Search Results

Search found 3775 results on 151 pages for 'higher education'.

Page 22/151 | < Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >

  • Trying to access a specific option value to generate a popup window

    - by Isaac
    I am trying to use a click event to generate a popup window based off of the specific value chosen. I am having trouble with the if statement and trying to access each specific option value. Can any of you give me some hints? <select id="offices"> <option value="Choose an Office">Choose an Office</option> <option value="Residential Education (ResEd)" >Residential Education (ResEd)</option> <option value="Dean of Students">Dean of Students</option> <option value="Office of Student Affairs">Office of Student Affairs</option> <option value="Vice-Provost of Student Affairs">Vice-Provost of Student Affairs</option> </select> </div> function display(){ var officearray = [{ Office: "Residential Education (ResEd)", ID: "725-2800", Description: "The Office of Residential Education is responsible for developing the policies, programs, and staffing which support the intellectual, educational, and community-building activities in student residences. Second Floor. " }, { Office: "Dean of Students", ID: "723-7833", Description: "The Dean of Students office is composed of 13 individual administrative units that are concerned with the general welfare of both undergraduate and graduate students, in and out of the classroom. Second floor." }, { Office: "Office of Student Activities (OSA)", ID: "723-2733", Description: "Services for student organizations, student-initiated major events and programs, and fraternities and sororities. Second floor." }, { Office: "Vice-Provost of Student Affairs", ID: "725-0911", Description: "The Vice Provost for Student Affairs is responsible to the Provost for providing services and programs to undergraduate and graduate students in support of the academic mission of the University. Second floor." }] for(var i = 0; i < officearray.length; i++) { var o = document.getElementById("offices") var oString = o.options[o.selectedIndex].value; newwindow2 = window.open('', 'name', 'height=200, width=150') var tmp = newwindow2.document if (oString == officearray[i].Office) { tmp.writeln(officearray[i].Description) } } } document.getElementsByTagName('option').addEventListener("click",display,false)

    Read the article

  • Does anyone really understand how HFSC scheduling in Linux/BSD works?

    - by Mecki
    I read the original SIGCOMM '97 PostScript paper about HFSC, it is very technically, but I understand the basic concept. Instead of giving a linear service curve (as with pretty much every other scheduling algorithm), you can specify a convex or concave service curve and thus it is possible to decouple bandwidth and delay. However, even though this paper mentions to kind of scheduling algorithms being used (real-time and link-share), it always only mentions ONE curve per scheduling class (the decoupling is done by specifying this curve, only one curve is needed for that). Now HFSC has been implemented for BSD (OpenBSD, FreeBSD, etc.) using the ALTQ scheduling framework and it has been implemented Linux using the TC scheduling framework (part of iproute2). Both implementations added two additional service curves, that were NOT in the original paper! A real-time service curve and an upper-limit service curve. Again, please note that the original paper mentions two scheduling algorithms (real-time and link-share), but in that paper both work with one single service curve. There never have been two independent service curves for either one as you currently find in BSD and Linux. Even worse, some version of ALTQ seems to add an additional queue priority to HSFC (there is no such thing as priority in the original paper either). I found several BSD HowTo's mentioning this priority setting (even though the man page of the latest ALTQ release knows no such parameter for HSFC, so officially it does not even exist). This all makes the HFSC scheduling even more complex than the algorithm described in the original paper and there are tons of tutorials on the Internet that often contradict each other, one claiming the opposite of the other one. This is probably the main reason why nobody really seems to understand how HFSC scheduling really works. Before I can ask my questions, we need a sample setup of some kind. I'll use a very simple one as seen in the image below: Here are some questions I cannot answer because the tutorials contradict each other: What for do I need a real-time curve at all? Assuming A1, A2, B1, B2 are all 128 kbit/s link-share (no real-time curve for either one), then each of those will get 128 kbit/s if the root has 512 kbit/s to distribute (and A and B are both 256 kbit/s of course), right? Why would I additionally give A1 and B1 a real-time curve with 128 kbit/s? What would this be good for? To give those two a higher priority? According to original paper I can give them a higher priority by using a curve, that's what HFSC is all about after all. By giving both classes a curve of [256kbit/s 20ms 128kbit/s] both have twice the priority than A2 and B2 automatically (still only getting 128 kbit/s on average) Does the real-time bandwidth count towards the link-share bandwidth? E.g. if A1 and B1 both only have 64kbit/s real-time and 64kbit/s link-share bandwidth, does that mean once they are served 64kbit/s via real-time, their link-share requirement is satisfied as well (they might get excess bandwidth, but lets ignore that for a second) or does that mean they get another 64 kbit/s via link-share? So does each class has a bandwidth "requirement" of real-time plus link-share? Or does a class only have a higher requirement than the real-time curve if the link-share curve is higher than the real-time curve (current link-share requirement equals specified link-share requirement minus real-time bandwidth already provided to this class)? Is upper limit curve applied to real-time as well, only to link-share, or maybe to both? Some tutorials say one way, some say the other way. Some even claim upper-limit is the maximum for real-time bandwidth + link-share bandwidth? What is the truth? Assuming A2 and B2 are both 128 kbit/s, does it make any difference if A1 and B1 are 128 kbit/s link-share only, or 64 kbit/s real-time and 128 kbit/s link-share, and if so, what difference? If I use the seperate real-time curve to increase priorities of classes, why would I need "curves" at all? Why is not real-time a flat value and link-share also a flat value? Why are both curves? The need for curves is clear in the original paper, because there is only one attribute of that kind per class. But now, having three attributes (real-time, link-share, and upper-limit) what for do I still need curves on each one? Why would I want the curves shape (not average bandwidth, but their slopes) to be different for real-time and link-share traffic? According to the little documentation available, real-time curve values are totally ignored for inner classes (class A and B), they are only applied to leaf classes (A1, A2, B1, B2). If that is true, why does the ALTQ HFSC sample configuration (search for 3.3 Sample configuration) set real-time curves on inner classes and claims that those set the guaranteed rate of those inner classes? Isn't that completely pointless? (note: pshare sets the link-share curve in ALTQ and grate the real-time curve; you can see this in the paragraph above the sample configuration). Some tutorials say the sum of all real-time curves may not be higher than 80% of the line speed, others say it must not be higher than 70% of the line speed. Which one is right or are they maybe both wrong? One tutorial said you shall forget all the theory. No matter how things really work (schedulers and bandwidth distribution), imagine the three curves according to the following "simplified mind model": real-time is the guaranteed bandwidth that this class will always get. link-share is the bandwidth that this class wants to become fully satisfied, but satisfaction cannot be guaranteed. In case there is excess bandwidth, the class might even get offered more bandwidth than necessary to become satisfied, but it may never use more than upper-limit says. For all this to work, the sum of all real-time bandwidths may not be above xx% of the line speed (see question above, the percentage varies). Question: Is this more or less accurate or a total misunderstanding of HSFC? And if assumption above is really accurate, where is prioritization in that model? E.g. every class might have a real-time bandwidth (guaranteed), a link-share bandwidth (not guaranteed) and an maybe an upper-limit, but still some classes have higher priority needs than other classes. In that case I must still prioritize somehow, even among real-time traffic of those classes. Would I prioritize by the slope of the curves? And if so, which curve? The real-time curve? The link-share curve? The upper-limit curve? All of them? Would I give all of them the same slope or each a different one and how to find out the right slope? I still haven't lost hope that there exists at least a hand full of people in this world that really understood HFSC and are able to answer all these questions accurately. And doing so without contradicting each other in the answers would be really nice ;-)

    Read the article

  • Does anyone really understand how HFSC scheduling in Linux/BSD works?

    - by Mecki
    I read the original SIGCOMM '97 PostScript paper about HFSC, it is very technically, but I understand the basic concept. Instead of giving a linear service curve (as with pretty much every other scheduling algorithm), you can specify a convex or concave service curve and thus it is possible to decouple bandwidth and delay. However, even though this paper mentions to kind of scheduling algorithms being used (real-time and link-share), it always only mentions ONE curve per scheduling class (the decoupling is done by specifying this curve, only one curve is needed for that). Now HFSC has been implemented for BSD (OpenBSD, FreeBSD, etc.) using the ALTQ scheduling framework and it has been implemented Linux using the TC scheduling framework (part of iproute2). Both implementations added two additional service curves, that were NOT in the original paper! A real-time service curve and an upper-limit service curve. Again, please note that the original paper mentions two scheduling algorithms (real-time and link-share), but in that paper both work with one single service curve. There never have been two independent service curves for either one as you currently find in BSD and Linux. Even worse, some version of ALTQ seems to add an additional queue priority to HSFC (there is no such thing as priority in the original paper either). I found several BSD HowTo's mentioning this priority setting (even though the man page of the latest ALTQ release knows no such parameter for HSFC, so officially it does not even exist). This all makes the HFSC scheduling even more complex than the algorithm described in the original paper and there are tons of tutorials on the Internet that often contradict each other, one claiming the opposite of the other one. This is probably the main reason why nobody really seems to understand how HFSC scheduling really works. Before I can ask my questions, we need a sample setup of some kind. I'll use a very simple one as seen in the image below: Here are some questions I cannot answer because the tutorials contradict each other: What for do I need a real-time curve at all? Assuming A1, A2, B1, B2 are all 128 kbit/s link-share (no real-time curve for either one), then each of those will get 128 kbit/s if the root has 512 kbit/s to distribute (and A and B are both 256 kbit/s of course), right? Why would I additionally give A1 and B1 a real-time curve with 128 kbit/s? What would this be good for? To give those two a higher priority? According to original paper I can give them a higher priority by using a curve, that's what HFSC is all about after all. By giving both classes a curve of [256kbit/s 20ms 128kbit/s] both have twice the priority than A2 and B2 automatically (still only getting 128 kbit/s on average) Does the real-time bandwidth count towards the link-share bandwidth? E.g. if A1 and B1 both only have 64kbit/s real-time and 64kbit/s link-share bandwidth, does that mean once they are served 64kbit/s via real-time, their link-share requirement is satisfied as well (they might get excess bandwidth, but lets ignore that for a second) or does that mean they get another 64 kbit/s via link-share? So does each class has a bandwidth "requirement" of real-time plus link-share? Or does a class only have a higher requirement than the real-time curve if the link-share curve is higher than the real-time curve (current link-share requirement equals specified link-share requirement minus real-time bandwidth already provided to this class)? Is upper limit curve applied to real-time as well, only to link-share, or maybe to both? Some tutorials say one way, some say the other way. Some even claim upper-limit is the maximum for real-time bandwidth + link-share bandwidth? What is the truth? Assuming A2 and B2 are both 128 kbit/s, does it make any difference if A1 and B1 are 128 kbit/s link-share only, or 64 kbit/s real-time and 128 kbit/s link-share, and if so, what difference? If I use the seperate real-time curve to increase priorities of classes, why would I need "curves" at all? Why is not real-time a flat value and link-share also a flat value? Why are both curves? The need for curves is clear in the original paper, because there is only one attribute of that kind per class. But now, having three attributes (real-time, link-share, and upper-limit) what for do I still need curves on each one? Why would I want the curves shape (not average bandwidth, but their slopes) to be different for real-time and link-share traffic? According to the little documentation available, real-time curve values are totally ignored for inner classes (class A and B), they are only applied to leaf classes (A1, A2, B1, B2). If that is true, why does the ALTQ HFSC sample configuration (search for 3.3 Sample configuration) set real-time curves on inner classes and claims that those set the guaranteed rate of those inner classes? Isn't that completely pointless? (note: pshare sets the link-share curve in ALTQ and grate the real-time curve; you can see this in the paragraph above the sample configuration). Some tutorials say the sum of all real-time curves may not be higher than 80% of the line speed, others say it must not be higher than 70% of the line speed. Which one is right or are they maybe both wrong? One tutorial said you shall forget all the theory. No matter how things really work (schedulers and bandwidth distribution), imagine the three curves according to the following "simplified mind model": real-time is the guaranteed bandwidth that this class will always get. link-share is the bandwidth that this class wants to become fully satisfied, but satisfaction cannot be guaranteed. In case there is excess bandwidth, the class might even get offered more bandwidth than necessary to become satisfied, but it may never use more than upper-limit says. For all this to work, the sum of all real-time bandwidths may not be above xx% of the line speed (see question above, the percentage varies). Question: Is this more or less accurate or a total misunderstanding of HSFC? And if assumption above is really accurate, where is prioritization in that model? E.g. every class might have a real-time bandwidth (guaranteed), a link-share bandwidth (not guaranteed) and an maybe an upper-limit, but still some classes have higher priority needs than other classes. In that case I must still prioritize somehow, even among real-time traffic of those classes. Would I prioritize by the slope of the curves? And if so, which curve? The real-time curve? The link-share curve? The upper-limit curve? All of them? Would I give all of them the same slope or each a different one and how to find out the right slope? I still haven't lost hope that there exists at least a hand full of people in this world that really understood HFSC and are able to answer all these questions accurately. And doing so without contradicting each other in the answers would be really nice ;-)

    Read the article

  • PHP ZendOptimizer on Red Hat Enterprise Linux

    - by Jacob Kristensen
    I would like to install FlashMoto and the requirements are not unreasonable: PHP 5.2.1 or higher, Zend Optimizer 3.3 or higher. However my RHEL 5.4 provides me with PHP 5.1.6. So I tried the remi repository http://rpms.famillecollet.com/ but it gave me PHP 5.3.1 and Zend Optimizer from zend.com does not support anything higher than 5.2.x. I also tried the dag repo but it does not have PHP in any version. I also tried some RPMs that Oracle provides on their homepage but they don't provide php-mbstring that I also need. Does anyone know how to get PHP 5.2.1 installed on a RHEL 5.4? Then I can probably fix install the Zend thing. Thanks in advance.

    Read the article

  • In Wireshark's Protocol Hierarchy Statistics screen, is the total byte count of a capture the sum of the Bytes column or just the top line (Frame)?

    - by Howiecamp
    Part 1 - I'm looking at Wireshark's Protocol Hierarchy Statistics screen (sample below), is the total byte count of the capture the sum of the Bytes column or just the top line (Frame)? I'm 99% that it's the latter because of protocol rollup but I wanted to conform. Part 2 - From Wireshark documentation on this screen, "Protocol layers can consist of packets that won't contain any higher layer protocol, so the sum of all higher layer packets may not sum up to the protocols packet count. Example: In the screenshot TCP has 85,83% but the sum of the subprotocols (HTTP, ...) is much less. This may be caused by TCP protocol overhead, e.g. TCP ACK packets won't be counted as packets of the higher layer)." Can you explain this?

    Read the article

  • Why Oracle Delivers More Value than IBM in Data Integration Solutions

    - by irem.radzik(at)oracle.com
    For data integration projects, IT organization look for a robust but an easy-to-use solution, which simplifies enterprise data architecture while providing exceptional value-- not one that adds complexity and costs. This is a major challenge today for customers who are using IBM InfoSphere products like DataStage or Change Data Capture. Whereas, Oracle consistently delivers higher level value with its data integration products such as Oracle Data Integrator, Oracle GoldenGate. There are many differentiators for Oracle's Data Integration offering in comparison to IBM. Here are the top five: Lower cost of ownership Higher performance in both real-time and bulk data movement Ease of use and flexibility Reliability Complete, Open, and Integrated Middleware Offering Architectural differences between products contribute a great deal to these differences. First of all, Oracle's ETL architecture does not require a middle-tier transformation server, something IBM does require. Not only it costs more to manage an additional transformation server including energy costs, but it adds a performance bottleneck as well. In addition, IBM's data integration products are complex and often require lengthy professional services engagements to integrate. This translates to higher costs and delayed time to market. Then there's the reliability factor. Our customers choose Oracle GoldenGate over IBM's InfoSphere Change Data Capture product because Oracle GoldenGate is designed for mission-critical systems that require guaranteed data delivery and automatic recovery in case of process interruptions. On Thursday we will discuss these key differentiators in detail and provide customer examples that chose Oracle over IBM in data integration projects. Join us on Thursday Feb 10th at 11am PT to learn how Oracle delivers more value than IBM in data integration solutions.

    Read the article

  • When module calling gets ugly

    - by Pete
    Has this ever happened to you? You've got a suite of well designed, single-responsibility modules, covered by unit tests. In any higher-level function you code, you are (95% of the code) simply taking output from one module and passing it as input to the next. Then, you notice this higher-level function has turned into a 100+ line script with multiple responsibilities. Here is the problem. It is difficult (impossible) to test that script. At least, it seems so. Do you agree? In my current project, all of the bugs came from this script. Further detail: each script represents a unique solution, or algorithm, formed by using different modules in different ways. Question: how can you remedy this situation? Knee-jerk answer: break the script up into single-responsibility modules. Comment on knee-jerk answer: it already is! Best answer I can come up with so far: create higher-level connector objects which "wire" modules together in particular ways (take output from one module, feed it as input to another module). Thus if our script was: FooInput fooIn = new FooInput(1, 2); FooOutput fooOutput = fooModule(fooIn); Double runtimevalue = getsomething(fooOutput.whatever); BarInput barIn = new BarInput( runtimevalue, fooOutput.someOtherValue); BarOutput barOut = barModule(BarIn); It would become with a connector: FooBarConnectionAlgo fooBarConnector = new fooBarConnector(fooModule, barModule); FooInput fooIn = new FooInput(1, 2); BarOutput barOut = fooBarConnector(fooIn); So the advantage is, besides hiding some code and making things clearer, we can test FooBarConnectionAlgo. I'm sure this situation comes up a lot. What do you do?

    Read the article

  • Impacting the Future through Collaboration at Alliance 14

    - by Jeb Dasteel-Oracle
    We’re hearing good things about the Alliance 14 conference held in Las Vegas by the Higher Education Users Group (HEUG) back in March. For those of you who aren’t familiar with Alliance 14 conferences, they are global events dedicated to enhancing and educating its members and the world on how higher educational institutions can utilize Oracle applications to change how they do business. The HEUG is an all-volunteer organization made up of individuals who collaborate with Oracle as part of the evolving higher education industry. Conference participants network with peers from other institutions (regionally and globally) to share the challenges; discuss solutions and ideas, and collaborate on HEUG strategic initiatives. The HEUG enables each institution to be a part of the ever-changing Oracle landscape. Watch the video below and hear directly from the attendees about their experience with Oracle and how being part of the HEUG has allowed them to  collaborate with one of their most importance resources... and with each other. Oracle is committed to fostering a strong and independent network of user groups worldwide. Currently over 900+ groups provide dynamic forums for customers to share information, experiences and expertise. If you’re interested in more information or joining an Oracle User Group, click and become part of a vibrant network of engaged users finding the best ways to get the most value from their Oracle investment and collaborating to provide a unified feedback voice to Oracle. Catch you next time, Jeb

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • Oracle Internet Directory 11gR1 11.1.1.6 Certified with E-Business Suite

    - by Elke Phelps (Oracle Development)
    Oracle E-Business Suite comes with native user authentication and management capabilities out-of-the-box. If you need more-advanced features, it's also possible to integrate it with Oracle Internet Directory and Oracle Single Sign-On or Oracle Access Manager, which allows you to link the E-Business Suite with third-party tools like Microsoft Active Directory, Windows Kerberos, and CA Netegrity SiteMinder.  For details about third-party integration architectures, see either of these article for EBS 11i and 12: In-Depth: Using Third-Party Identity Managers with E-Business Suite Release 12 In-Depth: Using Third-Party Identity Managers with the E-Business Suite Release 11i Oracle Internet Directory 11.1.1.6 is now certified with Oracle E-Business Suite Release 11i, 12.0 and 12.1.  OID 11.1.1.6 is part of Oracle Fusion Middleware 11g Release 1 Version 11.1.1.6.0, also known as FMW 11g Patchset 5.  Certified E-Business Suite releases are: EBS Release 11i 11.5.10.2 + ATG PH.H RUP 7 and higher EBS Release 12.0.6 and higher EBS Release 12.1.1 and higher Supported Configurations Oracle Internet Directory 11.1.1.5.0 can be integrated with two single sign-on solutions for EBS environments: Oracle Internet Directory and Directory Integration Platform from Fusion Middleware 11gR1 Patchset 5 (11.1.1.6.0) with Oracle Access Manager 10g (10.1.4.3) with an existing Oracle E-Business Suite system (Release 11i or 12.1.x). Oracle Internet Directory and Directory Integration Platform from Fusion Middleware 11gR1 Patchset 5 (11.1.1.6.0) with Oracle Access Manager 11gR1 (11.1.1.5) with an existing Oracle E-Business Suite system (Release 12.0.6 or higher or 12.1.x). Oracle Internet Directory (OID) and Directory Integration Platform (DIP) from Oracle Fusion Middleware 11gR1 Patchset 5  (11.1.1.6.0) with Oracle Single Sign-On Server and Oracle Delegated Administration Services Release 10g (10.1.4.3.0) with an existing Oracle E-Business Suite system (Release 11i, 12.0.6 or 12.1.x) Oracle Access Manager strongly recommended Oracle has two single sign-on solutions: Oracle Single Sign-On Server (OSSO) and Oracle Access Manager (OAM). Oracle strongly recommends that all new single sign-on implementations use Oracle Access Manager. Oracle Access Manager is the preferred solution going forward, and forms the basis of Oracle Fusion Middleware 11g. OSSO is no longer being actively developed and will not be ported to Oracle WebLogic Server. Platform certifications Oracle Internet Directory is certified to run on any operating system for which Oracle WebLogic Server 11g is certified. Refer to the Oracle Fusion Middleware 11g System Requirements for more details.For information on operating systems supported by Oracle Internet Directory and its components, refer to the Oracle Identity and Access Management 11gR1 certification matrix.Integration with Oracle Internet Directory involves components spanning several different suites of Oracle products. There are no restrictions on which platform any particular component may be installed so long as the platform is supported for that component.References Overview of Single Sign-On Integration Options for Oracle E-Business Suite Note 1388152.1 Using the Latest Oracle Internet Directory 11gR1 Patchset with Oracle Single Sign-on and Oracle E-Business Suite (Note 876539.1) Integrating Oracle E-Business Suite with Oracle Access Manager 11g using Oracle E-Business Suite AccessGate (Note 1309013.1) Integrating Oracle E-Business Suite with Oracle Access Manager 10g using Oracle E-Business Suite AccessGate (Note 975182.1) Migrating Oracle Single Sign-On 10gR3 to Oracle Access Manager 11g with Oracle E-Business Suite (Note 1304550.1) Oracle Fusion Middleware Download, Installation & Configuration Readme Oracle Fusion Middleware Installation Guide for Oracle Identity Management 11g Release 1 (11.1.1) (Part Number E12002-09) Oracle Fusion Middleware Upgrade Guide for Oracle Identity Management 11g Release 1 (11.1.1) (Part Number E10129-09) Oracle Fusion Middleware Upgrade Planning Guide 11g Release 1 (11.1.1) (Part Number E10125-06) Oracle Fusion Middleware Patching Guide 11g Release 1 (11.1.1) (Part Number E16793-12) Related Articles Understanding Options for Integrating Oracle Access Manager with E-Business Suite In-Depth: Using Third-Party Identity Managers with E-Business Suite Release 12 In-Depth: Using Third-Party Identity Managers with the E-Business Suite Release 11i Oracle Access Manager 10gR3 Certified with E-Business Suite Portal 11.1.1.4 Certified with E-Business Suite Discoverer 11.1.1.4 Certified with E-Business Suite

    Read the article

  • Upgrade Office 2003 to 2010 on XP or Run them Side by Side

    - by Mysticgeek
    If you’re still running XP, currently have Office 2003 installed on your machine, and skipped Office 2007, you might want to upgrade to Office 2010. In this guide we will show you the upgrade process or how to run them side by side. In this example we are upgrading from Office 2003 Standard to Office Professional Plus 2010 RTM (Final) on XP Professional. System Requirements To run Office 2010 on your XP machine you have to make sure you have Service Pack 3 and Microsoft Silverlight installed (links below). Or you can just install them through Windows Update. Recommended Hardware 1GHZ CPU or higher 512 MB of RAM or higher 1024×768 Resolution or higher DirectX 9.0c compatible graphics card with 64 MB of memory or higher Installing Office 2010 Simply kick off the Office Professional Plus 2010 installation. Enter in your product key… Agree to the EULA…   Select the Customize button… Setup will detect Office 2003 and allow you to remove all applications, keep them, or select only the ones you want to keep. In this example we’re going to remove Excel and PowerPoint, and keep Outlook and Word 2003. Next, click the Installation Options tab and select Office programs you want to install. Since we’re keeping Outlook 2003 and don’t want to use Outlook 2010, we’re making sure not to install Outlook 2010. However, we want to run Word 2003 and 2010 on the same machine. After you’ve made your selections click the Upgrade button. The installation begins and you’re shown the progress. The amount of time it takes to install will vary between systems. Installation is complete and you can close out of the installer. Now when you go into the Start menu under Microsoft Office, you’ll see both versions of the Office apps available. Here is a shot of Word 2003 and 2010 running together on our XP machine.   Conclusion If you’re moving from Office 2003 to 2010, this allows you to install both versions side by side. It gives you a chance to learn 2010 features, and still work in the familiar 2003 environment when you need to get things done quickly. If you’re having problems installing Office 2010 make sure to check out our article on how to fix problems upgrading Office 2010 beta to RTM (Final) release. Also, if you were using Office 2007 and are currently using the 2010 beta, we have a guide on how to switch back to Office 2007 after the 2010 beta ends. Links XP Service Pack 3 Microsoft Silverlight Details on Office 2010 System Requirements Similar Articles Productive Geek Tips Add Word/Excel 97-2003 Documents Back to the "New" Context Menu After Installing Office 2007Make Word 2007 Always Save in Word 2003 FormatMake Excel 2007 Always Save in Excel 2003 FormatRemove Office 2010 Beta and Reinstall Office 2007How to Find Office 2003 Commands in Office 2010 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Enable or Disable the Task Manager Using TaskMgrED Explorer++ is a Worthy Windows Explorer Alternative Error Goblin Explains Windows Error Codes Twelve must-have Google Chrome plugins Cool Looking Skins for Windows Media Player 12 Move the Mouse Pointer With Your Face Movement Using eViacam

    Read the article

  • Oracle Database 11gR2 11.2.0.3 Certified with E-Business Suite on Windows

    - by John Abraham
    As a follow up to our original certification announcement, Oracle Database 11g Release 2 (11.2.0.3) is now certified with Oracle E-Business Suite Release 11i and Release 12 on the following Microsoft Windows operating systems: Release 12.1 (12.1.1 and higher) Microsoft Windows Server (32-bit) (2003, 2008) Microsoft Windows x64 (64-bit) (20031, 20081, 2008 R22) Release 12.0 (12.0.4 and higher) Microsoft Windows Server (32-bit) (2003) Microsoft Windows x64 (64-bit) (2003, 2008)1 Release 11i (11.5.10.2 + ATG PF.H RUP 6 and higher) Microsoft Windows Server (32-bit) (2003, 20081) Microsoft Windows x64 (64-bit) (2003, 2008, 2008 R2)1 Notes 1: This OS is a 'database tier only' or 'split tier configuration' platform where the application tier must be on a fully certified E-Business Suite platform. 2: This OS is a 'database tier only' platform for Release 11i. For 12.1.1 or higher, it is also supported on the application tier via the migration process outlined in My Oracle Support Document 1188535.1. Pending Certification E-Business Suite 12.0 with 11.2.0.3 Split Tier Certification on Microsoft Windows x64 (64-bit) (2008 R2) is in progress and will be announced separately. This announcement for Oracle E-Business Suite 11i and R12 includes: Real Application Clusters (RAC) Oracle Database Vault Transparent Data Encryption (Column Encryption) TDE Tablespace Encryption Advanced Security Option (ASO)/Advanced Networking Option (ANO) Export/Import Process for Oracle E-Business Suite Release 11i and Release 12 Database Instances Transportable Database and Transportable Tablespaces Data Migration Processes for Oracle E-Business Suite Release 11i and Release 12 References MOS Document 881505.1 - Interoperability Notes - Oracle E-Business Suite Release 11i with Oracle Database 11g Release 2 (11.2.0) MOS Document 1058763.1 - Interoperability Notes - Oracle E-Business Suite Release 12 with Oracle Database 11g Release 2 (11.2.0) MOS Document 1091086.1 - Integrating Oracle E-Business Suite Release 11i with Oracle Database Vault 11gR2 MOS Document 1091083.1 - Integrating Oracle E-Business Suite Release 12 with Oracle Database Vault 11gR2 MOS Document 216205.1 - Database Initialization Parameters for Oracle E-Business Suite 11i MOS Document 396009.1 - Database Initialization Parameters for Oracle Applications Release 12 MOS Document 823586.1 - Using Oracle 11g Release 2 Real Application Clusters with Oracle E-Business Suite Release 11i MOS Document 823587.1 - Using Oracle 11g Release 2 Real Application Clusters with Oracle E-Business Suite Release 12 MOS Document 403294.1 - Using Transparent Data Encryption (TDE) Column Encryption with Oracle E-Business Suite Release 11i MOS Document 732764.1 - Using Transparent Data Encryption (TDE) Column Encryption with Oracle E-Business Suite Release 12 MOS Document 828223.1 - Using TDE Tablespace Encryption with Oracle E-Business Suite Release 11i MOS Document 828229.1 - Using TDE Tablespace Encryption with Oracle E-Business Suite Release 12 MOS Document 391248.1 - Encrypting Oracle E-Business Suite Release 11i Network Traffic using Advanced Security Option and Advanced Networking Option MOS Document 732764.1 - Using Transparent Data Encryption (TDE) Column Encryption with Oracle E-Business Suite Release 12 MOS Document 557738.1 - Export/Import Process for Oracle E-Business Suite Release 11i Database Instances Using Oracle Database 11g Release 1 or 11g Release 2 MOS Document 741818.1 - Export/Import Process for Oracle E-Business Suite Release 12 Database Instances Using Oracle Database 11g Release 1 or 11g Release 2 MOS Document 1366265.1 - Using Transportable Tablespaces to Migrate Oracle Applications 11i Using Oracle Database 11g Release 2 MOS Document 1311487.1 - Using Transportable Tablespaces to Migrate Oracle E-Business Suite Release 12 Using Oracle Database 11g Release 2 MOS Document 729309.1 - Using Transportable Database to Migrate Oracle E-Business Suite Release 11i Using Oracle Database 10g Release 2 or 11g MOS Document 734763.1 - Using Transportable Database to Migrate Oracle E-Business Suite Release 12 Using Oracle Database 10g Release 2 or 11g MOS Document 1188535.1 - Migrating Oracle E-Business Suite R12 to Microsoft Windows Server 2008 R2 Please also review the platform-specific Oracle Database Installation Guides for operating system and other prerequisites. Related Articles Database 11.2.0.2 Certified with EBS R12 on IBM: Linux on System z EBS R12 Certified with Database 11gR2 on SLES 11 11gR2 11.2.0.3 Database Certified with E-Business Suite

    Read the article

  • Overview of Microsoft SQL Server 2008 Upgrade Advisor

    - by Akshay Deep Lamba
    Problem Like most organizations, we are planning to upgrade our database server from SQL Server 2005 to SQL Server 2008. I would like to know is there an easy way to know in advance what kind of issues one may encounter when upgrading to a newer version of SQL Server? One way of doing this is to use the Microsoft SQL Server 2008 Upgrade Advisor to plan for upgrades from SQL Server 2000 or SQL Server 2005. In this tip we will take a look at how one can use the SQL Server 2008 Upgrade Advisor to identify potential issues before the upgrade. Solution SQL Server 2008 Upgrade Advisor is a free tool designed by Microsoft to identify potential issues before upgrading your environment to a newer version of SQL Server. Below are prerequisites which need to be installed before installing the Microsoft SQL Server 2008 Upgrade Advisor. Prerequisites for Microsoft SQL Server 2008 Upgrade Advisor .Net Framework 2.0 or a higher version Windows Installer 4.5 or a higher version Windows Server 2003 SP 1 or a higher version, Windows Server 2008, Windows XP SP2 or a higher version, Windows Vista Download SQL Server 2008 Upgrade Advisor You can download SQL Server 2008 Upgrade Advisor from the following link. Once you have successfully installed Upgrade Advisor follow the below steps to see how you can use this tool to identify potential issues before upgrading your environment. 1. Click Start -> Programs -> Microsoft SQL Server 2008 -> SQL Server 2008 Upgrade Advisor. 2. Click Launch Upgrade Advisor Analysis Wizard as highlighted below to open the wizard. 2. On the wizard welcome screen click Next to continue. 3. In SQL Server Components screen, enter the Server Name and click the Detect button to identify components which need to be analyzed and then click Next to continue with the wizard. 4. In Connection Parameters screen choose Instance Name, Authentication and then click Next to continue with the wizard. 5. In SQL Server Parameters wizard screen select the Databases which you want to analysis, trace files if any and SQL batch files if any.  Then click Next to continue with the wizard. 6. In Reporting Services Parameters screen you can specify the Reporting Server Instance name and then click next to continue with the wizard. 7. In Analysis Services Parameters screen you can specify an Analysis Server Instance name and then click Next to continue with the wizard. 8. In Confirm Upgrade Advisor Settings screen you will be able to see a quick summary of the options which you have selected so far. Click Run to start the analysis. 9. In Upgrade Advisor Progress screen you will be able to see the progress of the analysis. Basically, the upgrade advisor runs predefined rules which will help to identify potential issues that can affect your environment once you upgrade your server from a lower version of SQL Server to SQL Server 2008. 10. In the below snippet you can see that Upgrade Advisor has completed the analysis of SQL Server, Analysis Services and Reporting Services. To see the output click the Launch Report button at the bottom of the wizard screen. 11. In View Report screen you can see a summary of issues which can affect you once you upgrade. To learn more about each issue you can expand the issue and read the detailed description as shown in the below snippet.

    Read the article

  • Synchronous Actions

    - by Dan Krasinski-Oracle
    Since the introduction of SMF, svcadm(1M) has had the ability to enable or disable a service instance and wait for that service instance to reach a final state.  With Oracle Solaris 11.2, we’ve expanded the set of administrative actions which can be invoked synchronously. Now all subcommands of svcadm(1M) have synchronous behavior. Let’s take a look at the new usage: Usage: svcadm [-v] [cmd [args ... ]] svcadm enable [-rt] [-s [-T timeout]] <service> ... enable and online service(s) svcadm disable [-t] [-s [-T timeout]] <service> ... disable and offline service(s) svcadm restart [-s [-T timeout]] <service> ... restart specified service(s) svcadm refresh [-s [-T timeout]] <service> ... re-read service configuration svcadm mark [-It] [-s [-T timeout]] <state> <service> ... set maintenance state svcadm clear [-s [-T timeout]] <service> ... clear maintenance state svcadm milestone [-d] [-s [-T timeout]] <milestone> advance to a service milestone svcadm delegate [-s] <restarter> <svc> ... delegate service to a restarter As you can see, each subcommand now has a ‘-s’ flag. That flag tells svcadm(1M) to wait for the subcommand to complete before returning. For enables, that means waiting until the instance is either ‘online’ or in the ‘maintenance’ state. For disable, the instance must reach the ‘disabled’ state. Other subcommands complete when: restart A restart is considered complete once the instance has gone offline after running the ‘stop’ method, and then has either returned to the ‘online’ state or has entered the ‘maintenance’ state. refresh If an instance is in the ‘online’ state, a refresh is considered complete once the ‘refresh’ method for the instance has finished. mark maintenance Marking an instance for maintenance completes when the instance has reached the ‘maintenance’ state. mark degraded Marking an instance as degraded completes when the instance has reached the ‘degraded’ state from the ‘online’ state. milestone A milestone transition can occur in one of two directions. Either the transition moves from a lower milestone to a higher one, or from a higher one to a lower one. When moving to a higher milestone, the transition is considered complete when the instance representing that milestone reaches the ‘online’ state. The transition to a lower milestone, on the other hand, completes only when all instances which are part of higher milestones have reached the ‘disabled’ state. That’s not the whole story. svcadm(1M) will also try to determine if the actions initiated by a particular subcommand cannot complete. Trying to enable an instance which does not have its dependencies satisfied, for example, will cause svcadm(1M) to terminate before that instance reaches the ‘online’ state. You’ll also notice the optional ‘-T’ flag which can be used in conjunction with the ‘-s’ flag. This flag sets a timeout, in seconds, after which svcadm gives up on waiting for the subcommand to complete and terminates. This is useful in many cases, but in particular when the start method for an instance has an infinite timeout but might get stuck waiting for some resource that may never become available. For the C-oriented, each of these administrative actions has a corresponding function in libscf(3SCF), with names like smf_enable_instance_synchronous(3SCF) and smf_restart_instance_synchronous(3SCF).  Take a look at smf_enable_instance_synchronous(3SCF) for details.

    Read the article

  • Oracle Linux Training Calendar

    - by Antoinette O'Sullivan
    The Oracle Linux System Administrator Curriculum is designed to provide you with the knowledge and skills necessary to effectively administer an Oracle Linux environment. These classes will help you prepare to install, configure, and manage your enterprise Linux environment as well as prepare you for the Oracle Linux Certification. You can take these courses as a: Live-Virtual event: Following the instructor-led classes from your own desk - no travel required. There is an extensive list of events on the schedule to suit different timezones. See full list on http://oracle.com/education/linux. In-Class event: Travel to an education center to take these classes. Below is a sample of in-class events on the schedule: Unix and Linux Essentials: This 3-day class is for those new to the linux operating system. You learn to manage files & directories from the command line, perform remote connections, file transfers & more.  Location  Date  Delivery Language  Nairobi, Kenya  3 December 2012  English  Riyadh, Saudia Arabia  5 January 2013  English  Cape Town, South Africa  9 January 2013  English  Durban, South Africa  9 January 2013  English  Johannesburg, South Africa  9 January 2013  English  Woodmead, South Africa  15 July 2013  English  Denver, United States  23 January 2013  English  Columbia, United States  2 January 2013  English  East Lansing, United States  9 January 2013  English  Roseville, United States  1 April 2013  English  Morrisville, United States  11 February 2013  English  Jakarta, Indonesia  26 December 2012  English  Kuala Lumpur, Malaysia  29 January 2013  English  Auckland, New Zealand  12 December 2012  English  Makati City, Philippines  14 January 2013  English  Singapore  13 February 2013  English  North Sydney, Australia  4 February 2013  English  Brisbane, Australia  29 April 2013  English  Melbourne, Australia  29 January 2013  English Oracle Linux System Administration: This 5 day course covers a broad range of Oracle Linux system administration tasks, from installing the operating system to preparing the system for Oracle Database. The course also provides an extensive hands-on experience for key system administration tasks. You will gain comprehensive skills in installing, configuring, and managing an Oracle Linux system as well as insight into ULN, Ksplice and UEK.  Location  Date  Delivery Language  Brussels, Belgium  26 November 2012  English  Windhof, Luxembourg  17 December 2012  English  Utrecht, Netherlands  11 February 2013  Dutch  Warsaw, Poland  25 February 2013  Polish  Gabarone, Botswana  22 April 2013  English  Nairobi, Kenya  10 December 2012  English  Johannesburg, South Africa  11 March 2013  English  Belmont, CA, United States  11 February 2013  English  Irvine, CA, United States  25 March 2013  English  Roseville, MN, United States  26 November 2013  English  Irving, TX, United States  14 January 2013  English  Jakarta, Indonesia  3 December 2012  English  Singapore  26 November 2012  English  Canberra, Australia  21 January 2013  English  Sydney, Australia  21 January 2013  English  Melbourne, Australia  11 February 2013  English To test your Oracle Linux System Administration skills, take the Oracle Linux 6 Implementation Essentials Certification Exam. For more information on the Oracle Linux Curriculum or to express interest in additional events, go to http://oracle.com/education/linux.

    Read the article

  • What's In Storage?

    - by [email protected]
    Oracle Flies South for Storage Networking Event Storage Networking World (now simply called SNW) is the place you'll find the most-comprehensive education on storage, infrastructure, and the datacenter in the spring of 2010. It's also the place where you'll see Oracle. During the April 12-15 event in Orlando, Florida, the industry's premiere presentations on storage trends and best practices are combined with hands-on labs covering storage management and IP storage. You'll also have the opportunity to learn about Oracle's Sun storage solutions, from Flash and open storage to enterprise disk and tape. Plus, if you stop by booth 207 in the expo hall, you might walk away with a bookish prize: an Amazon Kindle, courtesy of Oracle. Proving, once again, that education can be quite rewarding.

    Read the article

  • Upcoming UPK Events

    - by kathryn.lustenberger(at)oracle.com
    February 15th: UPK: Follow Panduit's Lead and Leverage Oracle's User Productivity Kit To Achieve Your Goals - Join us for a live webcast to learn how Oracle's User Productivity Kit can help you meet and exceed your goals. The webcast will feature Jim Boss, from the Panduit Corporation, who will share how Oracle's User Productivity Kit was used with both Oracle and Non-Oracle applications to helped Panduit to meet their goals. Date: February 15th, 2011 at 12:00 PST / 3:00 EST Evite: http://www.oracle.com/us/dm/65630-naod10046029mpp005c010-se-300908.html March 2nd: Synaptis teams with Oracle to deliver a UPK customer success story - Webinar Offering The Value of UPK (Customer Success Story): How to leverage the value of UPK to streamline processes and maximize end user adoption for a global implementation Join us to learn how the power of UPK can be leveraged to train end users globally in a successful and cost effective manner. A valued Oracle UPK customer will share experiences, successes, challenges, and strategies. The webinar will also include a question and answer session to give the attendees an opportunity to interact directly with the Oracle UPK customer, Synaptis, and the Oracle UPK Team. Date: March 2, 2011 Time: 11:00am - 12:00pm EST Register for this webinar March 27 - 30th: The Alliance 2011 conference is an annual event for all higher education, government, and public sector users of Oracle applications. The Alliance conference is organized and managed by the Higher Education User Group (www.heug.org). This is the 14th annual event for the HEUG. This is your opportunity to join with over 3200 other Higher Education, Federal, State and Local Government users to network, learn and share in our amazing combined experiences. The Alliance conference team is hard at work, putting together the best conference ever for 2011 - so don't delay, make your plans now to be part of Alliance 2011! When: Sunday, March 27th, 2011 - Wednesday, March 30, 2011 Where: The Colorado Convention Center (Denver, Colorado) Registration for Alliance 2011 is Now Open! UPK will be represented at this event offering: Pre-Conference Training Learn the Basics of Oracle User Productivity Kit (UPK) Taking Your UPKs to a Whole New Level, Advanced Use of UPK Demo Pod Staff Sessions: Oracle User Productivity Kit: Creating Value throughout the Project Lifecycle Beyond Basic UPK -- User Tracking and SmartHelp Leveraging Oracle and User Productivity Kit (UPK) to Develop a Comprehensive Training Program Oracle User Productivity Kit Strategy and Roadmap -- Key to User Adoption April 10 - 14th: Registration for COLLABORATE 11 has begun - Don't miss the most comprehensive, user-driven conference devoted to Oracle applications and technology. Collaborate with a global network of more than 5,000 peers and experts to share real-world experiences, solve your challenges and gain insights to validate your technology plans. Read below to discover which group to register with for the best value. UPK will be represented at this event offering: Demo Pod Staff Sessions: Oracle User Productivity Kit: Creating Value throughout the Project Lifecycle Centralize all Project Team assets, AND, Deploy Fully Measurable Training with UPK Pro Oracle User Productivity Kit Strategy and Roadmap - Key to User Adoption Registration is Now Open!

    Read the article

  • New Energy Harvesting Network

    University of Southampton School of Electronics and Computer Science to manage EH Network, also hosts 'More-than-Moore' and 'Beyond CMOS' symposium Southampton University - Computer science - Education - England - Colleges and Universities

    Read the article

  • Learn All About MySQL Cluster

    - by Antoinette O'Sullivan
    Just released - the all new MySQL Cluster training course. This MySQL Cluster training teaches you how to install and configure a real-time database cluster at the core of your application. Expert instructors will teach you how to design and maintain your clusters for high availability and scalability by using MySQL Cluster's open-source and enterprise components. This 4-day training course is a must for those who want to learn about MySQL Cluster as you will not only learn about the concepts and features but you will get extensive hands-on experience. You can follow this training course from your own desk via a live-virtual training or by traveling to an education center to follow this course. Be the first to influence the schedule for this newly released course by registering your interest on the Oracle University portal. For more information about the authentic MySQL curriculum, go to http://education.oracle.com/mysql

    Read the article

< Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >