Search Results

Search found 3265 results on 131 pages for 'ph zero'.

Page 22/131 | < Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >

  • C++0x Overload on reference, versus sole pass-by-value + std::move?

    - by dean
    It seems the main advice concerning C++0x's rvalues is to add move constructors and move operators to your classes, until compilers default-implement them. But waiting is a losing strategy if you use VC10, because automatic generation probably won't be here until VC10 SP1, or in worst case, VC11. Likely, the wait for this will be measured in years. Here lies my problem. Writing all this duplicate code is not fun. And it's unpleasant to look at. But this is a burden well received, for those classes deemed slow. Not so for the hundreds, if not thousands, of smaller classes. ::sighs:: C++0x was supposed to let me write less code, not more! And then I had a thought. Shared by many, I would guess. Why not just pass everything by value? Won't std::move + copy elision make this nearly optimal? Example 1 - Typical Pre-0x constructor OurClass::OurClass(const SomeClass& obj) : obj(obj) {} SomeClass o; OurClass(o); // single copy OurClass(std::move(o)); // single copy OurClass(SomeClass()); // single copy Cons: A wasted copy for rvalues. Example 2 - Recommended C++0x? OurClass::OurClass(const SomeClass& obj) : obj(obj) {} OurClass::OurClass(SomeClass&& obj) : obj(std::move(obj)) {} SomeClass o; OurClass(o); // single copy OurClass(std::move(o)); // zero copies, one move OurClass(SomeClass()); // zero copies, one move Pros: Presumably the fastest. Cons: Lots of code! Example 3 - Pass-by-value + std::move OurClass::OurClass(SomeClass obj) : obj(std::move(obj)) {} SomeClass o; OurClass(o); // single copy, one move OurClass(std::move(o)); // zero copies, two moves OurClass(SomeClass()); // zero copies, one move Pros: No additional code. Cons: A wasted move in cases 1 & 2. Performance will suffer greatly if SomeClass has no move constructor. What do you think? Is this correct? Is the incurred move a generally acceptable loss when compared to the benefit of code reduction?

    Read the article

  • Why does C# exit when calling the Ada elaboration routine using debug?

    - by erict
    I have a DLL created in Ada using GPS. I am dynamically loading it and calling it successfully both from Ada and from C++. But when I try to call it from C#, the program exits on the call to Elaboration init. What am I missing? The exact same DLL is perfectly happy getting called from C++ and Ada. Edit: If I start the program without Debugging, it also works with C#. But if I run it with the Debugger, then it exits on the call to ElaborationInit. There are no indications in any of the Windows event logs. If the Ada DLL is Pure, and I skip the elaboration init call, the actual function DLL is called correctly, so it has something to do with the elaboration. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Runtime.InteropServices; namespace CallingDLLfromCS { class Program { [DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)] public static extern IntPtr LoadLibrary(string dllToLoad); [DllImport("kernel32.dll", CharSet = CharSet.Ansi, SetLastError = true)] public static extern IntPtr GetProcAddress(IntPtr hModule, string procedureName); [DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)] public static extern bool FreeLibrary(IntPtr hModule); [UnmanagedFunctionPointer(CallingConvention.StdCall)] delegate int AdaCallable2_dlgt(int val); static AdaCallable2_dlgt fnAdaCallable2 = null; [UnmanagedFunctionPointer(CallingConvention.StdCall)] delegate void ElaborationInit_dlgt(); static ElaborationInit_dlgt ElaborationInit = null; [UnmanagedFunctionPointer(CallingConvention.StdCall)] delegate void AdaFinal_dlgt(); static AdaFinal_dlgt AdaFinal = null; static void Main(string[] args) { int result; bool fail = false; // assume the best IntPtr pDll2 = LoadLibrary("libDllBuiltFromAda.dll"); if (pDll2 != IntPtr.Zero) { // Note the @4 is because 4 bytes are passed. This can be further reduced by the use of a DEF file in the DLL generation. IntPtr pAddressOfFunctionToCall = GetProcAddress(pDll2, "AdaCallable@4"); if (pAddressOfFunctionToCall != IntPtr.Zero) { fnAdaCallable2 = (AdaCallable2_dlgt)Marshal.GetDelegateForFunctionPointer(pAddressOfFunctionToCall, typeof(AdaCallable2_dlgt)); } else fail = true; pAddressOfFunctionToCall = GetProcAddress(pDll2, "DllBuiltFromAdainit"); if (pAddressOfFunctionToCall != IntPtr.Zero) { ElaborationInit = (ElaborationInit_dlgt)Marshal.GetDelegateForFunctionPointer(pAddressOfFunctionToCall, typeof(ElaborationInit_dlgt)); } else fail = true; pAddressOfFunctionToCall = GetProcAddress(pDll2, "DllBuiltFromAdafinal"); if (pAddressOfFunctionToCall != IntPtr.Zero) AdaFinal = (AdaFinal_dlgt)Marshal.GetDelegateForFunctionPointer(pAddressOfFunctionToCall, typeof(AdaFinal_dlgt)); else fail = true; if (!fail) { ElaborationInit.Invoke(); // ^^^^^^^^^^^^^^^^^^^^^^^^^ FAILS HERE result = fnAdaCallable2(50); Console.WriteLine("Return value is " + result.ToString()); AdaFinal(); } FreeLibrary(pDll2); } } } }

    Read the article

  • Django: FloatField or DecimalFied for Currency ?

    - by Hellnar
    I am curious which one would be better fitting as a currency field ? I will do simple operations such as taking difference, the percentage between old and new prices. I plan to keep two digits after the zero (ie 10.50) and majority of the time if these digits are zero, I will be hiding these numbers and display it as "10"

    Read the article

  • Java configuration framework

    - by Steen
    I'm in the process of weeding out all hardcoded values in a java library and was wondering what framework would be the best (in terms of zero- or close-to-zero configuration) to handle run-time configuration? I would prefer xml-based config-files, but it's not essential. Please do only reply if you have practical experience with a framework. I'm not looking for examples, but experience... Thanks for taking the time.

    Read the article

  • .NET read binary contents of .lnk file

    - by Flores
    I want to read the binary contents of a .lnk file. As long as the target of the shortcut (lnk file) exists this works fine with IO.File.ReadAllBytes(string file). BUT If the target of the shortcut does not exist (believe me I want this) the method only returns zero's. I guess this is because the OS follows the link and if it does not exist it returns zero's Is there some way to bypass the fact that the framework follows the target of the .lnk before displaying the contents of the .lnk file?

    Read the article

  • Is it guaranteed that False == 0 and True == 1 in Python?

    - by EOL
    Is it guaranteed that False == 0 and True == 1, in Python? For instance, is it in any way guaranteed that the following code will always produce the same results, whatever the version of Python (existing and in the foreseeable future)? 0 == False # True 1 == True # True ['zero', 'one'][False] # is 'zero' Any reference to the official documentation would be much appreciated! Other comments would be appreciated too… :)

    Read the article

  • DeviceIoControl returning false

    - by Anand
    In my C# code,DeviceIoControl is returning false,the handle is correct DeviceIoControl(deviceHandle, IOCTL_STORAGE_GET_DEVICE_NUMBER, IntPtr.Zero, 0, OutBuffPtr,//&psdn, OutBuffSize, ref dwBytesReturned, IntPtr.Zero);

    Read the article

  • Why is the Objective-C Boolean data type defined as a signed char?

    - by EddieCatflap
    Something that has piqued my interest is Objective-C's BOOL type definition. Why is it defined as a signed char (which could cause unexpected behaviour if a value greater than 1 byte in length is assigned to it) rather than as an int, as C does (much less margin for error: a zero value is false, a non-zero value is true)? The only reason I can think of is the Objective-C designers micro-optimising storage because the char will use less memory than the int. Please can someone enlighten me?

    Read the article

  • Collision Detection probelm (intersection with plane)

    - by Demi
    I'm doing a scene using openGL (a house). I want to do some collision detection, mainly with the walls in the house. I have tried the following code: // a plane is represented with a normal and a position in space Vector planeNor(0,0,1); Vector position(0,0,-10); Plane p(planeNor,position); Vector vel(0,0,-1); double lamda; // this is the intersection point Vector pNormal; // the normal of the intersection // this method is from Nehe's Lesson 30 coll= p.TestIntersionPlane(vel,Z,lamda,pNormal); glPushMatrix(); glBegin(GL_QUADS); if(coll) glColor3f(1,0,0); else glColor3f(1,1,1); glVertex3d(0,0,-10); glVertex3d(3,0,-10); glVertex3d(3,3,-10); glVertex3d(0,3,-10); glEnd(); glPopMatrix(); Nehe's method: #define EPSILON 1.0e-8 #define ZERO EPSILON bool Plane::TestIntersionPlane(const Vector3 & position,const Vector3 & direction, double& lamda, Vector3 & pNormal) { double DotProduct=direction.scalarProduct(normal); // Dot Product Between Plane Normal And Ray Direction double l2; // Determine If Ray Parallel To Plane if ((DotProduct<ZERO)&&(DotProduct>-ZERO)) return false; l2=(normal.scalarProduct(position))/DotProduct; // Find Distance To Collision Point if (l2<-ZERO) // Test If Collision Behind Start return false; pNormal= normal; lamda=l2; return true; } Z is initially (0,0,0) and every time I move the camera towards the plane, I reduce its z component by 0.1 (i.e. Z.z-=0.1 ). I know that the problem is with the vel vector, but I can't figure out what the right value should be. Can anyone please help me?

    Read the article

  • how to make datagrid Visibility is Collapsed in codebehind

    - by prince23
    hi i have data grid. now here i am checking the condition if Companyrows.count is zero . if count is zero make data grid.visible is false. List<Employee> Companyrows = new List<Employee>(); if (Companyrows.Count == 0) { dgrdRowDetail.Visibility = "Collapsed"; // getting error // convert type 'string' to 'System.Windows.Visibility' } else { dgrdRowDetail.ItemsSource = Companyrows; } any help how to solve this issue would be great thank you

    Read the article

  • empty base class optimization

    - by FredOverflow
    Two quotes from the C++ standard, §1.8: An object is a region of storage. Base class subobjects may have zero size. I don't think a region of storage can be of size zero. That would mean that some base class subobjects aren't actually objects. Opinions?

    Read the article

  • ffmpeg: create a video from images

    - by vailen
    Is it possible to use ffmpeg create a video from a set of sequences, where the number does not start from zero? For example, I have some images [test_100.jpg, test_101.jpg, test_102.jpg, ..., test_200.jpg], and I want to convert them to a video. I tried the following command, but it didn't work (it seems the number should start from zero): ffmpeg -i test_%d.jpg -vcodec mpeg4 test.avi Any advise?

    Read the article

  • Why closed contours are guaranteed here?

    - by user198729
    Quoted from here: BW = edge(I,'zerocross',thresh,h) specifies the zero-cross method, using the filter h. thresh is the sensitivity threshold; if the argument is empty ([]), edge chooses the sensitivity threshold automatically. If you specify a threshold of 0, the output image has closed contours, because it includes all the zero crossings in the input image. I don't understand it,can someone elaborate?

    Read the article

  • how can I create macro definitions for the lines commented in the code.

    - by yaprak
    #include <stdio.h> //Here use a macro definition that assigns a value to SIZE (for example 5) int main() { int i; int array[SIZE]; int sum=0; for(i=0; i<SIZE; i++) { //Here use a macro definition named as CALCSUM to make the //following addition operation for the array printf("Enter a[%d] = ",i); scanf("%d", &array[i]); sum+=array[i]; //Here use a macro definition named as VERBOSE to print //what program does to the screen printf("The user entered %d\n", array[i]); // // //If the macro definition CALCSUM is not used, the program //should assign 0 to the i-th element of the array array[i]=0; //Here, again use VERBOSE to print what program does to the screen printf("a[%d] is assigned to zero\n", i); // // } //If CALCSUM is defined, print the summation of the array elements to the screen printf("Summation of the array is %d\n",sum); // //If CALCSUM is not defined, but VERBOSE mode is used, print the following printf("All the elements in the array are assigned to zero\n"); // printf("Program terminated\n"); return 0; } When CALCSUM is defined, the program will sum up the values of each element in the given array. If CALCSUM is not defined, each array element will be assigned to zero. Besides, when VERBOSE mode is defined, the program will make print statements pointed out active. [root@linux55]# gcc code.c [root@linux55]# ./a.out Program terminated [root@linux55]# gcc code.c -D CALCSUM [root@linux55]# ./a.out Enter a[0] = 3 Enter a[1] = 0 Enter a[2] = 2 Enter a[3] = 5 Enter a[4] = 9 Summation of the array is 19 Program terminated [root@linux55]# gcc code.c -D CALCSUM -D VERBOSE [root@linux55]# ./a.out Enter a[0] = 2 The user entered 2 Enter a[1] = 10 The user entered 10 Enter a[2] = 3 The user entered 3 Enter a[3] = 8 The user entered 8 Enter a[4] = 1 The user entered 1 Summation of the array is 24 Program terminated [root@linux55]# gcc code.c -D VERBOSE [root@linux55]# ./a.out a[0] is assigned to 0 a[1] is assigned to 0 a[2] is assigned to 0 a[3] is assigned to 0 a[4] is assigned to 0 All the elements in the array is assigned to zero Program terminated

    Read the article

  • Dynamic gridview columns event problem

    - by ropstah
    Hi, i have a GridView (selectable) in which I want to generate a dynamic GridView in a new row BELOW the selected row. I can add the row and gridview dynamically in the Gridview1 PreRender event. I need to use this event because: _OnDataBound is not called on every postback (same for _OnRowDataBound) _OnInit is not possible because the 'Inner table' for the Gridview is added after Init _OnLoad is not possible because the 'selected' row is not selected yet. I can add the columns to the dynamic GridView based on my ITemplate class. But now the button events won't fire.... Any suggestions? The dynamic adding of the gridview: Private Sub GridView1_PreRender(ByVal sender As Object, ByVal e As System.EventArgs) Handles GridView1.PreRender Dim g As GridView = sender g.DataBind() If g.SelectedRow IsNot Nothing AndAlso g.Controls.Count &gt; 0 Then Dim t As Table = g.Controls(0) Dim r As New GridViewRow(-1, -1, DataControlRowType.DataRow, DataControlRowState.Normal) Dim c As New TableCell Dim visibleColumnCount As Integer = 0 For Each d As DataControlField In g.Columns If d.Visible Then visibleColumnCount += 1 End If Next c.ColumnSpan = visibleColumnCount Dim ph As New PlaceHolder ph.Controls.Add(CreateStockGrid(g.SelectedDataKey.Value)) c.Controls.Add(ph) r.Cells.Add(c) t.Rows.AddAt(g.SelectedRow.RowIndex + 2, r) End If End Sub Private Function CreateStockGrid(ByVal PnmAutoKey As String) As GridView Dim col As Interfaces.esColumnMetadata Dim coll As New BLL.ViewStmCollection Dim entity As New BLL.ViewStm Dim query As BLL.ViewStmQuery = coll.Query Me._gridStock.AutoGenerateColumns = False Dim buttonf As New TemplateField() buttonf.ItemTemplate = New QuantityTemplateField(ListItemType.Item, "", "Button") buttonf.HeaderTemplate = New QuantityTemplateField(ListItemType.Header, "", "Button") buttonf.EditItemTemplate = New QuantityTemplateField(ListItemType.EditItem, "", "Button") Me._gridStock.Columns.Add(buttonf) For Each col In coll.es.Meta.Columns Dim headerf As New QuantityTemplateField(ListItemType.Header, col.PropertyName, col.Type.Name) Dim itemf As New QuantityTemplateField(ListItemType.Item, col.PropertyName, col.Type.Name) Dim editf As New QuantityTemplateField(ListItemType.EditItem, col.PropertyName, col.Type.Name) Dim f As New TemplateField() f.HeaderTemplate = headerf f.ItemTemplate = itemf f.EditItemTemplate = editf Me._gridStock.Columns.Add(f) Next query.Where(query.PnmAutoKey.Equal(PnmAutoKey)) coll.LoadAll() Me._gridStock.ID = "gvChild" Me._gridStock.DataSource = coll AddHandler Me._gridStock.RowCommand, AddressOf Me.gv_RowCommand Me._gridStock.DataBind() Return Me._gridStock End Function The ITemplate class: Public Class QuantityTemplateField : Implements ITemplate Private _itemType As ListItemType Private _fieldName As String Private _infoType As String Public Sub New(ByVal ItemType As ListItemType, ByVal FieldName As String, ByVal InfoType As String) Me._itemType = ItemType Me._fieldName = FieldName Me._infoType = InfoType End Sub Public Sub InstantiateIn(ByVal container As System.Web.UI.Control) Implements System.Web.UI.ITemplate.InstantiateIn Select Case Me._itemType Case ListItemType.Header Dim l As New Literal l.Text = "&lt;b&gt;" & Me._fieldName & "</b>" container.Controls.Add(l) Case ListItemType.Item Select Case Me._infoType Case "Button" Dim ib As New Button() Dim eb As New Button() ib.ID = "InsertButton" eb.ID = "EditButton" ib.Text = "Insert" eb.Text = "Edit" ib.CommandName = "Edit" eb.CommandName = "Edit" AddHandler ib.Click, AddressOf Me.InsertButton_OnClick AddHandler eb.Click, AddressOf Me.EditButton_OnClick container.Controls.Add(ib) container.Controls.Add(eb) Case Else Dim l As New Label l.ID = Me._fieldName l.Text = "" AddHandler l.DataBinding, AddressOf Me.OnDataBinding container.Controls.Add(l) End Select Case ListItemType.EditItem Select Case Me._infoType Case "Button" Dim b As New Button b.ID = "UpdateButton" b.Text = "Update" b.CommandName = "Update" b.OnClientClick = "return confirm('Sure?')" container.Controls.Add(b) Case Else Dim t As New TextBox t.ID = Me._fieldName AddHandler t.DataBinding, AddressOf Me.OnDataBinding container.Controls.Add(t) End Select End Select End Sub Private Sub InsertButton_OnClick(ByVal sender As Object, ByVal e As EventArgs) Console.WriteLine("insert click") End Sub Private Sub EditButton_OnClick(ByVal sender As Object, ByVal e As EventArgs) Console.WriteLine("edit click") End Sub Private Sub OnDataBinding(ByVal sender As Object, ByVal e As EventArgs) Dim boundValue As Object = Nothing Dim ctrl As Control = sender Dim dataItemContainer As IDataItemContainer = ctrl.NamingContainer boundValue = DataBinder.Eval(dataItemContainer.DataItem, Me._fieldName) Select Case Me._itemType Case ListItemType.Item Dim fieldLiteral As Label = sender fieldLiteral.Text = boundValue.ToString() Case ListItemType.EditItem Dim fieldTextbox As TextBox = sender fieldTextbox.Text = boundValue.ToString() End Select End Sub End Class

    Read the article

  • Reading a user input (character or string of letters) into ggplot command inside a switch statement or a nested ifelse (with functions in it)

    - by statisticalbeginner
    I have code like AA <- as.integer(readline("Select any number")) switch(AA, 1={ num <-as.integer(readline("Select any one of the options \n")) print('You have selected option 1') #reading user data var <- readline("enter the variable name \n") #aggregating the data based on required condition gg1 <- aggregate(cbind(get(var))~Mi+hours,a, FUN=mean) #Ploting ggplot(gg1, aes(x = hours, y = get(var), group = Mi, fill = Mi, color = Mi)) + geom_point() + geom_smooth(stat="smooth", alpha = I(0.01)) }, 2={ print('bar') }, { print('default') } ) The dataset is [dataset][1] I have loaded the dataset into object list a <- read.table(file.choose(), header=FALSE,col.names= c("Ei","Mi","hours","Nphy","Cphy","CHLphy","Nhet","Chet","Ndet","Cdet","DON","DOC","DIN","DIC","AT","dCCHO","TEPC","Ncocco","Ccocco","CHLcocco","PICcocco","par","Temp","Sal","co2atm","u10","dicfl","co2ppm","co2mol","pH")) I am getting error like source ("switch_statement_check.R") Select any one of the options 1 [1] "You have selected option 1" enter the variable name Nphy Error in eval(expr, envir, enclos) : (list) object cannot be coerced to type 'double' > gg1 is getting data that is fine. I dont know what to do to make the variable entered by user to work in that ggplot command. Please suggest any solution for this. The dput output structure(list(Ei = c(1L, 1L, 1L, 1L, 1L, 1L), Mi = c(1L, 1L, 1L, 1L, 1L, 1L), hours = 1:6, Nphy = c(0.1023488, 0.104524, 0.1064772, 0.1081702, 0.1095905, 0.110759), Cphy = c(0.6534707, 0.6448216, 0.6369597, 0.6299084, 0.6239005, 0.6191941), CHLphy = c(0.1053458, 0.110325, 0.1148174, 0.1187672, 0.122146, 0.1249877), Nhet = c(0.04994161, 0.04988347, 0.04982555, 0.04976784, 0.04971029, 0.04965285), Chet = c(0.3308593, 0.3304699, 0.3300819, 0.3296952, 0.3293089, 0.3289243), Ndet = c(0.04991916, 0.04984045, 0.04976363, 0.0496884, 0.04961446, 0.04954156), Cdet = c(0.3307085, 0.3301691, 0.3296314, 0.3290949, 0.3285598, 0.3280252), DON = c(0.05042275, 0.05085697, 0.05130091, 0.05175249, 0.05220978, 0.05267118 ), DOC = c(49.76304, 49.52745, 49.29323, 49.06034, 48.82878, 48.59851), DIN = c(14.9933, 14.98729, 14.98221, 14.9781, 14.97485, 14.97225), DIC = c(2050.132, 2050.264, 2050.396, 2050.524, 2050.641, 2050.758), AT = c(2150.007, 2150.007, 2150.007, 2150.007, 2150.007, 2150.007), dCCHO = c(0.964222, 0.930869, 0.8997098, 0.870544, 0.843196, 0.8175117), TEPC = c(0.1339044, 0.1652179, 0.1941872, 0.2210289, 0.2459341, 0.2690721), Ncocco = c(0.1040715, 0.1076058, 0.1104229, 0.1125141, 0.1140222, 0.1151228), Ccocco = c(0.6500288, 0.6386706, 0.6291149, 0.6213265, 0.6152447, 0.6108502), CHLcocco = c(0.1087667, 0.1164099, 0.1225822, 0.1273103, 0.1308843, 0.1336465), PICcocco = c(0.1000664, 0.1001396, 0.1007908, 0.101836, 0.1034179, 0.1055634), par = c(0, 0, 0.8695131, 1.551317, 2.777707, 4.814341), Temp = c(9.9, 9.9, 9.9, 9.9, 9.9, 9.9), Sal = c(31.31, 31.31, 31.31, 31.31, 31.31, 31.31), co2atm = c(370, 370, 370, 370, 370, 370), u10 = c(0.01, 0.01, 0.01, 0.01, 0.01, 0.01), dicfl = c(-2.963256, -2.971632, -2.980446, -2.989259, -2.997877, -3.005702), co2ppm = c(565.1855, 565.7373, 566.3179, 566.8983, 567.466, 567.9814), co2mol = c(0.02562326, 0.02564828, 0.0256746, 0.02570091, 0.02572665, 0.02575002 ), pH = c(7.879427, 7.879042, 7.878636, 7.878231, 7.877835, 7.877475)), .Names = c("Ei", "Mi", "hours", "Nphy", "Cphy", "CHLphy", "Nhet", "Chet", "Ndet", "Cdet", "DON", "DOC", "DIN", "DIC", "AT", "dCCHO", "TEPC", "Ncocco", "Ccocco", "CHLcocco", "PICcocco", "par", "Temp", "Sal", "co2atm", "u10", "dicfl", "co2ppm", "co2mol", "pH"), row.names = c(NA, 6L), class = "data.frame") As per the below suggestions I have tried a lot but it is not working. Summarizing I will say: var <- readline("enter a variable name") I cant use get(var) inside any command but not inside ggplot, it wont work. gg1$var it also doesnt work, even after changing the column names. Does it have a solution or should I just choose to import from an excel sheet, thats better? Tried with if else and functions fun1 <- function() { print('You have selected option 1') my <- as.character((readline("enter the variable name \n"))) gg1 <- aggregate(cbind(get(my))~Mi+hours,a, FUN=mean) names(gg1)[3] <- my #print(names(gg1)) ggplot (gg1,aes_string(x="hours",y=(my),group="Mi",color="Mi")) + geom_point() } my <- as.integer(readline("enter a number")) ifelse(my == 1,fun1(),"") ifelse(my == 2,print ("its 2"),"") ifelse(my == 3,print ("its 3"),"") ifelse(my != (1 || 2|| 3) ,print("wrong number"),"") Not working either...:(

    Read the article

  • Radio Button Validation u

    - by Sirojan Gnanaretnam
    I am trying validate the radio button using Javascript . But I couldn't get it. Can any one please help me to fix this Issue. I Have attached My Code Below. Thanks. <form action="submitAd.php" method="POST" enctype="multipart/form-data" name="packages" onsubmit="return checkForm()"> <div id="plans_pay"> <input type="radio" name="group1" id="r1" value="Office" onchange="click_Pay_Office()" style="float:left;margin-top:20px;font-size:72px;"> <label style="float:left; margin-top:20px;" for="pay_office">At Our Office</label> <img style="float:left;margin-bottom:10px;" src="images/Pay-at-office.png" /> </div> <div id="plans_pay"> <input style="float:left;margin-top:20px;font-size:72px;" type="radio" name="group1" id="r2" value="HNB" onchange="click_Pay_Hnb()"> <label style="float:left; margin-top:20px;" for="pay_hnb">At Any HNB Branch</label> <img style="float:left;margin-bottom:10px;" src="images/HNB.png" /> </div> </form> Javascript function checkForm(){ if( document.packages.pso.checked == false && document.packages.pso1.checked == false && document.packages.ph.checked == false && document.packages.ph2.checked == false && document.packages.ph3.checked == false && document.packages.pl.checked == false && document.packages.p3.checked == false && document.packages.p4.checked == false && document.packages.p5.checked == false && document.packages.p6.checked == false ){ alert('Please Select At Least One Package'); return false; } if( document.packages.pso.checked == false && document.packages.pso1.checked == false && document.packages.ph.checked == false && document.packages.ph.checked == false && document.packages.ph2.checked == false && document.packages.ph3.checked == false && document.packages.pl.checked == false && document.packages.p3.checked == false && document.packages.p4.checked == false && document.packages.p5.checked == false && document.packages.p6.checked == false){ alert('Please Select At Least One with the Advertise online option in premium package'); return false; } if(document.getElementById('words').value==''){ alert("Please Enter the Texts"); return false; } if(document.getElementById('r1').checked==false && document.getElementById('r2').checked==false){ alert("Please Select a Payment Method"); return false; } }

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • My vertex shader doesn't affect texture coords or diffuse info but works for position

    - by tina nyaa
    I am new to 3D and DirectX - in the past I have only used abstractions for 2D drawing. Over the past month I've been studying really hard and I'm trying to modify and adapt some of the shaders as part of my personal 'study project'. Below I have a shader, modified from one of the Microsoft samples. I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? // // Skinned Mesh Effect file // Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved. // float4 lhtDir = {0.0f, 0.0f, -1.0f, 1.0f}; //light Direction float4 lightDiffuse = {0.6f, 0.6f, 0.6f, 1.0f}; // Light Diffuse float4 MaterialAmbient : MATERIALAMBIENT = {0.1f, 0.1f, 0.1f, 1.0f}; float4 MaterialDiffuse : MATERIALDIFFUSE = {0.8f, 0.8f, 0.8f, 1.0f}; // Matrix Pallette static const int MAX_MATRICES = 100; float4x3 mWorldMatrixArray[MAX_MATRICES] : WORLDMATRIXARRAY; float4x4 mViewProj : VIEWPROJECTION; /////////////////////////////////////////////////////// struct VS_INPUT { float4 Pos : POSITION; float4 BlendWeights : BLENDWEIGHT; float4 BlendIndices : BLENDINDICES; float3 Normal : NORMAL; float3 Tex0 : TEXCOORD0; }; struct VS_OUTPUT { float4 Pos : POSITION; float4 Diffuse : COLOR; float2 Tex0 : TEXCOORD0; }; float3 Diffuse(float3 Normal) { float CosTheta; // N.L Clamped CosTheta = max(0.0f, dot(Normal, lhtDir.xyz)); // propogate scalar result to vector return (CosTheta); } VS_OUTPUT VShade(VS_INPUT i, uniform int NumBones) { VS_OUTPUT o; float3 Pos = 0.0f; float3 Normal = 0.0f; float LastWeight = 0.0f; // Compensate for lack of UBYTE4 on Geforce3 int4 IndexVector = D3DCOLORtoUBYTE4(i.BlendIndices); // cast the vectors to arrays for use in the for loop below float BlendWeightsArray[4] = (float[4])i.BlendWeights; int IndexArray[4] = (int[4])IndexVector; // calculate the pos/normal using the "normal" weights // and accumulate the weights to calculate the last weight for (int iBone = 0; iBone < NumBones-1; iBone++) { LastWeight = LastWeight + BlendWeightsArray[iBone]; Pos += mul(i.Pos, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; Normal += mul(i.Normal, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; } LastWeight = 1.0f - LastWeight; // Now that we have the calculated weight, add in the final influence Pos += (mul(i.Pos, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); Normal += (mul(i.Normal, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); // transform position from world space into view and then projection space //o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Diffuse.x = 0.0f; o.Diffuse.y = 0.0f; o.Diffuse.z = 0.0f; o.Diffuse.w = 0.0f; o.Tex0 = float2(0,0); return o; } technique t0 { pass p0 { VertexShader = compile vs_3_0 VShade(4); } } I am currently using the SlimDX .NET wrapper around DirectX, but the API is extremely similar: public void Draw() { var device = vertexBuffer.Device; device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.White, 1.0f, 0); device.SetRenderState(RenderState.Lighting, true); device.SetRenderState(RenderState.DitherEnable, true); device.SetRenderState(RenderState.ZEnable, true); device.SetRenderState(RenderState.CullMode, Cull.Counterclockwise); device.SetRenderState(RenderState.NormalizeNormals, true); device.SetSamplerState(0, SamplerState.MagFilter, TextureFilter.Anisotropic); device.SetSamplerState(0, SamplerState.MinFilter, TextureFilter.Anisotropic); device.SetTransform(TransformState.World, Matrix.Identity * Matrix.Translation(0, -50, 0)); device.SetTransform(TransformState.View, Matrix.LookAtLH(new Vector3(-200, 0, 0), Vector3.Zero, Vector3.UnitY)); device.SetTransform(TransformState.Projection, Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); var material = new Material(); material.Ambient = material.Diffuse = material.Emissive = material.Specular = new Color4(Color.White); material.Power = 1f; device.SetStreamSource(0, vertexBuffer, 0, vertexSize); device.VertexDeclaration = vertexDeclaration; device.Indices = indexBuffer; device.Material = material; device.SetTexture(0, texture); var param = effect.GetParameter(null, "mWorldMatrixArray"); var boneWorldTransforms = bones.OrderedBones.OrderBy(x => x.Id).Select(x => x.CombinedTransformation).ToArray(); effect.SetValue(param, boneWorldTransforms); effect.SetValue(effect.GetParameter(null, "mViewProj"), Matrix.Identity);// Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); effect.SetValue(effect.GetParameter(null, "MaterialDiffuse"), material.Diffuse); effect.SetValue(effect.GetParameter(null, "MaterialAmbient"), material.Ambient); effect.Technique = effect.GetTechnique(0); var passes = effect.Begin(FX.DoNotSaveState); for (var i = 0; i < passes; i++) { effect.BeginPass(i); device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, skin.Vertices.Length, 0, skin.Indicies.Length / 3); effect.EndPass(); } effect.End(); } Again, I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? Also, whatever I set in the bone transformation matrices doesn't seem to have an effect on my model. If I set every bone transformation to a zero matrix, the model still shows up as if nothing had happened, but changing the Pos field in shader output makes the model disappear. I don't understand why I'm getting this kind of behaviour. Thank you!

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • SQLAuthority News – Monthly list of Puzzles and Solutions on SQLAuthority.com

    - by pinaldave
    This month has been very interesting month for SQLAuthority.com we had multiple and various puzzles which everybody participated and lots of interesting conversation which we have shared. Let us start in latest puzzles and continue going down. There are few answers also posted on facebook as well. SQL SERVER – Puzzle Involving NULL – Resolve – Error – Operand data type void type is invalid for sum operator This puzzle involves NULL and throws an error. The challenge is to resolve the error. There are multiple ways to resolve this error. Readers has contributed various methods. Few of them even have supplied the answer why this error is showing up. NULL are very important part of the database and if one of the column has NULL the result can be totally different than the one expected. SQL SERVER – T-SQL Scripts to Find Maximum between Two Numbers I modified script provided by friend to find greatest number between two number. My script has small bug in it. However, lots of readers have suggested better scripts. Madhivanan has written blog post on the subject over here. SQL SERVER – BI Quiz Hint – Performance Tuning Cubes – Hints This quiz is hosted on my friend Jacob‘s site. I have written many hints how one can tune cubes. Now one can take part here and win exciting prizes. SQL SERVER – Solution – Generating Zero Without using Any Numbers in T-SQL Madhivanan has asked very interesting question on his blog about How to Generate Zero without using Any Numbers in T-SQL. He has demonstrated various methods how one can generate Zero. I asked the same question on blog and got many interesting answers which I have shared. SQL SERVER – Solution – Puzzle – Statistics are not Updated but are Created Once I have to accept that this was most difficult puzzle. In this puzzle I have asked even though settings are correct, why statistics of the tables are not getting updated. In this puzzle one is tested with various concepts 1) Indexes, 2) Statistics, 3) database settings etc. There are multiple ways of solving this puzzles. It was interesting as many took interest but only few got it right. SQL SERVER – Question to You – When to use Function and When to use Stored Procedure This is rather straight forward question and not the typical puzzle. The answers from readers are great however, still there is chance of more detailed answers. SQL SERVER – Selecting Domain from Email Address I wrote on selecting domains from email addresses. Madhivanan makes puzzle out of a simple question. He wrote a follow-up post over here. In his post he writes various way how one can find email addresses from list of domains. Well, this is not a puzzle but amazing Guest Post by Feodor Georgiev who has written on subject Job Interviewing the Right Way (and for the Right Reasons). An article which everyone should read. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, Readers Question, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Randomly placing items script not working - sometimes items spawn in walls, sometimes items spawn in weird locations

    - by Timothy Williams
    I'm trying to figure out a way to randomly spawn items throughout my level, however I need to make sure they won't spawn inside another object (walls, etc.) Here's the code I'm currently using, it's based on the Physics.CheckSphere(); function. This runs OnLevelWasLoaded(); It spawns the items perfectly fine, but sometimes items spawn partway in walls. And sometimes items will spawn outside of the SpawnBox range (no clue why it does that.) //This is what randomly generates all the items. void SpawnItems () { if (Application.loadedLevelName == "Menu" || Application.loadedLevelName == "End Demo") return; //The bottom corner of the box we want to spawn items in. Vector3 spawnBoxBot = Vector3.zero; //Top corner. Vector3 spawnBoxTop = Vector3.zero; //If we're in the dungeon, set the box to the dungeon box and tell the items we want to spawn. if (Application.loadedLevelName == "dungeonScene") { spawnBoxBot = new Vector3 (8.857f, 0, 9.06f); spawnBoxTop = new Vector3 (-27.98f, 2.4f, -15); itemSpawn = dungeonSpawn; } //Spawn all the items. for (i = 0; i != itemSpawn.Length; i ++) { spawnedItem = null; //Zeroes out our random location Vector3 randomLocation = Vector3.zero; //Gets the meshfilter of the item we'll be spawning MeshFilter mf = itemSpawn[i].GetComponent<MeshFilter>(); //Gets it's bounds (see how big it is) Bounds bounds = mf.sharedMesh.bounds; //Get it's radius float maxRadius = new Vector3 (bounds.extents.x + 10f, bounds.extents.y + 10f, bounds.extents.z + 10f).magnitude * 5f; //Set which layer is the no walls layer var NoWallsLayer = 1 << LayerMask.NameToLayer("NoWallsLayer"); //Use that layer as your layermask. LayerMask layerMask = ~(1 << NoWallsLayer); //If we're in the dungeon, certain items need to spawn on certain halves. if (Application.loadedLevelName == "dungeonScene") { if (itemSpawn[i].name == "key2" || itemSpawn[i].name == "teddyBearLW" || itemSpawn[i].name == "teddyBearLW_Admiration" || itemSpawn[i].name == "radio") randomLocation = new Vector3(Random.Range(spawnBoxBot.x, -26.96f), Random.Range(spawnBoxBot.y, spawnBoxTop.y), Random.Range(spawnBoxBot.z, -2.141f)); else randomLocation = new Vector3(Random.Range(spawnBoxBot.x, spawnBoxTop.x), Random.Range(spawnBoxBot.y, spawnBoxTop.y), Random.Range(-2.374f, spawnBoxTop.z)); } //Otherwise just spawn them in the box. else randomLocation = new Vector3(Random.Range(spawnBoxBot.x, spawnBoxTop.x), Random.Range(spawnBoxBot.y, spawnBoxTop.y), Random.Range(spawnBoxBot.z, spawnBoxTop.z)); //This is what actually spawns the item. It checks to see if the spot where we want to instantiate it is clear, and if so it instatiates it. Otherwise we have to repeat the whole process again. if (Physics.CheckSphere(randomLocation, maxRadius, layerMask)) spawnedItem = Instantiate(itemSpawn[i], randomLocation, Random.rotation); else i --; //If we spawned something, set it's name to what it's supposed to be. Removes the (clone) addon. if (spawnedItem != null) spawnedItem.name = itemSpawn[i].name; } } What I'm asking for is if you know what's going wrong with this code that it would spawn stuff in walls. Or, if you could provide me with links/code/ideas of a better way to check if an item will spawn in a wall (some other function than Physics.CheckSphere). I've been working on this for a long time, and nothing I try seems to work. Any help is appreciated.

    Read the article

  • Exploring TCP throughput with DTrace

    - by user12820842
    One key measure to use when assessing TCP throughput is assessing the amount of unacknowledged data in the pipe. This is sometimes termed the Bandwidth Delay Product (BDP) (note that BDP is often used more generally as the product of the link capacity and the end-to-end delay). In DTrace terms, the amount of unacknowledged data in bytes for the connection is the different between the next sequence number to send and the lowest unacknoweldged sequence number (tcps_snxt - tcps_suna). According to the theory, when the number of unacknowledged bytes for the connection is less than the receive window of the peer, the path bandwidth is the limiting factor for throughput. In other words, if we can fill the pipe without the peer TCP complaining (by virtue of its window size reaching 0), we are purely bandwidth-limited. If the peer's receive window is too small however, the sending TCP has to wait for acknowledgements before it can send more data. In this case the round-trip time (RTT) limits throughput. In such cases the effective throughput limit is the window size divided by the RTT, e.g. if the window size is 64K and the RTT is 0.5sec, the throughput is 128K/s. So a neat way to visually determine if the receive window of clients may be too small should be to compare the distribution of BDP values for the server versus the client's advertised receive window. If the BDP distribution overlaps the send window distribution such that it is to the right (or lower down in DTrace since quantizations are displayed vertically), it indicates that the amount of unacknowledged data regularly exceeds the client's receive window, so that it is possible that the sender may have more data to send but is blocked by a zero-window on the client side. In the following example, we compare the distribution of BDP values to the receive window advertised by the receiver (10.175.96.92) for a large file download via http. # dtrace -s tcp_tput.d ^C BDP(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count -1 | 0 0 | 6 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 3 512 | 0 1024 | 0 2048 | 9 4096 | 14 8192 | 27 16384 | 67 32768 |@@ 1464 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 32396 131072 | 0 SWND(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count 16384 | 0 32768 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 17067 65536 | 0 Here we have a puzzle. We can see that the receiver's advertised window is in the 32768-65535 range, while the amount of unacknowledged data in the pipe is largely in the 65536-131071 range. What's going on here? Surely in a case like this we should see zero-window events, since the amount of data in the pipe regularly exceeds the window size of the receiver. We can see that we don't see any zero-window events since the SWND distribution displays no 0 values - it stays within the 32768-65535 range. The explanation is straightforward enough. TCP Window scaling is in operation for this connection - the Window Scale TCP option is used on connection setup to allow a connection to advertise (and have advertised to it) a window greater than 65536 bytes. In this case the scaling shift is 1, so this explains why the SWND values are clustered in the 32768-65535 range rather than the 65536-131071 range - the SWND value needs to be multiplied by two since the reciever is also scaling its window by a shift factor of 1. Here's the simple script that compares BDP and SWND distributions, fixed to take account of window scaling. #!/usr/sbin/dtrace -s #pragma D option quiet tcp:::send / (args[4]-tcp_flags & (TH_SYN|TH_RST|TH_FIN)) == 0 / { @bdp["BDP(bytes)", args[2]-ip_daddr, args[4]-tcp_sport] = quantize(args[3]-tcps_snxt - args[3]-tcps_suna); } tcp:::receive / (args[4]-tcp_flags & (TH_SYN|TH_RST|TH_FIN)) == 0 / { @swnd["SWND(bytes)", args[2]-ip_saddr, args[4]-tcp_dport] = quantize((args[4]-tcp_window)*(1 tcps_snd_ws)); } And here's the fixed output. # dtrace -s tcp_tput_scaled.d ^C BDP(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count -1 | 0 0 | 39 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 3 512 | 0 1024 | 0 2048 | 4 4096 | 9 8192 | 22 16384 | 37 32768 |@ 99 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3858 131072 | 0 SWND(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count 512 | 0 1024 | 1 2048 | 0 4096 | 2 8192 | 4 16384 | 7 32768 | 14 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1956 131072 | 0

    Read the article

< Previous Page | 18 19 20 21 22 23 24 25 26 27 28 29  | Next Page >