Search Results

Search found 1208 results on 49 pages for 'endpoint'.

Page 22/49 | < Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >

  • WPF Custom Buttons below ListBox Items

    - by Ryan
    WPF Experts - I am trying to add buttons below my custom listbox and also have the scroll bar go to the bottom of the control. Only the items should move and not the buttons. I was hoping for some guidance on the best way to achieve this. I was thinking the ItemsPanelTemplate needed to be modified but was not certain. Thanks My code is below <!-- List Item Selected --> <LinearGradientBrush x:Key="GotFocusStyle" EndPoint="0.5,1" StartPoint="0.5,0"> <LinearGradientBrush.GradientStops> <GradientStop Color="Black" Offset="0.501"/> <GradientStop Color="#FF091F34"/> <GradientStop Color="#FF002F5C" Offset="0.5"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> <!-- List Item Hover --> <LinearGradientBrush x:Key="MouseOverFocusStyle" StartPoint="0,0" EndPoint="0,1"> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF013B73" Offset="0.501"/> <GradientStop Color="#FF091F34"/> <GradientStop Color="#FF014A8F" Offset="0.5"/> <GradientStop Color="#FF003363" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> <!-- List Item Selected --> <LinearGradientBrush x:Key="LostFocusStyle" EndPoint="0.5,1" StartPoint="0.5,0"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <ScaleTransform CenterX="0.5" CenterY="0.5"/> <SkewTransform CenterX="0.5" CenterY="0.5"/> <RotateTransform CenterX="0.5" CenterY="0.5"/> <TranslateTransform/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <GradientStop Color="#FF091F34" Offset="1"/> <GradientStop Color="#FF002F5C" Offset="0.4"/> </LinearGradientBrush> <!-- List Item Highlight --> <SolidColorBrush x:Key="ListItemHighlight" Color="#FFE38E27" /> <!-- List Item UnHighlight --> <SolidColorBrush x:Key="ListItemUnHighlight" Color="#FF6FB8FD" /> <Style TargetType="ListBoxItem"> <EventSetter Event="GotFocus" Handler="ListItem_GotFocus"></EventSetter> <EventSetter Event="LostFocus" Handler="ListItem_LostFocus"></EventSetter> </Style> <DataTemplate x:Key="CustomListData" DataType="{x:Type ListBoxItem}"> <Border BorderBrush="Black" BorderThickness="1" Margin="-2,0,0,-1"> <Grid> <Grid.ColumnDefinitions> <ColumnDefinition Width="{Binding RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type ListBoxItem}}, Path=ActualWidth}" /> </Grid.ColumnDefinitions> <Label VerticalContentAlignment="Center" BorderThickness="0" BorderBrush="Transparent" Foreground="{StaticResource ListItemUnHighlight}" FontSize="24" Tag="{Binding .}" Grid.Column="0" MinHeight="55" Cursor="Hand" FontFamily="Arial" FocusVisualStyle="{x:Null}" KeyboardNavigation.TabNavigation="None" Background="{StaticResource LostFocusStyle}" MouseMove="ListItem_MouseOver" > <Label.ContextMenu> <ContextMenu Name="editMenu"> <MenuItem Header="Edit"/> </ContextMenu> </Label.ContextMenu> <TextBlock Text="{Binding .}" Margin="15,0,40,0" TextWrapping="Wrap"></TextBlock> </Label> <Image Tag="{Binding .}" Source="{Binding}" Margin="260,0,0,0" Grid.Column="1" Stretch="None" Width="16" Height="22" HorizontalAlignment="Center" VerticalAlignment="Center" /> </Grid> </Border> </DataTemplate> </Window.Resources> <Window.DataContext> <ObjectDataProvider ObjectType="{x:Type local:ImageLoader}" MethodName="LoadImages" /> </Window.DataContext> <ListBox ItemsSource="{Binding}" Width="320" Background="#FF021422" BorderBrush="#FF1C4B79" > <ListBox.Resources> <SolidColorBrush x:Key="{x:Static SystemColors.HighlightBrushKey}">Transparent</SolidColorBrush> <Style TargetType="{x:Type ListBox}"> <Setter Property="ScrollViewer.HorizontalScrollBarVisibility" Value="Disabled" /> <Setter Property="ItemTemplate" Value="{StaticResource CustomListData }" /> </Style> </ListBox.Resources> </ListBox>

    Read the article

  • Am I going about this the right way?

    - by Psytronic
    Hey Guys, I'm starting a WPF project, and just finished the base of the UI, it seems very convoluted though, so I'm not sure if I've gone around laying it out in the right way. I don't want to get to start developing the back-end and realise that I've done the front wrong, and make life harder for myself. Coming from a background of <DIV's and CSS to style this is a lot different, and really want to get it right from the start. Essentially it's a one week calendar (7 days, Mon-Sunday, defaulting to the current week.) Which will eventually link up to a DB and if I have an appointment for something on this day it will show it in the relevant day. I've opted for a Grid rather than ListView because of the way it will work I will not be binding the results to a collection or anything along those lines. Rather I will be filling out a Combo box within the canvas for each day (yet to be placed in the code) for each event and on selection it will show me further details. XAML: <Window x:Class="WOW_Widget.Window1" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:s="clr-namespace:System;assembly=mscorlib" xmlns:Extensions="clr-namespace:WOW_Widget" DataContext="{Binding RelativeSource={RelativeSource Self}}" Title="Window1" Height="239" Width="831" <Window.Resources <LinearGradientBrush x:Key="NormalBrush" StartPoint="0,0" EndPoint="0,1" <GradientBrush.GradientStops <GradientStopCollection <GradientStop Offset="1.0" Color="White"/ <GradientStop Offset="0.0" Color="LightSlateGray"/ </GradientStopCollection </GradientBrush.GradientStops </LinearGradientBrush <LinearGradientBrush x:Key="grdDayHeader" StartPoint="0,0" EndPoint="0,1" <GradientBrush.GradientStops <GradientStopCollection <GradientStop Offset="0.0" Color="Peru" / <GradientStop Offset="1.0" Color="White" / </GradientStopCollection </GradientBrush.GradientStops </LinearGradientBrush <LinearGradientBrush x:Key="grdToday" StartPoint="0,0" EndPoint="0,1" <GradientBrush.GradientStops <GradientStopCollection <GradientStop Offset="0.0" Color="LimeGreen"/ <GradientStop Offset="1.0" Color="DarkGreen" / </GradientStopCollection </GradientBrush.GradientStops </LinearGradientBrush <Style TargetType="{x:Type GridViewColumnHeader}" <Setter Property="Background" Value="Khaki" / </Style <Style x:Key="DayHeader" TargetType="{x:Type Label}" <Setter Property="Background" Value="{StaticResource grdDayHeader}" / <Setter Property="Width" Value="111" / <Setter Property="Height" Value="25" / <Setter Property="HorizontalContentAlignment" Value="Center" / </Style <Style x:Key="DayField" <Setter Property="Canvas.Width" Value="111" / <Setter Property="Canvas.Height" Value="60" / <Setter Property="Canvas.Background" Value="White" / </Style <Style x:Key="Today" <Setter Property="Canvas.Background" Value="{StaticResource grdToday}" / </Style <Style x:Key="CalendarColSpacer" <Setter Property="Canvas.Width" Value="1" / <Setter Property="Canvas.Background" Value="Black" / </Style <Style x:Key="CalendarRowSpacer" <Setter Property="Canvas.Height" Value="1" / <Setter Property="Canvas.Background" Value="Black" / </Style </Window.Resources <Grid Background="{StaticResource NormalBrush}" <Border BorderBrush="Black" BorderThickness="1" Width="785" Height="86" Margin="12,12,12,104" <Canvas Height="86" Width="785" VerticalAlignment="Top" <Grid <Grid.ColumnDefinitions <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / <ColumnDefinition / </Grid.ColumnDefinitions <Grid.RowDefinitions <RowDefinition / <RowDefinition / <RowDefinition / </Grid.RowDefinitions <Label Grid.Column="0" Grid.Row="0" Content="Monday" Style="{StaticResource DayHeader}" / <Canvas Grid.Column="1" Grid.RowSpan="3" Grid.Row="0" Style="{StaticResource CalendarColSpacer}" / <Label Grid.Column="2" Grid.Row="0" Content="Tuesday" Style="{StaticResource DayHeader}" / <Canvas Grid.Column="3" Grid.RowSpan="3" Grid.Row="0" Style="{StaticResource CalendarColSpacer}" / <Label Grid.Column="4" Grid.Row="0" Content="Wednesday" Style="{StaticResource DayHeader}" / <Canvas Grid.Column="5" Grid.RowSpan="3" Grid.Row="0" Style="{StaticResource CalendarColSpacer}" / <Label Grid.Column="6" Grid.Row="0" Content="Thursday" Style="{StaticResource DayHeader}" / <Canvas Grid.Column="7" Grid.RowSpan="3" Grid.Row="0" Style="{StaticResource CalendarColSpacer}" / <Label Grid.Column="8" Grid.Row="0" Content="Friday" Style="{StaticResource DayHeader}" / <Canvas Grid.Column="9" Grid.RowSpan="3" Grid.Row="0" Style="{StaticResource CalendarColSpacer}" / <Label Grid.Column="10" Grid.Row="0" Content="Saturday" Style="{StaticResource DayHeader}" / <Canvas Grid.Column="11" Grid.RowSpan="3" Grid.Row="0" Style="{StaticResource CalendarColSpacer}" / <Label Grid.Column="12" Grid.Row="0" Content="Sunday" Style="{StaticResource DayHeader}" / <Canvas Grid.Column="0" Grid.ColumnSpan="13" Grid.Row="1" Style="{StaticResource CalendarRowSpacer}" / <Canvas Grid.Column="0" Grid.Row="2" Margin="0" Style="{StaticResource DayField}" <Label Name="lblMondayDate" / </Canvas <Canvas Grid.Column="2" Grid.Row="2" Margin="0" Style="{StaticResource DayField}" <Label Name="lblTuesdayDate" / </Canvas <Canvas Grid.Column="4" Grid.Row="2" Margin="0" Style="{StaticResource DayField}" <Label Name="lblWednesdayDate" / </Canvas <Canvas Grid.Column="6" Grid.Row="2" Margin="0" Style="{StaticResource DayField}" <Label Name="lblThursdayDate" / </Canvas <Canvas Grid.Column="8" Grid.Row="2" Margin="0" Style="{StaticResource DayField}" <Label Name="lblFridayDate" / </Canvas <Canvas Grid.Column="10" Grid.Row="2" Margin="0" Style="{StaticResource DayField}" <Label Name="lblSaturdayDate" / </Canvas <Canvas Grid.Column="12" Grid.Row="2" Margin="0" Style="{StaticResource DayField}" <Label Name="lblSundayDate" / </Canvas </Grid </Canvas </Border <Canvas Height="86" HorizontalAlignment="Right" Margin="0,0,12,12" Name="canvas1" VerticalAlignment="Bottom" Width="198"</Canvas </Grid </Window CS: public partial class Window1 : Window { private DateTime today = new DateTime(); private Label[] Dates = new Label[7]; public Window1() { DateTime start = today = DateTime.Now; int day = (int)today.DayOfWeek; while (day != 1) { start = start.Subtract(new TimeSpan(1, 0, 0, 0)); day--; } InitializeComponent(); Dates[0] = lblMondayDate; Dates[1] = lblTuesdayDate; Dates[2] = lblWednesdayDate; Dates[3] = lblThursdayDate; Dates[4] = lblFridayDate; Dates[5] = lblSaturdayDate; Dates[6] = lblSundayDate; FillWeek(start); } private void FillWeek(DateTime start) { for (int d = 0; d < Dates.Length; d++) { TimeSpan td = new TimeSpan(d, 0, 0, 0); DateTime _day = start.Add(td); if (_day.Date == today.Date) { Canvas dayCanvas = (Canvas)Dates[d].Parent; dayCanvas.Style = (Style)this.Resources["Today"]; } Dates[d].Content = (int)start.Add(td).Day; } } } Thanks for any tips you guys can give Psytronic

    Read the article

  • migrating webclient to WCF; WCF client serializes parametername of method

    - by Wouter
    I'm struggling with migrating from webservice/webclient architecture to WCF architecture. The object are very complex, with lots of nested xsd's and different namespaces. Proxy classes are generated by adding a Web Reference to an original wsdl with 30+ webmethods and using xsd.exe for generating the missing SOAPFault objects. My pilot WCF Service consists of only 1 webmethod which matches the exact syntax of one of the original methods: 1 object as parameter, returning 1 other object as result value. I greated a WCF Interface using those proxy classes, using attributes: XMLSerializerFormat and ServiceContract on the interface, OperationContract on one method from original wsdl specifying Action, ReplyAction, all with the proper namespaces. I create incoming client messages using SoapUI; I generated a project from the original WSDL files (causing the SoapUI project to have 30+ methods) and created one new Request at the one implemented WebMethod, changed the url to my wcf webservice and send the message. Because of the specified (Reply-)Action in the OperationContractAttribute, the message is actually received and properly deserialized into an object. To get this far (40 hours of googling), a lot of frustration led me to using a custom endpoint in which the WCF 'wrapped tags' are removed, the namespaces for nested types are corrected, and the generated wsdl get's flattened (for better compatibility with other tools then MS VisualStudio). Interface code is this: [XmlSerializerFormat(Use = OperationFormatUse.Literal, Style = OperationFormatStyle.Document, SupportFaults = true)] [ServiceContract(Namespace = Constants.NamespaceStufZKN)] public interface IOntvangAsynchroon { [OperationContract(Action = Constants.NamespaceStufZKN + "/zakLk01", ReplyAction = Constants.NamespaceStufZKN + "/zakLk01", Name = "zakLk01")] [FaultContract(typeof(Fo03Bericht), Namespace = Constants.NamespaceStuf)] Bv03Bericht zakLk01([XmlElement("zakLk01", Namespace = Constants.NamespaceStufZKN)] ZAKLk01 zakLk011); When I use a Webclient in code to send a message, everything works. My problem is, when I use a WCF client. I use ChannelFactory< IOntvangAsynchroon to send a message. But the generated xml looks different: it includes the parametername of the method! It took me a lot of time to figure this one out, but here's what happens: Correct xml (stripped soap envelope): <soap:Body> <zakLk01 xmlns="http://www.egem.nl/StUF/sector/zkn/0310"> <stuurgegevens> <berichtcode xmlns="http://www.egem.nl/StUF/StUF0301">Bv01</berichtcode> <zender xmlns="http://www.egem.nl/StUF/StUF0301"> <applicatie>ONBEKEND</applicatie> </zender> </stuurgegevens> <parameters> </parameters> </zakLk01> </soap:Body> Bad xml: <soap:Body> <zakLk01 xmlns="http://www.egem.nl/StUF/sector/zkn/0310"> <zakLk011> <stuurgegevens> <berichtcode xmlns="http://www.egem.nl/StUF/StUF0301">Bv01</berichtcode> <zender xmlns="http://www.egem.nl/StUF/StUF0301"> <applicatie>ONBEKEND</applicatie> </zender> </stuurgegevens> <parameters> </parameters> </zakLk011> </zakLk01> </soap:Body> Notice the 'zakLk011' element? It is the name of the parameter of the method in my interface! So NOW it is zakLk011, but it when my parameter name was 'zakLk01', the xml seemed to contain some magical duplicate of the tag above, but without namespace. Of course, you can imagine me going crazy over what was happening before finding out it was the parametername! I know have actually created a WCF Service, at which I cannot send messages using a WCF Client anymore. For clarity: The method does get invoked using the WCF Client on my webservice, but the parameter object is empty. Because I'm using a custom endpoint to log the incoming xml, I can see the message is received fine, but just with the wrong syntax! WCF client code: ZAKLk01 stufbericht = MessageFactory.CreateZAKLk01(); ChannelFactory<IOntvangAsynchroon> factory = new ChannelFactory<IOntvangAsynchroon>(new BasicHttpBinding(), new EndpointAddress("http://localhost:8193/Roxit/Link/zkn0310")); factory.Endpoint.Behaviors.Add(new LinkEndpointBehavior()); IOntvangAsynchroon client = factory.CreateChannel(); client.zakLk01(stufbericht); I am not using a generated client, i just reference the webservice like i am lot's of times. Can anyone please help me? I can't google anything on this...

    Read the article

  • WCF REST on .Net 4.0

    - by AngelEyes
    A simple and straight forward article taken from: http://christopherdeweese.com/blog2/post/drop-the-soap-wcf-rest-and-pretty-uris-in-net-4 Drop the Soap: WCF, REST, and Pretty URIs in .NET 4 Years ago I was working in libraries when the Web 2.0 revolution began.  One of the things that caught my attention about early start-ups using the AJAX/REST/Web 2.0 model was how nice the URIs were for their applications.  Those were my first impressions of REST; pretty URIs.  Turns out there is a little more to it than that. REST is an architectural style that focuses on resources and structured ways to access those resources via the web.  REST evolved as an “anti-SOAP” movement, driven by developers who did not want to deal with all the complexity SOAP introduces (which is al lot when you don’t have frameworks hiding it all).  One of the biggest benefits to REST is that browsers can talk to rest services directly because REST works using URIs, QueryStrings, Cookies, SSL, and all those HTTP verbs that we don’t have to think about anymore. If you are familiar with ASP.NET MVC then you have been exposed to rest at some level.  MVC is relies heavily on routing to generate consistent and clean URIs.  REST for WCF gives you the same type of feel for your services.  Let’s dive in. WCF REST in .NET 3.5 SP1 and .NET 4 This post will cover WCF REST in .NET 4 which drew heavily from the REST Starter Kit and community feedback.  There is basic REST support in .NET 3.5 SP1 and you can also grab the REST Starter Kit to enable some of the features you’ll find in .NET 4. This post will cover REST in .NET 4 and Visual Studio 2010. Getting Started To get started we’ll create a basic WCF Rest Service Application using the new on-line templates option in VS 2010: When you first install a template you are prompted with this dialog: Dude Where’s my .Svc File? The WCF REST template shows us the new way we can simply build services.  Before we talk about what’s there, let’s look at what is not there: The .Svc File An Interface Contract Dozens of lines of configuration that you have to change to make your service work REST in .NET 4 is greatly simplified and leverages the Web Routing capabilities used in ASP.NET MVC and other parts of the web frameworks.  With REST in .NET 4 you use a global.asax to set the route to your service using the new ServiceRoute class.  From there, the WCF runtime handles dispatching service calls to the methods based on the Uri Templates. global.asax using System; using System.ServiceModel.Activation; using System.Web; using System.Web.Routing; namespace Blog.WcfRest.TimeService {     public class Global : HttpApplication     {         void Application_Start(object sender, EventArgs e)         {             RegisterRoutes();         }         private static void RegisterRoutes()         {             RouteTable.Routes.Add(new ServiceRoute("TimeService",                 new WebServiceHostFactory(), typeof(TimeService)));         }     } } The web.config contains some new structures to support a configuration free deployment.  Note that this is the default config generated with the template.  I did not make any changes to web.config. web.config <?xml version="1.0"?> <configuration>   <system.web>     <compilation debug="true" targetFramework="4.0" />   </system.web>   <system.webServer>     <modules runAllManagedModulesForAllRequests="true">       <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,            System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />     </modules>   </system.webServer>   <system.serviceModel>     <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>     <standardEndpoints>       <webHttpEndpoint>         <!--             Configure the WCF REST service base address via the global.asax.cs file and the default endpoint             via the attributes on the <standardEndpoint> element below         -->         <standardEndpoint name="" helpEnabled="true" automaticFormatSelectionEnabled="true"/>       </webHttpEndpoint>     </standardEndpoints>   </system.serviceModel> </configuration> Building the Time Service We’ll create a simple “TimeService” that will return the current time.  Let’s start with the following code: using System; using System.ServiceModel; using System.ServiceModel.Activation; using System.ServiceModel.Web; namespace Blog.WcfRest.TimeService {     [ServiceContract]     [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]     [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]     public class TimeService     {         [WebGet(UriTemplate = "CurrentTime")]         public string CurrentTime()         {             return DateTime.Now.ToString();         }     } } The endpoint for this service will be http://[machinename]:[port]/TimeService.  To get the current time http://[machinename]:[port]/TimeService/CurrentTime will do the trick. The Results Are In Remember That Route In global.asax? Turns out it is pretty important.  When you set the route name, that defines the resource name starting after the host portion of the Uri. Help Pages in WCF 4 Another feature that came from the starter kit are the help pages.  To access the help pages simply append Help to the end of the service’s base Uri. Dropping the Soap Having dabbled with REST in the past and after using Soap for the last few years, the WCF 4 REST support is certainly refreshing.  I’m currently working on some REST implementations in .NET 3.5 and VS 2008 and am looking forward to working on REST in .NET 4 and VS 2010.

    Read the article

  • Taking advantage of Windows Azure CDN and Dynamic Pages in ASP.NET - Caching content from hosted services

    - by Shawn Cicoria
    With the updates to Windows Azure CDN announced this week [1] I wanted to help illustrate the capability with a working sample that will serve up dynamic content from an ASP.NET site hosted in a WebRole. First, to get a good overview of the capability you can read the Overview of the Windows Azure CDN [2] content on MSDN. When you setup the ability to cache content from a hosted service, the requirement is to provide a path to your role’s DNS endpoint that ends in the path “/cdn”.  Additionally, you then map CDN to that service. What WAZ CDN does, is allow you to then map that through the CDN to your host.  The CDN will then make a request to your host on your client’s behalf. The requirement is still that your client, and any Url’s that are to be serviced through the CDN and this capability have to use the CDN DNS name and not your host – no different than what CDN does for Blog storage. The following 2 URL’s are samples of how the client needs to issue the requests. Windows Azure hosted service URL: http: //myHostedService.cloudapp.net/cdn/music.aspx   - for regular “dynamic” content Windows Azure CDN URL: http: //<identifier>.vo.msecnd.net/music.aspx   - for CDN “cachable” content. The first URL path’s the request direct to your host into the Azure datacenter.  The 2nd URL paths the request through the CDN infrastructure, where CDN will make the determination to request the content on behalf of the client to the Azure datacenter and your host on the /cdn path. The big advantage here is you can apply logic to your content creation.  What’s important is emitting the CDN friendly headers that allow CDN to request and re-request only when you designate based upon it’s rules of “staleness” as described in the overview page. With IIS7.5 there is an underlying issue when the Managed Module “OutputCache” is enabled that in order to emit a good header for your content, you’ll need to remove, and in my sample, helps provide CDN friendly headers.  You get IIS 7.5 when running under OS Family “2” in your service configuration. By default, and when the OutputCache managed module is loaded, if you use the HttpResponse.CachePolicy to set the Http Headers for “max-age” when the HttpCacheability is “Public”, you will NOT get the “max-age” emitted as part of the “Cache-control:” header.  Instead, the OutputCache module will remove “max-age” and just emit “public”.  It works ok when Cacheability is set to “private”. To work around the issue and ensure your code as follows emits the full max-age along with the public option, you need to remove as follows: <system.webServer>   <modules runAllManagedModulesForAllRequests="true">     <remove name="OutputCache"/>   </modules> </system.webServer>   Response.Cache.SetCacheability(HttpCacheability.Public); Response.Cache.SetMaxAge(TimeSpan.FromMinutes(rv));   In the attached solution, the way I approached it was to have a VirtualApplication under the root site that has it’s own web.config  - this VirtualApplication is the /cdn of the site and when deployed to Azure as a Web Role will surface as a distinct IIS Application – along with a separate AppDomain. The CDN Sample is a simple Web Forms site that the /default landing page contains 3 IFrames to host: 1. Content direct from the host @   http://xxxx.cloudapp.net/cdn 2. Content via the CDN @ http://azxxx.vo.msecnd.net  3. Simple list of recent requests – showing where the request came from.   When you run the sample the first time you hit the page, both the Host and the CDN will cause 2 initial requests to hit the host.  You won’t see the first requests in the list because of timing – but if you refresh, you’ll see that the list will show that you have 2 requests initially. 1. sourced direct from the Browser to the HOST 2. sourced via the CDN The picture above shows the call-outs of each of those requests – green rows showing requests coming direct to the HOST, yellow showing the CDN request.  The IP addresses of the green items are direct from the client, where the CDN is from the CDN data center. As you refresh the page (hit Ctrl+F5 to force a full refresh and avoid “304 – not changed”) you’ll see that the request to the HOST get’s processed direct; but the request to the CDN endpoint is serviced direct from the CDN and doesn’t incur any additional request back to the HOST. The following is the Headers from the CDN response (Status-Line) HTTP/1.1 200 OK Age 13 Cache-Control public, max-age=300 Connection keep-alive Content-Length 6212 Content-Type image/jpeg; charset=utf-8 Date Fri, 11 Mar 2011 20:47:14 GMT Expires Fri, 11 Mar 2011 20:52:01 GMT Last-Modified Fri, 11 Mar 2011 20:47:02 GMT Server Microsoft-IIS/7.5 X-AspNet-Version 4.0.30319 X-Powered-By ASP.NET   The following are the Headers from the HOST response (Status-Line) HTTP/1.1 200 OK Cache-Control public, max-age=300 Content-Length 6189 Content-Type image/jpeg; charset=utf-8 Date Fri, 11 Mar 2011 20:47:15 GMT Last-Modified Fri, 11 Mar 2011 20:47:02 GMT Server Microsoft-IIS/7.5 X-AspNet-Version 4.0.30319 X-Powered-By ASP.NET   You can see that with the CDN request, the countdown (age) starts for aging the content. The full sample is located here: CDNSampleSite.zip [1] http://blogs.msdn.com/b/windowsazure/archive/2011/03/09/now-available-updated-windows-azure-sdk-and-windows-azure-management-portal.aspx [2] http://msdn.microsoft.com/en-us/library/ff919703.aspx

    Read the article

  • Configure Oracle SOA JMSAdatper to Work with WLS JMS Topics

    - by fip
    The WebLogic JMS Topic are typically running in a WLS cluster. So as your SOA composites that receive these Topic messages. In some situation, the two clusters are the same while in others they are sepearate. The composites in SOA cluster are subscribers to the JMS Topic in WebLogic cluster. As nature of JMS Topic is meant to distribute the same copy of messages to all its subscribers, two questions arise immediately when it comes to load balancing the JMS Topic messages against the SOA composites: How to assure all of the SOA cluster members receive different messages instead of the same (duplicate) messages, even though the SOA cluster members are all subscribers to the Topic? How to make sure the messages are evenly distributed (load balanced) to SOA cluster members? Here we will walk through how to configure the JMS Topic, the JmsAdapter connection factory, as well as the composite so that the JMS Topic messages will be evenly distributed to same composite running off different SOA cluster nodes without causing duplication. 2. The typical configuration In this typical configuration, we achieve the load balancing of JMS Topic messages to JmsAdapters by configuring a partitioned distributed topic along with sharable subscriptions. You can reference the documentation for explanation of PDT. And this blog posting does a very good job to visually explain how this combination of configurations would message load balancing among clients of JMS Topics. Our job is to apply this configuration in the context of SOA JMS Adapters. To do so would involve the following steps: Step A. Configure JMS Topic to be UDD and PDT, at the WebLogic cluster that house the JMS Topic Step B. Configure JCA Connection Factory with proper ServerProperties at the SOA cluster Step C. Reference the JCA Connection Factory and define a durable subscriber name, at composite's JmsAdapter (or the *.jca file) Here are more details of each step: Step A. Configure JMS Topic to be UDD and PDT, You do this at the WebLogic cluster that house the JMS Topic. You can follow the instructions at Administration Console Online Help to create a Uniform Distributed Topic. If you use WebLogic Console, then at the same administration screen you can specify "Distribution Type" to be "Uniform", and the Forwarding policy to "Partitioned", which would make the JMS Topic Uniform Distributed Destination and a Partitioned Distributed Topic, respectively Step B: Configure ServerProperties of JCA Connection Factory You do this step at the SOA cluster. This step is to make the JmsAdapter that connect to the JMS Topic through this JCA Connection Factory as a certain type of "client". When you configure the JCA Connection Factory for the JmsAdapter, you define the list of properties in FactoryProperties field, in a semi colon separated list: ClientID=myClient;ClientIDPolicy=UNRESTRICTED;SubscriptionSharingPolicy=SHARABLE;TopicMessageDistributionAll=false You can refer to Chapter 8.4.10 Accessing Distributed Destinations (Queues and Topics) on the WebLogic Server JMS of the Adapter User Guide for the meaning of these properties. Please note: Except for ClientID, other properties such as the ClientIDPolicy=UNRESTRICTED, SubscriptionSharingPolicy=SHARABLE and TopicMessageDistributionAll=false are all default settings for the JmsAdapter's connection factory. Therefore you do NOT have to explicitly specify them explicitly. All you need to do is the specify the ClientID. The ClientID is different from the subscriber ID that we are to discuss in the later steps. To make it simple, you just need to remember you need to specify the client ID and make it unique per connection factory. Here is the example setting: Step C. Reference the JCA Connection Factory and define a durable subscriber name, at composite's JmsAdapter (or the *.jca file) In the following example, the value 'MySubscriberID-1' was given as the value of property 'DurableSubscriber': <adapter-config name="subscribe" adapter="JMS Adapter" wsdlLocation="subscribe.wsdl" xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata"> <connection-factory location="eis/wls/MyTestUDDTopic" UIJmsProvider="WLSJMS" UIConnectionName="ateam-hq24b"/> <endpoint-activation portType="Consume_Message_ptt" operation="Consume_Message"> <activation-spec className="oracle.tip.adapter.jms.inbound.JmsConsumeActivationSpec"> <property name="DurableSubscriber" value="MySubscriberID-1"/> <property name="PayloadType" value="TextMessage"/> <property name="UseMessageListener" value="false"/> <property name="DestinationName" value="jms/MyTestUDDTopic"/> </activation-spec> </endpoint-activation> </adapter-config> You can set the durable subscriber name either at composite's JmsAdapter wizard,or by directly editing the JmsAdapter's *.jca file within the Composite project. 2.The "atypical" configurations: For some systems, there may be restrictions that do not allow the afore mentioned "typical" configurations be applied. For examples, some deployments may be required to configure the JMS Topic to be Replicated Distributed Topic rather than Partition Distributed Topic. We would like to discuss those scenarios here: Configuration A: The JMS Topic is NOT PDT In this case, you need to define the message selector 'NOT JMS_WL_DDForwarded' in the adapter's *.jca file, to filter out those "replicated" messages. Configuration B. The ClientIDPolicy=RESTRICTED In this case, you need separate factories for different composites. More accurately, you need separate factories for different *.jca file of JmsAdapter. References: Managing Durable Subscription WebLogic JMS Partitioned Distributed Topics and Shared Subscriptions JMS Troubleshooting: Configuring JMS Message Logging: Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to write a generic service in WCF

    - by rezaxp
    In one of my recent projects I needed a generic service as a facade to handle General activities such as CRUD.Therefor I searched as Many as I could but there was no Idea on generic services so I tried to figure it out by my self.Finally,I found a way :Create a generic contract as below :[ServiceContract] public interface IEntityReadService<TEntity>         where TEntity : EntityBase, new()     {         [OperationContract(Name = "Get")]         TEntity Get(Int64 Id);         [OperationContract(Name = "GetAll")]         List<TEntity> GetAll();         [OperationContract(Name = "GetAllPaged")]         List<TEntity> GetAll(int pageSize, int currentPageIndex, ref int totalRecords);         List<TEntity> GetAll(string whereClause, string orderBy, int pageSize, int currentPageIndex, ref int totalRecords);            }then create your service class :  public class GenericService<TEntity> :IEntityReadService<TEntity> where TEntity : EntityBase, new() {#region Implementation of IEntityReadService<TEntity>         public TEntity Get(long Id)         {             return BusinessController.Get(Id);         }         public List<TEntity> GetAll()         {             try             {                 return BusinessController.GetAll().ToList();             }             catch (Exception ex)             {                                  throw;             }                      }         public List<TEntity> GetAll(int pageSize, int currentPageIndex, ref int totalRecords)         {             return                 BusinessController.GetAll(pageSize, currentPageIndex, ref totalRecords).ToList();         }         public List<TEntity> GetAll(string whereClause, string orderBy, int pageSize, int currentPageIndex, ref int totalRecords)         {             return                 BusinessController.GetAll(pageSize, currentPageIndex, ref totalRecords, whereClause, orderBy).ToList();         }         #endregion} Then, set your EndPoint configuration in this way :<endpoint address="myAddress" binding="basicHttpBinding" bindingConfiguration="myBindingConfiguration1" contract="Contracts.IEntityReadService`1[[Entities.mySampleEntity, Entities]], Service.Contracts" />

    Read the article

  • Telerik Releases the Data Service Wizard

    After a great beta cycle, Telerik is proud to announce today the commercial availability of the OpenAccess Data Service Wizard. You can download it and install it with Telerik OpenAccess Q1 2010 for both Visual Studio 2008 and 2010 RTM. If you are new to the Data Service Wizard, it is a great tool that will allow you to point a wizard at your OpenAccess generated data access classes and automatically build an WCF, Astoria (WCF Data Services), REST or ATOMPub collection endpoint, complete with the CRUD methods if applicable. If you are familiar with the Data Service Wizard already, there will be two new surprises in the release version. If you generated a domain model with the new OpenAccess Visual Entity Designer, you have only one file added to your project, mydomainmodel.rlinq for example. The first surprise of the new Data Service Wizard is that if you right click on the domain model in Visual Studio, ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Visual Studio Load Testing using Windows Azure

    - by Tarun Arora
    In my opinion the biggest adoption barrier in performance testing on smaller projects is not the tooling but the high infrastructure and administration cost that comes with this phase of testing. Only if a reusable solution was possible and infrastructure management wasn’t as expensive, adoption would certainly spike. It certainly is possible if you bring Visual Studio and Windows Azure into the equation. It is possible to run your test rig in the cloud without getting tangled in SCVMM or Lab Management. All you need is an active Azure subscription, Windows Azure endpoint enabled developer workstation running visual studio ultimate on premise, windows azure endpoint enabled worker roles on azure compute instances set up to run as test controllers and test agents. My test rig is running SQL server 2012 and Visual Studio 2012 RC agents. The beauty is that the solution is reusable, you can open the azure project, change the subscription and certificate, click publish and *BOOM* in less than 15 minutes you could have your own test rig running in the cloud. In this blog post I intend to show you how you can use the power of Windows Azure to effectively abstract the administration cost of infrastructure management and lower the total cost of Load & Performance Testing. As a bonus, I will share a reusable solution that you can use to automate test rig creation for both VS 2010 agents as well as VS 2012 agents. Introduction The slide show below should help you under the high level details of what we are trying to achive... Leveraging Azure for Performance Testing View more PowerPoint from Avanade Scenario 1 – Running a Test Rig in Windows Azure To start off with the basics, in the first scenario I plan to discuss how to, - Automate deployment & configuration of Windows Azure Worker Roles for Test Controller and Test Agent - Automate deployment & configuration of SQL database on Test Controller on the Test Controller Worker Role - Scaling Test Agents on demand - Creating a Web Performance Test and a simple Load Test - Managing Test Controllers right from Visual Studio on Premise Developer Workstation - Viewing results of the Load Test - Cleaning up - Have the above work in the shape of a reusable solution for both VS2010 and VS2012 Test Rig Scenario 2 – The scaled out Test Rig and sharing data using SQL Azure A scaled out version of this implementation would involve running multiple test rigs running in the cloud, in this scenario I will show you how to sync the load test database from these distributed test rigs into one SQL Azure database using Azure sync. The selling point for this scenario is being able to collate the load test efforts from across the organization into one data store. - Deploy multiple test rigs using the reusable solution from scenario 1 - Set up and configure Windows Azure Sync - Test SQL Azure Load Test result database created as a result of Windows Azure Sync - Cleaning up - Have the above work in the shape of a reusable solution for both VS2010 and VS2012 Test Rig The Ingredients Though with an active MSDN ultimate subscription you would already have access to everything and more, you will essentially need the below to try out the scenarios, 1. Windows Azure Subscription 2. Windows Azure Storage – Blob Storage 3. Windows Azure Compute – Worker Role 4. SQL Azure Database 5. SQL Data Sync 6. Windows Azure Connect – End points 7. SQL 2012 Express or SQL 2008 R2 Express 8. Visual Studio All Agents 2012 or Visual Studio All Agents 2010 9. A developer workstation set up with Visual Studio 2012 – Ultimate or Visual Studio 2010 – Ultimate 10. Visual Studio Load Test Unlimited Virtual User Pack. Walkthrough To set up the test rig in the cloud, the test controller, test agent and SQL express installers need to be available when the worker role set up starts, the easiest and most efficient way is to pre upload the required software into Windows Azure Blob storage. SQL express, test controller and test agent expose various switches which we can take advantage of including the quiet install switch. Once all the 3 have been installed the test controller needs to be registered with the test agents and the SQL database needs to be associated to the test controller. By enabling Windows Azure connect on the machines in the cloud and the developer workstation on premise we successfully create a virtual network amongst the machines enabling 2 way communication. All of the above can be done programmatically, let’s see step by step how… Scenario 1 Video Walkthrough–Leveraging Windows Azure for performance Testing Scenario 2 Work in progress, watch this space for more… Solution If you are still reading and are interested in the solution, drop me an email with your windows live id. I’ll add you to my TFS preview project which has a re-usable solution for both VS 2010 and VS 2012 test rigs as well as guidance and demo performance tests.   Conclusion Other posts and resources available here. Possibilities…. Endless!

    Read the article

  • WIF, ADFS 2 and WCF&ndash;Part 6: Chaining multiple Token Services

    - by Your DisplayName here!
    See the previous posts first. So far we looked at the (simpler) scenario where a client acquires a token from an identity provider and uses that for authentication against a relying party WCF service. Another common scenario is, that the client first requests a token from an identity provider, and then uses this token to request a new token from a Resource STS or a partner’s federation gateway. This sounds complicated, but is actually very easy to achieve using WIF’s WS-Trust client support. The sequence is like this: Request a token from an identity provider. You use some “bootstrap” credential for that like Windows integrated, UserName or a client certificate. The realm used for this request is the identifier of the Resource STS/federation gateway. Use the resulting token to request a new token from the Resource STS/federation gateway. The realm for this request would be the ultimate service you want to talk to. Use this resulting token to authenticate against the ultimate service. Step 1 is very much the same as the code I have shown in the last post. In the following snippet, I use a client certificate to get a token from my STS: private static SecurityToken GetIdPToken() {     var factory = new WSTrustChannelFactory(         new CertificateWSTrustBinding(SecurityMode.TransportWithMessageCredential,         idpEndpoint);     factory.TrustVersion = TrustVersion.WSTrust13;       factory.Credentials.ClientCertificate.SetCertificate(         StoreLocation.CurrentUser,         StoreName.My,         X509FindType.FindBySubjectDistinguishedName,         "CN=Client");       var rst = new RequestSecurityToken     {         RequestType = RequestTypes.Issue,         AppliesTo = new EndpointAddress(rstsRealm),         KeyType = KeyTypes.Symmetric     };       var channel = factory.CreateChannel();     return channel.Issue(rst); } To use a token to request another token is slightly different. First the IssuedTokenWSTrustBinding is used and second the channel factory extension methods are used to send the identity provider token to the Resource STS: private static SecurityToken GetRSTSToken(SecurityToken idpToken) {     var binding = new IssuedTokenWSTrustBinding();     binding.SecurityMode = SecurityMode.TransportWithMessageCredential;       var factory = new WSTrustChannelFactory(         binding,         rstsEndpoint);     factory.TrustVersion = TrustVersion.WSTrust13;     factory.Credentials.SupportInteractive = false;       var rst = new RequestSecurityToken     {         RequestType = RequestTypes.Issue,         AppliesTo = new EndpointAddress(svcRealm),         KeyType = KeyTypes.Symmetric     };       factory.ConfigureChannelFactory();     var channel = factory.CreateChannelWithIssuedToken(idpToken);     return channel.Issue(rst); } For this particular case I chose an ADFS endpoint for issued token authentication (see part 1 for more background). Calling the service now works exactly like I described in my last post. You may now wonder if the same thing can be also achieved using configuration only – absolutely. But there are some gotchas. First of all the configuration files becomes quite complex. As we discussed in part 4, the bindings must be nested for WCF to unwind the token call-stack. But in this case svcutil cannot resolve the first hop since it cannot use metadata to inspect the identity provider. This binding must be supplied manually. The other issue is around the value for the realm/appliesTo when requesting a token for the R-STS. Using the manual approach you have full control over that parameter and you can simply use the R-STS issuer URI. Using the configuration approach, the exact address of the R-STS endpoint will be used. This means that you may have to register multiple R-STS endpoints in the identity provider. Another issue you will run into is, that ADFS does only accepts its configured issuer URI as a known realm by default. You’d have to manually add more audience URIs for the specific endpoints using the ADFS Powershell commandlets. I prefer the “manual” approach. That’s it. Hope this is useful information.

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer

    - by Elton Stoneman
    This is the second in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Part 2 is nice and easy. From Part 1 we exposed our service over the Azure Service Bus Relay using the netTcpRelayBinding and verified we could set up our network to listen for relayed messages. Assuming we want to consume that service in .NET from an environment which is fairly unrestricted for us, but quite restricted for attackers, we can use netTcpRelay and shared secret authentication. Pattern applicability This is a good fit for scenarios where: the consumer can run .NET in full trust the environment does not restrict use of external DLLs the runtime environment is secure enough to keep shared secrets the service does not need to know who is consuming it the service does not need to know who the end-user is So for example, the consumer is an ASP.NET website sitting in a cloud VM or Azure worker role, where we can keep the shared secret in web.config and we don't need to flow any identity through to the on-premise service. The service doesn't care who the consumer or end-user is - say it's a reference data service that provides a list of vehicle manufacturers. Provided you can authenticate with ACS and have access to Service Bus endpoint, you can use the service and it doesn't care who you are. In this post, we’ll consume the service from Part 1 in ASP.NET using netTcpRelay. The code for Part 2 (+ Part 1) is on GitHub here: IPASBR Part 2 Authenticating and authorizing with ACS In this scenario the consumer is a server in a controlled environment, so we can use a shared secret to authenticate with ACS, assuming that there is governance around the environment and the codebase which will prevent the identity being compromised. From the provider's side, we will create a dedicated service identity for this consumer, so we can lock down their permissions. The provider controls the identity, so the consumer's rights can be revoked. We'll add a new service identity for the namespace in ACS , just as we did for the serviceProvider identity in Part 1. I've named the identity fullTrustConsumer. We then need to add a rule to map the incoming identity claim to an outgoing authorization claim that allows the identity to send messages to Service Bus (see Part 1 for a walkthrough creating Service Idenitities): Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: fullTrustConsumer Output claim type: net.windows.servicebus.action Output claim value: Send This sets up a service identity which can send messages into Service Bus, but cannot register itself as a listener, or manage the namespace. Adding a Service Reference The Part 2 sample client code is ready to go, but if you want to replicate the steps, you’re going to add a WSDL reference, add a reference to Microsoft.ServiceBus and sort out the ServiceModel config. In Part 1 we exposed metadata for our service, so we can browse to the WSDL locally at: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc?wsdl If you add a Service Reference to that in a new project you'll get a confused config section with a customBinding, and a set of unrecognized policy assertions in the namespace http://schemas.microsoft.com/netservices/2009/05/servicebus/connect. If you NuGet the ASB package (“windowsazure.servicebus”) first and add the service reference - you'll get the same messy config. Either way, the WSDL should have downloaded and you should have the proxy code generated. You can delete the customBinding entries and copy your config from the service's web.config (this is already done in the sample project in Sixeyed.Ipasbr.NetTcpClient), specifying details for the client:     <client>       <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                 behaviorConfiguration="SharedSecret"                 binding="netTcpRelayBinding"                 contract="FormatService.IFormatService" />     </client>     <behaviors>       <endpointBehaviors>         <behavior name="SharedSecret">           <transportClientEndpointBehavior credentialType="SharedSecret">             <clientCredentials>               <sharedSecret issuerName="fullTrustConsumer"                             issuerSecret="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/>             </clientCredentials>           </transportClientEndpointBehavior>         </behavior>       </endpointBehaviors>     </behaviors>   The proxy is straight WCF territory, and the same client can run against Azure Service Bus through any relay binding, or directly to the local network service using any WCF binding - the contract is exactly the same. The code is simple, standard WCF stuff: using (var client = new FormatService.FormatServiceClient()) { outputString = client.ReverseString(inputString); } Running the sample First, update Solution Items\AzureConnectionDetails.xml with your service bus namespace, and your service identity credentials for the netTcpClient and the provider:   <!-- ACS credentials for the full trust consumer (Part2): -->   <netTcpClient identityName="fullTrustConsumer"                 symmetricKey="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/> Then rebuild the solution and verify the unit tests work. If they’re green, your service is listening through Azure. Check out the client by navigating to http://localhost:53835/Sixeyed.Ipasbr.NetTcpClient. Enter a string and hit Go! - your string will be reversed by your on-premise service, routed through Azure: Using shared secret client credentials in this way means ACS is the identity provider for your service, and the claim which allows Send access to Service Bus is consumed by Service Bus. None of the authentication details make it through to your service, so your service is not aware who the consumer is (MSDN calls this "anonymous authentication").

    Read the article

  • Replace Broadcom "wl" driver with "b43"

    - by Laszlo Boros
    I'm using Ubuntu 10.04.4 LTS, and in my laptop there is a Broadcom BCM4312 wlan card. lspci output: 04:00.0 Network controller: Broadcom Corporation BCM4312 802.11b/g (rev 01) Subsystem: Broadcom Corporation Device 04b5 Flags: bus master, fast devsel, latency 0, IRQ 18 Memory at f4500000 (64-bit, non-prefetchable) [size=16K] Capabilities: [40] Power Management version 3 Capabilities: [58] Vendor Specific Information Capabilities: [e8] Message Signalled Interrupts: Mask- 64bit+ Queue=0/0 Enable- Capabilities: [d0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting Capabilities: [13c] Virtual Channel Capabilities: [160] Device Serial Number 81-ac-1d-ff-ff-12-54-92 Capabilities: [16c] Power Budgeting Kernel driver in use: wl Kernel modules: wl, ssb So as you can see, the current (and default) driver is wl - installed with jockey. But I have another Ubuntu based distribution on my laptop (BackTrack linux), which is also 10.04, but it has the b43 driver installed and the overall performance is MUCH better. So I would like to install it on this OS too, but even google didn't help me. So my question is how to install the latest b43 driver on my Ubuntu?

    Read the article

  • External USB 3 drive not recognized

    - by ilan123
    Ubuntu 12.10 64 bit seems not to recognize my external hard disk. It is a Vantec NST-310S3 external disk enclosure with a WD 3TB drive. The disk has two NTFS partitions. My PC is a dual boot system. Under Windows 7 the hard disk works fine but I can't make it work with Ubuntu. When the drive is connected to the PC then the command sudo fdisk -l seems to hang forever. Below are the output of lsusb and cat /proc/partitions without the external drive and then with it connected. I added also the last lines of the dmesg command at the end. First without the drive: ilan@linux:~$ lsusb Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 001 Device 003: ID 13ba:0017 Unknown PS/2 Keyboard+Mouse Adapter Bus 001 Device 004: ID 046d:c50e Logitech, Inc. Cordless Mouse Receiver Bus 001 Device 005: ID 0ac8:3420 Z-Star Microelectronics Corp. Venus USB2.0 Camera ilan@linux:~$ cat /proc/partitions major minor #blocks name 8 0 1953514584 sda 8 1 102400 sda1 8 2 629043200 sda2 8 3 367001600 sda3 8 4 1 sda4 8 5 471859200 sda5 8 6 157286400 sda6 8 7 324115456 sda7 8 8 4101120 sda8 11 0 1048575 sr0 Second with the USB 3 drive: ilan@linux:~$ lsusb Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 004 Device 002: ID 174c:55aa ASMedia Technology Inc. Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 001 Device 003: ID 13ba:0017 Unknown PS/2 Keyboard+Mouse Adapter Bus 001 Device 004: ID 046d:c50e Logitech, Inc. Cordless Mouse Receiver Bus 001 Device 005: ID 0ac8:3420 Z-Star Microelectronics Corp. Venus USB2.0 Camera ilan@linux:~$ cat /proc/partitions major minor #blocks name 8 0 1953514584 sda 8 1 102400 sda1 8 2 629043200 sda2 8 3 367001600 sda3 8 4 1 sda4 8 5 471859200 sda5 8 6 157286400 sda6 8 7 324115456 sda7 8 8 4101120 sda8 11 0 1048575 sr0 8 16 2930266584 sdb ilan@linux:~$ lsusb -v -s 004:002 Bus 004 Device 002: ID 174c:55aa ASMedia Technology Inc. Couldn't open device, some information will be missing Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 3.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 9 idVendor 0x174c ASMedia Technology Inc. idProduct 0x55aa bcdDevice 1.00 iManufacturer 2 iProduct 3 iSerial 1 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 44 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xc0 Self Powered MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 8 Mass Storage bInterfaceSubClass 6 SCSI bInterfaceProtocol 80 Bulk-Only iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0400 1x 1024 bytes bInterval 0 bMaxBurst 15 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x02 EP 2 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0400 1x 1024 bytes bInterval 0 bMaxBurst 15 ilan@linux:~$ sudo fdisk -l [sudo] password for ilan: Disk /dev/sda: 2000.4 GB, 2000398934016 bytes 255 heads, 63 sectors/track, 243201 cylinders, total 3907029168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xf1b4f1ee Device Boot Start End Blocks Id System /dev/sda1 * 2048 206847 102400 7 HPFS/NTFS/exFAT /dev/sda2 206848 1258293247 629043200 7 HPFS/NTFS/exFAT /dev/sda3 1258293248 1992296447 367001600 7 HPFS/NTFS/exFAT /dev/sda4 1992298494 3907028991 957365249 f W95 Ext'd (LBA) /dev/sda5 1992298496 2936016895 471859200 7 HPFS/NTFS/exFAT /dev/sda6 2936018944 3250591743 157286400 7 HPFS/NTFS/exFAT /dev/sda7 3250593792 3898824703 324115456 83 Linux /dev/sda8 3898826752 3907028991 4101120 82 Linux swap / Solaris dmesg output after connecting the external drive: [ 23.740567] e1000e: eth0 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: Rx/Tx [ 23.740786] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 49.144673] usb 4-1: >new SuperSpeed USB device number 2 using xhci_hcd [ 49.163039] usb 4-1: >Parent hub missing LPM exit latency info. Power management will be impacted. [ 49.166789] usb 4-1: >New USB device found, idVendor=174c, idProduct=55aa [ 49.166793] usb 4-1: >New USB device strings: Mfr=2, Product=3, SerialNumber=1 [ 49.166796] usb 4-1: >Product: AS2105 [ 49.166799] usb 4-1: >Manufacturer: ASMedia [ 49.166801] usb 4-1: >SerialNumber: 0123456789ABCDEF [ 49.206372] usbcore: registered new interface driver uas [ 49.228891] Initializing USB Mass Storage driver... [ 49.229042] scsi6 : usb-storage 4-1:1.0 [ 49.229115] usbcore: registered new interface driver usb-storage [ 49.229116] USB Mass Storage support registered. [ 64.045528] scsi 6:0:0:0: >Direct-Access WDC WD30 EZRX-00MMMB0 80.0 PQ: 0 ANSI: 0 [ 64.046224] sd 6:0:0:0: >Attached scsi generic sg2 type 0 [ 64.046881] sd 6:0:0:0: >[sdb] Very big device. Trying to use READ CAPACITY(16). [ 64.047610] sd 6:0:0:0: >[sdb] 5860533168 512-byte logical blocks: (3.00 TB/2.72 TiB) [ 64.048368] sd 6:0:0:0: >[sdb] Write Protect is off [ 64.048373] sd 6:0:0:0: >[sdb] Mode Sense: 23 00 00 00 [ 64.048984] sd 6:0:0:0: >[sdb] No Caching mode page present [ 64.048987] sd 6:0:0:0: >[sdb] Assuming drive cache: write through [ 64.049297] sd 6:0:0:0: >[sdb] Very big device. Trying to use READ CAPACITY(16). [ 64.050942] sd 6:0:0:0: >[sdb] No Caching mode page present [ 64.050944] sd 6:0:0:0: >[sdb] Assuming drive cache: write through [ 94.245006] usb 4-1: >reset SuperSpeed USB device number 2 using xhci_hcd [ 94.262553] usb 4-1: >Parent hub missing LPM exit latency info. Power management will be impacted. [ 94.263805] xhci_hcd 0000:03:00.0: >xHCI xhci_drop_endpoint called with disabled ep ffff8800d37d1c00 [ 94.263808] xhci_hcd 0000:03:00.0: >xHCI xhci_drop_endpoint called with disabled ep ffff8800d37d1c40 [ 125.262722] usb 4-1: >reset SuperSpeed USB device number 2 using xhci_hcd [ 125.280304] usb 4-1: >Parent hub missing LPM exit latency info. Power management will be impacted. [ 125.281511] xhci_hcd 0000:03:00.0: >xHCI xhci_drop_endpoint called with disabled ep ffff8800d37d1c00 [ 125.281516] xhci_hcd 0000:03:00.0: >xHCI xhci_drop_endpoint called with disabled ep ffff8800d37d1c40

    Read the article

  • Should I use both WCF and ASP.NET Web API

    - by Mithir
    We already have a WCF API with basichttpbinding. Some of the calls have complex objects in both the response and request. We need to add RESTful abilities to the API. at first I tried adding a webHttp endpoint, but I got At most one body parameter can be serialized without wrapper elements If I made it Wrapped it wasn't pure as I need it to be. I got to read this, and this (which states "ASP.NET Web API is the new way to build RESTful service on .NET"). So my question is, should I make 2 APIs(2 different projects)? one for SOAP with WCF and one RESTful with ASP.NET Web API? is there anything wrong architecturally speaking with this approach?

    Read the article

  • Ubuntu 11.10, FF 11, ATI Catalyst v12.2, Driver Package version 8.95, WebGL doesn't work

    - by Victor S
    I'm running Ubuntu 11.10, FF 11, ATI Catalyst v12.2, Driver Package version 8.95, WebGL doesn't work. This is a pretty capable setup and definetly did have FF work previously, Note: I've downloaded and installed the ATI drivers from AMD. Not sure how to get WebGL working. Updated My video card info: 01:00.0 VGA compatible controller: ATI Technologies Inc Cypress [Radeon HD 5800 Series] (prog-if 00 [VGA controller]) Subsystem: ATI Technologies Inc Device 0b00 Flags: bus master, fast devsel, latency 0, IRQ 44 Memory at d0000000 (64-bit, prefetchable) [size=256M] Memory at fbee0000 (64-bit, non-prefetchable) [size=128K] I/O ports at d000 [size=256] Expansion ROM at fbec0000 [disabled] [size=128K] Capabilities: [50] Power Management version 3 Capabilities: [58] Express Legacy Endpoint, MSI 00 Capabilities: [a0] MSI: Enable+ Count=1/1 Maskable- 64bit+ Capabilities: [100] Vendor Specific Information: ID=0001 Rev=1 Len=010 <?> Capabilities: [150] Advanced Error Reporting Kernel driver in use: fglrx_pci Kernel modules: fglrx, radeon

    Read the article

  • XNA RTS A* pathfinding issues

    - by Slayter
    I'm starting to develop an RTS game using the XNA framework in C# and am still in the very early prototyping stage. I'm working on the basics. I've got unit selection down and am currently working on moving multiple units. I've implemented an A* pathfinding algorithm which works fine for moving a single unit. However when moving multiple units they stack on top of each other. I tried fixing this with a variation of the boids flocking algorithm but this has caused units to sometimes freeze and get stuck trying to move but going no where. Ill post the related methods for moving the units below but ill only post a link to the pathfinding class because its really long and i don't want to clutter up the page. These parts of the code are in the update method for the main controlling class: if (selectedUnits.Count > 0) { int indexOfLeader = 0; for (int i = 0; i < selectedUnits.Count; i++) { if (i == 0) { indexOfLeader = 0; } else { if (Vector2.Distance(selectedUnits[i].position, destination) < Vector2.Distance(selectedUnits[indexOfLeader].position, destination)) indexOfLeader = i; } selectedUnits[i].leader = false; } selectedUnits[indexOfLeader].leader = true; foreach (Unit unit in selectedUnits) unit.FindPath(destination); } foreach (Unit unit in units) { unit.Update(gameTime, selectedUnits); } These three methods control movement in the Unit class: public void FindPath(Vector2 destination) { if (path != null) path.Clear(); Point startPoint = new Point((int)position.X / 32, (int)position.Y / 32); Point endPoint = new Point((int)destination.X / 32, (int)destination.Y / 32); path = pathfinder.FindPath(startPoint, endPoint); pointCounter = 0; if (path != null) nextPoint = path[pointCounter]; dX = 0.0f; dY = 0.0f; stop = false; } private void Move(List<Unit> units) { if (nextPoint == position && !stop) { pointCounter++; if (pointCounter <= path.Count - 1) { nextPoint = path[pointCounter]; if (nextPoint == position) stop = true; } else if (pointCounter >= path.Count) { path.Clear(); pointCounter = 0; stop = true; } } else { if (!stop) { map.occupiedPoints.Remove(this); Flock(units); // Move in X ********* TOOK OUT SPEED ********** if ((int)nextPoint.X > (int)position.X) { position.X += dX; } else if ((int)nextPoint.X < (int)position.X) { position.X -= dX; } // Move in Y if ((int)nextPoint.Y > (int)position.Y) { position.Y += dY; } else if ((int)nextPoint.Y < (int)position.Y) { position.Y -= dY; } if (position == nextPoint && pointCounter >= path.Count - 1) stop = true; map.occupiedPoints.Add(this, position); } if (stop) { path.Clear(); pointCounter = 0; } } } private void Flock(List<Unit> units) { float distanceToNextPoint = Vector2.Distance(position, nextPoint); foreach (Unit unit in units) { float distance = Vector2.Distance(position, unit.position); if (unit != this) { if (distance < space && !leader && (nextPoint != position)) { // create space dX += (position.X - unit.position.X) * 0.1f; dY += (position.Y - unit.position.Y) * 0.1f; if (dX > .05f) nextPoint.X = nextPoint.X - dX; else if (dX < -.05f) nextPoint.X = nextPoint.X + dX; if (dY > .05f) nextPoint.Y = nextPoint.Y - dY; else if (dY < -.05f) nextPoint.Y = nextPoint.Y + dY; if ((dX < .05f && dX > -.05f) && (dY < .05f && dY > -.05f)) stop = true; path[pointCounter] = nextPoint; Console.WriteLine("Make Space: " + dX + ", " + dY); } else if (nextPoint != position && !stop) { dX = speed; dY = speed; Console.WriteLine(dX + ", " + dY); } } } } And here's the link to the pathfinder: https://docs.google.com/open?id=0B_Cqt6txUDkddU40QXBMeTR1djA I hope this post wasn't too long. Also please excuse the messiness of the code. As I said before this is early prototyping. Any help would be appreciated. Thanks!

    Read the article

  • Problems, connecting Android ICS to Ubuntu using MTP

    - by ubuntico
    I've followed this tutorial from this blog which very clearly explains how to connect Android phone with ICS to Ubuntu so that one can access phone's sdcard (MTP access). I passed all the procedure with no errors, I can event attach my mobile to ubuntu via mtpfs -o allow_other ~/Android/GalaxyS2 and disconnect via fusermount -u ~/Android/GalaxyS2 The problem comes when I try to access mounted directory. If I try to do it via Nautilus, the system tries to open the folder for a couple of minutes and then, I either see the error, or the folder disappears from Nautilus (it comes back when I disconnect the path). I also get a console error: fuse: bad mount point `~/Android/GalaxyS2': Transport endpoint is not connected I see many people on the net reporting this error, but noone offers any solution to it. I use Ubuntu 11.10 with Gnome Shell (Gnome 3) and the mobile is Samsung Galaxy S II. I am in the fuse list, I did all the steps in the tutorial for dozens of times, all in vain.

    Read the article

  • Cookbook: SES and UCM setup

    - by George Maggessy
    The purpose of this post is to guide you setting up the integration between UCM and SES. On my next post I’ll show different approaches to integrate WebCenter Portal, UCM and SES based on some common scenarios. Let’s get started. WebCenter Content Configuration WebCenter Content has a component that adds functionality to the content server to allow it to be searched via the Oracle SES. To enable the component installation, go to Administration -&gt; Admin Server and select SESCrawlerExport. Click the update button and restart UCM_server1 managed server. Once the managed server is back, we’ll configure the component. In the menu, under Administration you should see SESCrawlerExport. Click on the link. You’ll see the window below. Click on Configure SESCrawlerExport. Configure the values below: Hostname: SES hostname. Feed Location: Directory where data feeds will be saved. Metadata List: List of metadata that will be searchable by SES. After updating the values click on the Update button. Come back to the SESCrawlerExport Administration UI and click on Take Snapshot button. It will create the data feeds in the specified Feed Location. To check if the correct configuration was done, please access the following URL http://&lt;ucm_server&gt;:&lt;port&gt;/cs/idcplg?IdcService=SES_CRAWLER_DOWLOAD_CONFIG&amp;source=default. It should download config file in the format below: &lt;?xml version="1.0" encoding="UTF-8"?&gt; &lt;rsscrawler xmlns="http://xmlns.oracle.com/search/rsscrawlerconfig"&gt; &lt;feedLocation&gt;&lt;![CDATA[http://adc6160699.us.oracle.com:16200/cs/idcplg?IdcService=SES_CRAWLER_DOWNLOAD_CONTROL&amp;source=default]]&gt;&lt;/feedLocation&gt; &lt;errorFileLocation&gt;&lt;![CDATA[http://adc6160699.us.oracle.com:16200/cs/idcplg?IdcService=SES_CRAWLER_STATUS&amp;IsJava=1&amp;source=default&amp;StatusFeed=]]&gt;&lt;/errorFileLocation&gt; &lt;feedType&gt;controlFeed&lt;/feedType&gt; &lt;sourceName&gt;default&lt;/sourceName&gt; &lt;securityType&gt;attributeBased&lt;/securityType&gt; &lt;securityAttribute name="Account" grant="true"/&gt; &lt;securityAttribute name="DocSecurityGroup" grant="true"/&gt; &lt;securityAttribute name="Collab" grant="true"/&gt; &lt;/rsscrawler&gt; Make sure Account and DocSecurityGroup values are true. SES Configuration Let’s start by configuring the Identity Plug-ins in SES. Go to Global Settings -&gt; System -&gt; Identity Management Setup. Select Oracle Content Server and click the Activate button. We’ll populate the following values: HTTP endpoint for authentication: URL to WebCenter Content. Notice that /cs/idcplg was added at the end of the URL. Admin User: UCM Admin user. This user must have access to all CPOE content. Password: Password to Admin user. Authentication Type: NATIVE. Go back to the Home tab and click on Sources on the top left. Select Oracle Content Server on the right and click the Create button. Configuration URL: URL that point to the configuration file. Example: http://&lt;ucm_hostname&gt;:&lt;port&gt;/cs/idcplg?IdcService=SES_CRAWLER_DOWNLOAD_CONFIG&amp;source=default. User ID: UCM Admin user. Password: Password to Admin user. Click on the Authorization tab and add the appropriate values to the fields below. Make sure you see the ACCOUNT and DOCSECURITYGROUP security attributes at the end of the page. HTTP endpoint for authorization: http://&lt;ucm_hostname&gt;:&lt;port&gt;/cs/idcplg. Display URL prefix: http://&lt;ucm_hostname&gt;:&lt;port&gt;/cs. Administrator user: UCM Admin user. Administrator password. On the Document Types tab, add the documents that should be indexed by SES. As our last step, we’ll configure the Federation Trusted Entities under Global Settings. Entity Name: The user must be present in both the identity management server configured for your WebCenter application and the identity management server configured for Oracle SES. For instance, I used weblogic in my sample. Password: Entity user password.\ Now you are ready to test the integration on the SES UI: http://&lt;ses hostname&gt;:&lt;port&gt;/search/query/.

    Read the article

  • Access Control Service v2

    - by Your DisplayName here!
    A Resource-STS (others call it RP-STS or federation gateway) is a necessity for non-trivial federated identity scenarios. ADFS v2 does an excellent job in fulfilling that role – but (as of now) you have to run ADFS on-premise. The Azure Access Control Service is a Resource-STS in the cloud (with all the usual scalability/availability) promises. Unfortunately a lot of (the more interesting) features in ACS v1 had to be cut due to constrained time/resources. The good news is that ACS v2 is now in CTP and brings back a lot of the missing features (like WS* support) and adds some really sweet new ones (out of the box federation with Google, Facebook, LiveID – and OpenId in general). You can read about the details here. On a related note – ACS v2 works out of the box with StarterSTS – simply choose the ADFS v2 option and point the management portal to the StarterSTS WS-Federation metadata endpoint. Have fun ;)

    Read the article

  • What is the need of Odata when I have JSON ?

    - by punkouter
    I am trying to understand the point of Odata and when it would make sense. Right now how I work is I use ASP.NET and MVC/WebApi controller to serialize/deserialize objects into JSON and have javascript do something with it. From what I can tell the benefit of OData is being able to query directly from the URL ... But since I am writing the client and server code there is no need for that. Would anyone ever parse the results of a ODaya query in javascript?? Maybe OData is more about providing a generic endpoint for ALL clients to get detailed information from a query that JSON does not provide ? So if I was a provider of data then I suppose that is what odata is for ? Help me understand the purpose and use of REST/JSON/ODATA.

    Read the article

  • iOS Support with Windows Azure Mobile Services – now with Push Notifications

    - by ScottGu
    A few weeks ago I posted about a number of improvements to Windows Azure Mobile Services. One of these was the addition of an Objective-C client SDK that allows iOS developers to easily use Mobile Services for data and authentication.  Today I'm excited to announce a number of improvement to our iOS SDK and, most significantly, our new support for Push Notifications via APNS (Apple Push Notification Services).  This makes it incredibly easy to fire push notifications to your iOS users from Windows Azure Mobile Service scripts. Push Notifications via APNS We've provided two complete tutorials that take you step-by-step through the provisioning and setup process to enable your Windows Azure Mobile Service application with APNS (Apple Push Notification Services), including all of the steps required to configure your application for push in the Apple iOS provisioning portal: Getting started with Push Notifications - iOS Push notifications to users by using Mobile Services - iOS Once you've configured your application in the Apple iOS provisioning portal and uploaded the APNS push certificate to the Apple provisioning portal, it's just a matter of uploading your APNS push certificate to Mobile Services using the Windows Azure admin portal: Clicking the “upload” within the “Push” tab of your Mobile Service allows you to browse your local file-system and locate/upload your exported certificate.  As part of this you can also select whether you want to use the sandbox (dev) or production (prod) Apple service: Now, the code to send a push notification to your clients from within a Windows Azure Mobile Service is as easy as the code below: push.apns.send(deviceToken, {      alert: 'Toast: A new Mobile Services task.',      sound: 'default' }); This will cause Windows Azure Mobile Services to connect to APNS (Apple Push Notification Service) and send a notification to the iOS device you specified via the deviceToken: Check out our reference documentation for full details on how to use the new Windows Azure Mobile Services apns object to send your push notifications. Feedback Scripts An important part of working with any PNS (Push Notification Service) is handling feedback for expired device tokens and channels. This typically happens when your application is uninstalled from a particular device and can no longer receive your notifications. With Windows Notification Services you get an instant response from the HTTP server.  Apple’s Notification Services works in a slightly different way and provides an additional endpoint you can connect to poll for a list of expired tokens. As with all of the capabilities we integrate with Mobile Services, our goal is to allow developers to focus more on building their app and less on building infrastructure to support their ideas. Therefore we knew we had to provide a simple way for developers to integrate feedback from APNS on a regular basis.  This week’s update now includes a new screen in the portal that allows you to optionally provide a script to process your APNS feedback – and it will be executed by Mobile Services on an ongoing basis: This script is invoked periodically while your service is active. To poll the feedback endpoint you can simply call the apns object's getFeedback method from within this script: push.apns.getFeedback({       success: function(results) {           // results is an array of objects with a deviceToken and time properties      } }); This returns you a list of invalid tokens that can now be removed from your database. iOS Client SDK improvements Over the last month we've continued to work with a number of iOS advisors to make improvements to our Objective-C SDK. The SDK is being developed under an open source license (Apache 2.0) and is available on github. Many of the improvements are behind the scenes to improve performance and memory usage. However, one of the biggest improvements to our iOS Client API is the addition of an even easier login method.  Below is the Objective-C code you can now write to invoke it: [client loginWithProvider:@"twitter"                     onController:self                        animated:YES                      completion:^(MSUser *user, NSError *error) {      // if no error, you are now logged in via twitter }]; This code will automatically present and dismiss our login view controller as a modal dialog on the specified controller.  This does all the hard work for you and makes login via Twitter, Google, Facebook and Microsoft Account identities just a single line of code. My colleague Josh just posted a short video demonstrating these new features which I'd recommend checking out: Summary The above features are all now live in production and are available to use immediately.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using Mobile Services today. Visit the Windows Azure Mobile Developer Center to learn more about how to build apps with Mobile Services. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Modifying the SL/WIF Integration Bits to support Issued Token Credentials

    - by Your DisplayName here!
    The SL/WIF integration code that ships with the Identity Training Kit only supports Windows and UserName credentials to request tokens from an STS. This is fine for simple single STS scenarios (like a single IdP). But the more common pattern for claims/token based systems is to split the STS roles into an IdP and a Resource STS (or whatever you wanna call it). In this case, the 2nd leg requires to present the issued token from the 1st leg – this is not directly supported by the bits. But they can be easily modified to accomplish this. The Credential Fist we need a class that represents an issued token credential. Here we store the RSTR that got returned from the client to IdP request: public class IssuedTokenCredentials : IRequestCredentials {     public string IssuedToken { get; set; }     public RequestSecurityTokenResponse RSTR { get; set; }     public IssuedTokenCredentials(RequestSecurityTokenResponse rstr)     {         RSTR = rstr;         IssuedToken = rstr.RequestedSecurityToken.RawToken;     } } The Binding Next we need a binding to be used with issued token credential requests. This assumes you have an STS endpoint for mixed mode security with SecureConversation turned off. public class WSTrustBindingIssuedTokenMixed : WSTrustBinding {     public WSTrustBindingIssuedTokenMixed()     {         this.Elements.Add( new HttpsTransportBindingElement() );     } } WSTrustClient The last step is to make some modifications to WSTrustClient to make it issued token aware. In the constructor you have to check for the credential type, and if it is an issued token, store it away. private RequestSecurityTokenResponse _rstr; public WSTrustClient( Binding binding, EndpointAddress remoteAddress, IRequestCredentials credentials )     : base( binding, remoteAddress ) {     if ( null == credentials )     {         throw new ArgumentNullException( "credentials" );     }     if (credentials is UsernameCredentials)     {         UsernameCredentials usernname = credentials as UsernameCredentials;         base.ChannelFactory.Credentials.UserName.UserName = usernname.Username;         base.ChannelFactory.Credentials.UserName.Password = usernname.Password;     }     else if (credentials is IssuedTokenCredentials)     {         var issuedToken = credentials as IssuedTokenCredentials;         _rstr = issuedToken.RSTR;     }     else if (credentials is WindowsCredentials)     { }     else     {         throw new ArgumentOutOfRangeException("credentials", "type was not expected");     } } Next – when WSTrustClient constructs the RST message to the STS, the issued token header must be embedded when needed: private Message BuildRequestAsMessage( RequestSecurityToken request ) {     var message = Message.CreateMessage( base.Endpoint.Binding.MessageVersion ?? MessageVersion.Default,       IssueAction,       (BodyWriter) new WSTrustRequestBodyWriter( request ) );     if (_rstr != null)     {         message.Headers.Add(new IssuedTokenHeader(_rstr));     }     return message; } HTH

    Read the article

  • Why won't USB 3.0 external hard drive run at USB 3.0 speeds?

    - by jgottula
    I recently purchased a PCI Express x1 USB 3.0 controller card (containing the NEC USB 3.0 controller) with the intent of using a USB 3.0 external hard drive with my Linux box. I installed the card in an empty PCIe slot on my motherboard, connected the card to a power cable, strung a USB 3.0 cable between one of the new ports and my external HDD, and connected the HDD to a wall socket for power. Booting the system, the drive works 100% as intended, with the one exception of throughput: rather than using SuperSpeed 4.8 Gbps connectivity, it seems to be falling back to High Speed 480 Mbps USB 2.0-style throughput. Disk Utility shows it as a 480 Mbps device, and running a couple Disk Utility and dd benchmarks confirms that the drive fails to exceed ~40 MB/s (the approximate limit of USB 2.0), despite it being an SSD capable of far more than that. When I connect my USB 3.0 HDD, dmesg shows this: [ 3923.280018] usb 3-2: new high speed USB device using ehci_hcd and address 6 where I would expect to find this: [ 3923.280018] usb 3-2: new SuperSpeed USB device using xhci_hcd and address 6 My system was running on kernel 2.6.35-25-generic at the time. Then, I stumbled upon this forum thread by an individual who found that a bug, which was present in kernels prior to 2.6.37-rc5, could be the culprit for this type of problem. Consequently, I installed the 2.6.37-generic mainline Ubuntu kernel to determine if the problem would go away. It didn't, so I tried 2.6.38-rc3-generic, and even the 2.6.38 nightly from 2010.02.01, to no avail. In short, I'm trying to determine why, with USB 3.0 support in the kernel, my USB 3.0 drive fails to run at full SuperSpeed throughput. See the comments under this question for additional details. Output that might be relevant to the problem (when booting from 2.6.38-rc3): Relevant lines from dmesg: [ 19.589491] xhci_hcd 0000:03:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 19.589512] xhci_hcd 0000:03:00.0: setting latency timer to 64 [ 19.589516] xhci_hcd 0000:03:00.0: xHCI Host Controller [ 19.589623] xhci_hcd 0000:03:00.0: new USB bus registered, assigned bus number 12 [ 19.650492] xhci_hcd 0000:03:00.0: irq 17, io mem 0xf8100000 [ 19.650556] xhci_hcd 0000:03:00.0: irq 47 for MSI/MSI-X [ 19.650560] xhci_hcd 0000:03:00.0: irq 48 for MSI/MSI-X [ 19.650563] xhci_hcd 0000:03:00.0: irq 49 for MSI/MSI-X [ 19.653946] xHCI xhci_add_endpoint called for root hub [ 19.653948] xHCI xhci_check_bandwidth called for root hub Relevant section of sudo lspci -v: 03:00.0 USB Controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03) (prog-if 30) Flags: bus master, fast devsel, latency 0, IRQ 17 Memory at f8100000 (64-bit, non-prefetchable) [size=8K] Capabilities: [50] Power Management version 3 Capabilities: [70] MSI: Enable- Count=1/8 Maskable- 64bit+ Capabilities: [90] MSI-X: Enable+ Count=8 Masked- Capabilities: [a0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting Capabilities: [140] Device Serial Number ff-ff-ff-ff-ff-ff-ff-ff Capabilities: [150] #18 Kernel driver in use: xhci_hcd Kernel modules: xhci-hcd Relevant section of sudo lsusb -v: Bus 012 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 3.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 3 bMaxPacketSize0 9 idVendor 0x1d6b Linux Foundation idProduct 0x0003 3.0 root hub bcdDevice 2.06 iManufacturer 3 Linux 2.6.38-020638rc3-generic xhci_hcd iProduct 2 xHCI Host Controller iSerial 1 0000:03:00.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 4 wHubCharacteristic 0x0009 Per-port power switching Per-port overcurrent protection TT think time 8 FS bits bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Device Status: 0x0003 Self Powered Remote Wakeup Enabled Full, non-verbose lsusb: Bus 012 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 011 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 010 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 009 Device 003: ID 04d9:0702 Holtek Semiconductor, Inc. Bus 009 Device 002: ID 046d:c068 Logitech, Inc. G500 Laser Mouse Bus 009 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 008 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 006: ID 174c:5106 ASMedia Technology Inc. Bus 003 Device 004: ID 0bda:0151 Realtek Semiconductor Corp. Mass Storage Device (Multicard Reader) Bus 003 Device 002: ID 058f:6366 Alcor Micro Corp. Multi Flash Reader Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 006: ID 1687:0163 Kingmax Digital Inc. Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 002: ID 046d:081b Logitech, Inc. Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Full output: full dmesg full lspci full lsusb

    Read the article

  • copy files to Nexus 4 on Kubuntu (13.04)

    - by cerr
    I know, this has been asked a few times already but I'm still having troubles to get files copied my new Nexus 4 phone mounted on my Kubuntu 13.04 machine. I followed the guide at: http://www.pocketables.com/2013/03/how-to-mount-the-lg-nexus-4-as-a-usb-drive-in-linux.html I would only get: $ cp -r /mnt/media/Albums/A\ Perfect\ Circle\ -\ Thirteenth\ Step/ . cp: accessing ‘.’: Transport endpoint is not connected reg@regDesktopHome:/media/nexus4/Internal storage/Music$ ls -l but thereafter , mount still shows it mounted: mtpfs on /media/nexus4 type fuse.mtpfs (rw,nosuid,nodev,allow_other) What's going on here? Thanks for the assistance!

    Read the article

< Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >