Search Results

Search found 5521 results on 221 pages for 'deeper understanding'.

Page 219/221 | < Previous Page | 215 216 217 218 219 220 221  | Next Page >

  • What does a Software Developer actually do?

    - by chobo2
    Hi I am graduating from my Computer Science degree in a few weeks from now!! I started to look for my first job. For the last couple years I gotten really into web programming(Asp.net). My first choice would be to get a junior asp.net MVC developer but I don't any companies in my area use MVC yet or if they do they are not hiring. So my second choice would be a junior asp.net Webforms developer. My other choices after that would be forms applications, mobile applications using .Net and C#. As you can see I am looking for something with .Net. I spent the last couple years doing .Net projects for school, on my free time and love the Language and it would pain me right now to switch to something like php. So now I found a posting in my area for an Entry Software Developer. I like the fact that they are using .net and that it is entry job(I never worked in this industry and never had more then like a tutoring job so I want to for like intermediate jobs). Posting Are you looking for an exciting challenge within a dynamic, people-oriented culture where you can launch your technical career? Company Name Inc. is a technology consulting company, located in Canada, that designs, develops, and delivers real-time interactive applications accessed via the Internet as well as back-end tools to support these applications. Company Name provides a combination of out-of-the-box and customized solutions to an expanding list of partners and customers. POSITION SUMMARY As a member of our team, the successful candidate will be responsible for helping us increase the quality and stability of our software systems by working jointly and directly with both the Software Development teams and the QA Team. The primary mission of this role will be to substantially enhance our test automation suite. The incumbent will design and program automated tests (unit, integration, system, stress and load) in Visual Studio using C# and will develop sound processes that help us identify and resolve defects as early as possible. The successful incumbent will help us improve and enhance system functionality, reliability, performance and scalability. This role is specifically designed for an eager, bright, new graduate who is looking for a stepping stone into a software engineering role. We promote from within and invite new graduates to apply for this important position - which may lead to new opportunities. We also offer a generous professional development plan to help you on your way. You will be a key part of a team of experts that is responsible for improving the quality of our software by: • Designing, writing, and executing test plans and programmatic tests in Visual Studio using C# and NUnit for functional testing of our code, new features, regression, and performance test procedures. • Working with the engineers to design and build the stress and load testing framework which emulates tens and even hundreds of thousands of concurrent users via a distributed network interfacing with our Load Testing Lab. • Interfacing with both the Development Team and the QA Team to ensure risks are identified and managed. • Mentoring and leading the QA Team in programmatic test automation technologies and tools. MUST HAVE SKILLS / QUALIFICATIONS: • Diploma or higher Degree in Computer Science, or equivalent formal training. • Fundamental C# programming skills. • Knowledge of Internet technologies and Microsoft Windows platforms. • Knowledge of PC hardware. • Excellent communication skills (both oral and written). • Self-starter who takes initiative, requires minimal supervision, can handle multiple simultaneous tasks. • Detail-oriented, able to concentrate, and work quickly. • Proven diagnostic, analytical, and problem solving skills. NICE TO HAVE SKILLS: • Exposure to Visual Studio Team System or Visual Studio Test Edition. • Exposure in C# using NUnit. • Exposure to NUnit, HTTPUnit, and other automation tool suites. • Exposure to Performance/Stress/Load Testing. • Good understanding of relational databases (MS SQL Server). • Familiar with video and online multi-player games. As part of our team you will have the opportunity to work with a supportive team of experts, drive your own success, and ride the wave as we continually expand our team of experts. If you are interested in this opportunity, please send your resume to [email protected] with “Entry Level Software Developer” in the subject line. So that is the posting. To me it sounds like it is QA job. I don't have anything against QA jobs but alot of them seems to be your just clicking buttons and running scripts. Is this what a typical software developer does? Like I am so on the fence to apply for this job. On one side I am not sure how much programming I would be doing. Like I want to be at least half the time programming otherwise my skills will never improve since I will never be programming in teams and stuff. At the same time I have no experience in the industry so on the other side I am thinking just go for it and then maybe a year later try to get a full programming job(provided that I got the job). Yet if I am not programming in that job then that experience will not help me for the next job I find as I will be back a square one.

    Read the article

  • Delphi Pascal - Using SetFilePointerEx and GetFileSizeEx, Getting Physical Media exact size when reading as a file

    - by SuicideClutchX2
    I am having trouble understanding how to delcare GetFileSizeEx and SetFilePointerEx in Delphi 2009 so that I can use them since they are not in the RTL or Windows.pas. I was able to compile with the following: function GetFileSizeEx(hFile: THandle; lpFileSizeHigh: Pointer): DWORD; external 'kernel32'; Then using GetFileSizeEx(PD, Pointer(DriveSize)); to get the size. But could not get it to work, the disk handle I am using is valid and I have had no problem reading the data or working under the 2gb mark with the older API's. GetFileSize of course returns 4294967295. I have had greater trouble trying to use SetFilePointerEx with the data types it uses. The overall project needs to read the data from a flash card, which is not a problem at all I can do this. My problem is that I can not find the length or size of the media I will be reading. I have code I have used in the past to do this with media under 2GB. But now that I need to read media over 2GB it is a problem. If you still dont understand I am dumping a card with all data including the boot record, etc. This is the code I would normally use to read from the physical disk to grab say the boot record and dump it to file: SetFilePointer(PD,0,nil,FILE_BEGIN); SetLength(Buffer,512); ReadFile(PD,Buffer[0],512,BytesReturned,nil); I just need to figure out how to find the end of an 8gb card and so on as well as being able to set a file pointer beyond the 2gb barrier. I guess any help in the external declarations as well as understand the values that SetFilePointerEx uses (I do not understand the whole High Low thing) would be of great help. var Form1: TForm1; function GetFileSizeEx(hFile: THandle; var FileSize: Int64): DWORD; stdcall; external 'kernel32'; implementation {$R *.dfm} function GetLD(Drive: Char): Cardinal; var Buffer : String; begin Buffer := Format('\\.\%s:',[Drive]); Result := CreateFile(PChar(Buffer),GENERIC_READ Or GENERIC_WRITE,FILE_SHARE_READ,nil,OPEN_EXISTING,0,0); If Result = INVALID_HANDLE_VALUE Then begin Result := CreateFile(PChar(Buffer),GENERIC_READ,FILE_SHARE_READ,nil,OPEN_EXISTING,0,0); end; end; function GetPD(Drive: Byte): Cardinal; var Buffer : String; begin If Drive = 0 Then begin Result := INVALID_HANDLE_VALUE; Exit; end; Buffer := Format('\\.\PHYSICALDRIVE%d',[Drive]); Result := CreateFile(PChar(Buffer),GENERIC_READ Or GENERIC_WRITE,FILE_SHARE_READ,nil,OPEN_EXISTING,0,0); If Result = INVALID_HANDLE_VALUE Then begin Result := CreateFile(PChar(Buffer),GENERIC_READ,FILE_SHARE_READ,nil,OPEN_EXISTING,0,0); end; end; function GetPhysicalDiskNumber(Drive: Char): Byte; var LD : DWORD; DiskExtents : PVolumeDiskExtents; DiskExtent : TDiskExtent; BytesReturned : Cardinal; begin Result := 0; LD := GetLD(Drive); If LD = INVALID_HANDLE_VALUE Then Exit; Try DiskExtents := AllocMem(Max_Path); DeviceIOControl(LD,IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS,nil,0,DiskExtents,Max_Path,BytesReturned,nil); If DiskExtents^.NumberOfDiskExtents > 0 Then begin DiskExtent := DiskExtents^.Extents[0]; Result := DiskExtent.DiskNumber; end; Finally CloseHandle(LD); end; end; procedure TForm1.Button1Click(Sender: TObject); var PD : DWORD; BytesReturned : Cardinal; Buffer : Array Of Byte; myFile: File; DriveSize: Int64; begin PD := GetPD(GetPhysicalDiskNumber(Edit1.Text[1])); If PD = INVALID_HANDLE_VALUE Then Exit; Try GetFileSizeEx(PD, DriveSize); //SetFilePointer(PD,0,nil,FILE_BEGIN); //etLength(Buffer,512); //ZeroMemory(@Buffer,SizeOf(Buffer)); //ReadFile(PD,Buffer[0],512,BytesReturned,nil); //AssignFile(myFile, 'StickDump.bin'); //ReWrite(myFile, 512); //BlockWrite(myFile, Buffer[0], 1); //CloseFile(myFile); Finally CloseHandle(PD); End; end;

    Read the article

  • std::basic_stringstream<unsigned char> won't compile with MSVC 10

    - by Michael J
    I'm trying to get UTF-8 chars to co-exist with ANSI 8-bit chars. My strategy has been to represent utf-8 chars as unsigned char so that appropriate overloads of functions can be used for the two character types. e.g. namespace MyStuff { typedef uchar utf8_t; typedef std::basic_string<utf8_t> U8string; } void SomeFunc(std::string &s); void SomeFunc(std::wstring &s); void SomeFunc(MyStuff::U8string &s); This all works pretty well until I try to use a stringstream. std::basic_ostringstream<MyStuff::utf8_t> ostr; ostr << 1; MSVC Visual C++ Express V10 won't compile this: c:\program files\microsoft visual studio 10.0\vc\include\xlocmon(213): warning C4273: 'id' : inconsistent dll linkage c:\program files\microsoft visual studio 10.0\vc\include\xlocnum(65) : see previous definition of 'public: static std::locale::id std::numpunct<unsigned char>::id' c:\program files\microsoft visual studio 10.0\vc\include\xlocnum(65) : while compiling class template static data member 'std::locale::id std::numpunct<_Elem>::id' with [ _Elem=Tk::utf8_t ] c:\program files\microsoft visual studio 10.0\vc\include\xlocnum(1149) : see reference to function template instantiation 'const _Facet &std::use_facet<std::numpunct<_Elem>>(const std::locale &)' being compiled with [ _Facet=std::numpunct<Tk::utf8_t>, _Elem=Tk::utf8_t ] c:\program files\microsoft visual studio 10.0\vc\include\xlocnum(1143) : while compiling class template member function 'std::ostreambuf_iterator<_Elem,_Traits> std::num_put<_Elem,_OutIt>:: do_put(_OutIt,std::ios_base &,_Elem,std::_Bool) const' with [ _Elem=Tk::utf8_t, _Traits=std::char_traits<Tk::utf8_t>, _OutIt=std::ostreambuf_iterator<Tk::utf8_t,std::char_traits<Tk::utf8_t>> ] c:\program files\microsoft visual studio 10.0\vc\include\ostream(295) : see reference to class template instantiation 'std::num_put<_Elem,_OutIt>' being compiled with [ _Elem=Tk::utf8_t, _OutIt=std::ostreambuf_iterator<Tk::utf8_t,std::char_traits<Tk::utf8_t>> ] c:\program files\microsoft visual studio 10.0\vc\include\ostream(281) : while compiling class template member function 'std::basic_ostream<_Elem,_Traits> & std::basic_ostream<_Elem,_Traits>::operator <<(int)' with [ _Elem=Tk::utf8_t, _Traits=std::char_traits<Tk::utf8_t> ] c:\program files\microsoft visual studio 10.0\vc\include\sstream(526) : see reference to class template instantiation 'std::basic_ostream<_Elem,_Traits>' being compiled with [ _Elem=Tk::utf8_t, _Traits=std::char_traits<Tk::utf8_t> ] c:\users\michael\dvl\tmp\console\console.cpp(23) : see reference to class template instantiation 'std::basic_ostringstream<_Elem,_Traits,_Alloc>' being compiled with [ _Elem=Tk::utf8_t, _Traits=std::char_traits<Tk::utf8_t>, _Alloc=std::allocator<uchar> ] . c:\program files\microsoft visual studio 10.0\vc\include\xlocmon(213): error C2491: 'std::numpunct<_Elem>::id' : definition of dllimport static data member not allowed with [ _Elem=Tk::utf8_t ] Any ideas? ** Edited 19 June 2012 ** OK, I've gotten closer to understanding this, but not how to solve it. As we all know, static class variables get defined twice: once in the class definition and once outside the class definition which establishes storage space. e.g. // in .h file class CFoo { // ... static int x; }; // in .cpp file int CFoo::x = 42; Now in the VC10 headers we get something like this: template<class _Elem> class numpunct : public locale::facet { // ... _CRTIMP2_PURE static locale::id id; // ... } When the header is included in an application, _CRTIMP2_PURE is defined as __declspec(dllimport), which means that the variable is imported from a dll. Now the header also contains the following template<class _Elem> locale::id numpunct<_Elem>::id; Note the absence of the __declspec(dllimport) qualifier. i.e. The class declaration says that the static linkage of the id variable is in the dll, but for the general case, it gets declared outside the dll. For the known cases, there are specialisations. template locale::id numpunct<char>::id; template locale::id numpunct<wchar_t>::id; These are protected by #ifs so that they are only included when building the DLL. They are excluded otherwise. i.e. the char and wchar_t versions of numpunct ARE inside the dll So we have the class definition saying that id's storage is in the DLL, but that is only true for the char and wchar_t specialisations, meaning that my unsigned char version is doomed. :-( The only way forward that I can think of is to create my own specialisation: basically copying it from the header file and fixing it. This raises many issues. Anybody have a better idea?

    Read the article

  • move element li into ul with jquery

    - by ron
    Hi everybody i'm looking for a solution to move an element that i need to move into a .... im using jquery and i leave here the code i tried with different things but wasn't working it. this is the big menu <ul class="sf-menu"> <li><a href="">Student Centre</a> <ul> <li><a href="9">STUDENT CENTRAL WEBSITE</a></li> <li><a href="10">STUDENT CENTRAL EMAIL</a></li> <li><a href="11">CCM STUDENT SURVIAL TIPS</a></li> <li><a href="12">VET TUTTTION ASSURANSE</a></li> <li><a href="13">WHAT GOING ON AT CCM</a></li> <li><a href="14">IMPORTANT STUDENTS NOTICE</a></li> </ul> </li> <li><a href="">Research</a> <ul> <li><a href="_16">WHAT IS HOLISTIC KINESIOLOGY ?</a></li> <li><a href="_17">TRANF. CHILDREN W/ LEARNING DIFFICULTIES</a></li> <li><a href="_18">HEALING WITH HOLISTIC KINESIOLOGY</a></li> <li><a href="_19">UNDERSTANDING ASPERGER'S SYNDROME</a></li> <li><a href="_20">DAVID CORBY THE DIRECTOR OF CCM</a></li> <li><a href="_21">HELPING PEOPLE CREATE THEIR OWN MIRACLES</a></li> <li><a href="_22">MAGNESIUM AND COLLOIDAL MINERALS</a></li> <li><a href="_23">BRAIN ENERGETICS CHAKRAS AND NADIS</a></li> <li><a href="_24">KINESIOLOGY FAQ'S</a></li>' </ul> </li> <li><a href="25">Contact Us</a></li> <li><a href="26">A - Z</a></li> </ul> and i need to add this li to ul but i need to put in the second place after the first not nested <li id="faculty"> <a href="#">Faculty Courses </a> <ul> <li><a href="">INTENSE SHORT COURSES</a><ul> <li><a href="_59">CRYSTAL KINESIOLOGY ONE</a></li> <li><a href="_60">APPLIED PHYSIOLOGY</a></li> <li><a href="_61">VIBRATIONAL HEALING SYSTEMS 1</a></li> <li><a href="_62">VIBRATIONAL HEALING SYSTEMS 2</a></li> <li><a href="_63">VIBRATIONAL HEALING SYSTEMS 3</a></li> <li><a href="_64">VIBRATIONAL HEALING SYSTEMS 6</a></li> <li><a href="_65">NUTRITIONAL KINESIOLOGY</a></li> <li><a href="_66">QUANTUM HARMONICS</a></li><li><a href="_67">CHAKRA HOLOGRAM</a></li> <li><a href="_68">CLINICAL APPLICATIONS OF KINESIOLOGY</a></li> <li><a href="_69">COUNSELLING KINESIOLOGY</a></li> <li><a href="_70">HARMONISING CHI FLOW</a></li> </ul> </li> <li><a href="=53">FREE INTRUCTION COURSE DAYS</a> <ul> <li><a href="=53_56">HOLISTIC KINESIOLOGY</a></li> <li><a href="=53_57">TRANSPERSONAL COUNSELLING</a></li> <li><a href="=53_58">SHAMMANISM &amp; TRANSFORMATIONAL MASK</a></li> </ul> </li> <li><a href="=50">DIPLOMA MASK AND TRADITIONAL HEALING</a></li> <li><a href="=43">DIPLOMA TRANSPERSONAL ART THERAPY</a></li> <li><a href="=42">DIPLOMA HOLISTIC KINESIOLOGY</a></li> <li><a href="=47">ADVANCE DIPLOMA HOLISTIC KINESIOLOGY</a></li> <li><a href="=48">DIPLOMA DINAMIC AND FUNCTIONAL</a></li> <li><a href="=49">CERTIFICATE MASK AND TRADITIONAL HEALING</a></li> <li><a href="=51">DIPLOMA TRANSPERSONAL COUNSELLING</a></li> <li><a href="=52">STUDENT CLINICS</a></li> </ul> </li> please i need you help Thanks in advance

    Read the article

  • Content display problems when using Suckerfish menus with 960.gs and IE

    - by Cedar Jensen
    I'm using 960.gs layout and when I add the suckerfish menu as part of the content to one of the grids, the contents of adjacent siblings bleed through the menu in all versions of IE. In the listed html below, the text from 'belowFoldSection' will appear through the menu when it is visible and has enough items to make it span over 2nd section. However, the contents of 'introSummary' will be underneath the menu, as expected. I've set the z-index for #nav and #nav ul in my css and this of course makes it work in FF, Chrome and Safari, but not in IE (because IE incorrectly assigns child elements its own z-index). If I change the .grid_nn class 'position' attribute (set by default in the 960 template) from 'relative' to absolute, this fixes it in IE. However, it is my understanding that I don't want the child elements of the 'container_12' to be taken out of the flow of the document and want them positioned relative to the .container_12's starting point. (Changing the attribute to absolute causes other general layout problems) Can anyone suggest a work-around? My html: <div class="container_12"> <!--First section where menu lives--> <div class="grid_12" id="mainSection"> <div class="grid_4 alpha" id="intro"> <p>Start of menu here</p> <div id="subMenu"> <ul id="nav"> <li><a href="#">Item 1</a> <ul> <li><a href="#">Burrowing gobies</a></li> <li><a href="#">Dartfishes</a></li> <li><a href="#">Eellike gobies</a></li> <!--10 more for longer list --> </ul> </li> <li><a href="#">Item 2</a> <ul> <li><a href="#">Remoras</a></li> <li><a href="#">Tilefishes</a></li> <!--10 more for longer list --> </ul> </li> <li><a href="#">Item 3</a> <ul> <li><a href="#">Climbing perches</a></li> <li><a href="#">Labyrinthfishes</a></li> <li><a href="#">Kissing gouramis</a></li> <!--10 more for longer list --> </ul> </li> </ul> <div id="introSummary"> <h1>PERCIFORMES! (1)</h1> <p>Welcome to the world of Perciformes - perch-like fish including the world famous <strong>Suckerfish</strong></p> </div> </div> <!-- end of sub menu --> </div> <div class="grid_8 omega" id="summary"> <p>Some stuff goes here</p </div> </div> <!-- End of first section --> <div class="clear">&nbsp;</div> <div class="grid_12 spacer"> </div> <div class="grid_4" id="belowFoldSection"> <p>Here is some stuff I want to appear below the menu when the pop-up is visible</p> </div> </div> <!-- container_12 --> The suckerfish css file: #nav, #nav ul { /* all lists */ padding: 0; margin: 0; list-style: none; line-height: 1; z-index: 99; } #nav a { display: block; width: 10em; } #nav li { /* all list items */ float: left; width: 10em; } #nav li ul { /* second-level lists */ position: absolute; background: orange; width: 10em; left: -999em; } #nav li:hover ul, #nav li.sfhover ul { /* lists nested under hovered list items */ left: auto; } Default 960.gs css: .container_12, .container_16 { margin-left: auto; margin-right: auto; width: 960px; } .grid_1, .grid_2, .grid_3, .grid_4, .grid_5, .grid_6, .grid_7, .grid_8, .grid_9, .grid_10, .grid_11, .grid_12, .grid_13, .grid_14, .grid_15, .grid_16 { display: inline; float: left; position: relative; margin-left: 10px; margin-right: 10px; }

    Read the article

  • Flash video playing on top of everything else in IE7

    - by Brett
    Hi everyone, I've been spending hours now reading up on IE7's issue with rendering Flash content on top of other elements, particularly navigation menus (this is often a problem with dropdown menus and Flash ad banners, for example). I've tried a few of the suggested solutions but none have worked for me so far. I'll do my best to explain the circumstances, and would appreciate any advice in the matter! Update At Mercator's request, I am providing a large code-sample to assist in any advice you might have. Consider the HTML below: <body> <div id="page-wrap"> <div id="content-wrap"> <div id="main"> <h1>Page Title</h1> <p>Paragraph text before video.</p> <div class="video-container"> <script type="text/javascript"> AC_FL_RunContent('id','player','name','player','width','480','height','294','src','player','allowscriptaccess','always','allowfullscreen','true','flashvars','file=mp4/VIDEO_FILE.mp4','movie','player' ); //end AC code </script> <noscript> <object id="player" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" name="player" width="480" height="294"> <param name="wmode" value="transparent" /> <param name="movie" value="player.swf" /> <param name="allowfullscreen" value="true" /> <param name="allowscriptaccess" value="always" /> <param name="flashvars" value="file=mp4/VIDEO_FILE.mp4" /> <embed wmode="transparent" type="application/x-shockwave-flash" id="player2" name="player2" src="player.swf" width="480" height="294" allowscriptaccess="always" allowfullscreen="true" flashvars="file=mp4/VIDEO_FILE.mp4" ></embed> </object> </noscript> </div> <p>Paragraph after video.</p> </div><!-- end main --> <div id="subContent"> <p>Sub-content.</p> </div><!-- end subContent --> <div id="content-clear"></div> </div><!-- end content-wrap --> </div><!-- end page-wrap --> <div id="footpanel"> <ul id="mainpanel"> <li id="panel-link"><a href="#"><span class="icon"></span>Panel Link</a> <div class="subpanel"> <h3><span> &ndash; </span>Panel Link</h3> <ul> <li><p>Revealed content</p></li> </ul> </div> </li> </ul> </div> <!-- END footpanel --> </body> Below are the non-presentational CSS selectors that apply to the divs above: body { /*no positioning styles applied */ } #page-wrap { width: 100%; } #content-wrap { width: 960px; margin 0 auto; } #main { float: left; width: 573px; } .video-container { position: relative; width: 480px; z-index: 1; } #sub { float: left; width: 347px; } #content-clear { clear: both; } #foot-panel { position: fixed; width: 94%; bottom: 0; left: 0; z-index: 3000; } ul#main-panel { float: left; } The footpanel uses jQuery-powered flyout menus, if that provides any further context. These menus have z-indexes in the 300X range to appear above the footpanel. The Flash in question is JW player playing a flash video or mp4. Currently, the object and embed tags are inside a container div. My understanding of previous solutions was that the combination of the param changes and the positioning/z-index change on the container div should have resolved the issue. Alas, it is not so. The player resides on top of the footpanel. Other information that may or may not be helpful is that the page is XHTML 1.0 Transitional and that Dreamweaver reports 1 error in the HTML code: <embed> is not in the XHTML 1.0 specification. This fact does not prevent the video from being viewed in any browser tested, and the page still displays correctly in FF. Thanks in advance!

    Read the article

  • implement N-Tier Entity Framework 4.0 with DTOs

    - by kathy
    Hi, I'm currently building a web based system and trying to implement N-Tier Entity Framework 4.0 with DTOs in a SOA Architecture. I am having a problem understanding how I should implement the Data Access Layer (DAL) , the Business Logic Layer (BLL) and the Presentation Layer. Let’s suppose that I have a “useraccount” entity has the following : Id FirstName LastName AuditFields_InsertDate AuditFields_UpdateDate In the DAL I created a class “UserAccountsData.cs” as the following : using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace OrderSystemDAL { public static class UserAccountsData { public static int Insert(string firstName, string lastName, DateTime insertDate) { using (OrderSystemEntities db = new OrderSystemEntities()) { return Insert(db, firstName, lastName, insertDate); } } public static int Insert(OrderSystemEntities db, string firstName, string lastName, DateTime insertDate) { return db.UserAccounts_Insert(firstName, lastName, insertDate, insertDate).ElementAt(0).Value; } public static void Update(int id, string firstName, string lastName, DateTime updateDate) { using (OrderSystemEntities db = new OrderSystemEntities()) { Update(db, id, firstName, lastName, updateDate); } } public static void Update(OrderSystemEntities db, int id, string firstName, string lastName, DateTime updateDate) { db.UserAccounts_Update(id, firstName, lastName, updateDate); } public static void Delete(int id) { using (OrderSystemEntities db = new OrderSystemEntities()) { Delete(db, id); } } public static void Delete(OrderSystemEntities db, int id) { db.UserAccounts_Delete(id); } public static UserAccount SelectById(int id) { using (OrderSystemEntities db = new OrderSystemEntities()) { return SelectById(db, id); } } public static UserAccount SelectById(OrderSystemEntities db, int id) { return db.UserAccounts_SelectById(id).ElementAtOrDefault(0); } public static List<UserAccount> SelectAll() { using (OrderSystemEntities db = new OrderSystemEntities()) { return SelectAll(db); } } public static List<UserAccount> SelectAll(OrderSystemEntities db) { return db.UserAccounts_SelectAll().ToList(); } } } And in the BLL I created a class “UserAccountEO.cs” as the following : using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Collections; using OrderSystemDAL; namespace OrderSystemBLL { public class UserAccountEO { public int Id { get; set; } public string FirstName { get; set; } public string LastName { get; set; } public DateTime InsertDate { get; set; } public DateTime UpdateDate { get; set; } public string FullName { get { return LastName + ", " + FirstName; } } public bool Save(ref ArrayList validationErrors) { ValidateSave(ref validationErrors); if (validationErrors.Count == 0) { if (Id == 0) { Id = UserAccountsData.Insert(FirstName, LastName, DateTime.Now); } else { UserAccountsData.Update(Id, FirstName, LastName, DateTime.Now); } return true; } else { return false; } } private void ValidateSave(ref ArrayList validationErrors) { if (FirstName.Trim() == "") { validationErrors.Add("The First Name is required."); } if (LastName.Trim() == "") { validationErrors.Add("The Last Name is required."); } } public void Delete(ref ArrayList validationErrors) { ValidateDelete(ref validationErrors); if (validationErrors.Count == 0) { UserAccountsData.Delete(Id); } } private void ValidateDelete(ref ArrayList validationErrors) { //Check for referential integrity. } public bool Select(int id) { UserAccount userAccount = UserAccountsData.SelectById(id); if (userAccount != null) { MapData(userAccount); return true; } else { return false; } } internal void MapData(UserAccount userAccount) { Id = userAccount.Id; FirstName = userAccount.FristName; LastName = userAccount.LastName; InsertDate = userAccount.AuditFields_InsertDate; UpdateDate = userAccount.AuditFields_UpdateDate; } public static List<UserAccountEO> SelectAll() { List<UserAccountEO> userAccounts = new List<UserAccountEO>(); List<UserAccount> userAccountDTOs = UserAccountsData.SelectAll(); foreach (UserAccount userAccountDTO in userAccountDTOs) { UserAccountEO userAccountEO = new UserAccountEO(); userAccountEO.MapData(userAccountDTO); userAccounts.Add(userAccountEO); } return userAccounts; } } } And in the PL I created a webpage as the following : using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; using OrderSystemBLL; using System.Collections; namespace OrderSystemUI { public partial class Users : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { LoadUserDropDownList(); } } private void LoadUserDropDownList() { ddlUsers.DataSource = UserAccountEO.SelectAll(); ddlUsers.DataTextField = "FullName"; ddlUsers.DataValueField = "Id"; ddlUsers.DataBind(); } } } Is the above way the right way to Implement the DTOs pattern in n-tier Architecture using EF4 ??? I would appreciate your help Thanks.

    Read the article

  • Migrating Ruby Site from EngineYard to Heroku

    - by user410925
    As part of a larger project I've been tasked with migrating some existing Ruby on Rails sites (built with an old version of refinerycms 0.9.6.34, at least that's the version listed in the Gemfile included with the source). I don't normally work with Ruby so I'm at a bit of a loss. The previous developers simply handed over the latest git dump as well as a db dump. I'm working first with trying to get the site up working locally on an Ubuntu 11.10 local machine before pushing up to at test Heroku install. If it's possible to just push directly to Heroku with the files they gave, then I can try that, but it's my understanding I need to get everything working and then use Heroku's tools to deploy. The previous devs said they're using ruby 1.8.7 so in Ubuntu I've done the following: aptitude install ruby1.8 ruby1.8-dev ruby1.8-full aptitude install rubygems1.8 I've restored the database and in the config directory I've made changes to the database.yml to point to the restored database. When I try and run "bundle install" from the root of the extracted source dir I get: Invalid gemspec in [/var/lib/gems/1.8/specifications/mail-2.4.4.gemspec]: invalid date format in specification: "2012-03-14 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/tilt-1.3.3.gemspec]: invalid date format in specification: "2011-08-25 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/mime-types-1.18.gemspec]: invalid date format in specification: "2012-03-21 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/sass-rails-3.2.5.gemspec]: invalid date format in specification: "2012-03-19 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/jquery-rails-2.0.2.gemspec]: invalid date format in specification: "2012-04-03 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/mail-2.4.4.gemspec]: invalid date format in specification: "2012-03-14 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/tilt-1.3.3.gemspec]: invalid date format in specification: "2011-08-25 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/mime-types-1.18.gemspec]: invalid date format in specification: "2012-03-21 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/sass-rails-3.2.5.gemspec]: invalid date format in specification: "2012-03-19 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/jquery-rails-2.0.2.gemspec]: invalid date format in specification: "2012-04-03 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/mail-2.4.4.gemspec]: invalid date format in specification: "2012-03-14 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/tilt-1.3.3.gemspec]: invalid date format in specification: "2011-08-25 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/mime-types-1.18.gemspec]: invalid date format in specification: "2012-03-21 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/sass-rails-3.2.5.gemspec]: invalid date format in specification: "2012-03-19 00:00:00.000000000Z" Invalid gemspec in [/var/lib/gems/1.8/specifications/jquery-rails-2.0.2.gemspec]: invalid date format in specification: "2012-04-03 00:00:00.000000000Z" Fetching gem metadata from https://rubygems.org/....... Fetching gem metadata from https://rubygems.org/.. Using rake (0.9.2.2) Using i18n (0.6.0) Using multi_json (1.3.6) Using activesupport (3.2.3) Using builder (3.0.0) Using activemodel (3.2.3) Using erubis (2.7.0) Using journey (1.0.3) Using rack (1.4.1) Using rack-cache (1.2) Using rack-test (0.6.1) Using hike (1.2.1) Installing tilt (1.3.3) Using sprockets (2.1.3) Using actionpack (3.2.3) Installing mime-types (1.18) Using polyglot (0.3.3) Using treetop (1.4.10) Installing mail (2.4.4) Using actionmailer (3.2.3) Using arel (3.0.2) Using tzinfo (0.3.33) Using activerecord (3.2.3) Using activeresource (3.2.3) Using acts_as_indexed (0.7.8) Using awesome_nested_set (2.1.3) Using babosa (0.3.7) Using bcrypt-ruby (3.0.1) Using coffee-script-source (1.3.3) Using execjs (1.4.0) Using coffee-script (2.2.0) Using rack-ssl (1.3.2) Using json (1.7.3) Using rdoc (3.12) Using thor (0.14.6) Using railties (3.2.3) Using coffee-rails (3.2.2) Using orm_adapter (0.0.7) Using warden (1.1.1) Using devise (2.0.4) Using dragonfly (0.9.12) Using friendly_id (4.0.6) Using paper_trail (2.6.3) Using globalize3 (0.2.0) Installing jquery-rails (2.0.2) Using bundler (1.1.4) Using rails (3.2.3) Using sass (3.1.19) Installing sass-rails (3.2.5) Using truncate_html (0.5.5) Using uglifier (1.2.4) Using will_paginate (3.0.3) Using refinerycms-core (2.0.4) Using refinerycms-authentication (2.0.4) Using refinerycms-dashboard (2.0.4) Using refinerycms-images (2.0.4) Using seo_meta (1.3.0) Using refinerycms-pages (2.0.4) Using refinerycms-resources (2.0.4) Using refinerycms (2.0.4) Using routing-filter (0.3.1) Using refinerycms-i18n (2.0.0) Using sqlite3 (1.3.6) Your bundle is complete! Use `bundle show [gemname]` to see where a bundled gem is installed. Obviously the errors with Invalid gemspec need to be resolved, but the other thing that's troubling to me are the lines: Using refinerycms-core (2.0.4) Using refinerycms-authentication (2.0.4) Using refinerycms-dashboard (2.0.4) Using refinerycms-images (2.0.4) Using seo_meta (1.3.0) Using refinerycms-pages (2.0.4) Using refinerycms-resources (2.0.4) Using refinerycms (2.0.4) Using routing-filter (0.3.1) Using refinerycms-i18n (2.0.0) Since the refinerycms version listed in the Gemfile was 0.9.6.34. When it comes to the Ruby world, I'm a bit lost so any help would be greatly appreciated. Thanks,

    Read the article

  • JPA behaviour...

    - by Marcel
    Hi I have some trouble understanding a JPA behaviour. Mabye someone could give me a hint. Situation: Product entity: @Entity public class Product implements Serializable { ... @OneToMany(mappedBy="product", fetch=FetchType.EAGER) private List<ProductResource> productResources = new ArrayList<ProductResource>(); .... public List<ProductResource> getProductResources() { return productResources; } public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof Product)) return false; Product p = (Product) obj; return p.productId == productId; } } Resource entity: @Entity public class Resource implements Serializable { ... @OneToMany(mappedBy="resource", fetch=FetchType.EAGER) private List<ProductResource> productResources = new ArrayList<ProductResource>(); ... public void setProductResource(List<ProductResource> productResource) { this.productResources = productResource; } public List<ProductResource> getProductResources() { return productResources; } public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof Resource)) return false; Resource r = (Resource) obj; return (long)resourceId==(long)r.resourceId; } } ProductResource Entity: This is a JoinTable (association class) with additional properties (amount). It maps Product and Resources. @Entity public class ProductResource implements Serializable { ... @JoinColumn(nullable=false, updatable=false) @ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST) private Product product; @JoinColumn(nullable=false, updatable=false) @ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST) private Resource resource; private int amount; public void setProduct(Product product) { this.product = product; if(!product.getProductResources().contains((this))){ product.getProductResources().add(this); } } public Product getProduct() { return product; } public void setResource(Resource resource) { this.resource = resource; if(!resource.getProductResources().contains((this))){ resource.getProductResources().add(this); } } public Resource getResource() { return resource; } ... public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof ProductResource)) return false; ProductResource pr = (ProductResource) obj; return (long)pr.productResourceId == (long)productResourceId; } } This is the Session Bean (running on glassfish). @Stateless(mappedName="PersistenceManager") public class PersistenceManagerBean implements PersistenceManager { @PersistenceContext(unitName = "local_mysql") private EntityManager em; public Object create(Object entity) { em.persist(entity); return entity; } public void delete(Object entity) { em.remove(em.merge(entity)); } public Object retrieve(Class entityClass, Long id) { Object entity = em.find(entityClass, id); return entity; } public void update(Object entity) { em.merge(entity); } } I call the session Bean from a java client: public class Start { public static void main(String[] args) throws NamingException { PersistenceManager pm = (PersistenceManager) new InitialContext().lookup("java:global/BackITServer/PersistenceManagerBean"); ProductResource pr = new ProductResource(); Product p = new Product(); Resource r = new Resource(); pr.setProduct(p); pr.setResource(r); ProductResource pr_stored = (ProductResource) pm.create(pr); pm.delete(pr_stored); Product p_ret = (Product) pm.retrieve(Product.class, pr_stored.getProduct().getProductId()); // prints out true ???????????????????????????????????? System.out.println(p_ret.getProductResources().contains(pr_stored)); } } So here comes my problem. Why is the ProductResource entity still in the List productResources(see code above). The productResource tuple in the db is gone after the deletion and I do newly retrieve the Product entity. If I understood right every method call of the client happens in a new persistence context, but here i obviously get back the non-refreshed product object!? Any help is appreciated Thanks Marcel

    Read the article

  • testing dao with hibernate genericdao pattern with spring.Headache

    - by black sensei
    Hello good fellas! in my journey of learning hibernate i came across an article on hibernate site. i' learning spring too and wanted to do certain things to discover the flexibility of spring by letting you implement you own session.yes i don't want to use the hibernateTemplate(for experiment). and i'm now having a problem and even the test class.I followed the article on the hibernate site especially the section an "implementation with hibernate" so we have the generic dao interface : public interface GenericDAO<T, ID extends Serializable> { T findById(ID id, boolean lock); List<T> findAll(); List<T> findByExample(T exampleInstance); T makePersistent(T entity); void makeTransient(T entity); } it's implementation in an abstract class that is the same as the one on the web site.Please refer to it from the link i provide.i'll like to save this post to be too long now come my dao's messagedao interface package com.project.core.dao; import com.project.core.model.MessageDetails; import java.util.List; public interface MessageDAO extends GenericDAO<MessageDetails, Long>{ //Message class is on of my pojo public List<Message> GetAllByStatus(String status); } its implementation is messagedaoimpl: public class MessageDAOImpl extends GenericDAOImpl <Message, Long> implements MessageDAO { // mySContainer is an interface which my HibernateUtils implement mySContainer sessionManager; /** * */ public MessageDAOImpl(){} /** * * @param sessionManager */ public MessageDAOImpl(HibernateUtils sessionManager){ this.sessionManager = sessionManager; } //........ plus other methods } here is my HibernatUtils public class HibernateUtils implements SessionContainer { private final SessionFactory sessionFactory; private Session session; public HibernateUtils() { this.sessionFactory = new AnnotationConfiguration().configure().buildSessionFactory(); } public HibernateUtils(SessionFactory sessionFactory) { this.sessionFactory = sessionFactory; } /** * * this is the function that return a session.So i'm free to implements any type of session in here. */ public Session requestSession() { // if (session != null || session.isOpen()) { // return session; // } else { session = sessionFactory.openSession(); // } return session; } } So in my understanding while using spring(will provide the conf), i'ld wire sessionFactory to my HiberbernateUtils and then wire its method RequestSession to the Session Property of the GenericDAOImpl (the one from the link provided). here is my spring config core.xml <bean id="sessionManager" class="com.project.core.dao.hibernate.HibernateUtils"> <constructor-arg ref="sessionFactory" /> </bean> <bean id="messageDao" class="com.project.core.dao.hibernate.MessageDAOImpl"> <constructor-arg ref="sessionManager"/> </bean> <bean id="genericDAOimpl" class="com.project.core.dao.GenericDAO"> <property name="session" ref="mySession"/> </bean> <bean id="mySession" factory-bean="com.project.core.dao.SessionContainer" factory-method="requestSession"/> now my test is this public class MessageDetailsDAOImplTest extends AbstractDependencyInjectionSpringContextTests{ HibernateUtils sessionManager = (HibernateUtils) applicationContext.getBean("sessionManager"); MessageDAO messagedao =(MessageDAO) applicationContext.getBean("messageDao"); static Message[] message = new Message[] { new Message("text",1,"test for dummies 1","1234567890","Pending",new Date()), new Message("text",2,"test for dummies 2","334455669990","Delivered",new Date()) }; public MessageDAOImplTest() { } @Override protected String[] getConfigLocations(){ return new String[]{"file:src/main/resources/core.xml"}; } @Test public void testMakePersistent() { System.out.println("MakePersistent"); messagedao.makePersistent(message[0]); Session session = sessionManager.RequestSession(); session.beginTransaction(); MessageDetails fromdb = ( Message) session.load(Message.class, message[0].getMessageId()); assertEquals(fromdb.getMessageId(), message[0].getMessageId()); assertEquals(fromdb.getDateSent(),message.getDateSent()); assertEquals(fromdb.getGlobalStatus(),message.getGlobalStatus()); assertEquals(fromdb.getNumberOfPages(),message.getNumberOfPages()); } i'm having this error exception in constructor testMakePersistent(java.lang.NullPointerException at com.project.core.dao.hibernate.MessageDAOImplTest) with this stack : at com.project.core.dao.hibernate.MessageDAOImplTest.(MessageDAOImplTest.java:28) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at junit.framework.TestSuite.createTest(TestSuite.java:61) at junit.framework.TestSuite.addTestMethod(TestSuite.java:283) at junit.framework.TestSuite.(TestSuite.java:146) at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.run(JUnitTestRunner.java:481) at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.launch(JUnitTestRunner.java:1031) at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.main(JUnitTestRunner.java:888) )) How to actually make this one work.I know this is a lot to stuffs and i'm thanking you for reading it.Please give me a solution.How would you do this? thanks

    Read the article

  • linux thread synchronization

    - by johnnycrash
    I am new to linux and linux threads. I have spent some time googling to try to understand the differences between all the functions available for thread synchronization. I still have some questions. I have found all of these different types of synchronizations, each with a number of functions for locking, unlocking, testing the lock, etc. gcc atomic operations futexes mutexes spinlocks seqlocks rculocks conditions semaphores My current (but probably flawed) understanding is this: semaphores are process wide, involve the filesystem (virtually I assume), and are probably the slowest. Futexes might be the base locking mechanism used by mutexes, spinlocks, seqlocks, and rculocks. Futexes might be faster than the locking mechanisms that are based on them. Spinlocks dont block and thus avoid context swtiches. However they avoid the context switch at the expense of consuming all the cycles on a CPU until the lock is released (spinning). They should only should be used on multi processor systems for obvious reasons. Never sleep in a spinlock. The seq lock just tells you when you finished your work if a writer changed the data the work was based on. You have to go back and repeat the work in this case. Atomic operations are the fastest synch call, and probably are used in all the above locking mechanisms. You do not want to use atomic operations on all the fields in your shared data. You want to use a lock (mutex, futex, spin, seq, rcu) or a single atomic opertation on a lock flag when you are accessing multiple data fields. My questions go like this: Am I right so far with my assumptions? Does anyone know the cpu cycle cost of the various options? I am adding parallelism to the app so we can get better wall time response at the expense of running fewer app instances per box. Performances is the utmost consideration. I don't want to consume cpu with context switching, spinning, or lots of extra cpu cycles to read and write shared memory. I am absolutely concerned with number of cpu cycles consumed. Which (if any) of the locks prevent interruption of a thread by the scheduler or interrupt...or am I just an idiot and all synchonization mechanisms do this. What kinds of interruption are prevented? Can I block all threads or threads just on the locking thread's CPU? This question stems from my fear of interrupting a thread holding a lock for a very commonly used function. I expect that the scheduler might schedule any number of other workers who will likely run into this function and then block because it was locked. A lot of context switching would be wasted until the thread with the lock gets rescheduled and finishes. I can re-write this function to minimize lock time, but still it is so commonly called I would like to use a lock that prevents interruption...across all processors. I am writing user code...so I get software interrupts, not hardware ones...right? I should stay away from any functions (spin/seq locks) that have the word "irq" in them. Which locks are for writing kernel or driver code and which are meant for user mode? Does anyone think using an atomic operation to have multiple threads move through a linked list is nuts? I am thinking to atomicly change the current item pointer to the next item in the list. If the attempt works, then the thread can safely use the data the current item pointed to before it was moved. Other threads would now be moved along the list. futexes? Any reason to use them instead of mutexes? Is there a better way than using a condition to sleep a thread when there is no work? When using gcc atomic ops, specifically the test_and_set, can I get a performance increase by doing a non atomic test first and then using test_and_set to confirm? *I know this will be case specific, so here is the case. There is a large collection of work items, say thousands. Each work item has a flag that is initialized to 0. When a thread has exclusive access to the work item, the flag will be one. There will be lots of worker threads. Any time a thread is looking for work, they can non atomicly test for 1. If they read a 1, we know for certain that the work is unavailable. If they read a zero, they need to perform the atomic test_and_set to confirm. So if the atomic test_and_set is 500 cpu cycles because it is disabling pipelining, causes cpu's to communicate and L2 caches to flush/fill .... and a simple test is 1 cycle .... then as long as I had a better ratio of 500 to 1 when it came to stumbling upon already completed work items....this would be a win.* I hope to use mutexes or spinlocks to sparilngly protect sections of code that I want only one thread on the SYSTEM (not jsut the CPU) to access at a time. I hope to sparingly use gcc atomic ops to select work and minimize use of mutexes and spinlocks. For instance: a flag in a work item can be checked to see if a thread has worked it (0=no, 1=yes or in progress). A simple test_and_set tells the thread if it has work or needs to move on. I hope to use conditions to wake up threads when there is work. Thanks!

    Read the article

  • Confusion testing fftw3 - poisson equation 2d test

    - by user3699736
    I am having trouble explaining/understanding the following phenomenon: To test fftw3 i am using the 2d poisson test case: laplacian(f(x,y)) = - g(x,y) with periodic boundary conditions. After applying the fourier transform to the equation we obtain : F(kx,ky) = G(kx,ky) /(kx² + ky²) (1) if i take g(x,y) = sin (x) + sin(y) , (x,y) \in [0,2 \pi] i have immediately f(x,y) = g(x,y) which is what i am trying to obtain with the fft : i compute G from g with a forward Fourier transform From this i can compute the Fourier transform of f with (1). Finally, i compute f with the backward Fourier transform (without forgetting to normalize by 1/(nx*ny)). In practice, the results are pretty bad? (For instance, the amplitude for N = 256 is twice the amplitude obtained with N = 512) Even worse, if i try g(x,y) = sin(x)*sin(y) , the curve has not even the same form of the solution. (note that i must change the equation; i divide by two the laplacian in this case : (1) becomes F(kx,ky) = 2*G(kx,ky)/(kx²+ky²) Here is the code: /* * fftw test -- double precision */ #include <iostream> #include <stdio.h> #include <stdlib.h> #include <math.h> #include <fftw3.h> using namespace std; int main() { int N = 128; int i, j ; double pi = 3.14159265359; double *X, *Y ; X = (double*) malloc(N*sizeof(double)); Y = (double*) malloc(N*sizeof(double)); fftw_complex *out1, *in2, *out2, *in1; fftw_plan p1, p2; double L = 2.*pi; double dx = L/((N - 1)*1.0); in1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) ); out2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) ); out1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) ); in2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) ); p1 = fftw_plan_dft_2d(N, N, in1, out1, FFTW_FORWARD,FFTW_MEASURE ); p2 = fftw_plan_dft_2d(N, N, in2, out2, FFTW_BACKWARD,FFTW_MEASURE); for(i = 0; i < N; i++){ X[i] = -pi + (i*1.0)*2.*pi/((N - 1)*1.0) ; for(j = 0; j < N; j++){ Y[j] = -pi + (j*1.0)*2.*pi/((N - 1)*1.0) ; in1[i*N + j][0] = sin(X[i]) + sin(Y[j]) ; // row major ordering //in1[i*N + j][0] = sin(X[i]) * sin(Y[j]) ; // 2nd test case in1[i*N + j][1] = 0 ; } } fftw_execute(p1); // FFT forward for ( i = 0; i < N; i++){ // f = g / ( kx² + ky² ) for( j = 0; j < N; j++){ in2[i*N + j][0] = out1[i*N + j][0]/ (i*i+j*j+1e-16); in2[i*N + j][1] = out1[i*N + j][1]/ (i*i+j*j+1e-16); //in2[i*N + j][0] = 2*out1[i*N + j][0]/ (i*i+j*j+1e-16); // 2nd test case //in2[i*N + j][1] = 2*out1[i*N + j][1]/ (i*i+j*j+1e-16); } } fftw_execute(p2); //FFT backward // checking the results computed double erl1 = 0.; for ( i = 0; i < N; i++) { for( j = 0; j < N; j++){ erl1 += fabs( in1[i*N + j][0] - out2[i*N + j][0]/N/N )*dx*dx; cout<< i <<" "<< j<<" "<< sin(X[i])+sin(Y[j])<<" "<< out2[i*N+j][0]/N/N <<" "<< endl; // > output } } cout<< erl1 << endl ; // L1 error fftw_destroy_plan(p1); fftw_destroy_plan(p2); fftw_free(out1); fftw_free(out2); fftw_free(in1); fftw_free(in2); return 0; } I can't find any (more) mistakes in my code (i installed the fftw3 library last week) and i don't see a problem with the maths either but i don't think it's the fft's fault. Hence my predicament. I am all out of ideas and all out of google as well. Any help solving this puzzle would be greatly appreciated. note : compiling : g++ test.cpp -lfftw3 -lm executing : ./a.out output and i use gnuplot in order to plot the curves : (in gnuplot ) splot "output" u 1:2:4 ( for the computed solution )

    Read the article

  • Opacity in CSS, some doubts

    - by André
    Hi, I have some doubts with opacity in CSS. I have a Header and a Footer that uses opacity, but I would like to turn off opacity the opacity in the text. Is that possible? To a better understanding I will post the code. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <title> stu nicholls | CSS PLaY | cross browser fixed header/footer layout basic method </title> <style type="text/css" media="screen"> #printhead {display:none;} html { height:100%; max-height:100%; padding:0; margin:0; border:0; background:#fff; font-size:80%; font-family: "trebuchet ms", tahoma, verdana, arial, sans-serif; /* hide overflow:hidden from IE5/Mac */ /* \*/ overflow: hidden; /* */ } body {height:100%; max-height:100%; overflow:hidden; padding:0; margin:0; border:0;} #content {display:block; height:100%; max-height:100%; overflow:hidden; padding-left:0px; position:relative; z-index:3; word-wrap:break-word;} #head {position:absolute; margin:0; top:0; right:18px; display:block; width:100%; height:1; background-color:transparent; font-size:1em; z-index:5; color:#000; border-bottom:1px solid #000;} #foot {position:absolute; margin:0; bottom:-1px; right:18px; display:block; width:100%; height:30px; background-color:transparent; color:#000; text-align:right; font-size:2em; z-index:4; border-top:1px solid #000;} .pad1 {display:block; width:18px; height:18px; float:left;} /* Com este "height", alinho a border do header */ .pad2 {display:block; height:100px;} .pad3 {display:block; height:0px;} /* Com este "height" controlo onde começa o content e o scroll do browser */ #content p {padding:5px;} .bold {font-size:1.2em; font-weight:bold;} .red {color:#c00; margin-left:5px; font-family:"trebuchet ms", "trebuchet", "verdana", sans-serif;} h2 {margin-left:5px;} h3 {margin-left:5px;} /* Esta classe controla as caracteristicas do background do footer e do header. */ .bkg { background-color: blue; filter:alpha(opacity=35); /* IE's opacity*/ opacity: 0.35; height: 10; } iframe { border-style: none; width: 100%; height: 100%; } </style> </head> <body> <div id="head"> <div class="bkg"> <div class="pad1"></div>Header </div> </div> <div id="content"> <div class="pad3"></div> <iframe src="http://www.yahoo.com" id="iFrame"></iframe> <div class="pad2"></div> </div> </div> <div id="foot"><div class="bkg">Footer</div></div> </body> </html> I want to maintain the opacity in the blue color in the footer and header but I would like to put the text stronger. Is that possible? Best Regards,

    Read the article

  • Repopulating a collection of Backbone forms with previously submitted data

    - by Brian Wheat
    I am able to post my forms to my database and I have stepped through my back end function to check and see that my Get function is returning the same data I submitted. However I am having trouble understanding how to have this data rendered upon visiting the page again. What am I missing? The intention is to be able to create, read, update, or delete (CRUD) some personal contact data for a variable collection of individuals. //Model var PersonItem = Backbone.Model.extend({ url: "/Application/PersonList", idAttribute: "PersonId", schema: { Title: { type: 'Select', options: function (callback) { $.getJSON("/Application/GetTitles/").done(callback); } }, Salutation: { type: 'Select', options: ['Mr.', 'Mrs.', 'Ms.', 'Dr.'] }, FirstName: 'Text', LastName: 'Text', MiddleName: 'Text', NameSuffix: 'Text', StreetAddress: 'Text', City: 'Text', State: { type: 'Select', options: function (callback) { $.getJSON("/Application/GetStates/").done(callback); } }, ZipCode: 'Text', PhoneNumber: 'Text', DateOfBirth: 'Date', } }); Backbone.Form.setTemplates(template, PersonItem); //Collection var PersonList = Backbone.Collection.extend({ model: PersonItem , url: "/Application/PersonList" }); //Views var PersonItemView = Backbone.Form.extend({ tagName: "li", events: { 'click button.delete': 'remove', 'change input': 'change' }, initialize: function (options) { console.log("ItemView init"); PersonItemView.__super__.initialize.call(this, options); _.bindAll(this, 'render', 'remove'); console.log("ItemView set attr = " + options); }, render: function () { PersonItemView.__super__.render.call(this); $('fieldset', this.el).append("<button class=\"delete\" style=\"float: right;\">Delete</button>"); return this; }, change: function (event) { var target = event.target; console.log('changing ' + target.id + ' from: ' + target.defaultValue + ' to: ' + target.value); }, remove: function () { console.log("delete button pressed"); this.model.destroy({ success: function () { alert('person deleted successfully'); } }); return false; } }); var PersonListView = Backbone.View.extend({ el: $("#application_fieldset"), events: { 'click button#add': 'addPerson', 'click button#save': 'save2db' }, initialize: function () { console.log("PersonListView Constructor"); _.bindAll(this, 'render', 'addPerson', 'appendItem', 'save'); this.collection = new PersonList(); this.collection.bind('add', this.appendItem); //this.collection.fetch(); this.collection.add([new PersonItem()]); console.log("collection length = " + this.collection.length); }, render: function () { var self = this; console.log(this.collection.models); $(this.el).append("<button id='add'>Add Person</button>"); $(this.el).append("<button id='save'>Save</button>"); $(this.el).append("<fieldset><legend>Contact</legend><ul id=\"anchor_list\"></ul>"); _(this.collection.models).each(function (item) { self.appendItem(item); }, this); $(this.el).append("</fieldset>"); }, addPerson: function () { console.log("addPerson clicked"); var item = new PersonItem(); this.collection.add(item); }, appendItem: function (item) { var itemView = new PersonItemView({ model: item }); $('#anchor_list', this.el).append(itemView.render().el); }, save2db: function () { var self = this; console.log("PersonListView save"); _(this.collection.models).each(function (item) { console.log("item = " + item.toJSON()); var cid = item.cid; console.log("item.set"); item.set({ Title: $('#' + cid + '_Title').val(), Salutation: $('#' + cid + '_Salutation').val(), FirstName: $('#' + cid + '_FirstName').val(), LastName: $('#' + cid + '_LastName').val(), MiddleName: $('#' + cid + '_MiddleName').val(), NameSuffix: $('#' + cid + '_NameSuffix').val(), StreetAddress: $('#' + cid + '_StreetAddress').val(), City: $('#' + cid + '_City').val(), State: $('#' + cid + '_State').val(), ZipCode: $('#' + cid + '_ZipCode').val(), PhoneNumber: $('#' + cid + '_PhoneNumber').val(), DateOfBirth: $('#' + cid + '_DateOfBirth').find('input').val() }); if (item.isNew()) { console.log("item.isNew"); self.collection.create(item); } else { console.log("!item.isNew"); item.save(); } }); return false; } }); var personList = new PersonList(); var view = new PersonListView({ collection: personList }); personList.fetch({ success: function () { $("#application_fieldset").append(view.render()); } });

    Read the article

  • PHP MVC Framework Structure

    - by bigstylee
    I am sorry about the amount of code here. I have tried to show enough for understanding while avoiding confusion (I hope). I have included a second copy of the code at Pastebin. (The code does execute without error/notice/warning.) I am currently creating a Content Management System while trying to implement the idea of Model View Controller. I have only recently come across the concept of MVC (within the last week) and trying to implement this into my current project. One of the features of the CMS is dynamic/customisable menu areas and each feature will be represented by a controller. Therefore there will be multiple versions of the Controller Class, each with specific extended functionality. I have looked at a number of tutorials and read some open source solutions to the MVC Framework. I am now trying to create a lightweight solution for my specific requirements. I am not interested in backwards compatibility, I am using PHP 5.3. An advantage of the Base class is not having to use global and can directly access any loaded class using $this->Obj['ClassName']->property/function();. Hoping to get some feedback using the basic structure outlined (with performance in mind). Specifically; a) Have I understood/implemented the concept of MVC correctly? b) Have I understood/implemented Object Orientated techniques with PHP 5 correctly? c) Should the class propertise of Base be static? d) Improvements? Thank you very much in advance! <?php /* A "Super Class" that creates/stores all object instances */ class Base { public static $Obj = array(); // Not sure this is the correct use of the "static" keyword? public static $var; static public function load_class($directory, $class) { echo count(self::$Obj)."\n"; // This does show the array is getting updated and not creating a new array :) if (!isset(self::$Obj[$class]) && !is_object(self::$Obj[$class])) //dont want to load it twice { /* Locate and include the class file based upon name ($class) */ return self::$Obj[$class] = new $class(); } return TRUE; } } /* Loads general configuration objects into the "Super Class" */ class Libraries extends Base { public function __construct(){ $this->load_class('library', 'Database'); $this->load_class('library', 'Session'); self::$var = 'Hello World!'; //testing visibility /* Other general funciton classes */ } } class Database extends Base { /* Connects to the the database and executes all queries */ public function query(){} } class Session extends Base { /* Implements Sessions in database (read/write) */ } /* General functionality of controllers */ abstract class Controller extends Base { protected function load_model($class, $method) { /* Locate and include the model file */ $this->load_class('model', $class); call_user_func(array(self::$Obj[$class], $method)); } protected function load_view($name) { /* Locate and include the view file */ #include('views/'.$name.'.php'); } } abstract class View extends Base { /* ... */ } abstract class Model extends Base { /* ... */ } class News extends Controller { public function index() { /* Displays the 5 most recent News articles and displays with Content Area */ $this->load_model('NewsModel', 'index'); $this->load_view('news', 'index'); echo $this->var; } public function menu() { /* Displays the News Title of the 5 most recent News articles and displays within the Menu Area */ $this->load_model('news/index'); $this->load_view('news/index'); } } class ChatBox extends Controller { /* ... */ } /* Lots of different features extending the controller/view/model class depending upon request and layout */ class NewsModel extends Model { public function index() { echo $this->var; self::$Obj['Database']->query(/*SELECT 5 most recent news articles*/); } public function menu() { /* ... */ } } $Libraries = new Libraries; $controller = 'News'; // Would be determined from Query String $method = 'index'; // Would be determined from Query String $Content = $Libraries->load_class('controller', $controller); //create the controller for the specific page if (in_array($method, get_class_methods($Content))) { call_user_func(array($Content, $method)); } else { die('Bad Request'. $method); } $Content::$var = 'Goodbye World'; echo $Libraries::$var . ' - ' . $Content::$var; ?> /* Ouput */ 0 1 2 3 Goodbye World! - Goodbye World

    Read the article

  • Why are my Opteron cores running at only 75% capacity each? (25% CPU idle)

    - by Tim Cooper
    We've just taken delivery of a powerful 32-core AMD Opteron server with 128Gb. We have 2 x 6272 CPU's with 16 cores each. We are running a big long-running java task on 30 threads. We have the NUMA optimisations for Linux and java turned on. Our Java threads are mainly using objects that are private to that thread, sometimes reading memory that other threads will be reading, and very very occasionally writing or locking shared objects. We can't explain why the CPU cores are 25% idle. Below is a dump of "top": top - 23:06:38 up 1 day, 23 min, 3 users, load average: 10.84, 10.27, 9.62 Tasks: 676 total, 1 running, 675 sleeping, 0 stopped, 0 zombie Cpu(s): 64.5%us, 1.3%sy, 0.0%ni, 32.9%id, 1.3%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 132138168k total, 131652664k used, 485504k free, 92340k buffers Swap: 5701624k total, 230252k used, 5471372k free, 13444344k cached ... top - 22:37:39 up 23:54, 3 users, load average: 7.83, 8.70, 9.27 Tasks: 678 total, 1 running, 677 sleeping, 0 stopped, 0 zombie Cpu0 : 75.8%us, 2.0%sy, 0.0%ni, 22.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 77.2%us, 1.3%sy, 0.0%ni, 21.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu2 : 77.3%us, 1.0%sy, 0.0%ni, 21.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 77.8%us, 1.0%sy, 0.0%ni, 21.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu4 : 76.9%us, 2.0%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu5 : 76.3%us, 2.0%sy, 0.0%ni, 21.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu6 : 12.6%us, 3.0%sy, 0.0%ni, 84.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu7 : 8.6%us, 2.0%sy, 0.0%ni, 89.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu8 : 77.0%us, 2.0%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu9 : 77.0%us, 2.0%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu10 : 77.6%us, 1.7%sy, 0.0%ni, 20.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu11 : 75.7%us, 2.0%sy, 0.0%ni, 21.4%id, 1.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu12 : 76.6%us, 2.3%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu13 : 76.6%us, 2.3%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu14 : 76.2%us, 2.6%sy, 0.0%ni, 15.9%id, 5.3%wa, 0.0%hi, 0.0%si, 0.0%st Cpu15 : 76.6%us, 2.0%sy, 0.0%ni, 21.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu16 : 73.6%us, 2.6%sy, 0.0%ni, 23.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu17 : 74.5%us, 2.3%sy, 0.0%ni, 23.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu18 : 73.9%us, 2.3%sy, 0.0%ni, 23.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu19 : 72.9%us, 2.6%sy, 0.0%ni, 24.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu20 : 72.8%us, 2.6%sy, 0.0%ni, 24.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu21 : 72.7%us, 2.3%sy, 0.0%ni, 25.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu22 : 72.5%us, 2.6%sy, 0.0%ni, 24.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu23 : 73.0%us, 2.3%sy, 0.0%ni, 24.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu24 : 74.7%us, 2.7%sy, 0.0%ni, 22.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu25 : 74.5%us, 2.6%sy, 0.0%ni, 22.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu26 : 73.7%us, 2.0%sy, 0.0%ni, 24.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu27 : 74.1%us, 2.3%sy, 0.0%ni, 23.6%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu28 : 74.1%us, 2.3%sy, 0.0%ni, 23.6%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu29 : 74.0%us, 2.0%sy, 0.0%ni, 24.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu30 : 73.2%us, 2.3%sy, 0.0%ni, 24.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu31 : 73.1%us, 2.0%sy, 0.0%ni, 24.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 132138168k total, 131711704k used, 426464k free, 88336k buffers Swap: 5701624k total, 229572k used, 5472052k free, 13745596k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 13865 root 20 0 122g 112g 3.1g S 2334.3 89.6 20726:49 java 27139 jayen 20 0 15428 1728 952 S 2.6 0.0 0:04.21 top 27161 sysadmin 20 0 15428 1712 940 R 1.0 0.0 0:00.28 top 33 root 20 0 0 0 0 S 0.3 0.0 0:06.24 ksoftirqd/7 131 root 20 0 0 0 0 S 0.3 0.0 0:09.52 events/0 1858 root 20 0 0 0 0 S 0.3 0.0 1:35.14 kondemand/0 A dump of the java stack confirms that none of the threads are anywhere near the few places where locks are used, nor are they anywhere near any disk or network i/o. I had trouble finding a clear explanation of what 'top' means by "idle" versus "wait", but I get the impression that "idle" means "no more threads that need to be run" but this doesn't make sense in our case. We're using a "Executors.newFixedThreadPool(30)". There are a large number of tasks pending and each task lasts for 10 seconds or so. I suspect that the explanation requires a good understanding of NUMA. Is the "idle" state what you see when a CPU is waiting for a non-local access? If not, then what is the explanation?

    Read the article

  • What is the MVC version of this code?

    - by Ian Boyd
    i'm trying to wrap my head around how to enterprise up my code: taking a simple routine and splitting it up into 5 or 6 methods in 3 or 4 classes. i quickly came up three simple examples of code how i currently write it. Could someone please convert these into an MVC/MVP obfuscated version? Example 1: The last name is mandatory. Color the text box red if nothing is entered. Color it green if stuff is entered: private void txtLastname_TextChanged(object sender, EventArgs e) { //Lastname mandatory. //Color pinkish if nothing entered. Greenish if entered. if (txtLastname.Text.Trim() == "") { //Lastname is required, color pinkish txtLastname.BackColor = ControlBad; } else { //Lastname entered, remove the coloring txtLastname.BackColor = ControlGood; } } Example 2: The first name is optional, but try to get it. We'll add a bluish tint to this "try to get" field: private void txtFirstname_TextChanged(object sender, EventArgs e) { //Firstname can be blank. //Hint them that they should *try* to get it with a bluish color. //If they do enter stuff: it better be not all spaces. if (txtFirstname.Text == "") { //Nothing there, hint it blue txtFirstname.BackColor = ControlRequired; } else if (txtFirstname.Text.Trim() == "") { //They entered spaces - bad user! txtFirstname.BackColor = ControlBad; } else { //Entered stuff, remove coloring txtFirstname.BackColor = SystemColors.Window; } } Example 3 The age is totally optional. If an age is entered, it better be valid: private void txtAge_TextChanged(object sender, EventArgs e) { //Age is optional, but if entered it better be valid int nAge = 0; if (Int32.TryParse(txtAge.Text, out nAge)) { //Valid integer entered if (nAge < 0) { //Negative age? i don't think so txtAge.BackColor = ControlBad; } else { //Valid age entered, remove coloring txtAge.BackColor = SystemColors.Window; } } else { //Whatever is in there: it's *not* a valid integer, if (txtAge.Text == "") { //Blank is okay txtAge.BackColor = SystemColors.Window; } else { //Not a valid age, bad user txtAge.BackColor = ControlBad; } } } Every time i see MVC code, it looks almost like random splitting of code into different methods, classes, and files. i've not been able to determine a reason or pattern to their madness. Without any understanding of they why it's being one some way, it makes no sense. And using the words model, view, controller and presenter, like i'm supposed to know what that means, doesn't help. The model is your data. The view shows data on screen. The controller is used to carry out the users actions And oranges taste orangy. Here's my attempt at splitting things up in order to make the code more difficult to follow. Is this anywhere close to MVC? private void txtFirstname_TextChanged(object sender, EventArgs e) { FirstnameTextChangedHandler(sender, e); } private void FirstnameTextChangedHandler(sender, e) { string firstname = GetFirstname(); Color firstnameTextBoxColor = GetFirstnameTextBoxColor(firstname); SetFirstNameTextBoxColor(firstnameTextBoxColor); } private string GetFirstname() { return txtFirstname.Text; } private Color GetFirstnameTextBoxColor(string firstname) { //Firstname can be blank. //Hint them that they should *try* to get it with a bluish color. //If they do enter stuff: it better be not all spaces. if (firstname == "") { //Nothing there, hint it blue return GetControlRequiredColor(); } else if (firstname.Trim() == "") { //They entered spaces - bad user! return GetControlBadColor(); } else { //Entered stuff, remove coloring return GetControlDefaultColor(); } } private Color GetControlRequiredColor() { return ControlRequired; } private Color GetControlBadColor() { return ControlBad; } private Color GetControlGoodColor() { return ControlGood; } //am i doin it rite i've obfuscated the code, but it's still altogether. The next step in the MVC obfuscation, i gather, is to hide the code in 3 or 4 different files. It's that next step that i don't understand. What is the logical separation of which functions are moved into what other classes? Can someone translate my 3 simple examples above into full fledged MVC obfuscation? Edit: Not ASP/ASP.NET/Online. Pretend it's on a desktop, handheld, surface, kiosk. And pretend it's language agnostic.

    Read the article

  • Changing multiple objects with a new class name using Jquery

    - by liquilife
    I'd like to click on a trigger and show a specific image. There are multiple triggers which would show a specific image related to it within a set. There are 4 sets The challenge for me is toggling the other images to hide only in this 'set' when one of these triggers are clicked, as there can only be one image showing at a time in each set. Here is the HTML I've put together thus far: <!-- Thumbnails which can be clicked on to toggle the larger preview image --> <div class="materials"> <a href="javascript:;" id="shirtgrey"><img src="/grey_shirt.png" height="122" width="122" /></a> <a href="javascript:;" id="shirtred"><img src="red_shirt.png" height="122" width="122" /></a> <a href="javascript:;" id="shirtblue"><img src="hblue_shirt.png" height="122" width="122" /></a> <a href="javascript:;" id="shirtgreen"><img src="green_shirt.png" height="122" width="122" /></a> </div> <div class="collars"> <a href="javascript:;" id="collargrey"><img src="grey_collar.png" height="122" width="122" /></a> <a href="javascript:;" id="collarred"><img src="red_collar.png" height="122" width="122" /></a> <a href="javascript:;" id="collarblue"><img src="blue_collar.png" height="122" width="122" /></a> <a href="javascript:;" id="collargreen"><img src="green_collar.png" height="122" width="122" /></a> </div> <div class="cuffs"> <a href="javascript:;" id="cuffgrey"><img src="grey_cuff.png" height="122" width="122" /></a> <a href="javascript:;" id="cuffred"><img src="red_cuff.png" height="122" width="122" /></a> <a href="javascript:;" id="cuffblue"><img src="blue_cuff.png" height="122" width="122" /></a> <a href="javascript:;" id="cuffgreen"><img src="/green_cuff.png" height="122" width="122" /></a> </div> <div class="pockets"> <a href="javascript:;" id="pocketgrey"><img src="grey_pocket.png" height="122" width="122" /></a> <a href="javascript:;" id="pocketred"><img src=".png" height="122" width="122" /></a> <a href="javascript:;" id="pocketblue"><img src="blue_pocket.png" height="122" width="122" /></a> <a href="javascript:;" id="pocketgreen"><img src="green_pocket.png" height="122" width="122" /></a> </div> <!-- The larger images where one from each set should be viewable at one time, triggered by the thumb clicked above --> <div class="selectionimg"> <div class="selectShirt"> <img src="grey_shirt.png" height="250" width="250" class="selectShirtGrey show" /> <img src="red_shirt.png" height="250" width="250" class="selectShirtRed hide" /> <img src="blue_shirt.png" height="250" width="250" class="selectShirtBlue hide" /> <img src="green_shirt.png" height="250" width="250" class="selectShirtGreen hide" /> </div> <div class="selectCollar"> <img src="grey_collar.png" height="250" width="250" class="selectCollarGrey show" /> <img src="red_collar.png" height="250" width="250" class="selectCollarRed hide" /> <img src="blue_collar.png" height="250" width="250" class="selectCollarBlue hide" /> <img src="green_collar.png" height="250" width="250" class="selectCollarGreen hide" /> </div> <div class="selectCuff"> <img src="grey_cuff.png" height="250" width="250" class="selectCuffGrey show" /> <img src="red_cuff.png" height="250" width="250" class="selectCuffRed hide" /> <img src="blue_cuff.png" height="250" width="250" class="selectCuffBlue hide" /> <img src="green_cuff.png" height="250" width="250" class="selectCuffGreen hide" /> </div> <div class="selectPocket"> <img src="grey_pocket.png" height="250" width="250" class="selectPocketGrey show" /> <img src="hred_pocket.png" height="250" width="250" class="selectPocketRed hide" /> <img src="blue_pocket.png" height="250" width="250" class="selectPocketBlue hide" /> <img src="green_pocket.png" height="250" width="250" class="selectPocketGreen hide" /> </div> </div> How can jQuery be used to change a class of an image to "show" and ensure that all other images in that same div are set to a class of "hide"? First time posting here. I'm very efficient with HTML and CSS and have a basic understanding of jQuery. I'm learning and this just seems a little bit beyond my abilities at the moment. I hope this all makes sense. Thanks for any help.

    Read the article

  • Why does decorating a class break the descriptor protocol, thus preventing staticmethod objects from behaving as expected?

    - by Robru
    I need a little bit of help understanding the subtleties of the descriptor protocol in Python, as it relates specifically to the behavior of staticmethod objects. I'll start with a trivial example, and then iteratively expand it, examining it's behavior at each step: class Stub: @staticmethod def do_things(): """Call this like Stub.do_things(), with no arguments or instance.""" print "Doing things!" At this point, this behaves as expected, but what's going on here is a bit subtle: When you call Stub.do_things(), you are not invoking do_things directly. Instead, Stub.do_things refers to a staticmethod instance, which has wrapped the function we want up inside it's own descriptor protocol such that you are actually invoking staticmethod.__get__, which first returns the function that we want, and then gets called afterwards. >>> Stub <class __main__.Stub at 0x...> >>> Stub.do_things <function do_things at 0x...> >>> Stub.__dict__['do_things'] <staticmethod object at 0x...> >>> Stub.do_things() Doing things! So far so good. Next, I need to wrap the class in a decorator that will be used to customize class instantiation -- the decorator will determine whether to allow new instantiations or provide cached instances: def deco(cls): def factory(*args, **kwargs): # pretend there is some logic here determining # whether to make a new instance or not return cls(*args, **kwargs) return factory @deco class Stub: @staticmethod def do_things(): """Call this like Stub.do_things(), with no arguments or instance.""" print "Doing things!" Now, naturally this part as-is would be expected to break staticmethods, because the class is now hidden behind it's decorator, ie, Stub not a class at all, but an instance of factory that is able to produce instances of Stub when you call it. Indeed: >>> Stub <function factory at 0x...> >>> Stub.do_things Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'function' object has no attribute 'do_things' >>> Stub() <__main__.Stub instance at 0x...> >>> Stub().do_things <function do_things at 0x...> >>> Stub().do_things() Doing things! So far I understand what's happening here. My goal is to restore the ability for staticmethods to function as you would expect them to, even though the class is wrapped. As luck would have it, the Python stdlib includes something called functools, which provides some tools just for this purpose, ie, making functions behave more like other functions that they wrap. So I change my decorator to look like this: def deco(cls): @functools.wraps(cls) def factory(*args, **kwargs): # pretend there is some logic here determining # whether to make a new instance or not return cls(*args, **kwargs) return factory Now, things start to get interesting: >>> Stub <function Stub at 0x...> >>> Stub.do_things <staticmethod object at 0x...> >>> Stub.do_things() Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: 'staticmethod' object is not callable >>> Stub() <__main__.Stub instance at 0x...> >>> Stub().do_things <function do_things at 0x...> >>> Stub().do_things() Doing things! Wait.... what? functools copies the staticmethod over to the wrapping function, but it's not callable? Why not? What did I miss here? I was playing around with this for a bit and I actually came up with my own reimplementation of staticmethod that allows it to function in this situation, but I don't really understand why it was necessary or if this is even the best solution to this problem. Here's the complete example: class staticmethod(object): """Make @staticmethods play nice with decorated classes.""" def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): """Provide the expected behavior inside decorated classes.""" return self.func(*args, **kwargs) def __get__(self, obj, objtype=None): """Re-implement the standard behavior for undecorated classes.""" return self.func def deco(cls): @functools.wraps(cls) def factory(*args, **kwargs): # pretend there is some logic here determining # whether to make a new instance or not return cls(*args, **kwargs) return factory @deco class Stub: @staticmethod def do_things(): """Call this like Stub.do_things(), with no arguments or instance.""" print "Doing things!" Indeed it works exactly as expected: >>> Stub <function Stub at 0x...> >>> Stub.do_things <__main__.staticmethod object at 0x...> >>> Stub.do_things() Doing things! >>> Stub() <__main__.Stub instance at 0x...> >>> Stub().do_things <function do_things at 0x...> >>> Stub().do_things() Doing things! What approach would you take to make a staticmethod behave as expected inside a decorated class? Is this the best way? Why doesn't the builtin staticmethod implement __call__ on it's own in order for this to just work without any fuss? Thanks.

    Read the article

  • Qt : crash due to delete (trying to handle exceptions...)

    - by Seub
    I am writing a program with Qt, and I would like it to show a dialog box with a Exit | Restart choice whenever an error is thrown somewhere in the code. What I did causes a crash and I really can't figure out why it happens, I was hoping you could help me understanding what's going on. Here's my main.cpp: #include "my_application.hpp" int main(int argc, char *argv[]) { std::cout << std::endl; My_Application app(argc, argv); return app.exec(); } And here's my_application:hpp: #ifndef MY_APPLICATION_HPP #define MY_APPLICATION_HPP #include <QApplication> class Window; class My_Application : public QApplication { public: My_Application(int& argc, char ** argv); virtual ~My_Application(); virtual bool notify(QObject * receiver, QEvent * event); private: Window *window_; void exit(); void restart(); }; #endif // MY_APPLICATION_HPP Finally, here's my_application.cpp: #include "my_application.hpp" #include "window.hpp" #include <QMessageBox> My_Application::My_Application(int& argc, char ** argv) : QApplication(argc, argv) { window_ = new Window; window_->setAttribute(Qt::WA_DeleteOnClose, false); window_->show(); } My_Application::~My_Application() { delete window_; } bool My_Application::notify(QObject * receiver, QEvent * event) { try { return QApplication::notify(receiver, event); } catch(QString error_message) { window_->setEnabled(false); QMessageBox message_box; message_box.setWindowTitle("Error"); message_box.setIcon(QMessageBox::Critical); message_box.setText("The program caught an unexpected error:"); message_box.setInformativeText("What do you want to do? <br>"); QPushButton *restart_button = message_box.addButton(tr("Restart"), QMessageBox::RejectRole); QPushButton *exit_button = message_box.addButton(tr("Exit"), QMessageBox::RejectRole); message_box.setDefaultButton(restart_button); message_box.exec(); if ((QPushButton *) message_box.clickedButton() == exit_button) { exit(); } else if ((QPushButton *) message_box.clickedButton() == restart_button) { restart(); } } return false; } void My_Application::exit() { window_->close(); //delete window_; return; } void My_Application::restart() { window_->close(); //delete window_; window_ = new Window; window_->show(); return; } Note that the line window_->setAttribute(Qt::WA_DeleteOnClose, false); means that window_ (my main window) won't be deleted when it is closed. The code I've written above works, but as far as I understand, there's a memory leak: I should uncomment the line //delete window_; in My_Application::exit() and My_Application::restart(). But when I do that, the program crashes when I click restart (or exit but who cares). (I'm not sure this is useful, in fact it might be misleading, but here's what my debugger tells me: a segmentation fault occurs in QWidgetPrivate::PaintOnScreen() const which is called by a function called by a function... called by My_Application::notify()) When I do some std::couts, I notice that the program runs through the entire restart() function and in fact through the entire notify() function before it crashes. I have no idea why it crashes. Thanks in advance for your insights! Update: I've noticed that My_Application::notify() is called very often. For example, it is called a bunch of times while the error dialog box is open, also during the execution of the restart function. The crash actually occurs in the subfunction QApplication::notify(receiver, event). This is not too surprising in light of the previous remark (the receiver has probably been deleted) But even if I forbid the function My_Application::notify() to do anything while restart() is executed, it still crashes (after having called My_Application::notify() a bunch of times, like 15 times, isn't that weird)? How should I proceed? Maybe I should say (to make the question slightly more relevant) that my class My_Application also has a "restore" function, which I've not copied here to try to keep things short. If I just had that restart feature I wouldn't bother too much, but I do want to have that restore feature. I should also say that if I keep the code with the "delete window_" commented, the problem is not only a memory leak, it still crashes sometimes apparently. There must surely be a way to fix this! But I'm clueless, I'd really appreciate some help! Thanks in advance.

    Read the article

  • Is post-sudden-power-loss filesystem corruption on an SSD drive's ext3 partition "expected behavior"?

    - by Jeremy Friesner
    My company makes an embedded Debian Linux device that boots from an ext3 partition on an internal SSD drive. Because the device is an embedded "black box", it is usually shut down the rude way, by simply cutting power to the device via an external switch. This is normally okay, as ext3's journalling keeps things in order, so other than the occasional loss of part of a log file, things keep chugging along fine. However, we've recently seen a number of units where after a number of hard-power-cycles the ext3 partition starts to develop structural issues -- in particular, we run e2fsck on the ext3 partition and it finds a number of issues like those shown in the output listing at the bottom of this Question. Running e2fsck until it stops reporting errors (or reformatting the partition) clears the issues. My question is... what are the implications of seeing problems like this on an ext3/SSD system that has been subjected to lots of sudden/unexpected shutdowns? My feeling is that this might be a sign of a software or hardware problem in our system, since my understanding is that (barring a bug or hardware problem) ext3's journalling feature is supposed to prevent these sorts of filesystem-integrity errors. (Note: I understand that user-data is not journalled and so munged/missing/truncated user-files can happen; I'm specifically talking here about filesystem-metadata errors like those shown below) My co-worker, on the other hand, says that this is known/expected behavior because SSD controllers sometimes re-order write commands and that can cause the ext3 journal to get confused. In particular, he believes that even given normally functioning hardware and bug-free software, the ext3 journal only makes filesystem corruption less likely, not impossible, so we should not be surprised to see problems like this from time to time. Which of us is right? Embedded-PC-failsafe:~# ls Embedded-PC-failsafe:~# umount /mnt/unionfs Embedded-PC-failsafe:~# e2fsck /dev/sda3 e2fsck 1.41.3 (12-Oct-2008) embeddedrootwrite contains a file system with errors, check forced. Pass 1: Checking inodes, blocks, and sizes Pass 2: Checking directory structure Invalid inode number for '.' in directory inode 46948. Fix<y>? yes Directory inode 46948, block 0, offset 12: directory corrupted Salvage<y>? yes Entry 'status_2012-11-26_14h13m41.csv' in /var/log/status_logs (46956) has deleted/unused inode 47075. Clear<y>? yes Entry 'status_2012-11-26_10h42m58.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47076. Clear<y>? yes Entry 'status_2012-11-26_11h29m41.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47080. Clear<y>? yes Entry 'status_2012-11-26_11h42m13.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47081. Clear<y>? yes Entry 'status_2012-11-26_12h07m17.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47083. Clear<y>? yes Entry 'status_2012-11-26_12h14m53.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47085. Clear<y>? yes Entry 'status_2012-11-26_15h06m49.csv' in /var/log/status_logs (46956) has deleted/unused inode 47088. Clear<y>? yes Entry 'status_2012-11-20_14h50m09.csv' in /var/log/status_logs (46956) has deleted/unused inode 47073. Clear<y>? yes Entry 'status_2012-11-20_14h55m32.csv' in /var/log/status_logs (46956) has deleted/unused inode 47074. Clear<y>? yes Entry 'status_2012-11-26_11h04m36.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47078. Clear<y>? yes Entry 'status_2012-11-26_11h54m45.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47082. Clear<y>? yes Entry 'status_2012-11-26_12h12m20.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47084. Clear<y>? yes Entry 'status_2012-11-26_12h33m52.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47086. Clear<y>? yes Entry 'status_2012-11-26_10h51m59.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47077. Clear<y>? yes Entry 'status_2012-11-26_11h17m09.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47079. Clear<y>? yes Entry 'status_2012-11-26_12h54m11.csv.gz' in /var/log/status_logs (46956) has deleted/unused inode 47087. Clear<y>? yes Pass 3: Checking directory connectivity '..' in /etc/network/run (46948) is <The NULL inode> (0), should be /etc/network (46953). Fix<y>? yes Couldn't fix parent of inode 46948: Couldn't find parent directory entry Pass 4: Checking reference counts Unattached inode 46945 Connect to /lost+found<y>? yes Inode 46945 ref count is 2, should be 1. Fix<y>? yes Inode 46953 ref count is 5, should be 4. Fix<y>? yes Pass 5: Checking group summary information Block bitmap differences: -(208264--208266) -(210062--210068) -(211343--211491) -(213241--213250) -(213344--213393) -213397 -(213457--213463) -(213516--213521) -(213628--213655) -(213683--213688) -(213709--213728) -(215265--215300) -(215346--215365) -(221541--221551) -(221696--221704) -227517 Fix<y>? yes Free blocks count wrong for group #6 (17247, counted=17611). Fix<y>? yes Free blocks count wrong (161691, counted=162055). Fix<y>? yes Inode bitmap differences: +(47089--47090) +47093 +47095 +(47097--47099) +(47101--47104) -(47219--47220) -47222 -47224 -47228 -47231 -(47347--47348) -47350 -47352 -47356 -47359 -(47457--47488) -47985 -47996 -(47999--48000) -48017 -(48027--48028) -(48030--48032) -48049 -(48059--48060) -(48062--48064) -48081 -(48091--48092) -(48094--48096) Fix<y>? yes Free inodes count wrong for group #6 (7608, counted=7624). Fix<y>? yes Free inodes count wrong (61919, counted=61935). Fix<y>? yes embeddedrootwrite: ***** FILE SYSTEM WAS MODIFIED ***** embeddedrootwrite: ********** WARNING: Filesystem still has errors ********** embeddedrootwrite: 657/62592 files (24.4% non-contiguous), 87882/249937 blocks Embedded-PC-failsafe:~# Embedded-PC-failsafe:~# e2fsck /dev/sda3 e2fsck 1.41.3 (12-Oct-2008) embeddedrootwrite contains a file system with errors, check forced. Pass 1: Checking inodes, blocks, and sizes Pass 2: Checking directory structure Directory entry for '.' in ... (46948) is big. Split<y>? yes Missing '..' in directory inode 46948. Fix<y>? yes Setting filetype for entry '..' in ... (46948) to 2. Pass 3: Checking directory connectivity '..' in /etc/network/run (46948) is <The NULL inode> (0), should be /etc/network (46953). Fix<y>? yes Pass 4: Checking reference counts Inode 2 ref count is 12, should be 13. Fix<y>? yes Pass 5: Checking group summary information embeddedrootwrite: ***** FILE SYSTEM WAS MODIFIED ***** embeddedrootwrite: 657/62592 files (24.4% non-contiguous), 87882/249937 blocks Embedded-PC-failsafe:~# Embedded-PC-failsafe:~# e2fsck /dev/sda3 e2fsck 1.41.3 (12-Oct-2008) embeddedrootwrite: clean, 657/62592 files, 87882/249937 blocks

    Read the article

  • Why is Varnish not caching?

    - by Justin
    I am troubleshooting the setup of Varnish 3.x on my Ubuntu server. I'm running Drupal 7 on two sites set up on the box, via named-based vhosts. Before trying to get Varnish to play nice with Drupal I'm trying to just get Varnish to a PNG from cache. Here are the headers I get from a curl -I request of the PNG file: HTTP/1.1 200 OK Server: Apache/2.2.22 (Ubuntu) Last-Modified: Sun, 07 Oct 2012 21:18:59 GMT ETag: "a57c2-3850-4cb7ea73db6c0" Accept-Ranges: bytes Content-Length: 14416 Cache-Control: max-age=1209600 Expires: Thu, 25 Oct 2012 22:55:14 GMT Content-Type: image/png Accept-Ranges: bytes Date: Thu, 11 Oct 2012 22:55:14 GMT X-Varnish: 1766703058 Age: 0 Via: 1.1 varnish Connection: keep-alive X-Varnish-Cache: MISS Here is the Varnish VCL file I'm using (It's a default VCL configuration designed for Drupal): # Default backend definition. Set this to point to your content # server. # backend default { .host = "127.0.0.1"; .port = "8080"; } # Respond to incoming requests. sub vcl_recv { # Use anonymous, cached pages if all backends are down. if (!req.backend.healthy) { unset req.http.Cookie; } # Allow the backend to serve up stale content if it is responding slowly. set req.grace = 6h; # Pipe these paths directly to Apache for streaming. #if (req.url ~ "^/admin/content/backup_migrate/export") { # return (pipe); #} # Do not cache these paths. if (req.url ~ "^/status\.php$" || req.url ~ "^/update\.php$" || req.url ~ "^/admin$" || req.url ~ "^/admin/.*$" || req.url ~ "^/flag/.*$" || req.url ~ "^.*/ajax/.*$" || req.url ~ "^.*/ahah/.*$") { return (pass); } # Do not allow outside access to cron.php or install.php. #if (req.url ~ "^/(cron|install)\.php$" && !client.ip ~ internal) { # Have Varnish throw the error directly. # error 404 "Page not found."; # Use a custom error page that you've defined in Drupal at the path "404". # set req.url = "/404"; #} # Always cache the following file types for all users. This list of extensions # appears twice, once here and again in vcl_fetch so make sure you edit both # and keep them equal. if (req.url ~ "(?i)\.(pdf|asc|dat|txt|doc|xls|ppt|tgz|csv|png|gif|jpeg|jpg|ico|swf|css|js)(\?.*)?$") { unset req.http.Cookie; } # Remove all cookies that Drupal doesn't need to know about. We explicitly # list the ones that Drupal does need, the SESS and NO_CACHE. If, after # running this code we find that either of these two cookies remains, we # will pass as the page cannot be cached. if (req.http.Cookie) { # 1. Append a semi-colon to the front of the cookie string. # 2. Remove all spaces that appear after semi-colons. # 3. Match the cookies we want to keep, adding the space we removed # previously back. (\1) is first matching group in the regsuball. # 4. Remove all other cookies, identifying them by the fact that they have # no space after the preceding semi-colon. # 5. Remove all spaces and semi-colons from the beginning and end of the # cookie string. set req.http.Cookie = ";" + req.http.Cookie; set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";"); set req.http.Cookie = regsuball(req.http.Cookie, ";(SESS[a-z0-9]+|SSESS[a-z0-9]+|NO_CACHE)=", "; \1="); set req.http.Cookie = regsuball(req.http.Cookie, ";[^ ][^;]*", ""); set req.http.Cookie = regsuball(req.http.Cookie, "^[; ]+|[; ]+$", ""); if (req.http.Cookie == "") { # If there are no remaining cookies, remove the cookie header. If there # aren't any cookie headers, Varnish's default behavior will be to cache # the page. unset req.http.Cookie; } else { # If there is any cookies left (a session or NO_CACHE cookie), do not # cache the page. Pass it on to Apache directly. return (pass); } } } # Set a header to track a cache HIT/MISS. sub vcl_deliver { if (obj.hits > 0) { set resp.http.X-Varnish-Cache = "HIT"; } else { set resp.http.X-Varnish-Cache = "MISS"; } } # Code determining what to do when serving items from the Apache servers. # beresp == Back-end response from the web server. sub vcl_fetch { # We need this to cache 404s, 301s, 500s. Otherwise, depending on backend but # definitely in Drupal's case these responses are not cacheable by default. if (beresp.status == 404 || beresp.status == 301 || beresp.status == 500) { set beresp.ttl = 10m; } # Don't allow static files to set cookies. # (?i) denotes case insensitive in PCRE (perl compatible regular expressions). # This list of extensions appears twice, once here and again in vcl_recv so # make sure you edit both and keep them equal. if (req.url ~ "(?i)\.(pdf|asc|dat|txt|doc|xls|ppt|tgz|csv|png|gif|jpeg|jpg|ico|swf|css|js)(\?.*)?$") { unset beresp.http.set-cookie; } # Allow items to be stale if needed. set beresp.grace = 6h; } # In the event of an error, show friendlier messages. sub vcl_error { # Redirect to some other URL in the case of a homepage failure. #if (req.url ~ "^/?$") { # set obj.status = 302; # set obj.http.Location = "http://backup.example.com/"; #} # Otherwise redirect to the homepage, which will likely be in the cache. set obj.http.Content-Type = "text/html; charset=utf-8"; synthetic {" <html> <head> <title>Page Unavailable</title> <style> body { background: #303030; text-align: center; color: white; } #page { border: 1px solid #CCC; width: 500px; margin: 100px auto 0; padding: 30px; background: #323232; } a, a:link, a:visited { color: #CCC; } .error { color: #222; } </style> </head> <body onload="setTimeout(function() { window.location = '/' }, 5000)"> <div id="page"> <h1 class="title">Page Unavailable</h1> <p>The page you requested is temporarily unavailable.</p> <p>We're redirecting you to the <a href="/">homepage</a> in 5 seconds.</p> <div class="error">(Error "} + obj.status + " " + obj.response + {")</div> </div> </body> </html> "}; return (deliver); } I'm getting a MISS and age 0 every time. If I'm understanding correctly, this means the file isn't being returned from Varnish's cache. Is there a problem with my Varnish config?

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

< Previous Page | 215 216 217 218 219 220 221  | Next Page >