Search Results

Search found 8990 results on 360 pages for 'response transmitfile'.

Page 221/360 | < Previous Page | 217 218 219 220 221 222 223 224 225 226 227 228  | Next Page >

  • jQuery Validation in ASP.NET

    - by Abu Hamzah
    i have a strange situation may its a easy fix or something i may be missing but here is the question. i have a asp.net form with master page and my validation works great without any problem but the problems starts when i try to hook my click event to the server side, here is what i meant: i have a form with few fields on it and if the form is empty than it should STOP submitting, otherwise allow me to execute the server side script but its not happening, even my form is in invalid state (i do get error message saying i have to enter the required fileds) but still executing my server side script. i would like to execute my server side script only if the form is in valid state. here is my code: my master page <%@ Master Language="C#" AutoEventWireup="true" CodeFile="MasterPage.master.cs" Inherits="MasterPage" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title>jQuery Validation in ASP.NET Master Page</title> <script src="Scripts/jquery-1.3.2.js" type="text/javascript"></script> <script src="Scripts/jquery-1.3.2-vsdoc2.js" type="text/javascript"></script> <script src="Scripts/jquery.validate.js" type="text/javascript"></script> <asp:ContentPlaceHolder id="head" runat="server"> </asp:ContentPlaceHolder> </head> <body> <form id="form1" runat="server"> <div> <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server"> </asp:ContentPlaceHolder> </div> </form> </body> </html> my content page: <%@ Page Title="" Language="C#" MasterPageFile="~/MasterPage.master" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %> <asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server"> </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server"> <script type="text/javascript"> $(document).ready(function() { $("#aspnetForm").validate({ rules: { <%=txtName.UniqueID %>: { minlength: 2, required: true }, <%=txtEmail.UniqueID %>: { required: true, email:true } }, messages: { <%=txtName.UniqueID %>:{ required: "* Required Field *", minlength: "* Please enter atleast 2 characters *" } } }); }); </script> Name: <asp:TextBox ID="txtName" MaxLength="30" runat="server" /><br /> Email: <asp:TextBox ID="txtEmail" runat="server"></asp:TextBox><br /> <asp:Button ID="btnSubmit" runat="server" onclick="SubmitTheForm();" Text="Submit" /> </asp:Content> function SubmitTheForm() { SaveTheForm(); } function SaveTheForm() { debugger; var request = buildNewContactRequest(); ContactServiceProxy.invoke({ serviceMethod: "PostNewContact", data: { request: request }, callback: function(response) { processCompletedContactStore(response); }, error: function(xhr, errorMsg, thrown) { postErrorAndUnBlockUI(xhr, errorMsg, thrown); } }); return false; }

    Read the article

  • simplexml help how do I parse this?

    - by bbutle01
    I haven't done any xml projects, so I'm not quite sure what to do with this data... I'm using curl to make a request to salesforce, and they give me back a response that I need to parse. I want to use simplexml. Here's part of the response: <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns="urn:partner.soap.sforce.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <soapenv:Body> <loginResponse> <result> <metadataServerUrl> https://na6-api.salesforce.com/services/Soap/m/18.0/ </metadataServerUrl> <passwordExpired> false </passwordExpired> <sandbox> false </sandbox> <serverUrl> https://na6-api.salesforce.com/services/Soap/u/18.0/ </serverUrl> <sessionId> !AQ4AQLtDIqY. </sessionId> <userId> </userId> <userInfo> <accessibilityMode> false </accessibilityMode> <currencySymbol> $ </currencySymbol> <orgDefaultCurrencyIsoCode> USD </orgDefaultCurrencyIsoCode> <orgDisallowHtmlAttachments> false </orgDisallowHtmlAttachments> <orgHasPersonAccounts> false </orgHasPersonAccounts> <organizationId> </organizationId> <organizationMultiCurrency> false </organizationMultiCurrency> <organizationName> Ox </organizationName> <profileId> sdfgsdfg </profileId> <roleId> sdfgsdfg </roleId> <userDefaultCurrencyIsoCode xsi:nil="true"/> <userEmail> ###@gmail.com </userEmail> <userFullName> ### ### </userFullName> <userId> asdfasdf </userId> <userLanguage> en_US </userLanguage> <userLocale> en_US </userLocale> <userName> [email protected] </userName> <userTimeZone> America/Chicago </userTimeZone> <userType> Standard </userType> <userUiSkin> Theme3 </userUiSkin> </userInfo> </result> </loginResponse> </soapenv:Body> </soapenv:Envelope> Anyway, I expected to feed that stuff (we'll call it data) into $results = simplexml_load_string($data); var_dump($results); And that would give me all the data back... and then to access specific parts, it would be $results-body-loginResponse-blah-blah... But It's not giving me that, it's not really giving me anything back, just an empty simple xml object... So one website made me think I might need an XSLT to read this correctly. Or something else made me think it's because I don't have at the top. Help!

    Read the article

  • Resumable upload from Java client to Grails web application?

    - by dersteps
    After almost 2 workdays of Googling and trying several different possibilities I found throughout the web, I'm asking this question here, hoping that I might finally get an answer. First of all, here's what I want to do: I'm developing a client and a server application with the purpose of exchanging a lot of large files between multiple clients on a single server. The client is developed in pure Java (JDK 1.6), while the web application is done in Grails (2.0.0). As the purpose of the client is to allow users to exchange a lot of large files (usually about 2GB each), I have to implement it in a way, so that the uploads are resumable, i.e. the users are able to stop and resume uploads at any time. Here's what I did so far: I actually managed to do what I wanted to do and stream large files to the server while still being able to pause and resume uploads using raw sockets. I would send a regular request to the server (using Apache's HttpClient library) to get the server to send me a port that was free for me to use, then open a ServerSocket on the server and connect to that particular socket from the client. Here's the problem with that: Actually, there are at least two problems with that: I open those ports myself, so I have to manage open and used ports myself. This is quite error-prone. I actually circumvent Grails' ability to manage a huge amount of (concurrent) connections. Finally, here's what I'm supposed to do now and the problem: As the problems I mentioned above are unacceptable, I am now supposed to use Java's URLConnection/HttpURLConnection classes, while still sticking to Grails. Connecting to the server and sending simple requests is no problem at all, everything worked fine. The problems started when I tried to use the streams (the connection's OutputStream in the client and the request's InputStream in the server). Opening the client's OutputStream and writing data to it is as easy as it gets. But reading from the request's InputStream seems impossible to me, as that stream is always empty, as it seems. Example Code Here's an example of the server side (Groovy controller): def test() { InputStream inStream = request.inputStream if(inStream != null) { int read = 0; byte[] buffer = new byte[4096]; long total = 0; println "Start reading" while((read = inStream.read(buffer)) != -1) { println "Read " + read + " bytes from input stream buffer" //<-- this is NEVER called } println "Reading finished" println "Read a total of " + total + " bytes" // <-- 'total' will always be 0 (zero) } else { println "Input Stream is null" // <-- This is NEVER called } } This is what I did on the client side (Java class): public void connect() { final URL url = new URL("myserveraddress"); final byte[] message = "someMessage".getBytes(); // Any byte[] - will be a file one day HttpURLConnection connection = url.openConnection(); connection.setRequestMethod("GET"); // other methods - same result // Write message DataOutputStream out = new DataOutputStream(connection.getOutputStream()); out.writeBytes(message); out.flush(); out.close(); // Actually connect connection.connect(); // is this placed correctly? // Get response BufferedReader in = new BufferedReader(new InputStreamReader(connection.getInputStream())); String line = null; while((line = in.readLine()) != null) { System.out.println(line); // Prints the whole server response as expected } in.close(); } As I mentioned, the problem is that request.inputStream always yields an empty InputStream, so I am never able to read anything from it (of course). But as that is exactly what I'm trying to do (so I can stream the file to be uploaded to the server, read from the InputStream and save it to a file), this is rather disappointing. I tried different HTTP methods, different data payloads, and also rearranged the code over and over again, but did not seem to be able to solve the problem. What I hope to find I hope to find a solution to my problem, of course. Anything is highly appreciated: hints, code snippets, library suggestions and so on. Maybe I'm even having it all wrong and need to go in a totally different direction. So, how can I implement resumable file uploads for rather large (binary) files from a Java client to a Grails web application without manually opening ports on the server side?

    Read the article

  • How to upload Image on Android?

    - by Mattiah85
    I havve to upload image from my SD card to PHP server. I have read a lot of articles and topics but I have some problems... First I have use that code: HttpURLConnection connection = null; DataOutputStream outputStream = null; //DataInputStream inputStream = null; String urlServer = hostName+"Upload"; String lineEnd = "\r\n"; String twoHyphens = "--"; String boundary = "*****"; String serverResponseMessage; //int serverResponseCode; int bytesRead, bytesAvailable, bufferSize; byte[] buffer; int maxBufferSize = 1*1024*1024; try { showLog("uploading file: " + file); FileInputStream fileInputStream = new FileInputStream(new File(pictureFileDir+"/"+file) ); URL url = new URL(urlServer); connection = (HttpURLConnection) url.openConnection(); // Allow Inputs &amp; Outputs. connection.setDoInput(true); connection.setDoOutput(true); connection.setUseCaches(false); // Set HTTP method to POST. connection.setRequestMethod("POST"); connection.setRequestProperty("Connection", "Keep-Alive"); connection.setRequestProperty("Content-Type", "multipart/form-data;boundary="+boundary); outputStream = new DataOutputStream( connection.getOutputStream() ); outputStream.writeBytes(twoHyphens + boundary + lineEnd); outputStream.writeBytes("Content-Disposition: form-data; name=\"uploaded_file\";filename=\"" + file +"\"" + lineEnd); outputStream.writeBytes(lineEnd); bytesAvailable = fileInputStream.available(); bufferSize = Math.min(bytesAvailable, maxBufferSize); buffer = new byte[bufferSize]; // Read file bytesRead = fileInputStream.read(buffer, 0, bufferSize); while (bytesRead > 0) { outputStream.write(buffer, 0, bufferSize); bytesAvailable = fileInputStream.available(); bufferSize = Math.min(bytesAvailable, maxBufferSize); bytesRead = fileInputStream.read(buffer, 0, bufferSize); } outputStream.writeBytes(lineEnd); outputStream.writeBytes(twoHyphens + boundary + twoHyphens + lineEnd); // Responses from the server (code and message) //serverResponseCode = connection.getResponseCode(); serverResponseMessage = connection.getResponseMessage(); showLog("server response: " + serverResponseMessage); fileInputStream.close(); outputStream.flush(); outputStream.close(); } catch (Exception ex) { ex.printStackTrace(); } but server response 200/OK and no file was on destination server... After i have read about Multipart: try { HttpParams params = new BasicHttpParams(); params.setParameter(CoreProtocolPNames.PROTOCOL_VERSION, HttpVersion.HTTP_1_1); DefaultHttpClient mHttpClient = new DefaultHttpClient(params); File image = new File(pictureFileDir + "/" + filename); HttpPost httppost = new HttpPost(hostName+"Upload"); MultipartEntity multipartEntity = new MultipartEntity(HttpMultipartMode.BROWSER_COMPATIBLE); multipartEntity.addPart("Image", new FileBody(image)); httppost.setEntity(multipartEntity); mHttpClient.execute(httppost, new PhotoUploadResponseHandler()); } catch (Exception e) { e.printStackTrace(); } but then a i have such LOG in LogCat and nothing else... 06-04 06:50:52.277: D/dalvikvm(1584): DexOpt: couldn't find static field Lorg/apache/http/message/BasicHeaderValueParser;.INSTANCE 06-04 06:50:52.277: W/dalvikvm(1584): VFY: unable to resolve static field 6688 (INSTANCE) in Lorg/apache/http/message/BasicHeaderValueParser; 06-04 06:50:52.277: D/dalvikvm(1584): VFY: replacing opcode 0x62 at 0x001b ServerSide Script: $target_path = "uploads"; $target_path = $target_path . basename( $_FILES['Image']); if(move_uploaded_file($_FILES['tmp_name'], $file_path)) { echo "success"; } else{ echo "fail"; } why? What is the simplest way to upload image?

    Read the article

  • Why is my GreaseMonkey function unexpectedly being called multiple times?

    - by Ryan Fisher
    I am missing something, I'm not sure why the function 'addIcon()' is being called multiple times. Given: <div class="ticketpostcontainer">Some text</div> <div class="ticketpostcontainer">Some text</div> <div class="ticketpostcontainer">Some text</div> Using the utility function waitForKeyElements, the result is that each div element receives my "collapse icon" three times: // ==UserScript== // @name Collapse Kayako Response // @grant Sandbox // @namespace http://my.chiromatrixbase.com/fisher.chiromatrix.com/collaps_div.js // @include http://imatrixsupport.com/* // @require http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js // ==/UserScript== /*jslint plusplus: true, undef: true, sloppy: true, vars: true, white: true, indent: 2, maxerr: 30 */ //Enable or disable GreaseMonkey function, GM_log var GM_Debug = 1; if (!GM_Debug) { var GM_log = function () {}; } //If FireBig is active, send GM log events to FB. if (unsafeWindow.console && GM_Debug) { var GM_log = unsafeWindow.console.log; } GM_log("Running collapse kayako response script"); //Don't run on frames or iframes. if (window.top !== window.self) { return; } waitForKeyElements(".ticketpostcontainer", addIcon); function addIcon() { var i, toCollapse = document.getElementsByClassName('ticketpostcontainer'), j = toCollapse.length; GM_log("Number of elements to collapse: " + toCollapse.length); for (i = 0; i < j; i++) { var curElement = toCollapse[i]; var p = document.createElement('p'); var a = document.createElement('a'); var span = document.createElement('span'); styleLink(a); styleParagraph(p); styleSpan(span); p.appendChild(a); p.appendChild(span); a.appendChild(document.createTextNode('-')); span.appendChild(document.createTextNode(' Some text')); a.addEventListener("click", toggle, false); curElement.parentNode.insertBefore(p, curElement); } function toggle(e) { if (this.firstChild.nodeValue === '-') { this.parentNode.nextSibling.style.display = 'none'; this.firstChild.nodeValue = '+'; this.nextSibling.style.display = 'inline'; } else { this.parentNode.nextSibling.style.display = 'block'; this.firstChild.nodeValue = '-'; this.nextSibling.style.display = 'none'; } e.preventDefault(); } function styleLink(a) { a.href = '#'; a.style.fontWeight = 'bold'; a.style.background = '#F6F1E7'; a.style.border = '1px solid #cccccc'; a.style.color = '#B24C58'; a.style.textDecoration = 'none'; a.style.width = '15px'; a.style.height = '15px'; a.style.textAlign = 'center'; a.style.fontSize = '100%'; a.style.margin = '0 5px 5px 8px'; a.style.cssFloat = 'left'; a.style.display = 'block'; a.style.lineHeight = '13px'; } function styleParagraph(p) { p.style.margin = '0 0 0 0'; p.style.lineHeight = '16px'; p.style.clear = 'both'; p.style.height = '15px'; } function styleSpan(span) { span.style.display = 'none'; } }

    Read the article

  • XML Outputting - PHP vs JS vs Anything Else?

    - by itsphil
    Hi everyone, I am working on developing a Travel website which uses XML API's to get the data. However i am relatively new to XML and outputting it. I have been experimenting with using PHP to output a test XML file, but currently the furthest iv got is to only output a few records. As it the questions states i need to know which technology will be best for this project. Below iv included some points to take into consideration. The website is going to be a large sized, heavy traffic site (expedia/lastminute size) My skillset is PHP (intermediate/high skilled) & Javascript (intermediate/high skilled) Below is an example of the XML that the API is outputting: <?xml version="1.0"?> <response method="###" success="Y"> <errors> </errors> <request> <auth password="test" username="test" /> <method action="###" sitename="###" /> </request> <results> <line id="6" logourl="###" name="Line 1" smalllogourl="###"> <ships> <ship id="16" name="Ship 1" /> <ship id="453" name="Ship 2" /> <ship id="468" name="Ship 3" /> <ship id="356" name="Ship 4" /> </ships> </line> <line id="63" logourl="###" name="Line 2" smalllogourl="###"> <ships> <ship id="492" name="Ship 1" /> <ship id="454" name="Ship 2" /> <ship id="455" name="Ship 3" /> <ship id="421" name="Ship 4" /> <ship id="401" name="Ship 5" /> <ship id="404" name="Ship 6" /> <ship id="405" name="Ship 7" /> <ship id="406" name="Ship 8" /> <ship id="407" name="Ship 9" /> <ship id="408" name="Ship 10" /> </ships> </line> <line id="41" logourl="###"> <ships> <ship id="229" name="Ship 1" /> <ship id="230" name="Ship 2" /> <ship id="231" name="Ship 3" /> <ship id="445" name="Ship 4" /> <ship id="570" name="Ship 5" /> <ship id="571" name="Ship 6" /> </ships> </line> </results> </response> If possible when suggesting which technlogy is best for this project, if you could provide some getting started guides or any information would be very much appreciated. Thank you for taking the time to read this.

    Read the article

  • Creating a multidimensional array

    - by Jess McKenzie
    I have the following response and I was wanting to know how can I turn it into an multidimensional array foreach item [0][1] etc Controller $rece Response: array(16) { ["digital_delivery"]=> int(1) ["original_referrer"]=> string(11) "No Referrer" ["shop_rule_us_state_code"]=> string(1) "0" ["subtotal_ex_vat"]=> string(4) "9.99" ["subtotal_inc_vat"]=> string(4) "9.99" ["tax_amount"]=> string(4) "0.00" ["delivery_price"]=> string(4) "0.00" ["discount_deduction"]=> string(4) "0.00" ["currency_code"]=> string(3) "GBP" ["total"]=> string(4) "9.99" ["paid"]=> int(1) ["created"]=> string(19) "2013-10-31 21:03:44" ["website_id"]=> string(2) "64" ["first_name"]=> string(3) "Joe" ["last_name"]=> string(5) "Blogs" ["email"]=> string(17) "[email protected]" } array(16) { ["digital_delivery"]=> int(1) ["original_referrer"]=> string(11) "No Referrer" ["shop_rule_us_state_code"]=> string(1) "0" ["subtotal_ex_vat"]=> string(4) "9.99" ["subtotal_inc_vat"]=> string(4) "9.99" ["tax_amount"]=> string(4) "0.00" ["delivery_price"]=> string(4) "0.00" ["discount_deduction"]=> string(4) "0.00" ["currency_code"]=> string(3) "GBP" ["total"]=> string(4) "9.99" ["paid"]=> int(1) ["created"]=> string(19) "2013-10-31 21:03:44" ["website_id"]=> string(2) "64" ["first_name"]=> string(3) "Joe" ["last_name"]=> string(5) "Blogs" ["email"]=> string(13) "[email protected]" } array(16) { ["digital_delivery"]=> int(1) ["original_referrer"]=> string(11) "No Referrer" ["shop_rule_us_state_code"]=> string(1) "0" ["subtotal_ex_vat"]=> string(4) "9.99" ["subtotal_inc_vat"]=> string(4) "9.99" ["tax_amount"]=> string(4) "0.00" ["delivery_price"]=> string(4) "0.00" ["discount_deduction"]=> string(4) "0.00" ["currency_code"]=> string(3) "GBP" ["total"]=> string(4) "9.99" ["paid"]=> int(1) ["created"]=> string(19) "2013-10-31 21:03:44" ["website_id"]=> string(2) "64" ["first_name"]=> string(3) "Joe" ["last_name"]=> string(5) "Blogs" ["email"]=> string(15) "[email protected]" } Controller: foreach ($this->receivers as $rece) { $order_data['first_name'] = $rece[0]; $order_data['last_name'] = $rece[1]; $order_data['email'] = $rece[2]; $order_id = $this->orders_model->add_order_multi($order_data, $order_products_data); $this-receivers function: public function parse_receivers($receivers) { $this->receivers = explode( "\n", trim($receivers) ); $this->receivers = array_filter($this->receivers, 'trim'); $validReceivers = false; foreach($this->receivers as $key=>$receiver) { $validReceivers = true; $this->receivers[$key] = array_map( 'trim', explode(',', $receiver) ); if (count($this->receivers[$key]) != 3) { $line = $key + 1; $this->form_validation->set_message('parse_receivers', "There is an error in the %s at line $line ($receiver)"); return false; } } return $validReceivers; }

    Read the article

  • How can I write javaScript cookies to keep the data persistent after page reloads on my form?

    - by Johhny Thero
    Hello, I am trying to learn how to write cookies to keep the data in my CookieButton1 button persistent and to survive refreshes and page reloads. How can I do this in JavaScript? I have supplied my source code. Any advise, links or tutorials will be very helpful. If you navigate to http://iqlusion.net/test.html and click on Empty1, it will start to ask you questions. When finished it stores everything into CookieButton1. But when I refresh my browser the data resets and goes away. Thanks! <html> <head> <title>no_cookies> </head> <script type="text/javascript" > var Can1Set = "false"; function Can1() { if (Can1Set == "false") { Can1Title = prompt("What do you want to name this new canned response?",""); Can1State = prompt("Enter a ticket state (open or closed)","closed"); Can1Response = prompt("Enter the canned response:",""); Can1Points = prompt("What point percentage do you want to assign? (0-10)","2.5"); // Set the "Empty 1" button text to the new name the user specified document.CookieTest.CookieButton1.value = Can1Title; // Set the cookie here, and then set the Can1Set variable to true document.CookieTest.CookieButton1 = "CookieButton1"; Can1Set = true; }else{ document.TestForm.TestStateDropDownBox.value = Can1State; document.TestForm.TestPointsDropDownBox.value = Can1Points; document.TestForm.TestTextArea.value = Can1Response; // document.TestForm.submit(); } } </script> <form name=TestForm> State: <select name=TestStateDropDownBox> <option value=new selected>New</option> <option value=open selected>Open</option> <option value=closed>Closed</option> </select> Points: <select name=TestPointsDropDownBox> <option value=1>1</option> <option value=1.5>1.5</option> <option value=2>2</option> <option value=2.5>2.5</option> <option value=3>3</option> <option value=3.5>3.5</option> <option value=4>4</option> <option value=4.5>4.5</option> <option value=5>5</option> <option value=5.5>5.5</option> <option value=6>6</option> <option value=6.5>6.5</option> <option value=7>7</option> <option value=7.5>7.5</option> <option value=8>8</option> <option value=8.5>8.5</option> <option value=9>9</option> <option value=9.5>9.5</option> <option value=10>10</option> </select> <p> Ticket information:<br> <textarea name=TestTextArea cols=50 rows=7></textarea> </form> <form name=CookieTest> <input type=button name=CookieButton1 value="Empty 1" onClick="javascript:Can1()"> </form>

    Read the article

  • Encoding GBK2312 Condundrum

    - by user792271
    I am an amateur coder and I have a small problem. My goal is to have one text input with two buttons. The first button uses a bit of Javascript called SundayMorning to translate the text (to Chinese) The second button submits the text to a URL. The URl requires that Chinese text be encoded it in GBK2312 character set. I have duct taped together various found code to the result I have now. Due to the finicky behavior of the SundayMorning Javascript, my solution is to have two input boxes, the second of which I will hide. Right now, this doesn't work: I am unable to encode the Chinese in GBK2312, no matter what I try. BONUS CONUNDRUM: The second box copies my input letter by letter as I type, but does not copy the Chinese translation that the Javascript returns. Sorry for my janky amateur code. I defer to those more clever, if you have any kind suggestions. <head> <meta http-equiv="Content-Type" content="text/html; charset=GB2312" /> <script type='text/javascript' Src='https://ajax.googleapis.com/ajax/libs/jquery/1.6.1/jquery.min.js'> </script> ///THIS JS TRANSLATES THE TEXT INLINE <script type="text/javascript" src="jquery.sundaymorning.js"> </script> <script type="text/javascript"> $(function() { $('#example3').sundayMorningReset(); $('#example3 input[type=image]').click(function(evt) { $.sundayMorning( $('#example3 input[type=text]').val(),{source:'en', destination:'ZH', menuLeft:evt.pageX, menuTop:evt.pageY},function(response) {$('#example3 input[type=text]').val(response.translation);});});}); </script> /// ///THIS PUTS THE CONTENT OF THE TRANSLATION BOX INTO THE SUBMISSION BOX <script type="text/javascript"> $(document).ready(function(){ var $url = $("#url"); $("#track").keyup(function() { $url.val(this.value);}); $("#track").blur(function() { $url.val(this.value);});}); </script> ///THIS PUTS THE CONTENT OF THE SUBMISSION INSIDE A URL <SCRIPT type="text/javascript"> function goToPage(url) { var initial = "http://example.com/"; var extension = ".html"; document.something.action=initial+url+extension; } </SCRIPT> </head> <body> <div id="featured"> <div id="example3"> <input type="text" name="track" id="track" value="" class="box"onkeydown="javascript:if (event.which || event.keyCode){if ((event.which == 13) || (event.keyCode == 13)) {document.getElementById('mama').click();}};"/> <input type="image" src="http://taobaofieldguide.com/images/orange-translate-button.png" id="searchsubmit" value="Translate" class="btn" /> </div> <FORM name="something" method="post" onsubmit="goToPage(this.url.value);"> <input type="text" id="url";> <INPUT type="submit" id="mama" value="GO" > </FORM> </div> </body>

    Read the article

  • Using AsyncTask, but experiencing unexpected behaviour

    - by capcom
    Please refer to the following code which continuously calls a new AsyncTask. The purpose of the AsyncTask is to make an HTTP request, and update the string result. package room.temperature; import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.concurrent.ExecutionException; import org.apache.http.HttpEntity; import org.apache.http.HttpResponse; import org.apache.http.NameValuePair; import org.apache.http.client.HttpClient; import org.apache.http.client.entity.UrlEncodedFormEntity; import org.apache.http.client.methods.HttpPost; import org.apache.http.impl.client.DefaultHttpClient; import android.app.Activity; import android.os.AsyncTask; import android.os.Bundle; import android.util.Log; import android.widget.TextView; public class RoomTemperatureActivity extends Activity { String result = null; StringBuilder sb=null; TextView TemperatureText, DateText; ArrayList<NameValuePair> nameValuePairs; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); TemperatureText = (TextView) findViewById(R.id.temperature); DateText = (TextView) findViewById(R.id.date); nameValuePairs = new ArrayList<NameValuePair>(); for (int i = 0; i < 10; i++) { RefreshValuesTask task = new RefreshValuesTask(); task.execute(""); } } // The definition of our task class private class RefreshValuesTask extends AsyncTask<String, Integer, String> { @Override protected void onPreExecute() { super.onPreExecute(); } @Override protected String doInBackground(String... params) { InputStream is = null; try { HttpClient httpclient = new DefaultHttpClient(); HttpPost httppost = new HttpPost("http://mywebsite.com/roomtemp/tempscript.php"); httppost.setEntity(new UrlEncodedFormEntity(nameValuePairs)); HttpResponse response = httpclient.execute(httppost); HttpEntity entity = response.getEntity(); is = entity.getContent(); } catch(Exception e) { Log.e("log_tag", "Error in http connection" + e.toString()); } try { BufferedReader reader = new BufferedReader(new InputStreamReader(is,"iso-8859-1"),8); sb = new StringBuilder(); sb.append(reader.readLine()); is.close(); result=sb.toString(); } catch(Exception e) { Log.e("log_tag", "Error converting result " + e.toString()); } return result; } @Override protected void onProgressUpdate(Integer... values) { super.onProgressUpdate(values); } @Override protected void onPostExecute(String result) { super.onPostExecute(result); //System.out.println(result); setValues(result); } } public void setValues(String resultValue) { System.out.println(resultValue); String[] values = resultValue.split("&"); TemperatureText.setText(values[0]); DateText.setText(values[1]); } } The problem I am experiencing relates to the AsyncTask in some way or the function setValues(), but I am not sure how. Essentially, I want each call to the AsyncTask to run, eventually in an infinite while loop, and update the TextView fields as I have attempted in setValues. I have tried since yesterday after asking a question which led to this code, for reference. Oh yes, I did try using the AsyncTask get() method, but that didn't work either as I found out that it is actually a synchronous call, and renders the whole point of AsyncTask useless.

    Read the article

  • JSON error Caused by: java.lang.NullPointerException

    - by user3821853
    im trying to make a register page on android using JSON. everytime i press register button on avd, i get an error "unfortunately database has stopped". i have a error on my logcat that i cannot understand. this my code. please someone help me. this my register.java import android.app.Activity; import android.app.ProgressDialog; import android.os.AsyncTask; import android.os.Bundle; import android.util.Log; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.widget.EditText; import android.widget.Toast; import org.apache.http.NameValuePair; import org.apache.http.message.BasicNameValuePair; import org.json.JSONException; import org.json.JSONObject; import java.util.ArrayList; import java.util.List; public class Register extends Activity implements OnClickListener{ private EditText user, pass; private Button mRegister; // Progress Dialog private ProgressDialog pDialog; // JSON parser class JSONParser jsonParser = new JSONParser(); //php register script //localhost : //testing on your device //put your local ip instead, on windows, run CMD > ipconfig //or in mac's terminal type ifconfig and look for the ip under en0 or en1 // private static final String REGISTER_URL = "http://xxx.xxx.x.x:1234/webservice/register.php"; //testing on Emulator: private static final String REGISTER_URL = "http://10.0.2.2:1234/webservice/register.php"; //testing from a real server: //private static final String REGISTER_URL = "http://www.mybringback.com/webservice/register.php"; //ids private static final String TAG_SUCCESS = "success"; private static final String TAG_MESSAGE = "message"; @Override protected void onCreate(Bundle savedInstanceState) { // TODO Auto-generated method stub super.onCreate(savedInstanceState); setContentView(R.layout.register); user = (EditText)findViewById(R.id.username); pass = (EditText)findViewById(R.id.password); mRegister = (Button)findViewById(R.id.register); mRegister.setOnClickListener(this); } @Override public void onClick(View v) { // TODO Auto-generated method stub new CreateUser().execute(); } class CreateUser extends AsyncTask<String, String, String> { @Override protected void onPreExecute() { super.onPreExecute(); pDialog = new ProgressDialog(Register.this); pDialog.setMessage("Creating User..."); pDialog.setIndeterminate(false); pDialog.setCancelable(true); pDialog.show(); } @Override protected String doInBackground(String... args) { // TODO Auto-generated method stub // Check for success tag int success; String username = user.getText().toString(); String password = pass.getText().toString(); try { // Building Parameters List<NameValuePair> params = new ArrayList<NameValuePair>(); params.add(new BasicNameValuePair("username", username)); params.add(new BasicNameValuePair("password", password)); Log.d("request!", "starting"); //Posting user data to script JSONObject json = jsonParser.makeHttpRequest( REGISTER_URL, "POST", params); // full json response Log.d("Registering attempt", json.toString()); // json success element success = json.getInt(TAG_SUCCESS); if (success == 1) { Log.d("User Created!", json.toString()); finish(); return json.getString(TAG_MESSAGE); }else{ Log.d("Registering Failure!", json.getString(TAG_MESSAGE)); return json.getString(TAG_MESSAGE); } } catch (JSONException e) { e.printStackTrace(); } return null; } protected void onPostExecute(String file_url) { // dismiss the dialog once product deleted pDialog.dismiss(); if (file_url != null){ Toast.makeText(Register.this, file_url, Toast.LENGTH_LONG).show(); } } } } this is JSONparser.java import android.util.Log; import org.apache.http.HttpEntity; import org.apache.http.HttpResponse; import org.apache.http.NameValuePair; import org.apache.http.client.ClientProtocolException; import org.apache.http.client.entity.UrlEncodedFormEntity; import org.apache.http.client.methods.HttpGet; import org.apache.http.client.methods.HttpPost; import org.apache.http.client.utils.URLEncodedUtils; import org.apache.http.impl.client.DefaultHttpClient; import org.json.JSONException; import org.json.JSONObject; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.UnsupportedEncodingException; import java.util.List; public class JSONParser { static InputStream is = null; static JSONObject jObj = null; static String json = ""; // constructor public JSONParser() { } public JSONObject getJSONFromUrl(final String url) { // Making HTTP request try { // Construct the client and the HTTP request. DefaultHttpClient httpClient = new DefaultHttpClient(); HttpPost httpPost = new HttpPost(url); // Execute the POST request and store the response locally. HttpResponse httpResponse = httpClient.execute(httpPost); // Extract data from the response. HttpEntity httpEntity = httpResponse.getEntity(); // Open an inputStream with the data content. is = httpEntity.getContent(); } catch (UnsupportedEncodingException e) { e.printStackTrace(); } catch (ClientProtocolException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } try { // Create a BufferedReader to parse through the inputStream. BufferedReader reader = new BufferedReader(new InputStreamReader( is, "iso-8859-1"), 8); // Declare a string builder to help with the parsing. StringBuilder sb = new StringBuilder(); // Declare a string to store the JSON object data in string form. String line = null; // Build the string until null. while ((line = reader.readLine()) != null) { sb.append(line + "\n"); } // Close the input stream. is.close(); // Convert the string builder data to an actual string. json = sb.toString(); } catch (Exception e) { Log.e("Buffer Error", "Error converting result " + e.toString()); } // Try to parse the string to a JSON object try { jObj = new JSONObject(json); } catch (JSONException e) { Log.e("JSON Parser", "Error parsing data " + e.toString()); } // Return the JSON Object. return jObj; } // function get json from url // by making HTTP POST or GET mehtod public JSONObject makeHttpRequest(String url, String method, List<NameValuePair> params) { // Making HTTP request try { // check for request method if(method == "POST"){ // request method is POST // defaultHttpClient DefaultHttpClient httpClient = new DefaultHttpClient(); HttpPost httpPost = new HttpPost(url); httpPost.setEntity(new UrlEncodedFormEntity(params)); HttpResponse httpResponse = httpClient.execute(httpPost); HttpEntity httpEntity = httpResponse.getEntity(); is = httpEntity.getContent(); }else if(method == "GET"){ // request method is GET DefaultHttpClient httpClient = new DefaultHttpClient(); String paramString = URLEncodedUtils.format(params, "utf-8"); url += "?" + paramString; HttpGet httpGet = new HttpGet(url); HttpResponse httpResponse = httpClient.execute(httpGet); HttpEntity httpEntity = httpResponse.getEntity(); is = httpEntity.getContent(); } } catch (UnsupportedEncodingException e) { e.printStackTrace(); } catch (ClientProtocolException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } try { BufferedReader reader = new BufferedReader(new InputStreamReader( is, "iso-8859-1"), 8); StringBuilder sb = new StringBuilder(); String line = null; while ((line = reader.readLine()) != null) { sb.append(line + "\n"); } is.close(); json = sb.toString(); } catch (Exception e) { Log.e("Buffer Error", "Error converting result " + e.toString()); } // try parse the string to a JSON object try { jObj = new JSONObject(json); } catch (JSONException e) { Log.e("JSON Parser", "Error parsing data " + e.toString()); } // return JSON String return jObj; } } and this my error 08-18 23:40:02.381 2000-2018/com.example.blackcustomzier.database E/Buffer Error? Error converting result java.lang.NullPointerException: lock == null 08-18 23:40:02.381 2000-2018/com.example.blackcustomzier.database E/JSON Parser? Error parsing data org.json.JSONException: End of input at character 0 of 08-18 23:40:02.391 2000-2018/com.example.blackcustomzier.database W/dalvikvm? threadid=15: thread exiting with uncaught exception (group=0xb0f37648) 08-18 23:40:02.391 2000-2018/com.example.blackcustomzier.database E/AndroidRuntime? FATAL EXCEPTION: AsyncTask #4 java.lang.RuntimeException: An error occured while executing doInBackground() at android.os.AsyncTask$3.done(AsyncTask.java:299) at java.util.concurrent.FutureTask.finishCompletion(FutureTask.java:352) at java.util.concurrent.FutureTask.setException(FutureTask.java:219) at java.util.concurrent.FutureTask.run(FutureTask.java:239) at android.os.AsyncTask$SerialExecutor$1.run(AsyncTask.java:230) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1080) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:573) at java.lang.Thread.run(Thread.java:841) Caused by: java.lang.NullPointerException at com.example.blackcustomzier.database.Register$CreateUser.doInBackground(Register.java:108) at com.example.blackcustomzier.database.Register$CreateUser.doInBackground(Register.java:74) at android.os.AsyncTask$2.call(AsyncTask.java:287) at java.util.concurrent.FutureTask.run(FutureTask.java:234)             at android.os.AsyncTask$SerialExecutor$1.run(AsyncTask.java:230)             at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1080)             at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:573)             at java.lang.Thread.run(Thread.java:841) 08-18 23:40:02.501 2000-2000/com.example.blackcustomzier.database W/EGL_emulation? eglSurfaceAttrib not implemented 08-18 23:40:02.591 2000-2000/com.example.blackcustomzier.database W/EGL_emulation? eglSurfaceAttrib not implemented 08-18 23:40:02.981 2000-2000/com.example.blackcustomzier.database E/WindowManager? Activity com.example.blackcustomzier.database.Register has leaked window com.android.internal.policy.impl.PhoneWindow$DecorView{b1294c60 V.E..... R......D 0,0-1026,288} that was originally added here android.view.WindowLeaked: Activity com.example.blackcustomzier.database.Register has leaked window com.android.internal.policy.impl.PhoneWindow$DecorView{b1294c60 V.E..... R......D 0,0-1026,288} that was originally added here at android.view.ViewRootImpl.<init>(ViewRootImpl.java:345) at android.view.WindowManagerGlobal.addView(WindowManagerGlobal.java:239) at android.view.WindowManagerImpl.addView(WindowManagerImpl.java:69) at android.app.Dialog.show(Dialog.java:281) at com.example.blackcustomzier.database.Register$CreateUser.onPreExecute(Register.java:85) at android.os.AsyncTask.executeOnExecutor(AsyncTask.java:586) at android.os.AsyncTask.execute(AsyncTask.java:534) at com.example.blackcustomzier.database.Register.onClick(Register.java:70) at android.view.View.performClick(View.java:4240) at android.view.View.onKeyUp(View.java:7928) at android.widget.TextView.onKeyUp(TextView.java:5606) at android.view.KeyEvent.dispatch(KeyEvent.java:2647) at android.view.View.dispatchKeyEvent(View.java:7343) at android.view.ViewGroup.dispatchKeyEvent(ViewGroup.java:1393) at android.view.ViewGroup.dispatchKeyEvent(ViewGroup.java:1393) at android.view.ViewGroup.dispatchKeyEvent(ViewGroup.java:1393) at android.view.ViewGroup.dispatchKeyEvent(ViewGroup.java:1393) at com.android.internal.policy.impl.PhoneWindow$DecorView.superDispatchKeyEvent(PhoneWindow.java:1933) at com.android.internal.policy.impl.PhoneWindow.superDispatchKeyEvent(PhoneWindow.java:1408) at android.app.Activity.dispatchKeyEvent(Activity.java:2384) at com.android.internal.policy.impl.PhoneWindow$DecorView.dispatchKeyEvent(PhoneWindow.java:1860) at android.view.ViewRootImpl$ViewPostImeInputStage.processKeyEvent(ViewRootImpl.java:3791) at android.view.ViewRootImpl$ViewPostImeInputStage.onProcess(ViewRootImpl.java:3774) at android.view.ViewRootImpl$InputStage.deliver(ViewRootImpl.java:3379) at android.view.ViewRootImpl$InputStage.onDeliverToNext(ViewRootImpl.java:3429) at android.view.ViewRootImpl$InputStage.forward(ViewRootImpl.java:3398) at android.view.ViewRootImpl$AsyncInputStage.forward(ViewRootImpl.java:3483) at android.view.ViewRootImpl$InputStage.apply(ViewRootImpl.java:3406) at android.view.ViewRootImpl$AsyncInputStage.apply(ViewRootImpl.java:3540) at android.view.ViewRootImpl$InputStage.deliver(ViewRootImpl.java:3379) at android.view.ViewRootImpl$InputStage.onDeliverToNext(ViewRootImpl.java:3429) at android.view.ViewRootImpl$InputStage.forward(ViewRootImpl.java:3398) at android.view.ViewRootImpl$InputStage.apply(ViewRootImpl.java:3406) at android.view.ViewRootImpl$InputStage.deliver(ViewRootImpl.java:3379) at android.view.ViewRootImpl$InputStage.onDeliverToNext(ViewRootImpl.java:3429) at android.view.ViewRootImpl$InputStage.forward(ViewRootImpl.java:3398) at android.view.ViewRootImpl$AsyncInputStage.forward(ViewRootImpl.java:3516) at android.view.ViewRootImpl$ImeInputStage.onFinishedInputEvent(ViewRootImpl.java:3666) at android.view.inputmethod.InputMethodManager$PendingEvent.run(InputMethodManager.java:1982) at android.view.inputmethod.InputMethodManager.invokeFinishedInputEventCallback(InputMethodManager.java:1698) at android.view.inputmethod.InputMethodManager.finishedInputEvent(InputMethodManager.java:1689) at android.view.inputmethod.InputMethodManager$ImeInputEventSender.onInputEventFinished(InputMethodManager.java:1959) at android.view.InputEventSender.dispatchInputEventFinished(InputEventSender.java:141) at android.os.MessageQueue.nativePollOnce(Native Method) at android.os.MessageQueue.next(MessageQueue.java:132) at android.os.Looper.loop(Looper.java:124) at android.app.ActivityThread.main(ActivityThread.java:5103) at java.lang.reflect.Method.invokeNative(Native Method) at java.lang.reflect.Method.invoke(Method.java:525) at com.android.internal.os.ZygoteInit$MethodAndArgsCal please help me to solve this thx

    Read the article

  • Passing data between android ListActivities in Java

    - by Will Janes
    I am new to Android! I am having a problem getting this code to work... Basically I Go from one list activity to another and pass the text from a list item through the intent of the activity to the new list view, then retrieve that text in the new list activity and then preform a http request based on value of that list item. Log Cat 04-05 17:47:32.370: E/AndroidRuntime(30135): FATAL EXCEPTION: main 04-05 17:47:32.370: E/AndroidRuntime(30135): java.lang.ClassCastException:android.widget.LinearLayout 04-05 17:47:32.370: E/AndroidRuntime(30135): at com.thickcrustdesigns.ufood.CatogPage$1.onItemClick(CatogPage.java:66) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.widget.AdapterView.performItemClick(AdapterView.java:284) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.widget.ListView.performItemClick(ListView.java:3731) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.widget.AbsListView$PerformClick.run(AbsListView.java:1959) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.os.Handler.handleCallback(Handler.java:587) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.os.Handler.dispatchMessage(Handler.java:92) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.os.Looper.loop(Looper.java:130) 04-05 17:47:32.370: E/AndroidRuntime(30135): at android.app.ActivityThread.main(ActivityThread.java:3691) 04-05 17:47:32.370: E/AndroidRuntime(30135): at java.lang.reflect.Method.invokeNative(Native Method) 04-05 17:47:32.370: E/AndroidRuntime(30135): at java.lang.reflect.Method.invoke(Method.java:507) 04-05 17:47:32.370: E/AndroidRuntime(30135): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:907) 04-05 17:47:32.370: E/AndroidRuntime(30135): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:665) 04-05 17:47:32.370: E/AndroidRuntime(30135): at dalvik.system.NativeStart.main(Native Method) ListActivity 1 package com.thickcrustdesigns.ufood; import java.util.ArrayList; import org.apache.http.NameValuePair; import org.apache.http.message.BasicNameValuePair; import org.json.JSONException; import org.json.JSONObject; import android.app.ListActivity; import android.content.Intent; import android.os.Bundle; import android.view.View; import android.widget.AdapterView; import android.widget.AdapterView.OnItemClickListener; import android.widget.Button; import android.widget.ListView; import android.widget.TextView; public class CatogPage extends ListActivity { ListView listView1; Button btn_bk; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.definition_main); btn_bk = (Button) findViewById(R.id.btn_bk); listView1 = (ListView) findViewById(android.R.id.list); ArrayList<NameValuePair> nvp = new ArrayList<NameValuePair>(); nvp.add(new BasicNameValuePair("request", "categories")); ArrayList<JSONObject> jsondefs = Request.fetchData(this, nvp); String[] defs = new String[jsondefs.size()]; for (int i = 0; i < jsondefs.size(); i++) { try { defs[i] = jsondefs.get(i).getString("Name"); } catch (JSONException e) { // TODO Auto-generated catch block e.printStackTrace(); } } uFoodAdapter adapter = new uFoodAdapter(this, R.layout.definition_list, defs); listView1.setAdapter(adapter); ListView lv = getListView(); lv.setOnItemClickListener(new OnItemClickListener() { @Override public void onItemClick(AdapterView<?> parent, View view, int position, long id) { TextView tv = (TextView) view; String p = tv.getText().toString(); Intent i = new Intent(getApplicationContext(), Results.class); i.putExtra("category", p); startActivity(i); } }); btn_bk.setOnClickListener(new View.OnClickListener() { public void onClick(View arg0) { Intent i = new Intent(getApplicationContext(), UFoodAppActivity.class); startActivity(i); } }); } } **ListActivity 2** package com.thickcrustdesigns.ufood; import java.util.ArrayList; import org.apache.http.NameValuePair; import org.apache.http.message.BasicNameValuePair; import org.json.JSONException; import org.json.JSONObject; import android.app.ListActivity; import android.os.Bundle; import android.widget.ListView; public class Results extends ListActivity { ListView listView1; enum Category { Chicken, Beef, Chinese, Cocktails, Curry, Deserts, Fish, ForOne { public String toString() { return "For One"; } }, Lamb, LightBites { public String toString() { return "Light Bites"; } }, Pasta, Pork, Vegetarian } @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); this.setContentView(R.layout.definition_main); listView1 = (ListView) findViewById(android.R.id.list); Bundle data = getIntent().getExtras(); String category = data.getString("category"); Category cat = Category.valueOf(category); String value = null; switch (cat) { case Chicken: value = "Chicken"; break; case Beef: value = "Beef"; break; case Chinese: value = "Chinese"; break; case Cocktails: value = "Cocktails"; break; case Curry: value = "Curry"; break; case Deserts: value = "Deserts"; break; case Fish: value = "Fish"; break; case ForOne: value = "ForOne"; break; case Lamb: value = "Lamb"; break; case LightBites: value = "LightBites"; break; case Pasta: value = "Pasta"; break; case Pork: value = "Pork"; break; case Vegetarian: value = "Vegetarian"; } ArrayList<NameValuePair> nvp = new ArrayList<NameValuePair>(); nvp.add(new BasicNameValuePair("request", "category")); nvp.add(new BasicNameValuePair("cat", value)); ArrayList<JSONObject> jsondefs = Request.fetchData(this, nvp); String[] defs = new String[jsondefs.size()]; for (int i = 0; i < jsondefs.size(); i++) { try { defs[i] = jsondefs.get(i).getString("Name"); } catch (JSONException e) { // TODO Auto-generated catch block e.printStackTrace(); } } uFoodAdapter adapter = new uFoodAdapter(this, R.layout.definition_list, defs); listView1.setAdapter(adapter); } } Request package com.thickcrustdesigns.ufood; import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.util.ArrayList; import org.apache.http.HttpEntity; import org.apache.http.HttpResponse; import org.apache.http.NameValuePair; import org.apache.http.client.HttpClient; import org.apache.http.client.entity.UrlEncodedFormEntity; import org.apache.http.client.methods.HttpPost; import org.apache.http.impl.client.DefaultHttpClient; import org.json.JSONArray; import org.json.JSONObject; import android.content.Context; import android.util.Log; import android.widget.Toast; public class Request { @SuppressWarnings("null") public static ArrayList<JSONObject> fetchData(Context context, ArrayList<NameValuePair> nvp) { ArrayList<JSONObject> listItems = new ArrayList<JSONObject>(); InputStream is = null; try { HttpClient httpclient = new DefaultHttpClient(); HttpPost httppost = new HttpPost( "http://co350-11d.projects02.glos.ac.uk/php/database.php"); httppost.setEntity(new UrlEncodedFormEntity(nvp)); HttpResponse response = httpclient.execute(httppost); HttpEntity entity = response.getEntity(); is = entity.getContent(); } catch (Exception e) { Log.e("log_tag", "Error in http connection" + e.toString()); } // convert response to string String result = ""; try { BufferedReader reader = new BufferedReader(new InputStreamReader( is, "iso-8859-1"), 8); InputStream stream = null; StringBuilder sb = null; while ((result = reader.readLine()) != null) { sb.append(result + "\n"); } stream.close(); result = sb.toString(); } catch (Exception e) { Log.e("log_tag", "Error converting result " + e.toString()); } try { JSONArray jArray = new JSONArray(result); for (int i = 0; i < jArray.length(); i++) { JSONObject jo = jArray.getJSONObject(i); listItems.add(jo); } } catch (Exception e) { Toast.makeText(context.getApplicationContext(), "None Found!", Toast.LENGTH_LONG).show(); } return listItems; } } Any help would be grateful! Many Thanks EDIT Sorry very tired so missed out my 2nd ListActivity package com.thickcrustdesigns.ufood; import java.util.ArrayList; import org.apache.http.NameValuePair; import org.apache.http.message.BasicNameValuePair; import org.json.JSONException; import org.json.JSONObject; import android.app.ListActivity; import android.os.Bundle; import android.widget.ListView; public class Results extends ListActivity { ListView listView1; enum Category { Chicken, Beef, Chinese, Cocktails, Curry, Deserts, Fish, ForOne { public String toString() { return "For One"; } }, Lamb, LightBites { public String toString() { return "Light Bites"; } }, Pasta, Pork, Vegetarian } @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); this.setContentView(R.layout.definition_main); listView1 = (ListView) findViewById(android.R.id.list); Bundle data = getIntent().getExtras(); String category = data.getString("category"); Category cat = Category.valueOf(category); String value = null; switch (cat) { case Chicken: value = "Chicken"; break; case Beef: value = "Beef"; break; case Chinese: value = "Chinese"; break; case Cocktails: value = "Cocktails"; break; case Curry: value = "Curry"; break; case Deserts: value = "Deserts"; break; case Fish: value = "Fish"; break; case ForOne: value = "ForOne"; break; case Lamb: value = "Lamb"; break; case LightBites: value = "LightBites"; break; case Pasta: value = "Pasta"; break; case Pork: value = "Pork"; break; case Vegetarian: value = "Vegetarian"; } ArrayList<NameValuePair> nvp = new ArrayList<NameValuePair>(); nvp.add(new BasicNameValuePair("request", "category")); nvp.add(new BasicNameValuePair("cat", value)); ArrayList<JSONObject> jsondefs = Request.fetchData(this, nvp); String[] defs = new String[jsondefs.size()]; for (int i = 0; i < jsondefs.size(); i++) { try { defs[i] = jsondefs.get(i).getString("Name"); } catch (JSONException e) { // TODO Auto-generated catch block e.printStackTrace(); } } uFoodAdapter adapter = new uFoodAdapter(this, R.layout.definition_list, defs); listView1.setAdapter(adapter); } } Sorry again! Cheers guys!

    Read the article

  • .NET WebRequest.PreAuthenticate not quite what it sounds like

    - by Rick Strahl
    I’ve run into the  problem a few times now: How to pre-authenticate .NET WebRequest calls doing an HTTP call to the server – essentially send authentication credentials on the very first request instead of waiting for a server challenge first? At first glance this sound like it should be easy: The .NET WebRequest object has a PreAuthenticate property which sounds like it should force authentication credentials to be sent on the first request. Looking at the MSDN example certainly looks like it does: http://msdn.microsoft.com/en-us/library/system.net.webrequest.preauthenticate.aspx Unfortunately the MSDN sample is wrong. As is the text of the Help topic which incorrectly leads you to believe that PreAuthenticate… wait for it - pre-authenticates. But it doesn’t allow you to set credentials that are sent on the first request. What this property actually does is quite different. It doesn’t send credentials on the first request but rather caches the credentials ONCE you have already authenticated once. Http Authentication is based on a challenge response mechanism typically where the client sends a request and the server responds with a 401 header requesting authentication. So the client sends a request like this: GET /wconnect/admin/wc.wc?_maintain~ShowStatus HTTP/1.1 Host: rasnote User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506) Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en,de;q=0.7,en-us;q=0.3 Accept-Encoding: gzip,deflate Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7 Keep-Alive: 300 Connection: keep-alive and the server responds with: HTTP/1.1 401 Unauthorized Cache-Control: private Content-Type: text/html; charset=utf-8 Server: Microsoft-IIS/7.5 WWW-Authenticate: basic realm=rasnote" X-AspNet-Version: 2.0.50727 WWW-Authenticate: Negotiate WWW-Authenticate: NTLM WWW-Authenticate: Basic realm="rasnote" X-Powered-By: ASP.NET Date: Tue, 27 Oct 2009 00:58:20 GMT Content-Length: 5163 plus the actual error message body. The client then is responsible for re-sending the current request with the authentication token information provided (in this case Basic Auth): GET /wconnect/admin/wc.wc?_maintain~ShowStatus HTTP/1.1 Host: rasnote User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506) Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en,de;q=0.7,en-us;q=0.3 Accept-Encoding: gzip,deflate Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7 Keep-Alive: 300 Connection: keep-alive Cookie: TimeTrakker=2HJ1998WH06696; WebLogCommentUser=Rick Strahl|http://www.west-wind.com/|[email protected]; WebStoreUser=b8bd0ed9 Authorization: Basic cgsf12aDpkc2ZhZG1zMA== Once the authorization info is sent the server responds with the actual page result. Now if you use WebRequest (or WebClient) the default behavior is to re-authenticate on every request that requires authorization. This means if you look in  Fiddler or some other HTTP client Proxy that captures requests you’ll see that each request re-authenticates: Here are two requests fired back to back: and you can see the 401 challenge, the 200 response for both requests. If you watch this same conversation between a browser and a server you’ll notice that the first 401 is also there but the subsequent 401 requests are not present. WebRequest.PreAuthenticate And this is precisely what the WebRequest.PreAuthenticate property does: It’s a caching mechanism that caches the connection credentials for a given domain in the active process and resends it on subsequent requests. It does not send credentials on the first request but it will cache credentials on subsequent requests after authentication has succeeded: string url = "http://rasnote/wconnect/admin/wc.wc?_maintain~ShowStatus"; HttpWebRequest req = HttpWebRequest.Create(url) as HttpWebRequest; req.PreAuthenticate = true; req.Credentials = new NetworkCredential("rick", "secret", "rasnote"); req.AuthenticationLevel = System.Net.Security.AuthenticationLevel.MutualAuthRequested; req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; WebResponse resp = req.GetResponse(); resp.Close(); req = HttpWebRequest.Create(url) as HttpWebRequest; req.PreAuthenticate = true; req.Credentials = new NetworkCredential("rstrahl", "secret", "rasnote"); req.AuthenticationLevel = System.Net.Security.AuthenticationLevel.MutualAuthRequested; req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; resp = req.GetResponse(); which results in the desired sequence: where only the first request doesn’t send credentials. This is quite useful as it saves quite a few round trips to the server – bascially it saves one auth request request for every authenticated request you make. In most scenarios I think you’d want to send these credentials this way but one downside to this is that there’s no way to log out the client. Since the client always sends the credentials once authenticated only an explicit operation ON THE SERVER can undo the credentials by forcing another login explicitly (ie. re-challenging with a forced 401 request). Forcing Basic Authentication Credentials on the first Request On a few occasions I’ve needed to send credentials on a first request – mainly to some oddball third party Web Services (why you’d want to use Basic Auth on a Web Service is beyond me – don’t ask but it’s not uncommon in my experience). This is true of certain services that are using Basic Authentication (especially some Apache based Web Services) and REQUIRE that the authentication is sent right from the first request. No challenge first. Ugly but there it is. Now the following works only with Basic Authentication because it’s pretty straight forward to create the Basic Authorization ‘token’ in code since it’s just an unencrypted encoding of the user name and password into base64. As you might guess this is totally unsecure and should only be used when using HTTPS/SSL connections (i’m not in this example so I can capture the Fiddler trace and my local machine doesn’t have a cert installed, but for production apps ALWAYS use SSL with basic auth). The idea is that you simply add the required Authorization header to the request on your own along with the authorization string that encodes the username and password: string url = "http://rasnote/wconnect/admin/wc.wc?_maintain~ShowStatus"; HttpWebRequest req = HttpWebRequest.Create(url) as HttpWebRequest; string user = "rick"; string pwd = "secret"; string domain = "www.west-wind.com"; string auth = "Basic " + Convert.ToBase64String(System.Text.Encoding.Default.GetBytes(user + ":" + pwd)); req.PreAuthenticate = true; req.AuthenticationLevel = System.Net.Security.AuthenticationLevel.MutualAuthRequested;req.Headers.Add("Authorization", auth); req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; WebResponse resp = req.GetResponse(); resp.Close(); This works and causes the request to immediately send auth information to the server. However, this only works with Basic Auth because you can actually create the authentication credentials easily on the client because it’s essentially clear text. The same doesn’t work for Windows or Digest authentication since you can’t easily create the authentication token on the client and send it to the server. Another issue with this approach is that PreAuthenticate has no effect when you manually force the authentication. As far as Web Request is concerned it never sent the authentication information so it’s not actually caching the value any longer. If you run 3 requests in a row like this: string url = "http://rasnote/wconnect/admin/wc.wc?_maintain~ShowStatus"; HttpWebRequest req = HttpWebRequest.Create(url) as HttpWebRequest; string user = "ricks"; string pwd = "secret"; string domain = "www.west-wind.com"; string auth = "Basic " + Convert.ToBase64String(System.Text.Encoding.Default.GetBytes(user + ":" + pwd)); req.PreAuthenticate = true; req.Headers.Add("Authorization", auth); req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; WebResponse resp = req.GetResponse(); resp.Close(); req = HttpWebRequest.Create(url) as HttpWebRequest; req.PreAuthenticate = true; req.Credentials = new NetworkCredential(user, pwd, domain); req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; resp = req.GetResponse(); resp.Close(); req = HttpWebRequest.Create(url) as HttpWebRequest; req.PreAuthenticate = true; req.Credentials = new NetworkCredential(user, pwd, domain); req.UserAgent = ": Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3 (.NET CLR 4.0.20506)"; resp = req.GetResponse(); you’ll find the trace looking like this: where the first request (the one we explicitly add the header to) authenticates, the second challenges, and any subsequent ones then use the PreAuthenticate credential caching. In effect you’ll end up with one extra 401 request in this scenario, which is still better than 401 challenges on each request. Getting Access to WebRequest in Classic .NET Web Service Clients If you’re running a classic .NET Web Service client (non-WCF) one issue with the above is how do you get access to the WebRequest to actually add the custom headers to do the custom Authentication described above? One easy way is to implement a partial class that allows you add headers with something like this: public partial class TaxService { protected NameValueCollection Headers = new NameValueCollection(); public void AddHttpHeader(string key, string value) { this.Headers.Add(key,value); } public void ClearHttpHeaders() { this.Headers.Clear(); } protected override WebRequest GetWebRequest(Uri uri) { HttpWebRequest request = (HttpWebRequest) base.GetWebRequest(uri); request.Headers.Add(this.Headers); return request; } } where TaxService is the name of the .NET generated proxy class. In code you can then call AddHttpHeader() anywhere to add additional headers which are sent as part of the GetWebRequest override. Nice and simple once you know where to hook it. For WCF there’s a bit more work involved by creating a message extension as described here: http://weblogs.asp.net/avnerk/archive/2006/04/26/Adding-custom-headers-to-every-WCF-call-_2D00_-a-solution.aspx. FWIW, I think that HTTP header manipulation should be readily available on any HTTP based Web Service client DIRECTLY without having to subclass or implement a special interface hook. But alas a little extra work is required in .NET to make this happen Not a Common Problem, but when it happens… This has been one of those issues that is really rare, but it’s bitten me on several occasions when dealing with oddball Web services – a couple of times in my own work interacting with various Web Services and a few times on customer projects that required interaction with credentials-first services. Since the servers determine the protocol, we don’t have a choice but to follow the protocol. Lovely following standards that implementers decide to ignore, isn’t it? :-}© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  Web Services  

    Read the article

  • ASP.Net MVC 2 Auto Complete Textbox With Custom View Model Attribute & EditorTemplate

    - by SeanMcAlinden
    In this post I’m going to show how to create a generic, ajax driven Auto Complete text box using the new MVC 2 Templates and the jQuery UI library. The template will be automatically displayed when a property is decorated with a custom attribute within the view model. The AutoComplete text box in action will look like the following:   The first thing to do is to do is visit my previous blog post to put the custom model metadata provider in place, this is necessary when using custom attributes on the view model. http://weblogs.asp.net/seanmcalinden/archive/2010/06/11/custom-asp-net-mvc-2-modelmetadataprovider-for-using-custom-view-model-attributes.aspx Once this is in place, make sure you visit the jQuery UI and download the latest stable release – in this example I’m using version 1.8.2. You can download it here. Add the jQuery scripts and css theme to your project and add references to them in your master page. Should look something like the following: Site.Master <head runat="server">     <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>     <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />     <link href="../../css/ui-lightness/jquery-ui-1.8.2.custom.css" rel="stylesheet" type="text/css" />     <script src="../../Scripts/jquery-1.4.2.min.js" type="text/javascript"></script>     <script src="../../Scripts/jquery-ui-1.8.2.custom.min.js" type="text/javascript"></script> </head> Once this is place we can get started. Creating the AutoComplete Custom Attribute The auto complete attribute will derive from the abstract MetadataAttribute created in my previous post. It will look like the following: AutoCompleteAttribute using System.Collections.Generic; using System.Web.Mvc; using System.Web.Routing; namespace Mvc2Templates.Attributes {     public class AutoCompleteAttribute : MetadataAttribute     {         public RouteValueDictionary RouteValueDictionary;         public AutoCompleteAttribute(string controller, string action, string parameterName)         {             this.RouteValueDictionary = new RouteValueDictionary();             this.RouteValueDictionary.Add("Controller", controller);             this.RouteValueDictionary.Add("Action", action);             this.RouteValueDictionary.Add(parameterName, string.Empty);         }         public override void Process(ModelMetadata modelMetaData)         {             modelMetaData.AdditionalValues.Add("AutoCompleteUrlData", this.RouteValueDictionary);             modelMetaData.TemplateHint = "AutoComplete";         }     } } As you can see, the constructor takes in strings for the controller, action and parameter name. The parameter name will be used for passing the search text within the auto complete text box. The constructor then creates a new RouteValueDictionary which we will use later to construct the url for getting the auto complete results via ajax. The main interesting method is the method override called Process. With the process method, the route value dictionary is added to the modelMetaData AdditionalValues collection. The TemplateHint is also set to AutoComplete, this means that when the view model is parsed for display, the MVC 2 framework will look for a view user control template called AutoComplete, if it finds one, it uses that template to display the property. The View Model To show you how the attribute will look, this is the view model I have used in my example which can be downloaded at the end of this post. View Model using System.ComponentModel; using Mvc2Templates.Attributes; namespace Mvc2Templates.Models {     public class TemplateDemoViewModel     {         [AutoComplete("Home", "AutoCompleteResult", "searchText")]         [DisplayName("European Country Search")]         public string SearchText { get; set; }     } } As you can see, the auto complete attribute is called with the controller name, action name and the name of the action parameter that the search text will be passed into. The AutoComplete Template Now all of this is in place, it’s time to create the AutoComplete template. Create a ViewUserControl called AutoComplete.ascx at the following location within your application – Views/Shared/EditorTemplates/AutoComplete.ascx Add the following code: AutoComplete.ascx <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> <%     var propertyName = ViewData.ModelMetadata.PropertyName;     var propertyValue = ViewData.ModelMetadata.Model;     var id = Guid.NewGuid().ToString();     RouteValueDictionary urlData =         (RouteValueDictionary)ViewData.ModelMetadata.AdditionalValues.Where(x => x.Key == "AutoCompleteUrlData").Single().Value;     var url = Mvc2Templates.Views.Shared.Helpers.RouteHelper.GetUrl(this.ViewContext.RequestContext, urlData); %> <input type="text" name="<%= propertyName %>" value="<%= propertyValue %>" id="<%= id %>" class="autoComplete" /> <script type="text/javascript">     $(function () {         $("#<%= id %>").autocomplete({             source: function (request, response) {                 $.ajax({                     url: "<%= url %>" + request.term,                     dataType: "json",                     success: function (data) {                         response(data);                     }                 });             },             minLength: 2         });     }); </script> There is a lot going on in here but when you break it down it’s quite simple. Firstly, the property name and property value are retrieved through the model meta data. These are required to ensure that the text box input has the correct name and data to allow for model binding. If you look at line 14 you can see them being used in the text box input creation. The interesting bit is on line 8 and 9, this is the code to retrieve the route value dictionary we added into the model metada via the custom attribute. Line 11 is used to create the url, in order to do this I created a quick helper class which looks like the code below titled RouteHelper. The last bit of script is the code to initialise the jQuery UI AutoComplete control with the correct url for calling back to our controller action. RouteHelper using System.Web.Mvc; using System.Web.Routing; namespace Mvc2Templates.Views.Shared.Helpers {     public static class RouteHelper     {         const string Controller = "Controller";         const string Action = "Action";         const string ReplaceFormatString = "REPLACE{0}";         public static string GetUrl(RequestContext requestContext, RouteValueDictionary routeValueDictionary)         {             RouteValueDictionary urlData = new RouteValueDictionary();             UrlHelper urlHelper = new UrlHelper(requestContext);                          int i = 0;             foreach(var item in routeValueDictionary)             {                 if (item.Value == string.Empty)                 {                     i++;                     urlData.Add(item.Key, string.Format(ReplaceFormatString, i.ToString()));                 }                 else                 {                     urlData.Add(item.Key, item.Value);                 }             }             var url = urlHelper.RouteUrl(urlData);             for (int index = 1; index <= i; index++)             {                 url = url.Replace(string.Format(ReplaceFormatString, index.ToString()), string.Empty);             }             return url;         }     } } See it in action All you need to do to see it in action is pass a view model from your controller with the new AutoComplete attribute attached and call the following within your view: <%= this.Html.EditorForModel() %> NOTE: The jQuery UI auto complete control expects a JSON string returned from your controller action method… as you can’t use the JsonResult to perform GET requests, use a normal action result, convert your data into json and return it as a string via a ContentResult. If you download the solution it will be very clear how to handle the controller and action for this demo. The full source code for this post can be downloaded here. It has been developed using MVC 2 and Visual Studio 2010. As always, I hope this has been interesting/useful. Kind Regards, Sean McAlinden.

    Read the article

  • Where does ASP.NET Web API Fit?

    - by Rick Strahl
    With the pending release of ASP.NET MVC 4 and the new ASP.NET Web API, there has been a lot of discussion of where the new Web API technology fits in the ASP.NET Web stack. There are a lot of choices to build HTTP based applications available now on the stack - we've come a long way from when WebForms and Http Handlers/Modules where the only real options. Today we have WebForms, MVC, ASP.NET Web Pages, ASP.NET AJAX, WCF REST and now Web API as well as the core ASP.NET runtime to choose to build HTTP content with. Web API definitely squarely addresses the 'API' aspect - building consumable services - rather than HTML content, but even to that end there are a lot of choices you have today. So where does Web API fit, and when doesn't it? But before we get into that discussion, let's talk about what a Web API is and why we should care. What's a Web API? HTTP 'APIs' (Microsoft's new terminology for a service I guess)  are becoming increasingly more important with the rise of the many devices in use today. Most mobile devices like phones and tablets run Apps that are using data retrieved from the Web over HTTP. Desktop applications are also moving in this direction with more and more online content and synching moving into even traditional desktop applications. The pending Windows 8 release promises an app like platform for both the desktop and other devices, that also emphasizes consuming data from the Cloud. Likewise many Web browser hosted applications these days are relying on rich client functionality to create and manipulate the browser user interface, using AJAX rather than server generated HTML data to load up the user interface with data. These mobile or rich Web applications use their HTTP connection to return data rather than HTML markup in the form of JSON or XML typically. But an API can also serve other kinds of data, like images or other binary files, or even text data and HTML (although that's less common). A Web API is what feeds rich applications with data. ASP.NET Web API aims to service this particular segment of Web development by providing easy semantics to route and handle incoming requests and an easy to use platform to serve HTTP data in just about any content format you choose to create and serve from the server. But .NET already has various HTTP Platforms The .NET stack already includes a number of technologies that provide the ability to create HTTP service back ends, and it has done so since the very beginnings of the .NET platform. From raw HTTP Handlers and Modules in the core ASP.NET runtime, to high level platforms like ASP.NET MVC, Web Forms, ASP.NET AJAX and the WCF REST engine (which technically is not ASP.NET, but can integrate with it), you've always been able to handle just about any kind of HTTP request and response with ASP.NET. The beauty of the raw ASP.NET platform is that it provides you everything you need to build just about any type of HTTP application you can dream up from low level APIs/custom engines to high level HTML generation engine. ASP.NET as a core platform clearly has stood the test of time 10+ years later and all other frameworks like Web API are built on top of this ASP.NET core. However, although it's possible to create Web APIs / Services using any of the existing out of box .NET technologies, none of them have been a really nice fit for building arbitrary HTTP based APIs. Sure, you can use an HttpHandler to create just about anything, but you have to build a lot of plumbing to build something more complex like a comprehensive API that serves a variety of requests, handles multiple output formats and can easily pass data up to the server in a variety of ways. Likewise you can use ASP.NET MVC to handle routing and creating content in various formats fairly easily, but it doesn't provide a great way to automatically negotiate content types and serve various content formats directly (it's possible to do with some plumbing code of your own but not built in). Prior to Web API, Microsoft's main push for HTTP services has been WCF REST, which was always an awkward technology that had a severe personality conflict, not being clear on whether it wanted to be part of WCF or purely a separate technology. In the end it didn't do either WCF compatibility or WCF agnostic pure HTTP operation very well, which made for a very developer-unfriendly environment. Personally I didn't like any of the implementations at the time, so much so that I ended up building my own HTTP service engine (as part of the West Wind Web Toolkit), as have a few other third party tools that provided much better integration and ease of use. With the release of Web API for the first time I feel that I can finally use the tools in the box and not have to worry about creating and maintaining my own toolkit as Web API addresses just about all the features I implemented on my own and much more. ASP.NET Web API provides a better HTTP Experience ASP.NET Web API differentiates itself from the previous Microsoft in-box HTTP service solutions in that it was built from the ground up around the HTTP protocol and its messaging semantics. Unlike WCF REST or ASP.NET AJAX with ASMX, it’s a brand new platform rather than bolted on technology that is supposed to work in the context of an existing framework. The strength of the new ASP.NET Web API is that it combines the best features of the platforms that came before it, to provide a comprehensive and very usable HTTP platform. Because it's based on ASP.NET and borrows a lot of concepts from ASP.NET MVC, Web API should be immediately familiar and comfortable to most ASP.NET developers. Here are some of the features that Web API provides that I like: Strong Support for URL Routing to produce clean URLs using familiar MVC style routing semantics Content Negotiation based on Accept headers for request and response serialization Support for a host of supported output formats including JSON, XML, ATOM Strong default support for REST semantics but they are optional Easily extensible Formatter support to add new input/output types Deep support for more advanced HTTP features via HttpResponseMessage and HttpRequestMessage classes and strongly typed Enums to describe many HTTP operations Convention based design that drives you into doing the right thing for HTTP Services Very extensible, based on MVC like extensibility model of Formatters and Filters Self-hostable in non-Web applications  Testable using testing concepts similar to MVC Web API is meant to handle any kind of HTTP input and produce output and status codes using the full spectrum of HTTP functionality available in a straight forward and flexible manner. Looking at the list above you can see that a lot of functionality is very similar to ASP.NET MVC, so many ASP.NET developers should feel quite comfortable with the concepts of Web API. The Routing and core infrastructure of Web API are very similar to how MVC works providing many of the benefits of MVC, but with focus on HTTP access and manipulation in Controller methods rather than HTML generation in MVC. There’s much improved support for content negotiation based on HTTP Accept headers with the framework capable of detecting automatically what content the client is sending and requesting and serving the appropriate data format in return. This seems like such a little and obvious thing, but it's really important. Today's service backends often are used by multiple clients/applications and being able to choose the right data format for what fits best for the client is very important. While previous solutions were able to accomplish this using a variety of mixed features of WCF and ASP.NET, Web API combines all this functionality into a single robust server side HTTP framework that intrinsically understands the HTTP semantics and subtly drives you in the right direction for most operations. And when you need to customize or do something that is not built in, there are lots of hooks and overrides for most behaviors, and even many low level hook points that allow you to plug in custom functionality with relatively little effort. No Brainers for Web API There are a few scenarios that are a slam dunk for Web API. If your primary focus of an application or even a part of an application is some sort of API then Web API makes great sense. HTTP ServicesIf you're building a comprehensive HTTP API that is to be consumed over the Web, Web API is a perfect fit. You can isolate the logic in Web API and build your application as a service breaking out the logic into controllers as needed. Because the primary interface is the service there's no confusion of what should go where (MVC or API). Perfect fit. Primary AJAX BackendsIf you're building rich client Web applications that are relying heavily on AJAX callbacks to serve its data, Web API is also a slam dunk. Again because much if not most of the business logic will probably end up in your Web API service logic, there's no confusion over where logic should go and there's no duplication. In Single Page Applications (SPA), typically there's very little HTML based logic served other than bringing up a shell UI and then filling the data from the server with AJAX which means the business logic required for data retrieval and data acceptance and validation too lives in the Web API. Perfect fit. Generic HTTP EndpointsAnother good fit are generic HTTP endpoints that to serve data or handle 'utility' type functionality in typical Web applications. If you need to implement an image server, or an upload handler in the past I'd implement that as an HTTP handler. With Web API you now have a well defined place where you can implement these types of generic 'services' in a location that can easily add endpoints (via Controller methods) or separated out as more full featured APIs. Granted this could be done with MVC as well, but Web API seems a clearer and more well defined place to store generic application services. This is one thing I used to do a lot of in my own libraries and Web API addresses this nicely. Great fit. Mixed HTML and AJAX Applications: Not a clear Choice  For all the commonality that Web API and MVC share they are fundamentally different platforms that are independent of each other. A lot of people have asked when does it make sense to use MVC vs. Web API when you're dealing with typical Web application that creates HTML and also uses AJAX functionality for rich functionality. While it's easy to say that all 'service'/AJAX logic should go into a Web API and all HTML related generation into MVC, that can often result in a lot of code duplication. Also MVC supports JSON and XML result data fairly easily as well so there's some confusion where that 'trigger point' is of when you should switch to Web API vs. just implementing functionality as part of MVC controllers. Ultimately there's a tradeoff between isolation of functionality and duplication. A good rule of thumb I think works is that if a large chunk of the application's functionality serves data Web API is a good choice, but if you have a couple of small AJAX requests to serve data to a grid or autocomplete box it'd be overkill to separate out that logic into a separate Web API controller. Web API does add overhead to your application (it's yet another framework that sits on top of core ASP.NET) so it should be worth it .Keep in mind that MVC can generate HTML and JSON/XML and just about any other content easily and that functionality is not going away, so just because you Web API is there it doesn't mean you have to use it. Web API is not a full replacement for MVC obviously either since there's not the same level of support to feed HTML from Web API controllers (although you can host a RazorEngine easily enough if you really want to go that route) so if you're HTML is part of your API or application in general MVC is still a better choice either alone or in combination with Web API. I suspect (and hope) that in the future Web API's functionality will merge even closer with MVC so that you might even be able to mix functionality of both into single Controllers so that you don't have to make any trade offs, but at the moment that's not the case. Some Issues To think about Web API is similar to MVC but not the Same Although Web API looks a lot like MVC it's not the same and some common functionality of MVC behaves differently in Web API. For example, the way single POST variables are handled is different than MVC and doesn't lend itself particularly well to some AJAX scenarios with POST data. Code Duplication I already touched on this in the Mixed HTML and Web API section, but if you build an MVC application that also exposes a Web API it's quite likely that you end up duplicating a bunch of code and - potentially - infrastructure. You may have to create authentication logic both for an HTML application and for the Web API which might need something different altogether. More often than not though the same logic is used, and there's no easy way to share. If you implement an MVC ActionFilter and you want that same functionality in your Web API you'll end up creating the filter twice. AJAX Data or AJAX HTML On a recent post's comments, David made some really good points regarding the commonality of MVC and Web API's and its place. One comment that caught my eye was a little more generic, regarding data services vs. HTML services. David says: I see a lot of merit in the combination of Knockout.js, client side templates and view models, calling Web API for a responsive UI, but sometimes late at night that still leaves me wondering why I would no longer be using some of the nice tooling and features that have evolved in MVC ;-) You know what - I can totally relate to that. On the last Web based mobile app I worked on, we decided to serve HTML partials to the client via AJAX for many (but not all!) things, rather than sending down raw data to inject into the DOM on the client via templating or direct manipulation. While there are definitely more bytes on the wire, with this, the overhead ended up being actually fairly small if you keep the 'data' requests small and atomic. Performance was often made up by the lack of client side rendering of HTML. Server rendered HTML for AJAX templating gives so much better infrastructure support without having to screw around with 20 mismatched client libraries. Especially with MVC and partials it's pretty easy to break out your HTML logic into very small, atomic chunks, so it's actually easy to create small rendering islands that can be used via composition on the server, or via AJAX calls to small, tight partials that return HTML to the client. Although this is often frowned upon as to 'heavy', it worked really well in terms of developer effort as well as providing surprisingly good performance on devices. There's still plenty of jQuery and AJAX logic happening on the client but it's more manageable in small doses rather than trying to do the entire UI composition with JavaScript and/or 'not-quite-there-yet' template engines that are very difficult to debug. This is not an issue directly related to Web API of course, but something to think about especially for AJAX or SPA style applications. Summary Web API is a great new addition to the ASP.NET platform and it addresses a serious need for consolidation of a lot of half-baked HTTP service API technologies that came before it. Web API feels 'right', and hits the right combination of usability and flexibility at least for me and it's a good fit for true API scenarios. However, just because a new platform is available it doesn't meant that other tools or tech that came before it should be discarded or even upgraded to the new platform. There's nothing wrong with continuing to use MVC controller methods to handle API tasks if that's what your app is running now - there's very little to be gained by upgrading to Web API just because. But going forward Web API clearly is the way to go, when building HTTP data interfaces and it's good to see that Microsoft got this one right - it was sorely needed! Resources ASP.NET Web API AspConf Ask the Experts Session (first 5 minutes) © Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Windows Phone 7 development: reading RSS feeds

    - by DigiMortal
    One limitation on Windows Phone 7 is related to System.Net namespace classes. There is no convenient way to read data from web. There is no WebClient class. There is no GetResponse() method – we have to do it all asynchronously because compact framework has limited set of classes we can use in our applications to communicate with internet. In this posting I will show you how to read RSS-feeds on Windows Phone 7. NB! This is my draft code and it may contain some design flaws and some questionable solutions. This code is intended to use as test-drive for Windows Phone 7 CTP developer tools and I don’t suppose you are going to use this code in production environment. Current state of my RSS-reader Currently my RSS-reader for Windows Phone 7 is very simple, primitive and uses almost all defaults that come out-of-box with Windows Phone 7 CTP developer tools. My first goal before going on with nicer user interface design was making RSS-reading work because instead of convenient classes from .NET Framework we have to use very limited classes from .NET Framework CE. This is why I took the reading of RSS-feeds as my first task. There are currently more things to solve regarding user-interface. As I am pretty new to all this Silverlight stuff I am not very sure if I can modify default controls easily or should I write my own controls that have better look and that work faster. The image on right shows you how my RSS-reader looks like right now. Upper side of screen is filled with list that shows headlines from this blog. The bottom part of screen is used to show description of selected posting. You can click on the image to see it in original size. In my next posting I will show you some improvements of my RSS-reader user interface that make it look nicer. But currently it is nice enough to make sure that RSS-feeds are read correctly. FeedItem class As this is most straight-forward part of the following code I will show you RSS-feed items class first. I think we have to stop on it because it is simple one. public class FeedItem {     public string Title { get; set; }     public string Description { get; set; }     public DateTime PublishDate { get; set; }     public List<string> Categories { get; set; }     public string Link { get; set; }       public FeedItem()     {         Categories = new List<string>();     } } RssClient RssClient takes feed URL and when asked it loads all items from feed and gives them back to caller through ItemsReceived event. Why it works this way? Because we can make responses only using asynchronous methods. I will show you in next section how to use this class. Although the code here is not very good but it works like expected. I will refactor this code later because it needs some more efforts and investigating. But let’s hope I find excellent solution. :) public class RssClient {     private readonly string _rssUrl;       public delegate void ItemsReceivedDelegate(RssClient client, IList<FeedItem> items);     public event ItemsReceivedDelegate ItemsReceived;       public RssClient(string rssUrl)     {         _rssUrl = rssUrl;     }       public void LoadItems()     {         var request = (HttpWebRequest)WebRequest.Create(_rssUrl);         var result = (IAsyncResult)request.BeginGetResponse(ResponseCallback, request);     }       void ResponseCallback(IAsyncResult result)     {         var request = (HttpWebRequest)result.AsyncState;         var response = request.EndGetResponse(result);           var stream = response.GetResponseStream();         var reader = XmlReader.Create(stream);         var items = new List<FeedItem>(50);           FeedItem item = null;         var pointerMoved = false;           while (!reader.EOF)         {             if (pointerMoved)             {                 pointerMoved = false;             }             else             {                 if (!reader.Read())                     break;             }               var nodeName = reader.Name;             var nodeType = reader.NodeType;               if (nodeName == "item")             {                 if (nodeType == XmlNodeType.Element)                     item = new FeedItem();                 else if (nodeType == XmlNodeType.EndElement)                     if (item != null)                     {                         items.Add(item);                         item = null;                     }                   continue;             }               if (nodeType != XmlNodeType.Element)                 continue;               if (item == null)                 continue;               reader.MoveToContent();             var nodeValue = reader.ReadElementContentAsString();             // we just moved internal pointer             pointerMoved = true;               if (nodeName == "title")                 item.Title = nodeValue;             else if (nodeName == "description")                 item.Description =  Regex.Replace(nodeValue,@"<(.|\n)*?>",string.Empty);             else if (nodeName == "feedburner:origLink")                 item.Link = nodeValue;             else if (nodeName == "pubDate")             {                 if (!string.IsNullOrEmpty(nodeValue))                     item.PublishDate = DateTime.Parse(nodeValue);             }             else if (nodeName == "category")                 item.Categories.Add(nodeValue);         }           if (ItemsReceived != null)             ItemsReceived(this, items);     } } This method is pretty long but it works. Now let’s try to use it in Windows Phone 7 application. Using RssClient And this is the fragment of code behing the main page of my application start screen. You can see how RssClient is initialized and how items are bound to list that shows them. public MainPage() {     InitializeComponent();       SupportedOrientations = SupportedPageOrientation.Portrait | SupportedPageOrientation.Landscape;     listBox1.Width = Width;       var rssClient = new RssClient("http://feedproxy.google.com/gunnarpeipman");     rssClient.ItemsReceived += new RssClient.ItemsReceivedDelegate(rssClient_ItemsReceived);     rssClient.LoadItems(); }   void rssClient_ItemsReceived(RssClient client, IList<FeedItem> items) {     Dispatcher.BeginInvoke(delegate()     {         listBox1.ItemsSource = items;     });            } Conclusion As you can see it was not very hard task to read RSS-feed and populate list with feed entries. Although we are not able to use more powerful classes that are part of full version on .NET Framework we can still live with limited set of classes that .NET Framework CE provides.

    Read the article

  • URL Rewrite – Multiple domains under one site. Part II

    - by OWScott
    I believe I have it … I’ve been meaning to put together the ultimate outgoing rule for hosting multiple domains under one site.  I finally sat down this week and setup a few test cases, and created one rule to rule them all.  In Part I of this two part series, I covered the incoming rule necessary to host a site in a subfolder of a website, while making it appear as if it’s in the root of the site.  Part II won’t work without applying Part I first, so if you haven’t read it, I encourage you to read it now. However, the incoming rule by itself doesn’t address everything.  Here’s the problem … Let’s say that we host www.site2.com in a subfolder called site2, off of masterdomain.com.  This is the same example I used in Part I.   Using an incoming rewrite rule, we are able to make a request to www.site2.com even though the site is really in the /site2 folder.  The gotcha comes with any type of path that ASP.NET generates (I’m sure other scripting technologies could do the same too).  ASP.NET thinks that the path to the root of the site is /site2, but the URL is /.  See the issue?  If ASP.NET generates a path or a redirect for us, it will always add /site2 to the URL.  That results in a path that looks something like www.site2.com/site2.  In Part I, I mentioned that you should add a condition where “{PATH_INFO} ‘does not match’ /site2”.  That allows www.site2.com/site2 and www.site2.com to both function the same.  This allows the site to always work, but if you want to hide /site2 in the URL, you need to take it one step further. One way to address this is in your code.  Ultimately this is the best bet.  Ruslan Yakushev has a great article on a few considerations that you can address in code.  I recommend giving that serious consideration.  Additionally, if you have upgraded to ASP.NET 3.5 SP1 or greater, it takes care of some of the references automatically for you. However, what if you inherit an existing application?  Or you can’t easily go through your existing site and make the code changes?  If this applies to you, read on. That’s where URL Rewrite 2.0 comes in.  With URL Rewrite 2.0, you can create an outgoing rule that will remove the /site2 before the page is sent back to the user.  This means that you can take an existing application, host it in a subfolder of your site, and ensure that the URL never reveals that it’s in a subfolder. Performance Considerations Performance overhead is something to be mindful of.  These outbound rules aren’t simply changing the server variables.  The first rule I’ll cover below needs to parse the HTML body and pull out the path (i.e. /site2) on the way through.  This will add overhead, possibly significant if you have large pages and a busy site.  In other words, your mileage may vary and you may need to test to see the impact that these rules have.  Don’t worry too much though.  For many sites, the performance impact is negligible. So, how do we do it? Creating the Outgoing Rule There are really two things to keep in mind.  First, ASP.NET applications frequently generate a URL that adds the /site2 back into the URL.  In addition to URLs, they can be in form elements, img elements and the like.  The goal is to find all of those situations and rewrite it on the way out.  Let’s call this the ‘URL problem’. Second, and similarly, ASP.NET can send a LOCATION redirect that causes a redirect back to another page.  Again, ASP.NET isn’t aware of the different URL and it will add the /site2 to the redirect.  Form Authentication is a good example on when this occurs.  Try to password protect a site running from a subfolder using forms auth and you’ll quickly find that the URL becomes www.site2.com/site2 again.  Let’s term this the ‘redirect problem’. Solving the URL Problem – Outgoing Rule #1 Let’s create a rule that removes the /site2 from any URL.  We want to remove it from relative URLs like /site2/something, or absolute URLs like http://www.site2.com/site2/something.  Most URLs that ASP.NET creates will be relative URLs, but I figure that there may be some applications that piece together a full URL, so we might as well expect that situation. Let’s get started.  First, create a new outbound rule.  You can create the rule within the /site2 folder which will reduce the performance impact of the rule.  Just a reminder that incoming rules for this situation won’t work in a subfolder … but outgoing rules will. Give it a name that makes sense to you, for example “Outgoing – URL paths”. Precondition.  If you place the rule in the subfolder, it will only run for that site and folder, so there isn’t need for a precondition.  Run it for all requests.  If you place it in the root of the site, you may want to create a precondition for HTTP_HOST = ^(www\.)?site2\.com$. For the Match section, there are a few things to consider.  For performance reasons, it’s best to match the least amount of elements that you need to accomplish the task.  For my test cases, I just needed to rewrite the <a /> tag, but you may need to rewrite any number of HTML elements.  Note that as long as you have the exclude /site2 rule in your incoming rule as I described in Part I, some elements that don’t show their URL—like your images—will work without removing the /site2 from them.  That reduces the processing needed for this rule. Leave the “matching scope” at “Response” and choose the elements that you want to change. Set the pattern to “^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)”.  Make sure to replace ‘site2’ with your subfolder name in both places.  Yes, I realize this is a pretty messy looking rule, but it handles a few situations.  This rule will handle the following situations correctly: Original Rewritten using {R:1}{R:2} http://www.site2.com/site2/default.aspx http://www.site2.com/default.aspx http://www.site2.com/folder1/site2/default.aspx Won’t rewrite since it’s a sub-sub folder /site2/default.aspx /default.aspx site2/default.aspx /default.aspx /folder1/site2/default.aspx Won’t rewrite since it’s a sub-sub folder. For the conditions section, you can leave that be. Finally, for the rule, set the Action Type to “Rewrite” and set the Value to “{R:1}{R:2}”.  The {R:1} and {R:2} are back references to the sections within parentheses.  In other words, in http://domain.com/site2/something, {R:1} will be http://domain.com and {R:2} will be /something. If you view your rule from your web.config file (or applicationHost.config if it’s a global rule), it should look like this: <rule name="Outgoing - URL paths" enabled="true"> <match filterByTags="A" pattern="^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> Solving the Redirect Problem Outgoing Rule #2 The second issue that we can run into is with a client-side redirect.  This is triggered by a LOCATION response header that is sent to the client.  Forms authentication is a common example.  To reproduce this, password protect your subfolder and watch how it redirects and adds the subfolder path back in. Notice in my test case the extra paths: http://site2.com/site2/login.aspx?ReturnUrl=%2fsite2%2fdefault.aspx I want to remove /site2 from both the URL and the ReturnUrl querystring value.  For semi-readability, let’s do this in 2 separate rules, one for the URL and one for the querystring. Create a second rule.  As with the previous rule, it can be created in the /site2 subfolder.  In the URL Rewrite wizard, select Outbound rules –> “Blank Rule”. Fill in the following information: Name response_location URL Precondition Don’t set Match: Matching Scope Server Variable Match: Variable Name RESPONSE_LOCATION Match: Pattern ^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*) Conditions Don’t set Action Type Rewrite Action Properties {R:1}{R:2} It should end up like so: <rule name="response_location URL"> <match serverVariable="RESPONSE_LOCATION" pattern="^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> Outgoing Rule #3 Outgoing Rule #2 only takes care of the URL path, and not the querystring path.  Let’s create one final rule to take care of the path in the querystring to ensure that ReturnUrl=%2fsite2%2fdefault.aspx gets rewritten to ReturnUrl=%2fdefault.aspx. The %2f is the HTML encoding for forward slash (/). Create a rule like the previous one, but with the following settings: Name response_location querystring Precondition Don’t set Match: Matching Scope Server Variable Match: Variable Name RESPONSE_LOCATION Match: Pattern (.*)%2fsite2(.*) Conditions Don’t set Action Type Rewrite Action Properties {R:1}{R:2} The config should look like this: <rule name="response_location querystring"> <match serverVariable="RESPONSE_LOCATION" pattern="(.*)%2fsite2(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> It’s possible to squeeze the last two rules into one, but it gets kind of confusing so I felt that it’s better to show it as two separate rules. Summary With the rules covered in these two parts, we’re able to have a site in a subfolder and make it appear as if it’s in the root of the site.  Not only that, we can overcome automatic redirecting that is caused by ASP.NET, other scripting technologies, and especially existing applications. Following is an example of the incoming and outgoing rules necessary for a site called www.site2.com hosted in a subfolder called /site2.  Remember that the outgoing rules can be placed in the /site2 folder instead of the in the root of the site. <rewrite> <rules> <rule name="site2.com in a subfolder" enabled="true" stopProcessing="true"> <match url=".*" /> <conditions logicalGrouping="MatchAll" trackAllCaptures="false"> <add input="{HTTP_HOST}" pattern="^(www\.)?site2\.com$" /> <add input="{PATH_INFO}" pattern="^/site2($|/)" negate="true" /> </conditions> <action type="Rewrite" url="/site2/{R:0}" /> </rule> </rules> <outboundRules> <rule name="Outgoing - URL paths" enabled="true"> <match filterByTags="A" pattern="^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> <rule name="response_location URL"> <match serverVariable="RESPONSE_LOCATION" pattern="^(?:site2|(.*//[_a-zA-Z0-9-\.]*)?/site2)(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> <rule name="response_location querystring"> <match serverVariable="RESPONSE_LOCATION" pattern="(.*)%2fsite2(.*)" /> <action type="Rewrite" value="{R:1}{R:2}" /> </rule> </outboundRules> </rewrite> If you run into any situations that aren’t caught by these rules, please let me know so I can update this to be as complete as possible. Happy URL Rewriting!

    Read the article

  • Passing multiple POST parameters to Web API Controller Methods

    - by Rick Strahl
    ASP.NET Web API introduces a new API for creating REST APIs and making AJAX callbacks to the server. This new API provides a host of new great functionality that unifies many of the features of many of the various AJAX/REST APIs that Microsoft created before it - ASP.NET AJAX, WCF REST specifically - and combines them into a whole more consistent API. Web API addresses many of the concerns that developers had with these older APIs, namely that it was very difficult to build consistent REST style resource APIs easily. While Web API provides many new features and makes many scenarios much easier, a lot of the focus has been on making it easier to build REST compliant APIs that are focused on resource based solutions and HTTP verbs. But  RPC style calls that are common with AJAX callbacks in Web applications, have gotten a lot less focus and there are a few scenarios that are not that obvious, especially if you're expecting Web API to provide functionality similar to ASP.NET AJAX style AJAX callbacks. RPC vs. 'Proper' REST RPC style HTTP calls mimic calling a method with parameters and returning a result. Rather than mapping explicit server side resources or 'nouns' RPC calls tend simply map a server side operation, passing in parameters and receiving a typed result where parameters and result values are marshaled over HTTP. Typically RPC calls - like SOAP calls - tend to always be POST operations rather than following HTTP conventions and using the GET/POST/PUT/DELETE etc. verbs to implicitly determine what operation needs to be fired. RPC might not be considered 'cool' anymore, but for typical private AJAX backend operations of a Web site I'd wager that a large percentage of use cases of Web API will fall towards RPC style calls rather than 'proper' REST style APIs. Web applications that have needs for things like live validation against data, filling data based on user inputs, handling small UI updates often don't lend themselves very well to limited HTTP verb usage. It might not be what the cool kids do, but I don't see RPC calls getting replaced by proper REST APIs any time soon.  Proper REST has its place - for 'real' API scenarios that manage and publish/share resources, but for more transactional operations RPC seems a better choice and much easier to implement than trying to shoehorn a boatload of endpoint methods into a few HTTP verbs. In any case Web API does a good job of providing both RPC abstraction as well as the HTTP Verb/REST abstraction. RPC works well out of the box, but there are some differences especially if you're coming from ASP.NET AJAX service or WCF Rest when it comes to multiple parameters. Action Routing for RPC Style Calls If you've looked at Web API demos you've probably seen a bunch of examples of how to create HTTP Verb based routing endpoints. Verb based routing essentially maps a controller and then uses HTTP verbs to map the methods that are called in response to HTTP requests. This works great for resource APIs but doesn't work so well when you have many operational methods in a single controller. HTTP Verb routing is limited to the few HTTP verbs available (plus separate method signatures) and - worse than that - you can't easily extend the controller with custom routes or action routing beyond that. Thankfully Web API also supports Action based routing which allows you create RPC style endpoints fairly easily:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumApi", action = "GetAblums" } ); This uses traditional MVC style {action} method routing which is different from the HTTP verb based routing you might have read a bunch about in conjunction with Web API. Action based routing like above lets you specify an end point method in a Web API controller either via the {action} parameter in the route string or via a default value for custom routes. Using routing you can pass multiple parameters either on the route itself or pass parameters on the query string, via ModelBinding or content value binding. For most common scenarios this actually works very well. As long as you are passing either a single complex type via a POST operation, or multiple simple types via query string or POST buffer, there's no issue. But if you need to pass multiple parameters as was easily done with WCF REST or ASP.NET AJAX things are not so obvious. Web API has no issue allowing for single parameter like this:[HttpPost] public string PostAlbum(Album album) { return String.Format("{0} {1:d}", album.AlbumName, album.Entered); } There are actually two ways to call this endpoint: albums/PostAlbum Using the Model Binder with plain POST values In this mechanism you're sending plain urlencoded POST values to the server which the ModelBinder then maps the parameter. Each property value is matched to each matching POST value. This works similar to the way that MVC's  ModelBinder works. Here's how you can POST using the ModelBinder and jQuery:$.ajax( { url: "albums/PostAlbum", type: "POST", data: { AlbumName: "Dirty Deeds", Entered: "5/1/2012" }, success: function (result) { alert(result); }, error: function (xhr, status, p3, p4) { var err = "Error " + " " + status + " " + p3; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); Here's what the POST data looks like for this request: The model binder and it's straight form based POST mechanism is great for posting data directly from HTML pages to model objects. It avoids having to do manual conversions for many operations and is a great boon for AJAX callback requests. Using Web API JSON Formatter The other option is to post data using a JSON string. The process for this is similar except that you create a JavaScript object and serialize it to JSON first.album = { AlbumName: "PowerAge", Entered: new Date(1977,0,1) } $.ajax( { url: "albums/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify(album), success: function (result) { alert(result); } }); Here the data is sent using a JSON object rather than form data and the data is JSON encoded over the wire. The trace reveals that the data is sent using plain JSON (Source above), which is a little more efficient since there's no UrlEncoding that occurs. BTW, notice that WebAPI automatically deals with the date. I provided the date as a plain string, rather than a JavaScript date value and the Formatter and ModelBinder both automatically map the date propertly to the Entered DateTime property of the Album object. Passing multiple Parameters to a Web API Controller Single parameters work fine in either of these RPC scenarios and that's to be expected. ModelBinding always works against a single object because it maps a model. But what happens when you want to pass multiple parameters? Consider an API Controller method that has a signature like the following:[HttpPost] public string PostAlbum(Album album, string userToken) Here I'm asking to pass two objects to an RPC method. Is that possible? This used to be fairly straight forward either with WCF REST and ASP.NET AJAX ASMX services, but as far as I can tell this is not directly possible using a POST operation with WebAPI. There a few workarounds that you can use to make this work: Use both POST *and* QueryString Parameters in Conjunction If you have both complex and simple parameters, you can pass simple parameters on the query string. The above would actually work with: /album/PostAlbum?userToken=sekkritt but that's not always possible. In this example it might not be a good idea to pass a user token on the query string though. It also won't work if you need to pass multiple complex objects, since query string values do not support complex type mapping. They only work with simple types. Use a single Object that wraps the two Parameters If you go by service based architecture guidelines every service method should always pass and return a single value only. The input should wrap potentially multiple input parameters and the output should convey status as well as provide the result value. You typically have a xxxRequest and a xxxResponse class that wraps the inputs and outputs. Here's what this method might look like:public PostAlbumResponse PostAlbum(PostAlbumRequest request) { var album = request.Album; var userToken = request.UserToken; return new PostAlbumResponse() { IsSuccess = true, Result = String.Format("{0} {1:d} {2}", album.AlbumName, album.Entered,userToken) }; } with these support types:public class PostAlbumRequest { public Album Album { get; set; } public User User { get; set; } public string UserToken { get; set; } } public class PostAlbumResponse { public string Result { get; set; } public bool IsSuccess { get; set; } public string ErrorMessage { get; set; } }   To call this method you now have to assemble these objects on the client and send it up as JSON:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result.Result); } }); I assemble the individual types first and then combine them in the data: property of the $.ajax() call into the actual object passed to the server, that mimics the structure of PostAlbumRequest server class that has Album, User and UserToken properties. This works well enough but it gets tedious if you have to create Request and Response types for each method signature. If you have common parameters that are always passed (like you always pass an album or usertoken) you might be able to abstract this to use a single object that gets reused for all methods, but this gets confusing too: Overload a single 'parameter' too much and it becomes a nightmare to decipher what your method actual can use. Use JObject to parse multiple Property Values out of an Object If you recall, ASP.NET AJAX and WCF REST used a 'wrapper' object to make default AJAX calls. Rather than directly calling a service you always passed an object which contained properties for each parameter: { parm1: Value, parm2: Value2 } WCF REST/ASP.NET AJAX would then parse this top level property values and map them to the parameters of the endpoint method. This automatic type wrapping functionality is no longer available directly in Web API, but since Web API now uses JSON.NET for it's JSON serializer you can actually simulate that behavior with a little extra code. You can use the JObject class to receive a dynamic JSON result and then using the dynamic cast of JObject to walk through the child objects and even parse them into strongly typed objects. Here's how to do this on the API Controller end:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } This is clearly not as nice as having the parameters passed directly, but it works to allow you to pass multiple parameters and access them using Web API. JObject is JSON.NET's generic object container which sports a nice dynamic interface that allows you to walk through the object's properties using standard 'dot' object syntax. All you have to do is cast the object to dynamic to get access to the property interface of the JSON type. Additionally JObject also allows you to parse JObject instances into strongly typed objects, which enables us here to retrieve the two objects passed as parameters from this jquery code:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result); } }); Summary ASP.NET Web API brings many new features and many advantages over the older Microsoft AJAX and REST APIs, but realize that some things like passing multiple strongly typed object parameters will work a bit differently. It's not insurmountable, but just knowing what options are available to simulate this behavior is good to know. Now let me say here that it's probably not a good practice to pass a bunch of parameters to an API call. Ideally APIs should be closely factored to accept single parameters or a single content parameter at least along with some identifier parameters that can be passed on the querystring. But saying that doesn't mean that occasionally you don't run into a situation where you have the need to pass several objects to the server and all three of the options I mentioned might have merit in different situations. For now I'm sure the question of how to pass multiple parameters will come up quite a bit from people migrating WCF REST or ASP.NET AJAX code to Web API. At least there are options available to make it work.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 2

    - by shiju
    In my previous post Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1, we have discussed on how to work with ASP.NET MVC 3 and EF Code First for developing web apps. We have created generic repository and unit of work with EF Code First for our ASP.NET MVC 3 application and did basic CRUD operations against a simple domain entity. In this post, I will demonstrate on working with domain entity with deep object graph, Service Layer and View Models and will also complete the rest of the demo application. In the previous post, we have done CRUD operations against Category entity and this post will be focus on Expense entity those have an association with Category entity. You can download the source code from http://efmvc.codeplex.com . The following frameworks will be used for this step by step tutorial.    1. ASP.NET MVC 3 RTM    2. EF Code First CTP 5    3. Unity 2.0 Domain Model Category Entity public class Category   {       public int CategoryId { get; set; }       [Required(ErrorMessage = "Name Required")]       [StringLength(25, ErrorMessage = "Must be less than 25 characters")]       public string Name { get; set;}       public string Description { get; set; }       public virtual ICollection<Expense> Expenses { get; set; }   } Expense Entity public class Expense     {                public int ExpenseId { get; set; }                public string  Transaction { get; set; }         public DateTime Date { get; set; }         public double Amount { get; set; }         public int CategoryId { get; set; }         public virtual Category Category { get; set; }     } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. Repository class for Expense Transaction Let’s create repository class for handling CRUD operations for Expense entity public class ExpenseRepository : RepositoryBase<Expense>, IExpenseRepository     {     public ExpenseRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface IExpenseRepository : IRepository<Expense> { } Service Layer If you are new to Service Layer, checkout Martin Fowler's article Service Layer . According to Martin Fowler, Service Layer defines an application's boundary and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations. Controller classes should be lightweight and do not put much of business logic onto it. We can use the service layer as the business logic layer and can encapsulate the rules of the application. Let’s create a Service class for coordinates the transaction for Expense public interface IExpenseService {     IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime ednDate);     Expense GetExpense(int id);             void CreateExpense(Expense expense);     void DeleteExpense(int id);     void SaveExpense(); } public class ExpenseService : IExpenseService {     private readonly IExpenseRepository expenseRepository;            private readonly IUnitOfWork unitOfWork;     public ExpenseService(IExpenseRepository expenseRepository, IUnitOfWork unitOfWork)     {                  this.expenseRepository = expenseRepository;         this.unitOfWork = unitOfWork;     }     public IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime endDate)     {         var expenses = expenseRepository.GetMany(exp => exp.Date >= startDate && exp.Date <= endDate);         return expenses;     }     public void CreateExpense(Expense expense)     {         expenseRepository.Add(expense);         unitOfWork.Commit();     }     public Expense GetExpense(int id)     {         var expense = expenseRepository.GetById(id);         return expense;     }     public void DeleteExpense(int id)     {         var expense = expenseRepository.GetById(id);         expenseRepository.Delete(expense);         unitOfWork.Commit();     }     public void SaveExpense()     {         unitOfWork.Commit();     } }   View Model for Expense Transactions In real world ASP.NET MVC applications, we need to design model objects especially for our views. Our domain objects are mainly designed for the needs for domain model and it is representing the domain of our applications. On the other hand, View Model objects are designed for our needs for views. We have an Expense domain entity that has an association with Category. While we are creating a new Expense, we have to specify that in which Category belongs with the new Expense transaction. The user interface for Expense transaction will have form fields for representing the Expense entity and a CategoryId for representing the Category. So let's create view model for representing the need for Expense transactions. public class ExpenseViewModel {     public int ExpenseId { get; set; }       [Required(ErrorMessage = "Category Required")]     public int CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]     public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]     public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } The ExpenseViewModel is designed for the purpose of View template and contains the all validation rules. It has properties for mapping values to Expense entity and a property Category for binding values to a drop-down for list values of Category. Create Expense transaction Let’s create action methods in the ExpenseController for creating expense transactions public ActionResult Create() {     var expenseModel = new ExpenseViewModel();     var categories = categoryService.GetCategories();     expenseModel.Category = categories.ToSelectListItems(-1);     expenseModel.Date = DateTime.Today;     return View(expenseModel); } [HttpPost] public ActionResult Create(ExpenseViewModel expenseViewModel) {                      if (!ModelState.IsValid)         {             var categories = categoryService.GetCategories();             expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);             return View("Save", expenseViewModel);         }         Expense expense=new Expense();         ModelCopier.CopyModel(expenseViewModel,expense);         expenseService.CreateExpense(expense);         return RedirectToAction("Index");              } In the Create action method for HttpGet request, we have created an instance of our View Model ExpenseViewModel with Category information for the drop-down list and passing the Model object to View template. The extension method ToSelectListItems is shown below   public static IEnumerable<SelectListItem> ToSelectListItems(         this IEnumerable<Category> categories, int  selectedId) {     return           categories.OrderBy(category => category.Name)                 .Select(category =>                     new SelectListItem                     {                         Selected = (category.CategoryId == selectedId),                         Text = category.Name,                         Value = category.CategoryId.ToString()                     }); } In the Create action method for HttpPost, our view model object ExpenseViewModel will map with posted form input values. We need to create an instance of Expense for the persistence purpose. So we need to copy values from ExpenseViewModel object to Expense object. ASP.NET MVC futures assembly provides a static class ModelCopier that can use for copying values between Model objects. ModelCopier class has two static methods - CopyCollection and CopyModel.CopyCollection method will copy values between two collection objects and CopyModel will copy values between two model objects. We have used CopyModel method of ModelCopier class for copying values from expenseViewModel object to expense object. Finally we did a call to CreateExpense method of ExpenseService class for persisting new expense transaction. List Expense Transactions We want to list expense transactions based on a date range. So let’s create action method for filtering expense transactions with a specified date range. public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year, startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseService.GetExpenses(startDate.Value ,endDate.Value);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View(expenses); } We are using the above Index Action method for both Ajax requests and normal requests. If there is a request for Ajax, we will call the PartialView ExpenseList. Razor Views for listing Expense information Let’s create view templates in Razor for showing list of Expense information ExpenseList.cshtml @model IEnumerable<MyFinance.Domain.Expense>   <table>         <tr>             <th>Actions</th>             <th>Category</th>             <th>                 Transaction             </th>             <th>                 Date             </th>             <th>                 Amount             </th>         </tr>       @foreach (var item in Model) {              <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.ExpenseId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.ExpenseId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divExpenseList" })             </td>              <td>                 @item.Category.Name             </td>             <td>                 @item.Transaction             </td>             <td>                 @String.Format("{0:d}", item.Date)             </td>             <td>                 @String.Format("{0:F}", item.Amount)             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New Expense", "Create") |         @Html.ActionLink("Create New Category", "Create","Category")     </p> Index.cshtml @using MyFinance.Helpers; @model IEnumerable<MyFinance.Domain.Expense> @{     ViewBag.Title = "Index"; }    <h2>Expense List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery-ui.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.ui.datepicker.js")" type="text/javascript"></script> <link href="@Url.Content("~/Content/jquery-ui-1.8.6.custom.css")" rel="stylesheet" type="text/css" />      @using (Ajax.BeginForm(new AjaxOptions{ UpdateTargetId="divExpenseList", HttpMethod="Get"})) {     <table>         <tr>         <td>         <div>           Start Date: @Html.TextBox("StartDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["StartDate"].ToString())), new { @class = "ui-datepicker" })         </div>         </td>         <td><div>            End Date: @Html.TextBox("EndDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["EndDate"].ToString())), new { @class = "ui-datepicker" })          </div></td>          <td> <input type="submit" value="Search By TransactionDate" /></td>         </tr>     </table>         }   <div id="divExpenseList">             @Html.Partial("ExpenseList", Model)     </div> <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Ajax search functionality using Ajax.BeginForm The search functionality of Index view is providing Ajax functionality using Ajax.BeginForm. The Ajax.BeginForm() method writes an opening <form> tag to the response. You can use this method in a using block. In that case, the method renders the closing </form> tag at the end of the using block and the form is submitted asynchronously by using JavaScript. The search functionality will call the Index Action method and this will return partial view ExpenseList for updating the search result. We want to update the response UI for the Ajax request onto divExpenseList element. So we have specified the UpdateTargetId as "divExpenseList" in the Ajax.BeginForm method. Add jQuery DatePicker Our search functionality is using a date range so we are providing two date pickers using jQuery datepicker. You need to add reference to the following JavaScript files to working with jQuery datepicker. jquery-ui.js jquery.ui.datepicker.js For theme support for datepicker, we can use a customized CSS class. In our example we have used a CSS file “jquery-ui-1.8.6.custom.css”. For more details about the datepicker component, visit jquery UI website at http://jqueryui.com/demos/datepicker . In the jQuery ready event, we have used following JavaScript function to initialize the UI element to show date picker. <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script>   Source Code You can download the source code from http://efmvc.codeplex.com/ . Summary In this two-part series, we have created a simple web application using ASP.NET MVC 3 RTM, Razor and EF Code First CTP 5. I have demonstrated patterns and practices  such as Dependency Injection, Repository pattern, Unit of Work, ViewModel and Service Layer. My primary objective was to demonstrate different practices and options for developing web apps using ASP.NET MVC 3 and EF Code First. You can implement these approaches in your own way for building web apps using ASP.NET MVC 3. I will refactor this demo app on later time.

    Read the article

  • Include weather information in ASP.Net site from weather.com services

    - by sreejukg
    In this article, I am going to demonstrate how you can use the XMLOAP services (referred as XOAP from here onwards) provided by weather.com to display the weather information in your website. The XOAP services are available to be used for free of charge, provided you are comply with requirements from weather.com. I am writing this article from a technical point of view. If you are planning to use weather.com XOAP services in your application, please refer to the terms and conditions from weather.com website. In order to start using the XOAP services, you need to sign up the XOAP datafeed. The signing process is simple, you simply browse the url http://www.weather.com/services/xmloap.html. The URL looks similar to the following. Click on the sign up button, you will reach the registration page. Here you need to specify the site name you need to use this feed for. The form looks similar to the following. Once you fill all the mandatory information, click on save and continue button. That’s it. The registration is over. You will receive an email that contains your partner id, license key and SDK. The SDK available in a zipped format, contains the terms of use and documentation about the services available. Other than this the SDK includes the logos and icons required to display the weather information. As per the SDK, currently there are 2 types of information available through XOAP. These services are Current Conditions for over 30,000 U.S. and over 7,900 international Location IDs Updated at least Hourly Five-Day Forecast (today + 4 additional forecast days in consecutive order beginning with tomorrow) for over 30,000 U.S. and over 7,900 international Location IDs Updated at least Three Times Daily The SDK provides detailed information about the fields included in response of each service. Additionally there is a refresh rate that you need to comply with. As per the SDK, the refresh rate means the following “Refresh Rate” shall mean the maximum frequency with which you may call the XML Feed for a given LocID requesting a data set for that LocID. During the time period in between refresh periods the data must be cached by you either in the memory on your servers or in Your Desktop Application. About the Services Weather.com will provide you with access to the XML Feed over the Internet through the hostname xoap.weather.com. The weather data from the XML feed must be requested for a specific location. So you need a location ID (LOC ID). The XML feed work with 2 types of location IDs. First one is with City Identifiers and second one is using 5 Digit US postal codes. If you do not know your location ID, don’t worry, there is a location id search service available for you to retrieve the location id from city name. Since I am a resident in the Kingdom of Bahrain, I am going to retrieve the weather information for Manama(the capital of Bahrain) . In order to get the location ID for Manama, type the following URL in your address bar. http://xoap.weather.com/search/search?where=manama I got the following XML output. <?xml version="1.0" encoding="UTF-8"?> <!-- This document is intended only for use by authorized licensees of The –> <!-- Weather Channel. Unauthorized use is prohibited. Copyright 1995-2011, –> <!-- The Weather Channel Interactive, Inc. All Rights Reserved. –> <search ver="3.0">       <loc id="BAXX0001" type="1">Al Manama, Bahrain</loc> </search> You can try this with any city name, if the city is available, it will return the location id, and otherwise, it will return nothing. In order to get the weather information, from XOAP,  you need to pass certain parameters to the XOAP service. A brief about the parameters are as follows. Please refer SDK for more details. Parameter name Possible Value cc Optional, if you include this, the current condition will be returned. Value can be anything, as it will be ignored e.g. cc=* dayf If you want the forecast for 5 days, specify dayf=5 This is optional iink Value should be XOAP par Your partner id. You can find this in your registration email from weather.com prod Value should be XOAP key The license key assigned to you. This will be available in the registration email unit s or m (standard or matric or you can think of Celsius/Fahrenheit) this is optional field, if not specified the unit will be standard(s) The URL host for the XOAP service is http://xoap.weather.com. So for my purpose, I need the following request to be made to access the XOAP services. http://xoap.weather.com/weather/local/BAXX0001?cc=*&link=xoap&prod=xoap&par=*********&key=************** (The ***** to be replaced with the corresponding alternatives) The response XML have a root element “weather”. Under the root element, it has the following sections <head> - the meta data information about the weather results returned. <loc> - the location data block that provides, the information about the location for which the wheather data is retrieved. <lnks> - the 4 promotional links you need to place along with the weather display. Additional to these 4 links, there should be another link with weather channel logo to the home page of weather.com. <cc> - the current condition data. This element will be there only if you specify the cc element in the request. <dayf> - the forcast data as you specified. This element will be there only if you specify the dayf in the request. In this walkthrough, I am going to capture the weather information for Manama (Location ID: BAXX0001). You need 2 applications to display weather information in your website. A Console application that retrieves data from the XMLOAP and store in the SQL Server database (or any data store as you prefer).This application will be scheduled to execute in every 25 minutes using windows task scheduler, so that we can comply with the refresh rate. A web application that display data from the SQL Server database Retrieve the Weather from XOAP I have created a console application named, Weather Service. I created a SQL server database, with the following columns. I named the table as tblweather. You are free to choose any name. Column name Description lastUpdated Datetime, this is the last time when the weather data is updated. This is the time of the service running TemparatureDateTime The date and time returned by XML feed Temparature The temperature returned by the XML feed. TemparatureUnit The unit of the temperature returned by the XML feed iconId The id of the icon to be used. Currently 48 icons from 0 to 47 are available. WeatherDescription The Weather Description Phrase returned by the feed. Link1url The url to the first promo link Link1Text The text for the first promo link Link2url The url to the second promo link Link2Text The text for the second promo link Link3url The url to the third promo link Link3Text The text for the third promo link Link4url The url to the fourth promo link Link4Text The text for the fourth promo link Every time when the service runs, the application will update the database columns from the XOAP data feed. When the application starts, It is going to get the data as XML from the url. This demonstration uses LINQ to extract the necessary data from the fetched XML. The following are the code segment for extracting data from the weather XML using LINQ. // first, create an instance of the XDocument class with the XOAP URL. replace **** with the corresponding values. XDocument weather = XDocument.Load("http://xoap.weather.com/weather/local/BAXX0001?cc=*&link=xoap&prod=xoap&par=***********&key=c*********"); // construct a query using LINQ var feedResult = from item in weather.Descendants() select new { unit = item.Element("head").Element("ut").Value, temp = item.Element("cc").Element("tmp").Value, tempDate = item.Element("cc").Element("lsup").Value, iconId = item.Element("cc").Element("icon").Value, description = item.Element("cc").Element("t").Value, links = from link in item.Elements("lnks").Elements("link") select new { url = link.Element("l").Value, text = link.Element("t").Value } }; // Load the root node to a variable, you may use foreach construct instead. var item1 = feedResult.First(); *If you want to learn more about LINQ and XML, read this nice blog from Scott GU. http://weblogs.asp.net/scottgu/archive/2007/08/07/using-linq-to-xml-and-how-to-build-a-custom-rss-feed-reader-with-it.aspx Now you have all the required values in item1. For e.g. if you want to get the temperature, use item1.temp; Now I just need to execute an SQL query against the database. See the connection part. using (SqlConnection conn = new SqlConnection(@"Data Source=sreeju\sqlexpress;Initial Catalog=Sample;Integrated Security=True")) { string strSql = @"update tblweather set lastupdated=getdate(), temparatureDateTime = @temparatureDateTime, temparature=@temparature, temparatureUnit=@temparatureUnit, iconId = @iconId, description=@description, link1url=@link1url, link1text=@link1text, link2url=@link2url, link2text=@link2text,link3url=@link3url, link3text=@link3text,link4url=@link4url, link4text=@link4text"; SqlCommand comm = new SqlCommand(strSql, conn); comm.Parameters.AddWithValue("temparatureDateTime", item1.tempDate); comm.Parameters.AddWithValue("temparature", item1.temp); comm.Parameters.AddWithValue("temparatureUnit", item1.unit); comm.Parameters.AddWithValue("description", item1.description); comm.Parameters.AddWithValue("iconId", item1.iconId); var lstLinks = item1.links; comm.Parameters.AddWithValue("link1url", lstLinks.ElementAt(0).url); comm.Parameters.AddWithValue("link1text", lstLinks.ElementAt(0).text); comm.Parameters.AddWithValue("link2url", lstLinks.ElementAt(1).url); comm.Parameters.AddWithValue("link2text", lstLinks.ElementAt(1).text); comm.Parameters.AddWithValue("link3url", lstLinks.ElementAt(2).url); comm.Parameters.AddWithValue("link3text", lstLinks.ElementAt(2).text); comm.Parameters.AddWithValue("link4url", lstLinks.ElementAt(3).url); comm.Parameters.AddWithValue("link4text", lstLinks.ElementAt(3).text); conn.Open(); comm.ExecuteNonQuery(); conn.Close(); Console.WriteLine("database updated"); } Now click ctrl + f5 to run the service. I got the following output Check your database and make sure, the data is updated with the latest information from the service. (Make sure you inserted one row in the database by entering some values before executing the service. Otherwise you need to modify your application code to count the rows and conditionally perform insert/update query) Display the Weather information in ASP.Net page Now you got all the data in the database. You just need to create a web application and display the data from the database. I created a new ASP.Net web application with a default.aspx page. In order to comply with the terms of weather.com, You need to use Weather.com logo along with the weather display. You can find the necessary logos to use under the folder “logos” in the SDK. Additionally copy any of the icon set from the folder “icons” to your web application. I used the 93x93 icon set. You are free to use any other sizes available. The design view of the page in VS2010 looks similar to the following. The page contains a heading, an image control (for displaying the weather icon), 2 label controls (for displaying temperature and weather description), 4 hyperlinks (for displaying the 4 promo links returned by the XOAP service) and weather.com logo with hyperlink to the weather.com home page. I am going to write code that will update the values of these controls from the values stored in the database by the service application as mentioned in the previous step. Go to the code behind file for the webpage, enter the following code under Page_Load event handler. using (SqlConnection conn = new SqlConnection(@"Data Source=sreeju\sqlexpress;Initial Catalog=Sample;Integrated Security=True")) { SqlCommand comm = new SqlCommand("select top 1 * from tblweather", conn); conn.Open(); SqlDataReader reader = comm.ExecuteReader(); if (reader.Read()) { lblTemparature.Text = reader["temparature"].ToString() + "&deg;" + reader["temparatureUnit"].ToString(); lblWeatherDescription.Text = reader["description"].ToString(); imgWeather.ImageUrl = "icons/" + reader["iconId"].ToString() + ".png"; lnk1.Text = reader["link1text"].ToString(); lnk1.NavigateUrl = reader["link1url"].ToString(); lnk2.Text = reader["link2text"].ToString(); lnk2.NavigateUrl = reader["link2url"].ToString(); lnk3.Text = reader["link3text"].ToString(); lnk3.NavigateUrl = reader["link3url"].ToString(); lnk4.Text = reader["link4text"].ToString(); lnk4.NavigateUrl = reader["link4url"].ToString(); } conn.Close(); } Press ctrl + f5 to run the page. You will see the following output. That’s it. You need to configure the console application to run every 25 minutes so that the database is updated. Also you can fetch the forecast information and store those in the database, and then retrieve it later in your web page. Since the data resides in your database, you have the full control over your display. You need to make sure your website comply with weather.com license requirements. If you want to get the source code of this walkthrough through the application, post your email address below. Hope you enjoy the reading.

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • Azure WNS to Win8 - Push Notifications for Metro Apps

    - by JoshReuben
    Background The Windows Azure Toolkit for Windows 8 allows you to build a Windows Azure Cloud Service that can send Push Notifications to registered Metro apps via Windows Notification Service (WNS). Some configuration is required - you need to: Register the Metro app for Windows Live Application Management Provide Package SID & Client Secret to WNS Modify the Azure Cloud App cscfg file and the Metro app package.appxmanifest file to contain matching Metro package name, SID and client secret. The Mechanism: These notifications take the form of XAML Tile, Toast, Raw or Badge UI notifications. The core engine is provided via the WNS nuget recipe, which exposes an API for constructing payloads and posting notifications to WNS. An application receives push notifications by requesting a notification channel from WNS, which returns a channel URI that the application then registers with a cloud service. In the cloud service, A WnsAccessTokenProvider authenticates with WNS by providing its credentials, the package SID and secret key, and receives in return an access token that the provider caches and can reuse for multiple notification requests. The cloud service constructs a notification request by filling out a template class that contains the information that will be sent with the notification, including text and image references. Using the channel URI of a registered client, the cloud service can then send a notification whenever it has an update for the user. The package contains the NotificationSendUtils class for submitting notifications. The Windows Azure Toolkit for Windows 8 (WAT) provides the PNWorker sample pair of solutions - The Azure server side contains a WebRole & a WorkerRole. The WebRole allows submission of new push notifications into an Azure Queue which the WorkerRole extracts and processes. Further background resources: http://watwindows8.codeplex.com/ - Windows Azure Toolkit for Windows 8 http://watwindows8.codeplex.com/wikipage?title=Push%20Notification%20Worker%20Sample - WAT WNS sample setup http://watwindows8.codeplex.com/wikipage?title=Using%20the%20Windows%208%20Cloud%20Application%20Services%20Application – using Windows 8 with Cloud Application Services A bit of Configuration Register the Metro apps for Windows Live Application Management From the current app manifest of your metro app Publish tab, copy the Package Display Name and the Publisher From: https://manage.dev.live.com/Build/ Package name: <-- we need to change this Client secret: keep this Package Security Identifier (SID): keep this Verify the app here: https://manage.dev.live.com/Applications/Index - so this step is done "If you wish to send push notifications in your application, provide your Package Security Identifier (SID) and client secret to WNS." Provide Package SID & Client Secret to WNS http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx - How to authenticate with WNS https://appdev.microsoft.com/StorePortals/en-us/Account/Signup/PurchaseSubscription - register app with dashboard - need registration code or register a new account & pay $170 shekels http://msdn.microsoft.com/en-us/library/windows/apps/hh868184.aspx - Registering for a Windows Store developer account http://msdn.microsoft.com/en-us/library/windows/apps/hh868187.aspx - Picking a Microsoft account for the Windows Store The WNS Nuget Recipe The WNS Recipe is a nuget package that provides an API for authenticating against WNS, constructing payloads and posting notifications to WNS. After installing this package, a WnsRecipe assembly is added to project references. To send notifications using WNS, first register the application at the Windows Push Notifications & Live Connect portal to obtain Package Security Identifier (SID) and a secret key that your cloud service uses to authenticate with WNS. An application receives push notifications by requesting a notification channel from WNS, which returns a channel URI that the application then registers with a cloud service. In the cloud service, the WnsAccessTokenProvider authenticates with WNS by providing its credentials, the package SID and secret key, and receives in return an access token that the provider caches and can reuse for multiple notification requests. The cloud service constructs a notification request by filling out a template class that contains the information that will be sent with the notification, including text and image references.Using the channel URI of a registered client, the cloud service can then send a notification whenever it has an update for the user. var provider = new WnsAccessTokenProvider(clientId, clientSecret); var notification = new ToastNotification(provider) {     ToastType = ToastType.ToastText02,     Text = new List<string> { "blah"} }; notification.Send(channelUri); the WNS Recipe is instrumented to write trace information via a trace listener – configuratively or programmatically from Application_Start(): WnsDiagnostics.Enable(); WnsDiagnostics.TraceSource.Listeners.Add(new DiagnosticMonitorTraceListener()); WnsDiagnostics.TraceSource.Switch.Level = SourceLevels.Verbose; The WAT PNWorker Sample The Azure server side contains a WebRole & a WorkerRole. The WebRole allows submission of new push notifications into an Azure Queue which the WorkerRole extracts and processes. Overview of Push Notification Worker Sample The toolkit includes a sample application based on the same solution structure as the one created by theWindows 8 Cloud Application Services project template. The sample demonstrates how to off-load the job of sending Windows Push Notifications using a Windows Azure worker role. You can find the source code in theSamples\PNWorker folder. This folder contains a full version of the sample application showing how to use Windows Push Notifications using ASP.NET Membership as the authentication mechanism. The sample contains two different solution files: WATWindows.Azure.sln: This solution must be opened with Visual Studio 2010 and contains the projects related to the Windows Azure web and worker roles. WATWindows.Client.sln: This solution must be opened with Visual Studio 11 and contains the Windows Metro style application project. Only Visual Studio 2010 supports Windows Azure cloud projects so you currently need to use this edition to launch the server application. This will change in a future release of the Windows Azure tools when support for Visual Studio 11 is enabled. Important: Setting up the PNWorker Sample Before running the PNWorker sample, you need to register the application and configure it: 1. Register the app: To register your application, go to the Windows Live Application Management site for Metro style apps at https://manage.dev.live.com/build and sign in with your Windows Live ID. In the Windows Push Notifications & Live Connect page, enter the following information. Package Display Name PNWorker.Sample Publisher CN=127.0.0.1, O=TESTING ONLY, OU=Windows Azure DevFabric 2. 3. Once you register the application, make a note of the values shown in the portal for Client Secret,Package Name and Package SID. 4. Configure the app - double-click the SetupSample.cmd file located inside the Samples\PNWorker folder to launch a tool that will guide you through the process of configuring the sample. setup runs a PowerShell script that requires running with administration privileges to allow the scripts to execute in your machine. When prompted, enter the Client Secret, Package Name, and Package Security Identifier you obtained previously and wait until the tool finishes configuring your sample. Running the PNWorker Sample To run this sample, you must run both the client and the server application projects. 1. Open Visual Studio 2010 as an administrator. Open the WATWindows.Azure.sln solution. Set the start-up project of the solution as the cloud project. Run the app in the dev fabric to test. 2. Open Visual Studio 11 and open the WATWindows.Client.sln solution. Run the Metro client application. In the client application, click Reopen channel and send to server. à the application opens the channel and registers it with the cloud application, & the Output area shows the channel URI. 3. Refresh the WebRole's Push Notifications page to see the UI list the newly registered client. 4. Send notifications to the client application by clicking the Send Notification button. Setup 3 command files + 1 powershell script: SetupSample.cmd –> SetupWPNS.vbs –> SetupWPNS.cmd –> SetupWPNS.UpdateWPNSCredentialsInServiceConfiguration.ps1 appears to set PackageName – from manifest Client Id package security id (SID) – from registration Client Secret – from registration The following configs are modified: WATWindows\ServiceConfiguration.Cloud.cscfg WATWindows\ServiceConfiguration.Local.cscfg WATWindows.Client\package.appxmanifest WatWindows.Notifications A class library – it references the following WNS DLL: C:\WorkDev\CountdownValue\AzureToolkits\WATWindows8\Samples\PNWorker\packages\WnsRecipe.0.0.3.0\lib\net40\WnsRecipe.dll NotificationJobRequest A DataContract for triggering notifications:     using System.Runtime.Serialization; using Microsoft.Windows.Samples.Notifications;     [DataContract]     [KnownType(typeof(WnsAccessTokenProvider))] public class NotificationJobRequest     {               [DataMember] public bool ProcessAsync { get; set; }          [DataMember] public string Payload { get; set; }         [DataMember] public string ChannelUrl { get; set; }         [DataMember] public NotificationType NotificationType { get; set; }         [DataMember] public IAccessTokenProvider AccessTokenProvider { get; set; }         [DataMember] public NotificationSendOptions NotificationSendOptions{ get; set; }     } Investigated these types: WnsAccessTokenProvider – a DataContract that contains the client Id and client secret NotificationType – an enum that can be: Tile, Toast, badge, Raw IAccessTokenProvider – get or reset the access token NotificationSendOptions – SecondsTTL, NotificationPriority (enum), isCache, isRequestForStatus, Tag   There is also a NotificationJobSerializer class which basically wraps a DataContractSerializer serialization / deserialization of NotificationJobRequest The WNSNotificationJobProcessor class This class wraps the NotificationSendUtils API – it periodically extracts any NotificationJobRequest objects from a CloudQueue and submits them to WNS. The ProcessJobMessageRequest method – this is the punchline: it will deserialize a CloudQueueMessage into a NotificationJobRequest & send pass its contents to NotificationUtils to SendAsynchronously / SendSynchronously, (and then dequeue the message).     public override void ProcessJobMessageRequest(CloudQueueMessage notificationJobMessageRequest)         { Trace.WriteLine("Processing a new Notification Job Request", "Information"); NotificationJobRequest pushNotificationJob =                 NotificationJobSerializer.Deserialize(notificationJobMessageRequest.AsString); if (pushNotificationJob != null)             { if (pushNotificationJob.ProcessAsync)                 { Trace.WriteLine("Sending the notification asynchronously", "Information"); NotificationSendUtils.SendAsynchronously( new Uri(pushNotificationJob.ChannelUrl),                         pushNotificationJob.AccessTokenProvider,                         pushNotificationJob.Payload,                         result => this.ProcessSendResult(pushNotificationJob, result),                         result => this.ProcessSendResultError(pushNotificationJob, result),                         pushNotificationJob.NotificationType,                         pushNotificationJob.NotificationSendOptions);                 } else                 { Trace.WriteLine("Sending the notification synchronously", "Information"); NotificationSendResult result = NotificationSendUtils.Send( new Uri(pushNotificationJob.ChannelUrl),                         pushNotificationJob.AccessTokenProvider,                         pushNotificationJob.Payload,                         pushNotificationJob.NotificationType,                         pushNotificationJob.NotificationSendOptions); this.ProcessSendResult(pushNotificationJob, result);                 }             } else             { Trace.WriteLine("Could not deserialize the notification job", "Error");             } this.queue.DeleteMessage(notificationJobMessageRequest);         } Investigation of NotificationSendUtils class - This is the engine – it exposes Send and a SendAsyncronously overloads that take the following params from the NotificationJobRequest: Channel Uri AccessTokenProvider Payload NotificationType NotificationSendOptions WebRole WebRole is a large MVC project – it references WatWindows.Notifications as well as the following WNS DLL: \AzureToolkits\WATWindows8\Samples\PNWorker\packages\WnsRecipe.0.0.3.0\lib\net40\NotificationsExtensions.dll Controllers\PushNotificationController.cs Notification related namespaces:     using Notifications;     using NotificationsExtensions;     using NotificationsExtensions.BadgeContent;     using NotificationsExtensions.RawContent;     using NotificationsExtensions.TileContent;     using NotificationsExtensions.ToastContent;     using Windows.Samples.Notifications; TokenProvider – initialized from the Azure RoleEnvironment:   IAccessTokenProvider tokenProvider = new WnsAccessTokenProvider(         RoleEnvironment.GetConfigurationSettingValue("WNSPackageSID"),         RoleEnvironment.GetConfigurationSettingValue("WNSClientSecret")); SendNotification method – calls QueuePushMessage method to create and serialize a NotificationJobRequest and enqueue it in a CloudQueue [HttpPost]         public ActionResult SendNotification(             [ModelBinder(typeof(NotificationTemplateModelBinder))] INotificationContent notification,             string channelUrl,             NotificationPriority priority = NotificationPriority.Normal)         {             var payload = notification.GetContent();             var options = new NotificationSendOptions()             {                 Priority = priority             };             var notificationType =                 notification is IBadgeNotificationContent ? NotificationType.Badge :                 notification is IRawNotificationContent ? NotificationType.Raw :                 notification is ITileNotificationContent ? NotificationType.Tile :                 NotificationType.Toast;             this.QueuePushMessage(payload, channelUrl, notificationType, options);             object response = new             {                 Status = "Queued for delivery to WNS"             };             return this.Json(response);         } GetSendTemplate method: Create the cshtml partial rendering based on the notification type     [HttpPost]         public ActionResult GetSendTemplate(NotificationTemplateViewModel templateOptions)         {             PartialViewResult result = null;             switch (templateOptions.NotificationType)             {                 case "Badge":                     templateOptions.BadgeGlyphValueContent = Enum.GetNames(typeof( GlyphValue));                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;                 case "Raw":                     ViewBag.ViewData = templateOptions;                     result = PartialView("_Raw");                     break;                 case "Toast":                     templateOptions.TileImages = this.blobClient.GetAllBlobsInContainer(ConfigReader.GetConfigValue("TileImagesContainer")).OrderBy(i => i.FileName).ToList();                     templateOptions.ToastAudioContent = Enum.GetNames(typeof( ToastAudioContent));                     templateOptions.Priorities = Enum.GetNames(typeof( NotificationPriority));                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;                 case "Tile":                     templateOptions.TileImages = this.blobClient.GetAllBlobsInContainer(ConfigReader.GetConfigValue("TileImagesContainer")).OrderBy(i => i.FileName).ToList();                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;             }             return result;         } Investigated these types: ToastAudioContent – an enum of different Win8 sound effects for toast notifications GlyphValue – an enum of different Win8 icons for badge notifications · Infrastructure\NotificationTemplateModelBinder.cs WNS Namespace references     using NotificationsExtensions.BadgeContent;     using NotificationsExtensions.RawContent;     using NotificationsExtensions.TileContent;     using NotificationsExtensions.ToastContent; Various NotificationFactory derived types can server as bindable models in MVC for creating INotificationContent types. Default values are also set for IWideTileNotificationContent & IToastNotificationContent. Type factoryType = null;             switch (notificationType)             {                 case "Badge":                     factoryType = typeof(BadgeContentFactory);                     break;                 case "Tile":                     factoryType = typeof(TileContentFactory);                     break;                 case "Toast":                     factoryType = typeof(ToastContentFactory);                     break;                 case "Raw":                     factoryType = typeof(RawContentFactory);                     break;             } Investigated these types: BadgeContentFactory – CreateBadgeGlyph, CreateBadgeNumeric (???) TileContentFactory – many notification content creation methods , apparently one for every tile layout type ToastContentFactory – many notification content creation methods , apparently one for every toast layout type RawContentFactory – passing strings WorkerRole WNS Namespace references using Notifications; using Notifications.WNS; using Windows.Samples.Notifications; OnStart() Method – on Worker Role startup, initialize the NotificationJobSerializer, the CloudQueue, and the WNSNotificationJobProcessor _notificationJobSerializer = new NotificationJobSerializer(); _cloudQueueClient = this.account.CreateCloudQueueClient(); _pushNotificationRequestsQueue = _cloudQueueClient.GetQueueReference(ConfigReader.GetConfigValue("RequestQueueName")); _processor = new WNSNotificationJobProcessor(_notificationJobSerializer, _pushNotificationRequestsQueue); Run() Method – poll the Azure Queue for NotificationJobRequest messages & process them:   while (true)             { Trace.WriteLine("Checking for Messages", "Information"); try                 { Parallel.ForEach( this.pushNotificationRequestsQueue.GetMessages(this.batchSize), this.processor.ProcessJobMessageRequest);                 } catch (Exception e)                 { Trace.WriteLine(e.ToString(), "Error");                 } Trace.WriteLine(string.Format("Sleeping for {0} seconds", this.pollIntervalMiliseconds / 1000)); Thread.Sleep(this.pollIntervalMiliseconds);                                            } How I learned to appreciate Win8 There is really only one application architecture for Windows 8 apps: Metro client side and Azure backend – and that is a good thing. With WNS, tier integration is so automated that you don’t even have to leverage a HTTP push API such as SignalR. This is a pretty powerful development paradigm, and has changed the way I look at Windows 8 for RAD business apps. When I originally looked at Win8 and the WinRT API, my first opinion on Win8 dev was as follows – GOOD:WinRT, WRL, C++/CX, WinJS, XAML (& ease of Direct3D integration); BAD: low projected market penetration,.NET lobotomized (Only 8% of .NET 4.5 classes can be used in Win8 non-desktop apps - http://bit.ly/HRuJr7); UGLY:Metro pascal tiles! Perhaps my 80s teenage years gave me a punk reactionary sense of revulsion towards the Partridge Family 70s style that Metro UX seems to have appropriated: On second thought though, it simplifies UI dev to a single paradigm (although UX guys will need to change career) – you will not find an easier app dev environment. Speculation: If LightSwitch is going to support HTML5 client app generation, then its a safe guess to say that vnext will support Win8 Metro XAML - a much easier port from Silverlight XAML. Given the VS2012 LightSwitch integration as a thumbs up from the powers that be at MS, and given that Win8 C#/XAML Metro apps tend towards a streamlined 'golden straight-jacket' cookie cutter app dev style with an Azure back-end supporting Win8 push notifications... --> its easy to extrapolate than LightSwitch vnext could well be the Win8 Metro XAML to Azure RAD tool of choice! The hook is already there - :) Why else have the space next to the HTML Client box? This high level of application development abstraction will facilitate rapid app cookie-cutter architecture-infrastructure frameworks for wrapping any app. This will allow me to avoid too much XAML code-monkeying around & focus on my area of interest: Technical Computing.

    Read the article

  • The Benefits of Smart Grid Business Software

    - by Sylvie MacKenzie, PMP
    Smart Grid Background What Are Smart Grids?Smart Grids use computer hardware and software, sensors, controls, and telecommunications equipment and services to: Link customers to information that helps them manage consumption and use electricity wisely. Enable customers to respond to utility notices in ways that help minimize the duration of overloads, bottlenecks, and outages. Provide utilities with information that helps them improve performance and control costs. What Is Driving Smart Grid Development? Environmental ImpactSmart Grid development is picking up speed because of the widespread interest in reducing the negative impact that energy use has on the environment. Smart Grids use technology to drive efficiencies in transmission, distribution, and consumption. As a result, utilities can serve customers’ power needs with fewer generating plants, fewer transmission and distribution assets,and lower overall generation. With the possible exception of wind farm sprawl, landscape preservation is one obvious benefit. And because most generation today results in greenhouse gas emissions, Smart Grids reduce air pollution and the potential for global climate change.Smart Grids also more easily accommodate the technical difficulties of integrating intermittent renewable resources like wind and solar into the grid, providing further greenhouse gas reductions. CostsThe ability to defer the cost of plant and grid expansion is a major benefit to both utilities and customers. Utilities do not need to use as many internal resources for traditional infrastructure project planning and management. Large T&D infrastructure expansion costs are not passed on to customers.Smart Grids will not eliminate capital expansion, of course. Transmission corridors to connect renewable generation with customers will require major near-term expenditures. Additionally, in the future, electricity to satisfy the needs of population growth and additional applications will exceed the capacity reductions available through the Smart Grid. At that point, expansion will resume—but with greater overall T&D efficiency based on demand response, load control, and many other Smart Grid technologies and business processes. Energy efficiency is a second area of Smart Grid cost saving of particular relevance to customers. The timely and detailed information Smart Grids provide encourages customers to limit waste, adopt energy-efficient building codes and standards, and invest in energy efficient appliances. Efficiency may or may not lower customer bills because customer efficiency savings may be offset by higher costs in generation fuels or carbon taxes. It is clear, however, that bills will be lower with efficiency than without it. Utility Operations Smart Grids can serve as the central focus of utility initiatives to improve business processes. Many utilities have long “wish lists” of projects and applications they would like to fund in order to improve customer service or ease staff’s burden of repetitious work, but they have difficulty cost-justifying the changes, especially in the short term. Adding Smart Grid benefits to the cost/benefit analysis frequently tips the scales in favor of the change and can also significantly reduce payback periods.Mobile workforce applications and asset management applications work together to deploy assets and then to maintain, repair, and replace them. Many additional benefits result—for instance, increased productivity and fuel savings from better routing. Similarly, customer portals that provide customers with near-real-time information can also encourage online payments, thus lowering billing costs. Utilities can and should include these cost and service improvements in the list of Smart Grid benefits. What Is Smart Grid Business Software? Smart Grid business software gathers data from a Smart Grid and uses it improve a utility’s business processes. Smart Grid business software also helps utilities provide relevant information to customers who can then use it to reduce their own consumption and improve their environmental profiles. Smart Grid Business Software Minimizes the Impact of Peak Demand Utilities must size their assets to accommodate their highest peak demand. The higher the peak rises above base demand: The more assets a utility must build that are used only for brief periods—an inefficient use of capital. The higher the utility’s risk profile rises given the uncertainties surrounding the time needed for permitting, building, and recouping costs. The higher the costs for utilities to purchase supply, because generators can charge more for contracts and spot supply during high-demand periods. Smart Grids enable a variety of programs that reduce peak demand, including: Time-of-use pricing and critical peak pricing—programs that charge customers more when they consume electricity during peak periods. Pilot projects indicate that these programs are successful in flattening peaks, thus ensuring better use of existing T&D and generation assets. Direct load control, which lets utilities reduce or eliminate electricity flow to customer equipment (such as air conditioners). Contracts govern the terms and conditions of these turn-offs. Indirect load control, which signals customers to reduce the use of on-premises equipment for contractually agreed-on time periods. Smart Grid business software enables utilities to impose penalties on customers who do not comply with their contracts. Smart Grids also help utilities manage peaks with existing assets by enabling: Real-time asset monitoring and control. In this application, advanced sensors safely enable dynamic capacity load limits, ensuring that all grid assets can be used to their maximum capacity during peak demand periods. Real-time asset monitoring and control applications also detect the location of excessive losses and pinpoint need for mitigation and asset replacements. As a result, utilities reduce outage risk and guard against excess capacity or “over-build”. Better peak demand analysis. As a result: Distribution planners can better size equipment (e.g. transformers) to avoid over-building. Operations engineers can identify and resolve bottlenecks and other inefficiencies that may cause or exacerbate peaks. As above, the result is a reduction in the tendency to over-build. Supply managers can more closely match procurement with delivery. As a result, they can fine-tune supply portfolios, reducing the tendency to over-contract for peak supply and reducing the need to resort to spot market purchases during high peaks. Smart Grids can help lower the cost of remaining peaks by: Standardizing interconnections for new distributed resources (such as electricity storage devices). Placing the interconnections where needed to support anticipated grid congestion. Smart Grid Business Software Lowers the Cost of Field Services By processing Smart Grid data through their business software, utilities can reduce such field costs as: Vegetation management. Smart Grids can pinpoint momentary interruptions and tree-caused outages. Spatial mash-up tools leverage GIS models of tree growth for targeted vegetation management. This reduces the cost of unnecessary tree trimming. Service vehicle fuel. Many utility service calls are “false alarms.” Checking meter status before dispatching crews prevents many unnecessary “truck rolls.” Similarly, crews use far less fuel when Smart Grid sensors can pinpoint a problem and mobile workforce applications can then route them directly to it. Smart Grid Business Software Ensures Regulatory Compliance Smart Grids can ensure compliance with private contracts and with regional, national, or international requirements by: Monitoring fulfillment of contract terms. Utilities can use one-hour interval meters to ensure that interruptible (“non-core”) customers actually reduce or eliminate deliveries as required. They can use the information to levy fines against contract violators. Monitoring regulations imposed on customers, such as maximum use during specific time periods. Using accurate time-stamped event history derived from intelligent devices distributed throughout the smart grid to monitor and report reliability statistics and risk compliance. Automating business processes and activities that ensure compliance with security and reliability measures (e.g. NERC-CIP 2-9). Grid Business Software Strengthens Utilities’ Connection to Customers While Reducing Customer Service Costs During outages, Smart Grid business software can: Identify outages more quickly. Software uses sensors to pinpoint outages and nested outage locations. They also permit utilities to ensure outage resolution at every meter location. Size outages more accurately, permitting utilities to dispatch crews that have the skills needed, in appropriate numbers. Provide updates on outage location and expected duration. This information helps call centers inform customers about the timing of service restoration. Smart Grids also facilitates display of outage maps for customer and public-service use. Smart Grids can significantly reduce the cost to: Connect and disconnect customers. Meters capable of remote disconnect can virtually eliminate the costs of field crews and vehicles previously required to change service from the old to the new residents of a metered property or disconnect customers for nonpayment. Resolve reports of voltage fluctuation. Smart Grids gather and report voltage and power quality data from meters and grid sensors, enabling utilities to pinpoint reported problems or resolve them before customers complain. Detect and resolve non-technical losses (e.g. theft). Smart Grids can identify illegal attempts to reconnect meters or to use electricity in supposedly vacant premises. They can also detect theft by comparing flows through delivery assets with billed consumption. Smart Grids also facilitate outreach to customers. By monitoring and analyzing consumption over time, utilities can: Identify customers with unusually high usage and contact them before they receive a bill. They can also suggest conservation techniques that might help to limit consumption. This can head off “high bill” complaints to the contact center. Note that such “high usage” or “additional charges apply because you are out of range” notices—frequently via text messaging—are already common among mobile phone providers. Help customers identify appropriate bill payment alternatives (budget billing, prepayment, etc.). Help customers find and reduce causes of over-consumption. There’s no waiting for bills in the mail before they even understand there is a problem. Utilities benefit not just through improved customer relations but also through limiting the size of bills from customers who might struggle to pay them. Where permitted, Smart Grids can open the doors to such new utility service offerings as: Monitoring properties. Landlords reduce costs of vacant properties when utilities notify them of unexpected energy or water consumption. Utilities can perform similar services for owners of vacation properties or the adult children of aging parents. Monitoring equipment. Power-use patterns can reveal a need for equipment maintenance. Smart Grids permit utilities to alert owners or managers to a need for maintenance or replacement. Facilitating home and small-business networks. Smart Grids can provide a gateway to equipment networks that automate control or let owners access equipment remotely. They also facilitate net metering, offering some utilities a path toward involvement in small-scale solar or wind generation. Prepayment plans that do not need special meters. Smart Grid Business Software Helps Customers Control Energy Costs There is no end to the ways Smart Grids help both small and large customers control energy costs. For instance: Multi-premises customers appreciate having all meters read on the same day so that they can more easily compare consumption at various sites. Customers in competitive regions can match their consumption profile (detailed via Smart Grid data) with specific offerings from competitive suppliers. Customers seeing inexplicable consumption patterns and power quality problems may investigate further. The result can be discovery of electrical problems that can be resolved through rewiring or maintenance—before more serious fires or accidents happen. Smart Grid Business Software Facilitates Use of Renewables Generation from wind and solar resources is a popular alternative to fossil fuel generation, which emits greenhouse gases. Wind and solar generation may also increase energy security in regions that currently import fossil fuel for use in generation. Utilities face many technical issues as they attempt to integrate intermittent resource generation into traditional grids, which traditionally handle only fully dispatchable generation. Smart Grid business software helps solves many of these issues by: Detecting sudden drops in production from renewables-generated electricity (wind and solar) and automatically triggering electricity storage and smart appliance response to compensate as needed. Supporting industry-standard distributed generation interconnection processes to reduce interconnection costs and avoid adding renewable supplies to locations already subject to grid congestion. Facilitating modeling and monitoring of locally generated supply from renewables and thus helping to maximize their use. Increasing the efficiency of “net metering” (through which utilities can use electricity generated by customers) by: Providing data for analysis. Integrating the production and consumption aspects of customer accounts. During non-peak periods, such techniques enable utilities to increase the percent of renewable generation in their supply mix. During peak periods, Smart Grid business software controls circuit reconfiguration to maximize available capacity. Conclusion Utility missions are changing. Yesterday, they focused on delivery of reasonably priced energy and water. Tomorrow, their missions will expand to encompass sustainable use and environmental improvement.Smart Grids are key to helping utilities achieve this expanded mission. But they come at a relatively high price. Utilities will need to invest heavily in new hardware, software, business process development, and staff training. Customer investments in home area networks and smart appliances will be large. Learning to change the energy and water consumption habits of a lifetime could ultimately prove even more formidable tasks.Smart Grid business software can ease the cost and difficulties inherent in a needed transition to a more flexible, reliable, responsive electricity grid. Justifying its implementation, however, requires a full understanding of the benefits it brings—benefits that can ultimately help customers, utilities, communities, and the world address global issues like energy security and climate change while minimizing costs and maximizing customer convenience. This white paper is available for download here. For further information about Oracle's Primavera Solutions for Utilities, please read our Utilities e-book.

    Read the article

  • BING Search using ASP.NET and jQuery Ajax

    - by hajan
    The BING API provides extremely simple way to make search queries using BING. It provides nice way to get the search results as XML or JSON. In this blog post I will show one simple example on how to query BING and get the results as JSON in an ASP.NET website with help of jQuery’s getJSON ajax method. Basically we submit an HTTP GET request with the AppID which you can get in the BING Developer Center. To create new AppID, click here. Once you fill the form, submit it and you will get your AppID. Now, lets make this work in several steps. 1. Open VS.NET or Visual Web Developer.NET, create new sample project (or use existing one) and create new ASPX Web Form with name of your choice. 2. Add the following ASPX in your page body <body>     <form id="form1" runat="server">     <asp:TextBox ID="txtSearch" runat="server" /> <asp:Button ID="btnSearch" runat="server" Text="BING Search" />     <div id="result">          </div>     </form> </body> We have text box for search, button for firing the search event and div where we will place the results. 3. Next, I have created simple CSS style for the search result: <style type="text/css">             .item { width:600px; padding-top:10px; }             .title { background-color:#4196CE; color:White; font-size:18px;              font-family:Calibri, Verdana, Tahoma, Sans-Serif; padding:2px 2px 2px 2px; }     .title a { text-decoration:none; color:white}     .date { font-style:italic; font-size:10px; font-family:Verdana, Arial, Sans-Serif;}             .description { font-family:Verdana, Arial, Sans-Serif; padding:2px 2px 2px 2px; font-size:12px; }     .url { font-size: 10px; font-style:italic; font-weight:bold; color:Gray;}     .url a { text-decoration:none; color:gray;}     #txtSearch { width:450px; border:2px solid #4196CE; } </style> 4. The needed jQuery Scripts (v1.4.4 core jQuery and jQuery template plugin) <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.min.js" type="text/javascript"></script> <script src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.min.js" type="text/javascript"></script> Note: I use jQuery Templates plugin in order to avoid foreach loop in the jQuery callback function. JQuery Templates also simplifies the code and allows us to create nice template for the end result. You can read more about jQuery Templates here. 5. Now, lets create another script tag where we will write our BING search script <script language="javascript" type="text/javascript">     $(document).ready(function () {         var bingAPIKey = "<Your-BING-AppID-KEY-HERE>";                  //the rest of the script goes here              }); </script> 6. Before we do any searching, we need to take a look at the search URL that we will call from our Ajax function BING Search URL : http://api.search.live.net/json.aspx?JsonType=callback&JsonCallback=?&AppId={appId}&query={query}&sources={sourceType} The URL in our example is as follows: http://api.search.live.net/json.aspx?JsonType=callback&JsonCallback=?&Appid=" + bingAPIKey + "&query=" + keyWords + "&sources=web Lets split it up with brief explanation on each part of the URL http://api.search.live.net/json.aspx – is the main part of the URL which is used to call when we need to retrieve json result set. JsonType=callback&JsonCallback=? – using JsonType, we can control the format of the response. For more info about this, refer here. Appid=” + bingAPIKey +” – the AppID we’ve got from the BING website, explained previously query=” + keyWords + “ – the search query keywords sources=web – the type of source. Possible source types can be found here. 7. Before we continue with writing the last part of the script, lets see what search result BING will send us back: {"SearchResponse":     {         "Version":"2.2",         "Query":             {                 "SearchTerms":"hajan selmani aspnet weblog"             },         "Web":             {                 "Total":16,                 "Offset":0,                 "Results":[                     {                         "Title":"Hajan's Blog",                         "Description":"microsoft asp.net development blog ... Create nice animation on your ASP.NET Menu control using jQuery by hajan",                         "Url":"http:\/\/weblogs.asp.net\/hajan\/",                         "CacheUrl":"http:\/\/cc.bingj.com\/cache.aspx?q=hajan+selmani+aspnet+weblog&d=4760941354158132&w=c9535fb0,d1d66baa",                         "DisplayUrl":"weblogs.asp.net\/hajan",                         "DateTime":"2011-03-03T18:24:00Z"                     },                     {                         "Title":"codeasp.net",                         "Description":"... social community for ASP.NET bloggers - we are one of                                         the largest ASP.NET blog ... 2\/5\/2011 1:41:00 AM by Hajan Selmani - Comments ...",                         "Url":"http:\/\/codeasp.net\/blogs\/hajan",                         "CacheUrl":"http:\/\/cc.bingj.com\/cache.aspx?q=hajan+selmani+aspnet+weblog&d=4826710187311653&w=5b41c930,676a37f8",                         "DisplayUrl":"codeasp.net\/blogs\/hajan",                         "DateTime":"2011-03-03T07:40:00Z"                     }                     ...                         ]             }     } }  To get to the result of the search response, the path is: SearchResponse.Web.Results, where we have array of objects returned back from BING. 8. The final part of the code that performs the search is $("#<%= btnSearch.ClientID %>").click(function (event) {     event.preventDefault();     var keyWords = $("#<%= txtSearch.ClientID %>").val();     var encodedKeyWords = encodeURIComponent(keyWords);     //alert(keyWords);     var url = "http://api.search.live.net/json.aspx?JsonType=callback&JsonCallback=?&Appid="+ bingAPIKey              + "&query=" + encodedKeyWords              + "&sources=web";     $.getJSON(url, function (data) {         $("#result").html("");         $("#bingSearchTemplate").tmpl(data.SearchResponse.Web.Results).appendTo("#result");     }); }); The search happens once we click the Search Button with id btnSearch. We get the keywords from the Text Box with id txtSearch and then we use encodeURIComponent. The encodeURIComponent is used to encode the special characters such as: , / ? : @ & = + $ #, which might be part of the search query string. Then we construct the URL and call it using HTTP GET. The callback function returns the data, where we first clear the html inside div with id result and after that we render the data.SearchResponse.Web.Results array of objects using template with id bingSearchTemplate and append the result into div with id result. 9. The bingSearchTemplate Template <script id="bingSearchTemplate" type="text/html">     <div class="item">         <div class="title"><a href="${Url}" target="_blank">${Title}</a></div>         <div class="date">${DateTime}</div>         <div class="searchresult">             <div class="description">             ${Description}             </div>             <div class="url">                 <a href="${Url}" target="_blank">${Url}</a>             </div>         </div>     </div> </script> If you paid attention on the search result structure that BING creates for us, you have seen properties like Url, Title, Description, DateTime etc. In the above defined template, you see the same wrapped into template tags. Some are combined to create hyperlinked URLs. 10. THE END RESULT   As you see, it’s quite simple to use BING API and make search queries with ASP.NET and jQuery. In addition, if you want to make instant search, replace this line: $(“#<%= btnSearch.ClientID %>”).click(function(event) {        event.preventDefault(); with $(“#<%= txtSearch.ClientID %>”).keyup(function() { This will trigger search on each key up in your keyboard, so if you use this approach, you won’t event need a search button. If it’s your first time working with BING API, it’s very recommended to read the following API Basics PDF document. Hope this was helpful blog post for you.

    Read the article

  • The Incremental Architect&acute;s Napkin - #2 - Balancing the forces

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/02/the-incremental-architectacutes-napkin---2---balancing-the-forces.aspxCategorizing requirements is the prerequisite for ecconomic architectural decisions. Not all requirements are created equal. However, to truely understand and describe the requirement forces pulling on software development, I think further examination of the requirements aspects is varranted. Aspects of Functionality There are two sides to Functionality requirements. It´s about what a software should do. I call that the Operations it implements. Operations are defined by expressions and control structures or calls to frameworks of some sort, i.e. (business) logic statements. Operations calculate, transform, aggregate, validate, send, receive, load, store etc. Operations are about behavior; they take input and produce output by considering state. I´m not using the term “function” here, because functions - or methods or sub-programs - are not necessary to implement Operations. Functions belong to a different sub-aspect of requirements (see below). Operations alone are not enough, though, to make a customer happy with regard to his/her Functionality requirements. Only correctly implemented Operations provide full value. This should make clear, why testing is so important. And not just manual tests during development of some operational feature, but automated tests. Because only automated tests scale when over time the number of operations increases. Without automated tests there is no guarantee formerly correct operations are still correct after more got added. To retest all previous operations manually is infeasible. So whoever relies just on manual tests is not really balancing the two forces Operations and Correctness. With manual tests more weight is put on the side of the scale of Operations. That might be ok for a short period of time - but in the long run it will bite you. You need to plan for Correctness in the long run from the first day of your project on. Aspects of Quality As important as Functionality is, it´s not the driver for software development. No software has ever been written to just implement some operation in code. We don´t need computers just to do something. All computers can do with software we can do without them. Well, at least given enough time and resources. We could calculate the most complex formulas without computers. We could do auctions with millions of people without computers. The only reason we want computers to help us with this and a million other Operations is… We don´t want to wait for the results very long. Or we want less errors. Or we want easier accessability to complicated solutions. So the main reason for customers to buy/order software is some Quality. They want some Functionality with a higher Quality (e.g. performance, scalability, usability, security…) than without the software. But Qualities come in at least two flavors: Most important are Primary Qualities. That´s the Qualities software truely is written for. Take an online auction website for example. Its Primary Qualities are performance, scalability, and usability, I´d say. Auctions should come within reach of millions of people; setting up an auction should be very easy; finding a suitable auction and bidding on it should be as fast as possible. Only if those Qualities have been implemented does security become relevant. A secure auction website is important - but not as important as a fast auction website. Nobody would want to use the most secure auction website if it was unbearably slow. But there would be people willing to use the fastest auction website even it was lacking security. That´s why security - with regard to online auction software - is not a Primary Quality, but just a Secondary Quality. It´s a supporting quality, so to speak. It does not deliver value by itself. With a password manager software this might be different. There security might be a Primary Quality. Please get me right: I don´t want to denigrate any Quality. There´s a long list of non-functional requirements at Wikipedia. They are all created equal - but that does not mean they are equally important for all software projects. When confronted with Quality requirements check with the customer which are primary and which are secondary. That will help to make good economical decisions when in a crunch. Resources are always limited - but requirements are a bottomless ocean. Aspects of Security of Investment Functionality and Quality are traditionally the requirement aspects cared for most - by customers and developers alike. Even today, when pressure rises in a project, tunnel vision will focus on them. Any measures to create and hold up Security of Investment (SoI) will be out of the window pretty quickly. Resistance to customers and/or management is futile. As long as SoI is not placed on equal footing with Functionality and Quality it´s bound to suffer under pressure. To look closer at what SoI means will help to become more conscious about it and make customers and management aware of the risks of neglecting it. SoI to me has two facets: Production Efficiency (PE) is about speed of delivering value. Customers like short response times. Short response times mean less money spent. So whatever makes software development faster supports this requirement. This must not lead to duct tape programming and banging out features by the dozen, though. Because customers don´t just want Operations and Quality, but also Correctness. So if Correctness gets compromised by focussing too much on Production Efficiency it will fire back. Customers want PE not just today, but over the whole course of a software´s lifecycle. That means, it´s not just about coding speed, but equally about code quality. If code quality leads to rework the PE is on an unsatisfactory level. Also if code production leads to waste it´s unsatisfactory. Because the effort which went into waste could have been used to produce value. Rework and waste cost money. Rework and waste abound, however, as long as PE is not addressed explicitly with management and customers. Thanks to the Agile and Lean movements that´s increasingly the case. Nevertheless more could and should be done in many teams. Each and every developer should keep in mind that Production Efficiency is as important to the customer as Functionality and Quality - whether he/she states it or not. Making software development more efficient is important - but still sooner or later even agile projects are going to hit a glas ceiling. At least as long as they neglect the second SoI facet: Evolvability. Delivering correct high quality functionality in short cycles today is good. But not just any software structure will allow this to happen for an indefinite amount of time.[1] The less explicitly software was designed the sooner it´s going to get stuck. Big ball of mud, monolith, brownfield, legacy code, technical debt… there are many names for software structures that have lost the ability to evolve, to be easily changed to accomodate new requirements. An evolvable code base is the opposite of a brownfield. It´s code which can be easily understood (by developers with sufficient domain expertise) and then easily changed to accomodate new requirements. Ideally the costs of adding feature X to an evolvable code base is independent of when it is requested - or at least the costs should only increase linearly, not exponentially.[2] Clean Code, Agile Architecture, and even traditional Software Engineering are concerned with Evolvability. However, it seems no systematic way of achieving it has been layed out yet. TDD + SOLID help - but still… When I look at the design ability reality in teams I see much room for improvement. As stated previously, SoI - or to be more precise: Evolvability - can hardly be measured. Plus the customer rarely states an explicit expectation with regard to it. That´s why I think, special care must be taken to not neglect it. Postponing it to some large refactorings should not be an option. Rather Evolvability needs to be a core concern for every single developer day. This should not mean Evolvability is more important than any of the other requirement aspects. But neither is it less important. That´s why more effort needs to be invested into it, to bring it on par with the other aspects, which usually are much more in focus. In closing As you see, requirements are of quite different kinds. To not take that into account will make it harder to understand the customer, and to make economic decisions. Those sub-aspects of requirements are forces pulling in different directions. To improve performance might have an impact on Evolvability. To increase Production Efficiency might have an impact on security etc. No requirement aspect should go unchecked when deciding how to allocate resources. Balancing should be explicit. And it should be possible to trace back each decision to a requirement. Why is there a null-check on parameters at the start of the method? Why are there 5000 LOC in this method? Why are there interfaces on those classes? Why is this functionality running on the threadpool? Why is this function defined on that class? Why is this class depending on three other classes? These and a thousand more questions are not to mean anything should be different in a code base. But it´s important to know the reason behind all of these decisions. Because not knowing the reason possibly means waste and having decided suboptimally. And how do we ensure to balance all requirement aspects? That needs practices and transparency. Practices means doing things a certain way and not another, even though that might be possible. We´re dealing with dangerous tools here. Like a knife is a dangerous tool. Harm can be done if we use our tools in just any way at the whim of the moment. Over the centuries rules and practices have been established how to use knifes. You don´t put them in peoples´ legs just because you´re feeling like it. You hand over a knife with the handle towards the receiver. You might not even be allowed to cut round food like potatos or eggs with it. The same should be the case for dangerous tools like object-orientation, remote communication, threads etc. We need practices to use them in a way so requirements are balanced almost automatically. In addition, to be able to work on software as a team we need transparency. We need means to share our thoughts, to work jointly on mental models. So far our tools are focused on working with code. Testing frameworks, build servers, DI containers, intellisense, refactoring support… That´s all nice and well. I don´t want to miss any of that. But I think it´s not enough. We´re missing mental tools, tools for making thinking and talking about software (independently of code) easier. You might think, enough of such tools already exist like all those UML diagram types or Flow Charts. But then, isn´t it strange, hardly any team is using them to design software? Or is that just due to a lack of education? I don´t think so. It´s a matter value/weight ratio: the current mental tools are too heavy weight compared to the value they deliver. So my conclusion is, we need lightweight tools to really be able to balance requirements. Software development is complex. We need guidance not to forget important aspects. That´s like with flying an airplane. Pilots don´t just jump in and take off for their destination. Yes, there are times when they are “flying by the seats of their pants”, when they are just experts doing thing intuitively. But most of the time they are going through honed practices called checklist. See “The Checklist Manifesto” for very enlightening details on this. Maybe then I should say it like this: We need more checklists for the complex businss of software development.[3] But that´s what software development mostly is about: changing software over an unknown period of time. It needs to be corrected in order to finally provide promised operations. It needs to be enhanced to provide ever more operations and qualities. All this without knowing when it´s going to stop. Probably never - until “maintainability” hits a wall when the technical debt is too large, the brownfield too deep. Software development is not a sprint, is not a marathon, not even an ultra marathon. Because to all this there is a foreseeable end. Software development is like continuously and foreever running… ? And sometimes I dare to think that costs could even decrease over time. Think of it: With each feature a software becomes richer in functionality. So with each additional feature the chance of there being already functionality helping its implementation increases. That should lead to less costs of feature X if it´s requested later than sooner. X requested later could stand on the shoulders of previous features. Alas, reality seems to be far from this despite 20+ years of admonishing developers to think in terms of reusability.[1] ? Please don´t get me wrong: I don´t want to bog down the “art” of software development with heavyweight practices and heaps of rules to follow. The framework we need should be lightweight. It should not stand in the way of delivering value to the customer. It´s purpose is even to make that easier by helping us to focus and decreasing waste and rework. ?

    Read the article

< Previous Page | 217 218 219 220 221 222 223 224 225 226 227 228  | Next Page >