio 2013. Windows Azure Management Libraries for .NET (Preview) Having the ability to automate the creation, deployment, and tear down of resources is a key requirement for applications running in the cloud.  It also helps immensely when running dev/test scenarios and coded UI tests against pre-production environments. Today we are releasing a preview of a new set of Windows Azure Management Libraries for .NET.  These new libraries make it easy to automate tasks using any .NET language (e.g. C#, VB, F#, etc).  Previously this automation capability was only available through the Windows Azure PowerShell Cmdlets or to developers who were willing to write their own wrappers for the Windows Azure Service Management REST API. Modern .NET Developer Experience We’ve worked to design easy-to-understand .NET APIs that still map well to the underlying REST endpoints, making sure to use and expose the modern .NET functionality that developers expect today: Portable Class Library (PCL) support targeting applications built for any .NET Platform (no platform restriction) Shipped as a set of focused NuGet packages with minimal dependencies to simplify versioning Support async/await task based asynchrony (with easy sync overloads) Shared infrastructure for common error handling, tracing, configuration, HTTP pipeline manipulation, etc. Factored for easy testability and mocking Built on top of popular libraries like HttpClient and Json.NET Below is a list of a few of the management client classes that are shipping with today’s initial preview release: .NET Class Name Supports Operations for these Assets (and potentially more) ManagementClient Locations Credentials Subscriptions Certificates ComputeManagementClient Hosted Services Deployments Virtual Machines Virtual Machine Images & Disks StorageManagementClient Storage Accounts WebSiteManagementClient Web Sites Web Site Publish Profiles Usage Metrics Repositories VirtualNetworkManagementClient Networks Gateways Automating Creating a Virtual Machine using .NET Let’s walkthrough an example of how we can use the new Windows Azure Management Libraries for .NET to fully automate creating a Virtual Machine. I’m deliberately showing a scenario with a lot of custom options configured – including VHD image gallery enumeration, attaching data drives, network endpoints + firewall rules setup - to show off the full power and richness of what the new library provides. We’ll begin with some code that demonstrates how to enumerate through the built-in Windows images within the standard Windows Azure VM Gallery.  We’ll search for the first VM image that has the word “Windows” in it and use that as our base image to build the VM from.  We’ll then create a cloud service container in the West US region to host it within: We can then customize some options on it such as setting up a computer name, admin username/password, and hostname.  We’ll also open up a remote desktop (RDP) endpoint through its security firewall: We’ll then specify the VHD host and data drives that we want to mount on the Virtual Machine, and specify the size of the VM we want to run it in: Once everything has been set up the call to create the virtual machine is executed asynchronously In a few minutes we’ll then have a completely deployed VM running on Windows Azure with all of the settings (hard drives, VM size, machine name, username/password, network endpoints + firewall settings) fully configured and ready for us to use: Preview Availability via NuGet The Windows Azure Management Libraries for .NET are now available via NuGet. Because they are still in preview form, you’ll need to add the –IncludePrerelease switch when you go to retrieve the packages. The Package Manager Console screen shot below demonstrates how to get the entire set of libraries to manage your Windows Azure assets: You can also install them within your .NET projects by right clicking on the VS Solution Explorer and using the Manage NuGet Packages context menu command.  Make sure to select the “Include Prerelease” drop-down for them to show up, and then you can install the specific management libraries you need for your particular scenarios: Open Source License The new Windows Azure Management Libraries for .NET make it super easy to automate management operations within Windows Azure – whether they are for Virtual Machines, Cloud Services, Storage Accounts, Web Sites, and more.  Like the rest of the Windows Azure SDK, we are releasing the source code under an open source (Apache 2) license and it is hosted at https://github.com/WindowsAzure/azure-sdk-for-net/tree/master/libraries if you wish to contribute. PowerShell Enhancements and our New Script Center Today, we are also shipping Windows Azure PowerShell 0.7.0 (which is a separate download). You can find the full change log here. Here are some of the improvements provided with it: Windows Azure Active Directory authentication support Script Center providing many sample scripts to automate common tasks on Windows Azure New cmdlets for Media Services and SQL Database Script Center Windows Azure enables you to script and automate a lot of tasks using PowerShell.  People often ask for more pre-built samples of common scenarios so that they can use them to learn and tweak/customize. With this in mind, we are excited to introduce a new Script Center that we are launching for Windows Azure. You can learn about how to scripting with Windows Azure with a get started article. You can then find many sample scripts across different solutions, including infrastructure, data management, web, and more: All of the sample scripts are hosted on TechNet with links from the Windows Azure Script Center. Each script is complete with good code comments, detailed descriptions, and examples of usage. Summary Visual Studio 2013 and the Windows Azure SDK 2.2 make it easier than ever to get started developing rich cloud applications. Along with the Windows Azure Developer Center’s growing set of .NET developer resources to guide your development efforts, today’s Windows Azure SDK 2.2 release should make your development experience more enjoyable and efficient. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • User Experience Fundamentals

    - by ultan o'broin
    Understanding what user experience means in the modern work environment is central to building great-looking usable applications on the desktop or mobile devices. What better place to start a series of blog posts on such Applications User Experience team enablement for customers and partners than by sharing what the term really means, writes team member Karen Scipi. Applications UX have gained valuable insights into developing a user experience that reflects the experience of today’s worker. We have observed real workers performing real tasks in real work environments, and we have developed a set of new standards of application design that have been scientifically proven to be beneficial to enable today’s workers. We share such expertise to enable our customers and partners to benefit from our insights and to further their return on investment when building Oracle applications. So, What is User Experience? ?The user interface (UI) is about the on-screen user context provided by the layout of widgets (such as icons, fields, and buttons and more) and the visual impact of colors, typographic choices, and so on. The UI comprises the “look and feel” of the application that users interact with, and reflects, in essence, the most immediate aspects of usability we can now all relate to.  User experience, on the other hand, is about understanding the whole context of the world of work, how workers go about completing tasks, crossing all sorts of boundaries along the way. It is a study of how business processes and workers goals coincide, how users work with technology or other tools to get their jobs done, their interactions with other users, and their response to the technical, physical, and cultural environment around them. User experience is all about how users work—their work environments, office layouts, desk tools, types of devices, their working day, and more. Even their job aids, such as sticky notes, offer insight for UX innovation. User experience matters because businesses needs to be efficient, work must be productive, and users now demand to be satisfied by the applications they work with. In simple terms, tasks finished quickly and accurately for a business evokes organization and worker satisfaction, which in turn makes workers feel good and more than willing to use the application again tomorrow. Design Principles for the Enterprise Worker The consumerization of information technology has raised the bar for enterprise applications. Applications must be consistent, simple, intuitive, but above all contextual, reflecting how and when workers work, in the office or on the go. For example, the Google search experience with its type-ahead keyword-prompting feature is how workers expect to be able to discover enterprise information, too. Type-ahead in PeopleSoft 9.1 To build software that enables workers to be productive, our design principles meet modern work requirements about consistency, with well-organized, context-driven information, geared for a working world of discovery and collaboration. Our applications must also behave in a simple, web-like way just like Amazon, Google, and Apple products that workers use at home or on the go. Our user experience must also reflect workers’ needs for flexibility and well-loved enterprise practices such as using popular desktop tools like Microsoft Excel or Outlook as required. Building User Experience Productively The building blocks of Oracle Fusion Applications are the user experience design patterns. Based on the Oracle Fusion Middleware technology used to build Oracle Fusion Applications, the patterns are reusable solutions to common usability challenges that ADF developers typically face as they build applications, extensions, and integrations. Developers use the patterns as part of their Oracle toolkits to realize great usability consistently and in a productive way. Our design pattern creation process is informed by user experience research and science, an understanding of our technology’s capabilities, the demands for simplification and intuitiveness from users, and the best of Oracle’s acquisitions strategy (an injection of smart people and smart innovation). The patterns are supported by usage guidelines and are tested in our labs and assembled into a library of proven resources we used to build own Oracle Fusion Applications and other Oracle applications user experiences. The design patterns library is now available to the ADF community and to our partners and customers, for free. Developers with ADF skills and other technology skills can now offer more than just coding and functionality and still use the best in enterprise methodologies to ensure that a great user experience is easily applied, scaled, and maintained, whether it be for SaaS or on-premise deployments for Oracle Fusion Applications, for applications coexistence, or for partner integrations scenarios.  Oracle partners and customers already using our design patterns to build solutions and win business in smart and productive ways are now sharing their experiences and insights on pattern use to benefit your entire business. Applications UX is going global with the message and the means. Our hands-on user experience enablement through ADF  is expanding. So, stay tuned to Misha Vaughan's Voice of User Experience (VOX) blog and follow along on Twitter at @usableapps for news of outreach events and other learning opportunities. Interested in Learning More? Oracle Fusion Applications User Experience Patterns and Guidelines Library Shout-outs for Oracle UX Design Patterns Oracle Fusion Applications User Experience Design Patterns: Productivity Realized

    Read the article

  • How to Share Files Between User Accounts on Windows, Linux, or OS X

    - by Chris Hoffman
    Your operating system provides each user account with its own folders when you set up several different user accounts on the same computer. Shared folders allow you to share files between user accounts. This process works similarly on Windows, Linux, and Mac OS X. These are all powerful multi-user operating systems with similar folder and file permission systems. Windows On Windows, the “Public” user’s folders are accessible to all users. You’ll find this folder under C:\Users\Public by default. Files you place in any of these folders will be accessible to other users, so it’s a good way to share music, videos, and other types of files between users on the same computer. Windows even adds these folders to each user’s libraries by default. For example, a user’s Music library contains the user’s music folder under C:\Users\NAME\as well as the public music folder under C:\Users\Public\. This makes it easy for each user to find the shared, public files. It also makes it easy to make a file public — just drag and drop a file from the user-specific folder to the public folder in the library. Libraries are hidden by default on Windows 8.1, so you’ll have to unhide them to do this. These Public folders can also be used to share folders publically on the local network. You’ll find the Public folder sharing option under Advanced sharing settings in the Network and Sharing Control Panel. You could also choose to make any folder shared between users, but this will require messing with folder permissions in Windows. To do this, right-click a folder anywhere in the file system and select Properties. Use the options on the Security tab to change the folder’s permissions and make it accessible to different user accounts. You’ll need administrator access to do this. Linux This is a bit more complicated on Linux, as typical Linux distributions don’t come with a special user folder all users have read-write access to. The Public folder on Ubuntu is for sharing files between computers on a network. You can use Linux’s permissions system to give other user accounts read or read-write access to specific folders. The process below is for Ubuntu 14.04, but it should be identical on any other Linux distribution using GNOME with the Nautilus file manager. It should be similar for other desktop environments, too. Locate the folder you want to make accessible to other users, right-click it, and select Properties. On the Permissions tab, give “Others” the “Create and delete files” permission. Click the Change Permissions for Enclosed Files button and give “Others” the “Read and write” and “Create and Delete Files” permissions. Other users on the same computer will then have read and write access to your folder. They’ll find it under /home/YOURNAME/folder under Computer. To speed things up, they can create a link or bookmark to the folder so they always have easy access to it. Mac OS X Mac OS X creates a special Shared folder that all user accounts have access to. This folder is intended for sharing files between different user accounts. It’s located at /Users/Shared. To access it, open the Finder and click Go > Computer. Navigate to Macintosh HD > Users > Shared. Files you place in this folder can be accessed by any user account on your Mac. These tricks are useful if you’re sharing a computer with other people and you all have your own user accounts — maybe your kids have their own limited accounts. You can share a music library, downloads folder, picture archive, videos, documents, or anything else you like without keeping duplicate copies.

    Read the article

  • SQL SERVER – Number-Crunching with SQL Server – Exceed the Functionality of Excel

    - by Pinal Dave
    Imagine this. Your users have developed an Excel spreadsheet that extracts data from your SQL Server database, manipulates that data through the use of Excel formulas and, possibly, some VBA code which is then used to calculate P&L, hedging requirements or even risk numbers. Management comes to you and tells you that they need to get rid of the spreadsheet and that the results of the spreadsheet calculations need to be persisted on the database. SQL Server has a very small set of functions for analyzing data. Excel has hundreds of functions for analyzing data, with many of them focused on specific financial and statistical calculations. Is it even remotely possible that you can use SQL Server to replace the complex calculations being done in a spreadsheet? Westclintech has developed a library of functions that match or exceed the functionality of Excel’s functions and contains many functions that are not available in EXCEL. Their XLeratorDB library of functions contains over 700 functions that can be incorporated into T-SQL statements. XLeratorDB takes advantage of the SQL CLR architecture introduced in SQL Server 2005. SQL CLR permits managed code to be compiled into the database and run alongside built-in SQL Server functions like COUNT or SUM. The Westclintech developers have taken advantage of this architecture to bring robust analytical functions to the database. In our hypothetical spreadsheet, let’s assume that our users are using the YIELD function and that the data are extracted from a table in our database called BONDS. Here’s what the spreadsheet might look like. We go to column G and see that it contains the following formula. Obviously, SQL Server does not offer a native YIELD function. However, with XLeratorDB we can replicate this calculation in SQL Server with the following statement: SELECT *, wct.YIELD(CAST(GETDATE() AS date),Maturity,Rate,Price,100,Frequency,Basis) AS YIELD FROM BONDS This produces the following result. This illustrates one of the best features about XLeratorDB; it is so easy to use. Since I knew that the spreadsheet was using the YIELD function I could use the same function with the same calling structure to do the calculation in SQL Server. I didn’t need to know anything at all about the mechanics of calculating the yield on a bond. It was pretty close to cut and paste. In fact, that’s one way to construct the SQL. Just copy the function call from the cell in the spreadsheet and paste it into SMS and change the cell references to column names. I built the SQL for this query by starting with this. SELECT * ,YIELD(TODAY(),B2,C2,D2,100,E2,F2) FROM BONDS I then changed the cell references to column names. SELECT * --,YIELD(TODAY(),B2,C2,D2,100,E2,F2) ,YIELD(TODAY(),Maturity,Rate,Price,100,Frequency,Basis) FROM BONDS Finally, I replicated the TODAY() function using GETDATE() and added the schema name to the function name. SELECT * --,YIELD(TODAY(),B2,C2,D2,100,E2,F2) --,YIELD(TODAY(),Maturity,Rate,Price,100,Frequency,Basis) ,wct.YIELD(GETDATE(),Maturity,Rate,Price,100,Frequency,Basis) FROM BONDS Then I am able to execute the statement returning the results seen above. The XLeratorDB libraries are heavy on financial, statistical, and mathematical functions. Where there is an analog to an Excel function, the XLeratorDB function uses the same naming conventions and calling structure as the Excel function, but there are also hundreds of additional functions for SQL Server that are not found in Excel. You can find the functions by opening Object Explorer in SQL Server Management Studio (SSMS) and expanding the Programmability folder under the database where the functions have been installed. The  Functions folder expands to show 3 sub-folders: Table-valued Functions; Scalar-valued functions, Aggregate Functions, and System Functions. You can expand any of the first three folders to see the XLeratorDB functions. Since the wct.YIELD function is a scalar function, we will open the Scalar-valued Functions folder, scroll down to the wct.YIELD function and and click the plus sign (+) to display the input parameters. The functions are also Intellisense-enabled, with the input parameters displayed directly in the query tab. The Westclintech website contains documentation for all the functions including examples that can be copied directly into a query window and executed. There are also more one hundred articles on the site which go into more detail about how some of the functions work and demonstrate some of the extensive business processes that can be done in SQL Server using XLeratorDB functions and some T-SQL. XLeratorDB is organized into libraries: finance, statistics; math; strings; engineering; and financial options. There is also a windowing library for SQL Server 2005, 2008, and 2012 which provides functions for calculating things like running and moving averages (which were introduced in SQL Server 2012), FIFO inventory calculations, financial ratios and more, without having to use triangular joins. To get started you can download the XLeratorDB 15-day free trial from the Westclintech web site. It is a fully-functioning, unrestricted version of the software. If you need more than 15 days to evaluate the software, you can simply download another 15-day free trial. XLeratorDB is an easy and cost-effective way to start adding sophisticated data analysis to your SQL Server database without having to know anything more than T-SQL. Get XLeratorDB Today and Now! Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Excel

    Read the article

  • What should you bring to the table as a Software Architect?

    - by Ahmad Mageed
    There have been many questions with good answers about the role of a Software Architect (SA) on StackOverflow and Programmers SE. I am trying to ask a slightly more focused question than those. The very definition of a SA is broad so for the sake of this question let's define a SA as follows: A Software Architect guides the overall design of a project, gets involved with coding efforts, conducts code reviews, and selects the technologies to be used. In other words, I am not talking about managerial rest and vest at the crest (further rhyming words elided) types of SAs. If I were to pursue any type of SA position I don't want to be away from coding. I might sacrifice some time to interface with clients and Business Analysts etc., but I am still technically involved and I'm not just aware of what's going on through meetings. With these points in mind, what should a SA bring to the table? Should they come in with a mentality of "laying down the law" (so to speak) and enforcing the usage of certain tools to fit "their way," i.e., coding guidelines, source control, patterns, UML documentation, etc.? Or should they specify initial direction and strategy then be laid back and jump in as needed to correct the ship's direction? Depending on the organization this might not work. An SA who relies on TFS to enforce everything may struggle to implement their plan at an employer that only uses StarTeam. Similarly, an SA needs to be flexible depending on the stage of the project. If it's a fresh project they have more choices, whereas they might have less for existing projects. Here are some SA stories I have experienced as a way of sharing some background in hopes that answers to my questions might also shed some light on these issues: I've worked with an SA who code reviewed literally every single line of code of the team. The SA would do this for not just our project but other projects in the organization (imagine the time spent on this). At first it was useful to enforce certain standards, but later it became crippling. FxCop was how the SA would find issues. Don't get me wrong, it was a good way to teach junior developers and force them to think of the consequences of their chosen approach, but for senior developers it was seen as somewhat draconian. One particular SA was against the use of a certain library, claiming it was slow. This forced us to write tons of code to achieve things differently while the other library would've saved us a lot of time. Fast forward to the last month of the project and the clients were complaining about performance. The only solution was to change certain functionality to use the originally ignored approach despite early warnings from the devs. By that point a lot of code was thrown out and not reusable, leading to overtime and stress. Sadly the estimates used for the project were based on the old approach which my project was forbidden from using so it wasn't an appropriate indicator for estimation. I would hear the PM say "we've done this before," when in reality they had not since we were using a new library and the devs working on it were not the same devs used on the old project. The SA who would enforce the usage of DTOs, DOs, BOs, Service layers and so on for all projects. New devs had to learn this architecture and the SA adamantly enforced usage guidelines. Exceptions to usage guidelines were made when it was absolutely difficult to follow the guidelines. The SA was grounded in their approach. Classes for DTOs and all CRUD operations were generated via CodeSmith and database schemas were another similar ball of wax. However, having used this setup everywhere, the SA was not open to new technologies such as LINQ to SQL or Entity Framework. I am not using this post as a platform for venting. There were positive and negative aspects to my experiences with the SA stories mentioned above. My questions boil down to: What should an SA bring to the table? How can they strike a balance in their decision making? Should one approach an SA job (as defined earlier) with the mentality that they must enforce certain ground rules? Anything else to consider? Thanks! I'm sure these job tasks are easily extended to people who are senior devs or technical leads, so feel free to answer at that capacity as well.

    Read the article

  • C#/.NET Little Wonders: The Useful But Overlooked Sets

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  Today we will be looking at two set implementations in the System.Collections.Generic namespace: HashSet<T> and SortedSet<T>.  Even though most people think of sets as mathematical constructs, they are actually very useful classes that can be used to help make your application more performant if used appropriately. A Background From Math In mathematical terms, a set is an unordered collection of unique items.  In other words, the set {2,3,5} is identical to the set {3,5,2}.  In addition, the set {2, 2, 4, 1} would be invalid because it would have a duplicate item (2).  In addition, you can perform set arithmetic on sets such as: Intersections: The intersection of two sets is the collection of elements common to both.  Example: The intersection of {1,2,5} and {2,4,9} is the set {2}. Unions: The union of two sets is the collection of unique items present in either or both set.  Example: The union of {1,2,5} and {2,4,9} is {1,2,4,5,9}. Differences: The difference of two sets is the removal of all items from the first set that are common between the sets.  Example: The difference of {1,2,5} and {2,4,9} is {1,5}. Supersets: One set is a superset of a second set if it contains all elements that are in the second set. Example: The set {1,2,5} is a superset of {1,5}. Subsets: One set is a subset of a second set if all the elements of that set are contained in the first set. Example: The set {1,5} is a subset of {1,2,5}. If We’re Not Doing Math, Why Do We Care? Now, you may be thinking: why bother with the set classes in C# if you have no need for mathematical set manipulation?  The answer is simple: they are extremely efficient ways to determine ownership in a collection. For example, let’s say you are designing an order system that tracks the price of a particular equity, and once it reaches a certain point will trigger an order.  Now, since there’s tens of thousands of equities on the markets, you don’t want to track market data for every ticker as that would be a waste of time and processing power for symbols you don’t have orders for.  Thus, we just want to subscribe to the stock symbol for an equity order only if it is a symbol we are not already subscribed to. Every time a new order comes in, we will check the list of subscriptions to see if the new order’s stock symbol is in that list.  If it is, great, we already have that market data feed!  If not, then and only then should we subscribe to the feed for that symbol. So far so good, we have a collection of symbols and we want to see if a symbol is present in that collection and if not, add it.  This really is the essence of set processing, but for the sake of comparison, let’s say you do a list instead: 1: // class that handles are order processing service 2: public sealed class OrderProcessor 3: { 4: // contains list of all symbols we are currently subscribed to 5: private readonly List<string> _subscriptions = new List<string>(); 6:  7: ... 8: } Now whenever you are adding a new order, it would look something like: 1: public PlaceOrderResponse PlaceOrder(Order newOrder) 2: { 3: // do some validation, of course... 4:  5: // check to see if already subscribed, if not add a subscription 6: if (!_subscriptions.Contains(newOrder.Symbol)) 7: { 8: // add the symbol to the list 9: _subscriptions.Add(newOrder.Symbol); 10: 11: // do whatever magic is needed to start a subscription for the symbol 12: } 13:  14: // place the order logic! 15: } What’s wrong with this?  In short: performance!  Finding an item inside a List<T> is a linear - O(n) – operation, which is not a very performant way to find if an item exists in a collection. (I used to teach algorithms and data structures in my spare time at a local university, and when you began talking about big-O notation you could immediately begin to see eyes glossing over as if it was pure, useless theory that would not apply in the real world, but I did and still do believe it is something worth understanding well to make the best choices in computer science). Let’s think about this: a linear operation means that as the number of items increases, the time that it takes to perform the operation tends to increase in a linear fashion.  Put crudely, this means if you double the collection size, you might expect the operation to take something like the order of twice as long.  Linear operations tend to be bad for performance because they mean that to perform some operation on a collection, you must potentially “visit” every item in the collection.  Consider finding an item in a List<T>: if you want to see if the list has an item, you must potentially check every item in the list before you find it or determine it’s not found. Now, we could of course sort our list and then perform a binary search on it, but sorting is typically a linear-logarithmic complexity – O(n * log n) - and could involve temporary storage.  So performing a sort after each add would probably add more time.  As an alternative, we could use a SortedList<TKey, TValue> which sorts the list on every Add(), but this has a similar level of complexity to move the items and also requires a key and value, and in our case the key is the value. This is why sets tend to be the best choice for this type of processing: they don’t rely on separate keys and values for ordering – so they save space – and they typically don’t care about ordering – so they tend to be extremely performant.  The .NET BCL (Base Class Library) has had the HashSet<T> since .NET 3.5, but at that time it did not implement the ISet<T> interface.  As of .NET 4.0, HashSet<T> implements ISet<T> and a new set, the SortedSet<T> was added that gives you a set with ordering. HashSet<T> – For Unordered Storage of Sets When used right, HashSet<T> is a beautiful collection, you can think of it as a simplified Dictionary<T,T>.  That is, a Dictionary where the TKey and TValue refer to the same object.  This is really an oversimplification, but logically it makes sense.  I’ve actually seen people code a Dictionary<T,T> where they store the same thing in the key and the value, and that’s just inefficient because of the extra storage to hold both the key and the value. As it’s name implies, the HashSet<T> uses a hashing algorithm to find the items in the set, which means it does take up some additional space, but it has lightning fast lookups!  Compare the times below between HashSet<T> and List<T>: Operation HashSet<T> List<T> Add() O(1) O(1) at end O(n) in middle Remove() O(1) O(n) Contains() O(1) O(n)   Now, these times are amortized and represent the typical case.  In the very worst case, the operations could be linear if they involve a resizing of the collection – but this is true for both the List and HashSet so that’s a less of an issue when comparing the two. The key thing to note is that in the general case, HashSet is constant time for adds, removes, and contains!  This means that no matter how large the collection is, it takes roughly the exact same amount of time to find an item or determine if it’s not in the collection.  Compare this to the List where almost any add or remove must rearrange potentially all the elements!  And to find an item in the list (if unsorted) you must search every item in the List. So as you can see, if you want to create an unordered collection and have very fast lookup and manipulation, the HashSet is a great collection. And since HashSet<T> implements ICollection<T> and IEnumerable<T>, it supports nearly all the same basic operations as the List<T> and can use the System.Linq extension methods as well. All we have to do to switch from a List<T> to a HashSet<T>  is change our declaration.  Since List and HashSet support many of the same members, chances are we won’t need to change much else. 1: public sealed class OrderProcessor 2: { 3: private readonly HashSet<string> _subscriptions = new HashSet<string>(); 4:  5: // ... 6:  7: public PlaceOrderResponse PlaceOrder(Order newOrder) 8: { 9: // do some validation, of course... 10: 11: // check to see if already subscribed, if not add a subscription 12: if (!_subscriptions.Contains(newOrder.Symbol)) 13: { 14: // add the symbol to the list 15: _subscriptions.Add(newOrder.Symbol); 16: 17: // do whatever magic is needed to start a subscription for the symbol 18: } 19: 20: // place the order logic! 21: } 22:  23: // ... 24: } 25: Notice, we didn’t change any code other than the declaration for _subscriptions to be a HashSet<T>.  Thus, we can pick up the performance improvements in this case with minimal code changes. SortedSet<T> – Ordered Storage of Sets Just like HashSet<T> is logically similar to Dictionary<T,T>, the SortedSet<T> is logically similar to the SortedDictionary<T,T>. The SortedSet can be used when you want to do set operations on a collection, but you want to maintain that collection in sorted order.  Now, this is not necessarily mathematically relevant, but if your collection needs do include order, this is the set to use. So the SortedSet seems to be implemented as a binary tree (possibly a red-black tree) internally.  Since binary trees are dynamic structures and non-contiguous (unlike List and SortedList) this means that inserts and deletes do not involve rearranging elements, or changing the linking of the nodes.  There is some overhead in keeping the nodes in order, but it is much smaller than a contiguous storage collection like a List<T>.  Let’s compare the three: Operation HashSet<T> SortedSet<T> List<T> Add() O(1) O(log n) O(1) at end O(n) in middle Remove() O(1) O(log n) O(n) Contains() O(1) O(log n) O(n)   The MSDN documentation seems to indicate that operations on SortedSet are O(1), but this seems to be inconsistent with its implementation and seems to be a documentation error.  There’s actually a separate MSDN document (here) on SortedSet that indicates that it is, in fact, logarithmic in complexity.  Let’s put it in layman’s terms: logarithmic means you can double the collection size and typically you only add a single extra “visit” to an item in the collection.  Take that in contrast to List<T>’s linear operation where if you double the size of the collection you double the “visits” to items in the collection.  This is very good performance!  It’s still not as performant as HashSet<T> where it always just visits one item (amortized), but for the addition of sorting this is a good thing. Consider the following table, now this is just illustrative data of the relative complexities, but it’s enough to get the point: Collection Size O(1) Visits O(log n) Visits O(n) Visits 1 1 1 1 10 1 4 10 100 1 7 100 1000 1 10 1000   Notice that the logarithmic – O(log n) – visit count goes up very slowly compare to the linear – O(n) – visit count.  This is because since the list is sorted, it can do one check in the middle of the list, determine which half of the collection the data is in, and discard the other half (binary search).  So, if you need your set to be sorted, you can use the SortedSet<T> just like the HashSet<T> and gain sorting for a small performance hit, but it’s still faster than a List<T>. Unique Set Operations Now, if you do want to perform more set-like operations, both implementations of ISet<T> support the following, which play back towards the mathematical set operations described before: IntersectWith() – Performs the set intersection of two sets.  Modifies the current set so that it only contains elements also in the second set. UnionWith() – Performs a set union of two sets.  Modifies the current set so it contains all elements present both in the current set and the second set. ExceptWith() – Performs a set difference of two sets.  Modifies the current set so that it removes all elements present in the second set. IsSupersetOf() – Checks if the current set is a superset of the second set. IsSubsetOf() – Checks if the current set is a subset of the second set. For more information on the set operations themselves, see the MSDN description of ISet<T> (here). What Sets Don’t Do Don’t get me wrong, sets are not silver bullets.  You don’t really want to use a set when you want separate key to value lookups, that’s what the IDictionary implementations are best for. Also sets don’t store temporal add-order.  That is, if you are adding items to the end of a list all the time, your list is ordered in terms of when items were added to it.  This is something the sets don’t do naturally (though you could use a SortedSet with an IComparer with a DateTime but that’s overkill) but List<T> can. Also, List<T> allows indexing which is a blazingly fast way to iterate through items in the collection.  Iterating over all the items in a List<T> is generally much, much faster than iterating over a set. Summary Sets are an excellent tool for maintaining a lookup table where the item is both the key and the value.  In addition, if you have need for the mathematical set operations, the C# sets support those as well.  The HashSet<T> is the set of choice if you want the fastest possible lookups but don’t care about order.  In contrast the SortedSet<T> will give you a sorted collection at a slight reduction in performance.   Technorati Tags: C#,.Net,Little Wonders,BlackRabbitCoder,ISet,HashSet,SortedSet

    Read the article

< Previous Page | 213 214 215 216 217 218 219 220 221 222 223 224  | Next Page >