Search Results

Search found 2568 results on 103 pages for 'lookup webmaster'.

Page 22/103 | < Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >

  • How to search for closest value in a lookup table?

    - by CSharperWithJava
    I have a simple one dimmensional array of integer values that represent a physical set of part values I have to work with. I then calculate and ideal value mathematically. How could I write an efficient search algorithm that will find the smallest abosulte difference from my ideal value in the array? The array is predetermined and constant, so it can be sorted however I need. Example Lookup array: 100, 152, 256, 282, 300 Searching for an ideal value of 125 would find 100 in the array, whereas 127 would find 152. The actual lookup array will be about 250 items long and never change.

    Read the article

  • How to insert a value based on lookup from another table [SQL]?

    - by Shaitan00
    I need to find a way to do an INSERT INTO table A but one of the values is something that comes from a lookup on table B, allow me to illustrate. I have the 2 following tables: Table A: A1: String A2: Integer value coming from table B A3: More Data Table B: B1: String B2: Integer Value Example row of A: {"Value", 101, MoreData} Example row of B: {"English", 101} Now, I know I need to INSERT the following into A {"Value2", "English", MoreData} but obviously that won't work because it is expecting an Integer in the second column not the word "English", so I need to do a lookup in Table B first. Something like this: INSERT INTO tableA (A1, A2, A3) VALUES ("Value2", SELECT B2 FROM tableB where B1="English", MoreData); Obviously this doesn't work as-is ... Any suggestions?

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Using a secondary DNS when lookup fails in primary? [migrated]

    - by Huckle
    I use a VPN to connect my development machine to my school's CS dept. The development machine is Ubuntu as we do C programming in Unix. I used vpnc to do that. The school uses some DNS entries that only resolve on their DNS servers, i.e., internalserver.csdept.school.edu I am normally attached to the VPN whenever booted for convenience. However I noticed the other day that when I disconnect the VPN all my DNS queries fail. This obviously means that vpnc set up the school's DNS to be used. However I'd rather not use their DNS all the time (tracking and privacy and whatnot). Is there a way I can restore my ISP's DNS and then if the lookup fails, have it use my school's DNS?

    Read the article

  • How to lookup an IP address in an Excel spreadsheet?

    - by Kevin Williams
    I am working with a decent sized spreadsheet of domains and server names. Another user of the spreadsheet needs the IP address for each of the DNS entries on the worksheet. Instead of manually adding and then having to maintain this list I was hoping there was an easy way to do an IPAddress lookup to display the IP address in a cell. I've seen some VBScripts that call gethostbyname, e.g.: Declare Function GetHostByName Lib "wsock32.dll" Alias "gethostbyname" (ByVal Host As String) As Long But I'm not a VB expert so I'm not sure if this is the right way to go. Any advice/links would be appreciated! also if this is a question better suited for Stack Overflow - let me know, I'm new here.

    Read the article

  • What is the simplest way to interpolate and lookup in an x,y table in excel?

    - by dassouki
    I would like to do a lookup and interpolation based on x, y data for the following table. I'd like the equation to be as simple as possible to reduce the amount of possible errors. The full table is about 50 rows x 30 columns. I have about 20 of those tables. Here is an extract from one: A B C D 1 0.1 0.2 0.3 2 2.4 450 300 50 3 2.3 500 375 52 4 2.1 550 475 55 5 1.8 600 600 60 For example, the equation should find the value for x = 2.27 and y = 0.15

    Read the article

  • Asterisk doesn't start properly at system startup. DNS lookup fails.

    - by leiflundgren
    When I start my Ubuntu system it attempts two DNS lookups. One to find out what my internet-routers external ip is. And one to find the IP of my PSTN-SIP-provider. Both fails. [Apr 7 22:14:54] WARNING[1675] chan_sip.c: Invalid address for externhost keyword: sip.mydomain.com ... [Apr 7 22:14:54] WARNING[1675] acl.c: Unable to lookup 'sip.myprovider.com' And since the DNS fails it cannot register properly a cannot make outgoing or incoming calls. If I later, after bootup, restart asterisk everything works excelent. Any idea how I should setup things so that either: Delay Asterisk startup so that DNS is up and healthy first. Somehow get Asterisk to re-try the DNS thing later. Regards Leif

    Read the article

  • Asterisk doesn't start properly at system startup. DNS lookup fails.

    - by leiflundgren
    When I start my Ubuntu system it attempts two DNS lookups. One to find out what my internet-routers external ip is. And one to find the IP of my PSTN-SIP-provider. Both fails. [Apr 7 22:14:54] WARNING[1675] chan_sip.c: Invalid address for externhost keyword: sip.mydomain.com ... [Apr 7 22:14:54] WARNING[1675] acl.c: Unable to lookup 'sip.myprovider.com' And since the DNS fails it cannot register properly a cannot make outgoing or incoming calls. If I later, after bootup, restart asterisk everything works excelent. Any idea how I should setup things so that either: Delay Asterisk startup so that DNS is up and healthy first. Somehow get Asterisk to re-try the DNS thing later. Regards Leif

    Read the article

  • Excel Macro To Lookup a User Entered String, and return data from the field next to it

    - by CJG
    On worksheet A, a user is prompted to enter a product number, such as BCI610. On worksheet B somewhere, that value exists. I want excel to lookup/find that value, and then return the data in the cell that is right next to it one column to the right, by copying that data, and pasting it somewhere in worksheet A. If I enter BCI610, it should return the value M332651, because that is the number in the cell immediately to the right of BCI610. I tried VLookup and HLookup, but to no avail... Any suggestions?

    Read the article

  • Postfix certificate verification failed for smtp.gmail.com

    - by Andi Unpam
    I have problem, my email server using postfix with gmail smtp, i use account google apps, but always ask for SASL authentication failed, I sent an email using php script, after I see the error logs in the wrong password, after I open the URL from the browser and no verification postfixnya captcha and could return, but after 2-3 days later happen like that again. This my config postfix #myorigin = /etc/mailname smtpd_banner = Hostingbitnet Mail Server biff = no append_dot_mydomain = no readme_directory = no myhostname = webmaster.hostingbitnet.com alias_maps = hash:/etc/aliases alias_database = hash:/etc/aliases myorigin = /etc/mailname mydestination = localhost, webmaster.hostingbitnet.com, localhost.localdomain, 103.9.126.163 relayhost = [smtp.googlemail.com]:587 relay_transport = relay relay_destination_concurrency_limit = 1 mynetworks = 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/16, 10.0.0.0/8, 103.9.126.0/24 mailbox_size_limit = 0 recipient_delimiter = + inet_interfaces = all default_transport = smtp relayhost = [smtp.gmail.com]:587 smtp_sasl_auth_enable = yes smtp_sasl_password_maps = hash:/etc/postfix/google-apps smtp_sasl_security_options = noanonymous smtp_use_tls = yes smtp_sender_dependent_authentication = yes tls_random_source = dev:/dev/urandom default_destination_concurrency_limit = 1 smtp_tls_CAfile = /etc/postfix/tls/root.crt smtp_tls_cert_file = /etc/postfix/tls/cert.pem smtp_tls_key_file = /etc/postfix/tls/privatekey.pem smtp_tls_session_cache_database = btree:$data_directory/smtp_tls_session_cache smtp_tls_security_level = may smtp_tls_loglevel = 1 smtpd_tls_CAfile = /etc/postfix/tls/root.crt smtpd_tls_cert_file = /etc/postfix/tls/cert.pem smtpd_tls_key_file = /etc/postfix/tls/privatekey.pem smtpd_tls_session_cache_database = btree:$data_directory/smtpd_tls_session_cache smtpd_tls_security_level = may smtpd_tls_loglevel = 1 #secure smtpd_recipient_restrictions = permit_mynetworks,permit_sasl_authenticated,check_client_access hash:/var/lib/pop-before-smtp/hosts,reject_unauth_destination Log from mail.log Oct 30 14:51:13 webmaster postfix/smtp[9506]: Untrusted TLS connection established to smtp.gmail.com[74.125.25.109]:587: TLSv1 with cipher RC4-SHA (128/128 bits) Oct 30 14:51:15 webmaster postfix/smtp[9506]: 87E2739400B1: SASL authentication failed; server smtp.gmail.com[74.125.25.109] said: 535-5.7.1 Please log in with your web browser and then try again. Learn more at?535 5.7.1 https://support.google.com/mail/bin/answer.py?answer=78754 ix9sm156630pbc.7 Oct 30 14:51:15 webmaster postfix/smtp[9506]: setting up TLS connection to smtp.gmail.com[74.125.25.108]:587 Oct 30 14:51:15 webmaster postfix/smtp[9506]: certificate verification failed for smtp.gmail.com[74.125.25.108]:587: untrusted issuer /C=US/O=Equifax/OU=Equifax Secure Certificate Authority Oct 30 14:51:16 webmaster postfix/smtp[9506]: Untrusted TLS connection established to smtp.gmail.com[74.125.25.108]:587: TLSv1 with cipher RC4-SHA (128/128 bits) Oct 30 14:51:17 webmaster postfix/smtp[9506]: 87E2739400B1: to=<[email protected]>, relay=smtp.gmail.com[74.125.25.108]:587, delay=972, delays=967/0.03/5.5/0, dsn=4.7.1, status=deferred (SASL authentication failed; server smtp.gmail.com[74.125.25.108] said: 535-5.7.1 Please log in with your web browser and then try again. Learn more at?535 5.7.1 https://support.google.com/mail/bin/answer.py?answer=78754 s1sm3850paz.0) Oct 30 14:51:17 webmaster postfix/error[9508]: B3960394009D: to=<[email protected]>, orig_to=<root>, relay=none, delay=29992, delays=29986/5.6/0/0.07, dsn=4.7.1, status=deferred (delivery temporarily suspended: SASL authentication failed; server smtp.gmail.com[74.125.25.108] said: 535-5.7.1 Please log in with your web browser and then try again. Learn more at?535 5.7.1 https://support.google.com/mail/bin/answer.py?answer=78754 s1sm3850paz.0) BTW I made cert follow the link here http://koti.kapsi.fi/ptk/postfix/postfix-tls-cacert.shtml and it worked, but after 2/3 days my email back to problem invalid SASL, and then i'm required to log in use a browser and enter the captcha there but success log in after input captcha, and my email server can send emails from telnet or php script. but it will be back in trouble after 2/3days later. My question is how to make it permanent certificate? Thanks n greeting.

    Read the article

  • How can I use rows in a lookup table as columns in a MySQL query?

    - by TomH
    I'm trying to build a MySQL query that uses the rows in a lookup table as the columns in my result set. LookupTable id | AnalysisString 1 | color 2 | size 3 | weight 4 | speed ScoreTable id | lookupID | score | customerID 1 | 1 | A | 1 2 | 2 | C | 1 3 | 4 | B | 1 4 | 2 | A | 2 5 | 3 | A | 2 6 | 1 | A | 3 7 | 2 | F | 3 I'd like a query that would use the relevant lookupTable rows as columns in a query so that I can get a result like this: customerID | color | size | weight | speed 1 A C D 2 A A 3 A F The kicker of the problem is that there may be additional rows added to the LookupTable and the query should be dynamic and not have the Lookup IDs hardcoded. That is, this will work: SELECT st.customerID, (SELECT st1.score FROM ScoreTable st1 WHERE lookupID=1 AND st.customerID = st1.customerID) AS color, (SELECT st1.score FROM ScoreTable st1 WHERE lookupID=2 AND st.customerID = st1.customerID) AS size, (SELECT st1.score FROM ScoreTable st1 WHERE lookupID=3 AND st.customerID = st1.customerID) AS weight, (SELECT st1.score FROM ScoreTable st1 WHERE lookupID=4 AND st.customerID = st1.customerID) AS speed FROM ScoreTable st GROUP BY st.customerID Until there is a fifth row added to the LookupTable . . . Perhaps I'm breaking the whole relational model and will have to resolve this in the backend PHP code? Thanks for pointers/guidance. tom

    Read the article

  • Why my dns server ip got blacklisted instead of my email server ip?

    - by Khurram Masood
    We are hosting our own dns server our scenario is as under; dns ip: a.b.c.1 fqdn:ns1.example.com ------ reverse lookup to a.b.c.1 mail server ip a.b.c.2 mail.example.com ------ reverse lookup to a.b.c.2 smtp.example.com ------ no reverse lookup pop.example.com ------ no reverse lookup web server ip a.b.c.3 example.com ------ reverse lookup to a.b.c.3 www.example.com ------ no reverse lookup a few days back our dns server ip got blacklisted and all our services were down from outside. We had also added a new dns server on a separate network that caused our domain and machines with same names as above to resolve on different ips, can this b a cause of being blacklisted? But all blacklists points towards spamming. Can anyone please explain why my dns ip got blacklisted instead of my email or web server ip?

    Read the article

  • Sentence Tree v/s Words List

    - by Rohit Jose
    I was recently tasked with building a Name Entity Recognizer as part of a project. The objective was to parse a given sentence and come up with all the possible combinations of the entities. One approach that was suggested was to keep a lookup table for all the know connector words like articles and conjunctions, remove them from the words list after splitting the sentence on the basis of the spaces. This would leave out the Name Entities in the sentence. A lookup is then done for these identified entities on another lookup table that associates them to the entity type, for example if the sentence was: Remember the Titans was a movie directed by Boaz Yakin, the possible outputs would be: {Remember the Titans,Movie} was {a movie,Movie} directed by {Boaz Yakin,director} {Remember the Titans,Movie} was a movie directed by Boaz Yakin {Remember the Titans,Movie} was {a movie,Movie} directed by Boaz Yakin {Remember the Titans,Movie} was a movie directed by {Boaz Yakin,director} Remember the Titans was {a movie,Movie} directed by Boaz Yakin Remember the Titans was {a movie,Movie} directed by {Boaz Yakin,director} Remember the Titans was a movie directed by {Boaz Yakin,director} Remember the {the titans,Movie,Sports Team} was {a movie,Movie} directed by {Boaz Yakin,director} Remember the {the titans,Movie,Sports Team} was a movie directed by Boaz Yakin Remember the {the titans,Movie,Sports Team} was {a movie,Movie} directed by Boaz Yakin Remember the {the titans,Movie,Sports Team} was a movie directed by {Boaz Yakin,director} The entity lookup table here would contain the following data: Remember the Titans=Movie a movie=Movie Boaz Yakin=director the Titans=Movie the Titans=Sports Team Another alternative logic that was put forward was to build a crude sentence tree that would contain the connector words in the lookup table as parent nodes and do a lookup in the entity table for the leaf node that might contain the entities. The tree that was built for the sentence above would be: The question I am faced with is the benefits of the two approaches, should I be going for the tree approach to represent the sentence parsing, since it provides a more semantic structure? Is there a better approach I should be going for solving it?

    Read the article

  • In Django Combobox choices, how do you lookup description from short value?

    - by MikeN
    In Django models/forms the choices for a combobox often look like this: food_choices = (("",""), ("1", "Falafel"), ("2", "Hummus"), ("3", "Eggplant Stuff, Babaganoush???"), So the value to be stored in the database will be 1/2/3, but the displayed value on the form will be the long description. When we are working in code outside a form, how can we quickly lookup the long description given the short value stored in the model? So I want to map short values to long values: print foo("1") "Falafel"

    Read the article

  • Removing hard-coded values and defensive design vs YAGNI

    - by Ben Scott
    First a bit of background. I'm coding a lookup from Age - Rate. There are 7 age brackets so the lookup table is 3 columns (From|To|Rate) with 7 rows. The values rarely change - they are legislated rates (first and third columns) that have stayed the same for 3 years. I figured that the easiest way to store this table without hard-coding it is in the database in a global configuration table, as a single text value containing a CSV (so "65,69,0.05,70,74,0.06" is how the 65-69 and 70-74 tiers would be stored). Relatively easy to parse then use. Then I realised that to implement this I would have to create a new table, a repository to wrap around it, data layer tests for the repo, unit tests around the code that unflattens the CSV into the table, and tests around the lookup itself. The only benefit of all this work is avoiding hard-coding the lookup table. When talking to the users (who currently use the lookup table directly - by looking at a hard copy) the opinion is pretty much that "the rates never change." Obviously that isn't actually correct - the rates were only created three years ago and in the past things that "never change" have had a habit of changing - so for me to defensively program this I definitely shouldn't store the lookup table in the application. Except when I think YAGNI. The feature I am implementing doesn't specify that the rates will change. If the rates do change, they will still change so rarely that maintenance isn't even a consideration, and the feature isn't actually critical enough that anything would be affected if there was a delay between the rate change and the updated application. I've pretty much decided that nothing of value will be lost if I hard-code the lookup, and I'm not too concerned about my approach to this particular feature. My question is, as a professional have I properly justified that decision? Hard-coding values is bad design, but going to the trouble of removing the values from the application seems to violate the YAGNI principle. EDIT To clarify the question, I'm not concerned about the actual implementation. I'm concerned that I can either do a quick, bad thing, and justify it by saying YAGNI, or I can take a more defensive, high-effort approach, that even in the best case ultimately has low benefits. As a professional programmer does my decision to implement a design that I know is flawed simply come down to a cost/benefit analysis?

    Read the article

  • What's the fastest lookup algorithm for a pair data structure (i.e, a map)?

    - by truncheon
    In the following example a std::map structure is filled with 26 values from A - Z (for key) and 0 – 26 for value. The time taken (on my system) to lookup the last entry (10000000 times) is roughly 250 ms for the vector, and 125 ms for the map. (I compiled using release mode, with O3 option turned on for g++ 4.4) But if for some odd reason I wanted better performance than the std::map, what data structures and functions would I need to consider using? I apologize if the answer seems obvious to you, but I haven't had much experience in the performance critical aspects of C++ programming. UPDATE: This example is rather trivial and hides the true complexity of what I'm trying to achieve. My real world project is a simple scripting language that uses a parser, data tree, and interpreter (instead of a VM stack system). I need to use some kind of data structure (perhaps map) to store the variables names created by script programmers. These are likely to be pretty randomly named, so I need a lookup method that can quickly find a particular key within a (probably) fairly large list of names. #include <ctime> #include <map> #include <vector> #include <iostream> struct mystruct { char key; int value; mystruct(char k = 0, int v = 0) : key(k), value(v) { } }; int find(const std::vector<mystruct>& ref, char key) { for (std::vector<mystruct>::const_iterator i = ref.begin(); i != ref.end(); ++i) if (i->key == key) return i->value; return -1; } int main() { std::map<char, int> mymap; std::vector<mystruct> myvec; for (int i = 'a'; i < 'a' + 26; ++i) { mymap[i] = i - 'a'; myvec.push_back(mystruct(i, i - 'a')); } int pre = clock(); for (int i = 0; i < 10000000; ++i) { find(myvec, 'z'); } std::cout << "linear scan: milli " << clock() - pre << "\n"; pre = clock(); for (int i = 0; i < 10000000; ++i) { mymap['z']; } std::cout << "map scan: milli " << clock() - pre << "\n"; return 0; }

    Read the article

  • Java: InitialContext.lookup(String) - what should the value o the parametr be?

    - by bguiz
    To instantiate a Stateful Session Bean inside of a JSP/ servlet, I am using: InitialContext ic = new InitialContext(); SomeStateful state = (SomeStateful) ic.lookup("java:comp/env/SomeStatefulBean"); Trial and error had me prefix the name of my EJB with java:comp/env/, so the above works (on Glassfish 2.1). However I want to know what the proper way to obtain this prefix is. Is there a CLI tool or function somewhere in the admin panel that will allow we to examine/ alter this? Is this platform/ application server dependant? Is there a setting within my ear, EJB-jar or war which I can examine or alter for this? (Forgive the beginner question) Thanks!

    Read the article

  • Source Lookup Path is correct but debugger can't find file (Eclipse EE IDE)?

    - by Greg McNulty
    When debugging stepping over each line does work. Stepping into a function located in another file debugger displays: Source not found. Also displays option for Edit Source Lookup Path... but the correct package is listed there. (Also tried pointing with the directory path.) No other breakpoints set, as is a common solution. Any point in the right direction is helpful. Thank You. Thread[main] in the debugger window: Thread [main] (Suspended) ClassNotFoundException(Throwable).<init>(String, Throwable) line: 217 ClassNotFoundException(Exception).<init>(String, Throwable) line: not available ClassNotFoundException.<init>(String) line: not available URLClassLoader$1.run() line: not available AccessController.doPrivileged(PrivilegedExceptionAction<T>, AccessControlContext) line: not available [native method] Launcher$ExtClassLoader(URLClassLoader).findClass(String) line: not available Launcher$ExtClassLoader.findClass(String) line: not available Launcher$ExtClassLoader(ClassLoader).loadClass(String, boolean) line: not available Launcher$AppClassLoader(ClassLoader).loadClass(String, boolean) line: not available Launcher$AppClassLoader.loadClass(String, boolean) line: not available Launcher$AppClassLoader(ClassLoader).loadClass(String) line: not available MyMain.<init>() line: 24 MyMain.main(String[]) line: 36

    Read the article

  • J2EE/EJB + service locator: is it safe to cache EJB Home lookup result ?

    - by Guillaume
    In a J2EE application, we are using EJB2 in weblogic. To avoid losing time building the initial context and looking up EJB Home interface, I'm considering the Service Locator Pattern. But after a few search on the web I found that event if this pattern is often recommended for the InitialContext caching, there are some negative opinion about the EJB Home caching. Questions: Is it safe to cache EJB Home lookup result ? What will happen if one my cluster node is no more working ? What will happen if I install a new version of the EJB without refreshing the service locator's cache ?

    Read the article

  • How to Map a table with another lookup table using JPA?

    - by Sameer Malhotra
    Hi, I have two tables: 1) Application(int appid, int statusid, String appname, String appcity with getter and Setter methods) 2) App_Status(int statusid,String statusDescription with setter and getter methods) I want to map Application table with App_Status so that I don't have to query separately App_Status table in order to get the statusDescription. One thing I have to careful is that no matter what (Insert,update or delete) to the Application table the App_Status table should be unaffected means its a read only table which is maintained by the DBA internally and used only for lookup table. I am using JPA annotations so please suggest how to handle this.

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #050

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Executing Remote Stored Procedure – Calling Stored Procedure on Linked Server In this example we see two different methods of how to call Stored Procedures remotely.  Connection Property of SQL Server Management Studio SSMS A very simple example of the how to build connection properties for SQL Server with the help of SSMS. Sample Example of RANKING Functions – ROW_NUMBER, RANK, DENSE_RANK, NTILE SQL Server has a total of 4 ranking functions. Ranking functions return a ranking value for each row in a partition. All the ranking functions are non-deterministic. T-SQL Script to Add Clustered Primary Key Jr. DBA asked me three times in a day, how to create Clustered Primary Key. I gave him following sample example. That was the last time he asked “How to create Clustered Primary Key to table?” 2008 2008 – TRIM() Function – User Defined Function SQL Server does not have functions which can trim leading or trailing spaces of any string at the same time. SQL does have LTRIM() and RTRIM() which can trim leading and trailing spaces respectively. SQL Server 2008 also does not have TRIM() function. User can easily use LTRIM() and RTRIM() together and simulate TRIM() functionality. http://www.youtube.com/watch?v=1-hhApy6MHM 2009 Earlier I have written two different articles on the subject Remove Bookmark Lookup. This article is as part 3 of original article. Please read the first two articles here before continuing reading this article. Query Optimization – Remove Bookmark Lookup – Remove RID Lookup – Remove Key Lookup Query Optimization – Remove Bookmark Lookup – Remove RID Lookup – Remove Key Lookup – Part 2 Query Optimization – Remove Bookmark Lookup – Remove RID Lookup – Remove Key Lookup – Part 3 Interesting Observation – Query Hint – FORCE ORDER SQL Server never stops to amaze me. As regular readers of this blog already know that besides conducting corporate training, I work on large-scale projects on query optimizations and server tuning projects. In one of the recent projects, I have noticed that a Junior Database Developer used the query hint Force Order; when I asked for details, I found out that the basic concept was not properly understood by him. Queries Waiting for Memory Allocation to Execute In one of the recent projects, I was asked to create a report of queries that are waiting for memory allocation. The reason was that we were doubtful regarding whether the memory was sufficient for the application. The following query can be useful in similar cases. Queries that do not have to wait on a memory grant will not appear in the result set of following query. 2010 Quickest Way to Identify Blocking Query and Resolution – Dirty Solution As the title suggests, this is quite a dirty solution; it’s not as elegant as you expect. However, it works totally fine. Simple Explanation of Data Type Precedence While I was working on creating a question for SQL SERVER – SQL Quiz – The View, The Table and The Clustered Index Confusion, I had actually created yet another question along with this question. However, I felt that the one which is posted on the SQL Quiz is much better than this one because what makes that more challenging question is that it has a multiple answer. Encrypted Stored Procedure and Activity Monitor I recently had received questionable if any stored procedure is encrypted can we see its definition in Activity Monitor.Answer is - No. Let us do a quick test. Let us create following Stored Procedure and then launch the Activity Monitor and check the text. Indexed View always Use Index on Table A single table can have maximum 249 non clustered indexes and 1 clustered index. In SQL Server 2008, a single table can have maximum 999 non clustered indexes and 1 clustered index. It is widely believed that a table can have only 1 clustered index, and this belief is true. I have some questions for all of you. Let us assume that I am creating view from the table itself and then create a clustered index on it. In my view, I am selecting the complete table itself. 2011 Detecting Database Case Sensitive Property using fn_helpcollations() I received a question on how to determine the case sensitivity of the database. The quick answer to this is to identify the collation of the database and check the properties of the collation. I have previously written how one can identify database collation. Once you have figured out the collation of the database, you can put that in the WHERE condition of the following T-SQL and then check the case sensitivity from the description. Server Side Paging in SQL Server CE (Compact Edition) SQL Server Denali is coming up with new T-SQL of Paging. I have written about the same earlier.SQL SERVER – Server Side Paging in SQL Server Denali – A Better Alternative,  SQL SERVER – Server Side Paging in SQL Server Denali Performance Comparison, SQL SERVER – Server Side Paging in SQL Server Denali – Part2 What is very interesting is that SQL Server CE 4.0 have the same feature introduced. Here is the quick example of the same. To run the script in the example, you will have to do installWebmatrix 4.0 and download sample database. Once done you can run following script. Why I am Going to Attend PASS Summit Unite 2011 The four-day event will be marked by a lot of learning, sharing, and networking, which will help me increase both my knowledge and contacts. Every year, PASS Summit provides me a golden opportunity to build my network as well as to identify and meet potential customers or employees. 2012 Manage Help Settings – CTRL + ALT + F1 This is very interesting read as my daughter once accidently came across a screen in SQL Server Management Studio. It took me 2-3 minutes to figure out how she has created the same screen. Recover the Accidentally Renamed Table “I accidentally renamed table in my SSMS. I was scrolling very fast and I made mistakes. It was either because I double clicked or clicked on F2 (shortcut key for renaming). However, I have made the mistake and now I have no idea how to fix this. If you have renamed the table, I think you pretty much is out of luck. Here are few things which you can do which can give you an idea about what your table name can be if you are lucky. Identify Numbers of Non Clustered Index on Tables for Entire Database Here is the script which will give you numbers of non clustered indexes on any table in entire database. Identify Most Resource Intensive Queries – SQL in Sixty Seconds #029 – Video Here is the complete complete script which I have used in the SQL in Sixty Seconds Video. Thanks Harsh for important Tip in the comment. http://www.youtube.com/watch?v=3kDHC_Tjrns Advanced Data Quality Services with Melissa Data – Azure Data Market For the purposes of the review, I used a database I had in an Excel spreadsheet with name and address information. Upon a cursory inspection, there are miscellaneous problems with these records; some addresses are missing ZIP codes, others missing a city, and some records are slightly misspelled or have unparsed suites. With DQS, I can easily add a knowledge base to help standardize my values, such as for state abbreviations. But how do I know that my address is correct? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

< Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >