Search Results

Search found 10033 results on 402 pages for 'execution speed'.

Page 222/402 | < Previous Page | 218 219 220 221 222 223 224 225 226 227 228 229  | Next Page >

  • 10 Reasons Why Java is the Top Embedded Platform

    - by Roger Brinkley
    With the release of Oracle ME Embedded 3.2 and Oracle Java Embedded Suite, Java is now ready to fully move into the embedded developer space, what many have called the "Internet of Things". Here are 10 reasons why Java is the top embedded platform. 1. Decouples software development from hardware development cycle Development is typically split between both hardware and software in a traditional design flow . This leads to complicated co-design and requires prototype hardware to be built. This parallel and interdependent hardware / software design process typically leads to two or more re-development phases. With Embedded Java, all specific work is carried out in software, with the (processor) hardware implementation fully decoupled. This with eliminate or at least reduces the need for re-spins of software or hardware and the original development efforts can be carried forward directly into product development and validation. 2. Development and testing can be done (mostly) using standard desktop systems through emulation Because the software and hardware are decoupled it now becomes easier to test the software long before it reaches the hardware through hardware emulation. Emulation is the ability of a program in an electronic device to imitate another program or device. In the past Java tools like the Java ME SDK and the SunSPOTs Solarium provided developers with emulation for a complete set of mobile telelphones and SunSpots. This often included network interaction or in the case of SunSPOTs radio communication. What emulation does is speed up the development cycle by refining the software development process without the need of hardware. The software is fixed, redefined, and refactored without the timely expense of hardware testing. With tools like the Java ME 3.2 SDK, Embedded Java applications can be be quickly developed on Windows based platforms. In the end of course developers should do a full set of testing on the hardware as incompatibilities between emulators and hardware will exist, but the amount of time to do this should be significantly reduced. 3. Highly productive language, APIs, runtime, and tools mean quick time to market Charles Nutter probably said it best in twitter blog when he tweeted, "Every time I see a piece of C code I need to port, my heart dies a little. Then I port it to 1/4 as much Java, and feel better." The Java environment is a very complex combination of a Java Virtual Machine, the Java Language, and it's robust APIs. Combine that with the Java ME SDK for small devices or just Netbeans for the larger devices and you have a development environment where development time is reduced significantly meaning the product can be shipped sooner. Of course this is assuming that the engineers don't get slap happy adding new features given the extra time they'll have.  4. Create high-performance, portable, secure, robust, cross-platform applications easily The latest JIT compilers for the Oracle JVM approach the speed of C/C++ code, and in some memory allocation intensive circumstances, exceed it. And specifically for the embedded devices both ME Embedded and SE Embedded have been optimized for the smaller footprints.  In portability Java uses Bytecode to make the language platform independent. This creates a write once run anywhere environment that allows you to develop on one platform and execute on others and avoids a platform vendor lock in. For security, Java achieves protection by confining a Java program to a Java execution environment and not allowing it to access other parts of computer.  In variety of systems the program must execute reliably to be robust. Finally, Oracle Java ME Embedded is a cross-industry and cross-platform product optimized in release version 3.2 for chipsets based on the ARM architectures. Similarly Oracle Java SE Embedded works on a variety of ARM V5, V6, and V7, X86 and Power Architecture Linux. 5. Java isolates your apps from language and platform variations (e.g. C/C++, kernel, libc differences) This has been a key factor in Java from day one. Developers write to Java and don't have to worry about underlying differences in the platform variations. Those platform variations are being managed by the JVM. Gone are the C/C++ problems like memory corruptions, stack overflows, and other such bugs which are extremely difficult to isolate. Of course this doesn't imply that you won't be able to get away from native code completely. There could be some situations where you have to write native code in either assembler or C/C++. But those instances should be limited. 6. Most popular embedded processors supported allowing design flexibility Java SE Embedded is now available on ARM V5, V6, and V7 along with Linux on X86 and Power Architecture platforms. Java ME Embedded is available on system based on ARM architecture SOCs with low memory footprints and a device emulation environment for x86/Windows desktop computers, integrated with the Java ME SDK 3.2. A standard binary of Oracle Java ME Embedded 3.2 for ARM KEIL development boards based on ARM Cortex M-3/4 (KEIL MCBSTM32F200 using ST Micro SOC STM32F207IG) will soon be available for download from the Oracle Technology Network (OTN). 7. Support for key embedded features (low footprint, power mgmt., low latency, etc) All embedded devices by there very nature are constrained in some way. Economics may dictate a device with a less RAM and ROM. The CPU needs can dictate a less powerful device. Power consumption is another major resource in some embedded devices as connecting to consistent power source not always desirable or possible. For others they have to constantly on. Often many of these systems are headless (in the embedded space it's almost always Halloween).  For memory resources ,Java ME Embedded can run in environment as low as 130KB RAM/350KB ROM for a minimal, customized configuration up to 700KB RAM/1500KB ROM for the full, standard configuration. Java SE Embedded is designed for environments starting at 32MB RAM/39MB  ROM. Key functionality of embedded devices such as auto-start and recovery, flexible networking are fully supported. And while Java SE Embedded has been optimized for mid-range to high-end embedded systems, Java ME Embedded is a Java runtime stack optimized for small embedded systems. It provides a robust and flexible application platform with dedicated embedded functionality for always-on, headless (no graphics/UI), and connected devices. 8. Leverage huge Java developer ecosystem (expertise, existing code) There are over 9 million developers in world that work on Java, and while not all of them work on embedded systems, their wealth of expertise in developing applications is immense. In short, getting a java developer to work on a embedded system is pretty easy, you probably have a java developer living in your subdivsion.  Then of course there is the wealth of existing code. The Java Embedded Community on Java.net is central gathering place for embedded Java developers. Conferences like Embedded Java @ JavaOne and the a variety of hardware vendor conferences like Freescale Technlogy Forums offer an excellent opportunity for those interested in embedded systems. 9. Easily create end-to-end solutions integrated with Java back-end services In the "Internet of Things" things aren't on an island doing an single task. For instance and embedded drink dispenser doesn't just dispense a beverage, but could collect money from a credit card and also send information about current sales. Similarly, an embedded house power monitoring system doesn't just manage the power usage in a house, but can also send that data back to the power company. In both cases it isn't about the individual thing, but monitoring a collection of  things. How much power did your block, subdivsion, area of town, town, county, state, nation, world use? How many Dr Peppers were purchased from thing1, thing2, thingN? The point is that all this information can be collected and transferred securely  (and believe me that is key issue that Java fully supports) to back end services for further analysis. And what better back in service exists than a Java back in service. It's interesting to note that on larger embedded platforms that support the Java Embedded Suite some of the analysis might be done on the embedded device itself as JES has a glassfish server and Java Database as part of the installation. The result is an end to end Java solution. 10. Solutions from constrained devices to server-class systems Just take a look at some of the embedded Java systems that have already been developed and you'll see a vast range of solutions. Livescribe pen, Kindle, each and every Blu-Ray player, Cisco's Advanced VOIP phone, KronosInTouch smart time clock, EnergyICT smart metering, EDF's automated meter management, Ricoh Printers, and Stanford's automated car  are just a few of the list of embedded Java implementation that continues to grow. Conclusion Now if your a Java Developer you probably look at some of the 10 reasons and say "duh", but for the embedded developers this is should be an eye opening list. And with the release of ME Embedded 3.2 and the Java Embedded Suite the embedded developers life is now a whole lot easier. For the Java developer your employment opportunities are about to increase. For both it's a great time to start developing Java for the "Internet of Things".

    Read the article

  • Wake On Lan (WOL) for Realtek RTL8101E/RTL8102E

    - by Heisennberg
    I'm unsuccessfully trying to get Wake on Lan to work with my local server (IP Address : 192.168.0.2, distro Ubuntu 12.04.3 LTS) which has a Realtek RTL8101E/RTL8102E ethernet card. The computer sending the WOL is a Macbook Pro which is connected on the same network. Yet the server fails to start. Here what I have done so far : name@serverName ~ $ cat /proc/acpi/wakeup Device S-state Status Sysfs node HDEF S3 *disabled pci:0000:00:1b.0 PXSX S3 *disabled PXSX S0 *enabled pci:0000:04:00.0 PXSX S0 *disabled USB1 S3 *enabled pci:0000:00:1d.0 USB2 S3 *enabled pci:0000:00:1d.1 USB3 S3 *enabled pci:0000:00:1d.2 USB5 S3 *enabled pci:0000:00:1a.1 EHC1 S3 *enabled pci:0000:00:1d.7 EHC2 S3 *enabled pci:0000:00:1a.7 name@serverName ~ $ lspci ------ 04:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8101E/RTL8102E PCI Express Fast Ethernet controller (rev 01) ------ name@serverName ~ $ sudo ethtool eth0 Settings for eth0: Supported ports: [ TP MII ] Supported link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full Supported pause frame use: No Supports auto-negotiation: Yes Advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full Advertised pause frame use: Symmetric Receive-only Advertised auto-negotiation: Yes Link partner advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full Link partner advertised pause frame use: Symmetric Receive-only Link partner advertised auto-negotiation: Yes Speed: 100Mb/s Duplex: Full Port: MII PHYAD: 0 Transceiver: internal Auto-negotiation: on Supports Wake-on: pumbg Wake-on: g Current message level: 0x00000033 (51) drv probe ifdown ifup Link detected: yes and I'm calling the WOL with : name@serverName ~ $ wakeonlan xx:xx:xx:xx:xx` Sending magic packet to 255.255.255.255:9 with xx:xx:xx:xx:xx I have succesfully activated the WOL option in my computer BIOS. Any idea ?

    Read the article

  • How can I get the palette of an 8-bit surface in SDL.NET/Tao.SDL?

    - by lolmaster
    I'm looking to get the palette of an 8-bit surface in SDL.NET if possible, or (more than likely) using Tao.SDL. This is because I want to do palette swapping with the palette directly, instead of blitting surfaces together to replace colours like how you would do it with a 32-bit surface. I've gotten the SDL_Surface and the SDL_PixelFormat, however when I go to get the palette in the same way, I get a System.ExecutionEngineException: private Tao.Sdl.Sdl.SDL_Palette GetPalette(Surface surf) { // Get surface. Tao.Sdl.Sdl.SDL_Surface sdlSurface = (Tao.Sdl.Sdl.SDL_Surface)System.Runtime.InteropServices.Marshal.PtrToStructure(surf.Handle, typeof(Tao.Sdl.Sdl.SDL_Surface)); // Get pixel format. Tao.Sdl.Sdl.SDL_PixelFormat pixelFormat = (Tao.Sdl.Sdl.SDL_PixelFormat)System.Runtime.InteropServices.Marshal.PtrToStructure(sdlSurface.format, typeof(Tao.Sdl.Sdl.SDL_PixelFormat)); // Execution exception here. Tao.Sdl.Sdl.SDL_Palette palette = (Tao.Sdl.Sdl.SDL_Palette)System.Runtime.InteropServices.Marshal.PtrToStructure(pixelFormat.palette, typeof(Tao.Sdl.Sdl.SDL_Palette)); return palette; } When I used unsafe code to get the palette, I got a compile time error: "Cannot take the address of, get the size of, or declare a pointer to a managed type ('Tao.Sdl.Sdl.SDL_Palette')". My unsafe code to get the palette was this: unsafe { Tao.Sdl.Sdl.SDL_Palette* pal = (Tao.Sdl.Sdl.SDL_Palette*)pixelFormat.palette; } From what I've read, a managed type in this case is when a structure has some sort of reference inside it as a field. The SDL_Palette structure happens to have an array of SDL_Color's, so I'm assuming that's the reference type that is causing issues. However I'm still not sure how to work around that to get the underlying palette. So if anyone knows how to get the palette from an 8-bit surface, whether it's through safe or unsafe code, the help would be greatly appreciated.

    Read the article

  • Assembly load and execute issue

    - by Jean Carlos Suárez Marranzini
    I'm trying to develop Assembly code allowing me to load and execute(by input of the user) 2 other Assembly .EXE programs. I'm having two problems: -I don't seem to be able to assign the pathname to a valid register(Or maybe incorrect syntax) -I need to be able to execute the other program after the first one (could be either) started its execution. This is what I have so far: mov ax,cs ; moving code segment to data segment mov ds,ax mov ah,1h ; here I read from keyboard int 21h mov dl,al cmp al,'1' ; if 1 jump to LOADRUN1 JE LOADRUN1 popf cmp al,'2' ; if 1 jump to LOADRUN2 JE LOADRUN2 popf LOADRUN1: MOV AH,4BH MOV AL,00 LEA DX,[PROGNAME1] ; Not sure if it works INT 21H LOADRUN2: MOV AH,4BH MOV AL,00 LEA DX,[PROGNAME2] ; Not sure if it works INT 21H ; Here I define the bytes containing the pathnames PROGNAME1 db 'C:\Users\Usuario\NASM\Adding.exe',0 PROGNAME2 db 'C:\Users\Usuario\NASM\Substracting.exe',0 I just don't know how start another program by input in the 'parent' program, after one is already executing. Thanks in advance for your help! Any additional information I'll be more than happy to provide. -I'm using NASM 16 bits, Windows 7 32 bits.

    Read the article

  • Apache VERY high page load time

    - by Aaron Waller
    My Drupal 6 site has been running smoothly for years but recently has experienced intermittent periods of extreme slowness (10-60 sec page loads). Several hours of slowness followed by hours of normal (4-6 sec) page loads. The page always loads with no error, just sometimes takes forever. My setup: Windows Server 2003 Apache/2.2.15 (Win32) Jrun/4.0 PHP 5 MySql 5.1 Drupal 6 Cold fusion 9 Vmware virtual environment DMZ behind a corporate firewall Traffic: 1-3 hits/sec avg Troubleshooting No applicable errors in apache error log No errors in drupal event log Drupal devel module shows 242 queries in 366.23 milliseconds,page execution time 2069.62 ms. (So it looks like queries and php scripts are not the problem) NO unusually high CPU, memory, or disk IO Cold fusion apps, and other static pages outside of drupal also load slow webpagetest.org test shows very high time-to-first-byte The problem seems to be with Apache responding to requests, but previously I've only seen this behavior under 100% cpu load. Judging solely by resource monitoring, it looks as though very little is going on. Here is the kicker - roughly half of the site's access comes from our LAN, but if I disable the firewall rule and block access from outside of our network, internal (LAN) access (1000+ devices) is speedy. But as soon as outside access is restored the site is crippled. Apache config? Crawlers/bots? Attackers? I'm at the end of my rope, where should I be looking to determine where the problem lies?

    Read the article

  • Cannot enable wireless on an Intel WifiLink 1000 on an Lenovo Ideapad z570

    - by Brij
    I am using the ubuntu 11.10 on lenovo ideapad z570. My wireless internet is not working. I have ensure that wireless switch is on. Windows 7, wireless works great.However ubuntu 11.10 is not allowing me to enable wireless connection. I have run the following command and here is the status. sudo lshw -class network *-network DISABLED description: Wireless interface product: Centrino Wireless-N 1000 vendor: Intel Corporation physical id: 0 bus info: pci@0000:02:00.0 logical name: wlan0 version: 00 serial: 74:e5:0b:1c:a4:a4 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlagn driverversion=3.0.0-12-generic firmware=39.31.5.1 build 35138 latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:42 memory:d0500000-d0501fff *-network description: Ethernet interface product: RTL8101E/RTL8102E PCI Express Fast Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:03:00.0 logical name: eth0 version: 05 serial: f0:de:f1:64:b6:62 size: 10Mbit/s capacity: 100Mbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half firmware=rtl_nic/rtl8105e-1.fw latency=0 link=no multicast=yes port=MII speed=10Mbit/s resources: irq:41 ioport:2000(size=256) memory:d0404000-d0404fff memory:d0400000-d0403fff Here is rfkill list all output: rfkill list all 0: ideapad_wlan: Wireless LAN Soft blocked: no Hard blocked: no 1: phy0: Wireless LAN Soft blocked: no Hard blocked: no 2: acer-wireless: Wireless LAN Soft blocked: yes Hard blocked: no Note : Windows 7, wireless card property shows that Intel WifiLink 1000 BGN. Could someone help me to fix this issue.

    Read the article

  • Issue 15: SVP Focus

    - by rituchhibber
         SVP FOCUS FOCUS -- Chris Baker SVP Oracle Worldwide ISV-OEM-Java Sales Chris Baker is the Global Head of ISV/OEM Sales responsible for working with ISV/OEM partners to maximise Oracle's business through those partners, whilst maximising those partners’ business to their end users. Chris works with partners, customers, innovators, investors and employees to develop innovative business solutions using Oracle products, services and skills. RESOURCES -- Oracle PartnerNetwork (OPN) OPN Solutions Catalog Oracle Exastack Program Oracle Exastack Optimized Oracle Cloud Computing Oracle Engineered Systems Oracle and Java SUBSCRIBE FEEDBACK PREVIOUS ISSUES "By taking part in marketing activities, our partners accelerate their sales cycles." -- Firstly, could you please explain Oracle's current strategy for ISV partners, globally and in EMEA? Oracle customers use independent software vendor (ISV) applications to run their businesses. They use them to generate revenue and to fulfil obligations to their own customers. Our strategy is very straight-forward. We want all of our ISV partners and OEMs to concentrate on the things that they do the best—building applications to meet the unique industry and functional requirements of their customer. We want to ensure that we deliver a best-in-class application platform so ISVs are free to concentrate their effort on their application functionality and user experience We invest over four billion dollars in research and development every year, and we want our ISVs to benefit from all of that investment in operating systems, virtualisation, databases, middleware, engineered systems, and other hardware. By doing this, we help them to reduce their costs, gain more consistency and agility for quicker implementations, and also rapidly differentiate themselves from other application vendors. It's all about simplification because we believe that around 25 to 30 percent of the development costs incurred by many ISVs are caused by customising infrastructure and have nothing to do with their applications. Our strategy is to enable our ISV partners to standardise their application platform using engineered architecture, so they can write once to the Oracle stack and deploy seamlessly in the cloud, on-premise, or in hybrid deployments. It's really important that architecture is the same in order to keep cost and time overheads at a minimum, so we provide standardisation and an environment that enables our ISVs to concentrate on the core business that makes them the most money and brings them success. How do you believe this strategy is helping the ISVs to work hand-in-hand with Oracle to ensure that end customers get the industry-leading solutions that they need? We work with our ISVs not just to help them be successful, but also to help them market themselves. We have something called the 'Oracle Exastack Ready Program', which enables ISVs to publicise themselves as 'Ready' to run the core software platforms that run on Oracle's engineered systems including Exadata and Exalogic. So, for example, they can become 'Database Ready' which means that they use the latest version of Oracle Database and therefore can run their application without modification on Exadata or the Oracle Database Appliance. Alternatively, they can become WebLogic Ready, Oracle Linux Ready and Oracle Solaris Ready which means they run on the latest release and therefore can run their application, with no new porting work, on Oracle Exalogic. Those 'Ready' logos are important in helping ISVs advertise to their customers that they are using the latest technologies which have been fully tested. We now also have Exadata Ready and Exalogic Ready programmes which allow ISVs to promote the certification of their applications on these platforms. This highlights these partners to Oracle customers as having solutions that run fluently on the Oracle Exadata Database Machine, the Oracle Exalogic Elastic Cloud or one of our other engineered systems. This makes it easy for customers to identify solutions and provides ISVs with an avenue to connect with Oracle customers who are rapidly adopting engineered systems. We have also taken this programme to the next level in the shape of 'Oracle Exastack Optimized' for partners whose applications run best on the Oracle stack and have invested the time to fully optimise application performance. We ensure that Exastack Optimized partner status is promoted and supported by press releases, and we help our ISVs go to market and differentiate themselves through the use of our technology and the standardisation it delivers. To date we have had several hundred organisations successfully work through our Exastack Optimized programme. How does Oracle's strategy of offering pre-integrated open platform software and hardware allow ISVs to bring their products to market more quickly? One of the problems for many ISVs is that they have to think very carefully about the technology on which their solutions will be deployed, particularly in the cloud or hosted environments. They have to think hard about how they secure these environments, whether the concern is, for example, middleware, identity management, or securing personal data. If they don't use the technology that we build-in to our products to help them to fulfil these roles, they then have to build it themselves. This takes time, requires testing, and must be maintained. By taking advantage of our technology, partners will now know that they have a standard platform. They will know that they can confidently talk about implementation being the same every time they do it. Very large ISV applications could once take a year or two to be implemented at an on-premise environment. But it wasn't just the configuration of the application that took the time, it was actually the infrastructure - the different hardware configurations, operating systems and configurations of databases and middleware. Now we strongly believe that it's all about standardisation and repeatability. It's about making sure that our partners can do it once and are then able to roll it out many different times using standard componentry. What actions would you recommend for existing ISV partners that are looking to do more business with Oracle and its customer base, not only to maximise benefits, but also to maximise partner relationships? My team, around the world and in the EMEA region, is available and ready to talk to any of our ISVs and to explore the possibilities together. We run programmes like 'Excite' and 'Insight' to help us to understand how we can help ISVs with architecture and widen their environments. But we also want to work with, and look at, new opportunities - for example, the Machine-to-Machine (M2M) market or 'The Internet of Things'. Over the next few years, many millions, indeed billions of devices will be collecting massive amounts of data and communicating it back to the central systems where ISVs will be running their applications. The only way that our partners will be able to provide a single vendor 'end-to-end' solution is to use Oracle integrated systems at the back end and Java on the 'smart' devices collecting the data—a complete solution from device to data centre. So there are huge opportunities to work closely with our ISVs, using Oracle's complete M2M platform, to provide the infrastructure that enables them to extract maximum value from the data collected. If any partners don't know where to start or who to contact, then they can contact me directly at [email protected] or indeed any of our teams across the EMEA region. We want to work with ISVs to help them to be as successful as they possibly can through simplification and speed to market, and we also want all of the top ISVs in the world based on Oracle. What opportunities are immediately opened to new ISV partners joining the OPN? As you know OPN is very, very important. New members will discover a huge amount of content that instantly becomes accessible to them. They can access a wealth of no-cost training and enablement materials to build their expertise in Oracle technology. They can download Oracle software and use it for development projects. They can help themselves become more competent by becoming part of a true community and uncovering new opportunities by working with Oracle and their peers in the Oracle Partner Network. As well as publishing massive amounts of information on OPN, we also hold our global Oracle OpenWorld event, at which partners play a huge role. This takes place at the end of September and the beginning of October in San Francisco. Attending ISV partners have an unrivalled opportunity to contribute to elements such as the OpenWorld / OPN Exchange, at which they can talk to other partners and really begin thinking about how they can move their businesses on and play key roles in a very large ecosystem which revolves around technology and standardisation. Finally, are there any other messages that you would like to share with the Oracle ISV community? The crucial message that I always like to reinforce is architecture, architecture and architecture! The key opportunities that ISVs have today revolve around standardising their architectures so that they can confidently think: "I will I be able to do exactly the same thing whenever a customer is looking to deploy on-premise, hosted or in the cloud". The right architecture is critical to being competitive and to really start changing the game. We want to help our ISV partners to do just that; to establish standard architecture and to seize the opportunities it opens up for them. New market opportunities like M2M are enormous - just look at how many devices are all around you right now. We can help our partners to interface with these devices more effectively while thinking about their entire ecosystem, rather than just the piece that they have traditionally focused upon. With standardised architecture, we can help people dramatically improve their speed, reach, agility and delivery of enhanced customer satisfaction and value all the way from the Java side to their centralised systems. All Oracle ISV partners must take advantage of these opportunities, which is why Oracle will continue to invest in and support them. Oracle OpenWorld 2010 Whether you attended Oracle OpenWorld 2009 or not, don't forget to save the date now for Oracle OpenWorld 2010. The event will be held a little earlier next year, from 19th-23rd September, so please don't miss out. With thousands of sessions and hundreds of exhibits and demos already lined up, there's no better place to learn how to optimise your existing systems, get an inside line on upcoming technology breakthroughs, and meet with your partner peers, Oracle strategists and even the developers responsible for the products and services that help you get better results for your end customers. Register Now for Oracle OpenWorld 2010! Perhaps you are interested in learning more about Oracle OpenWorld 2010, but don't wish to register at this time? Great! Please just enter your contact information here and we will contact you at a later date. How to Exhibit at Oracle OpenWorld 2010 Sponsorship Opportunities at Oracle OpenWorld 2010 Advertising Opportunities at Oracle OpenWorld 2010 -- Back to the welcome page

    Read the article

  • Announcing Unbreakable Enterprise Kernel Release 3 for Oracle Linux

    - by Lenz Grimmer
    We are excited to announce the general availability of the Unbreakable Enterprise Kernel Release 3 for Oracle Linux 6. The Unbreakable Enterprise Kernel Release 3 (UEK R3) is Oracle's third major supported release of its heavily tested and optimized Linux kernel for Oracle Linux 6 on the x86_64 architecture. UEK R3 is based on mainline Linux version 3.8.13. Some notable highlights of this release include: Inclusion of DTrace for Linux into the kernel (no longer a separate kernel image). DTrace for Linux now supports probes for user-space statically defined tracing (USDT) in programs that have been modified to include embedded static probe points Production support for Linux containers (LXC) which were previously released as a technology preview Btrfs file system improvements (subvolume-aware quota groups, cross-subvolume reflinks, btrfs send/receive to transfer file system snapshots or incremental differences, file hole punching, hot-replacing of failed disk devices, device statistics) Improved support for Control Groups (cgroups)  The ext4 file system can now store the content of a small file inside the inode (inline_data) TCP fast open (TFO) can speed up the opening of successive TCP connections between two endpoints FUSE file system performance improvements on NUMA systems Support for the Intel Ivy Bridge (IVB) processor family Integration of the OpenFabrics Enterprise Distribution (OFED) 2.0 stack, supporting a wide range of Infinband protocols including updates to Oracle's Reliable Datagram Sockets (RDS) Numerous driver updates in close coordination with our hardware partners UEK R3 uses the same versioning model as the mainline Linux kernel version. Unlike in UEK R2 (which identifies itself as version "2.6.39", even though it is based on mainline Linux 3.0.x), "uname" returns the actual version number (3.8.13). For further details on the new features, changes and any known issues, please consult the Release Notes. The Unbreakable Enterprise Kernel Release 3 and related packages can be installed using the yum package management tool on Oracle Linux 6 Update 4 or newer, both from the Unbreakable Linux Network (ULN) and our public yum server. Please follow the installation instructions in the Release Notes for a detailed description of the steps involved. The kernel source tree will also available via the git source code revision control system from https://oss.oracle.com/git/?p=linux-uek3-3.8.git If you would like to discuss your experiences with Oracle Linux and UEK R3, we look forward to your feedback on our public Oracle Linux Forum.

    Read the article

  • Why is HTML/Javascript minification beneficial

    - by Channel72
    Why is HTML/Javascript minification beneficial when the HTTP protocol already supports gzip data compression? I realize that Javascript/HTML minification has the potential to significantly reduce the size of Javascript/HTML files by removing unnecessary whitespace, and perhaps renaming variables to a few letters each, but doesn't the LZW algorithm do especially well when there are many repeated characters (e.g. lots of whitespace?) I realize that some Javascript minification tools do more than just reduce size. Google's closure compiler, for example, also tries to improve code performance by inlining functions and doing other analyses. But the primary purpose of Javascript minification is usually to reduce file size. I also realize there are other reasons you might want to minify aside from performace, such as code obfuscation. But again, that reason is not usually emphasized as much as performance gain and file size reduction. For example, Closure Compiler is not advertised as an obfuscation tool, but as a code size reducer and download-speed enhancer. So, how much performance do you really gain from Javascript/HTML minification when you're already significantly reducing file size with gzip compression?

    Read the article

  • Microsoft&rsquo;s new technical computing initiative

    - by Randy Walker
    I made a mental note from earlier in the year.  Microsoft literally buys computers by the truckload.  From what I understand, it’s a typical practice amongst large software vendors.  You plug a few wires in, you test it, and you instantly have mega tera tera flops (don’t hold me to that number).  Microsoft has been trying to plug away at their cloud services (named Azure).  Which, for the layman, means Microsoft runs your software on their computers, and as demand increases you can allocate more computing power on the fly. With this in mind, it doesn’t surprise me that I was recently sent an executive email concerning Microsoft’s new technical computing initiative.  I find it to be a great marketing idea with actual substance behind their real work.  From the programmer academic perspective, in college we dreamed about this type of processing power.  This has decades of computer science theory behind it. A copy of the email received.  (note that I almost deleted this email, thinking it was spam due to it’s length) We don't often think about how complex life really is. Take the relatively simple task of commuting to and from work: it is, in fact, a complicated interplay of variables such as weather, train delays, accidents, traffic patterns, road construction, etc. You can however, take steps to shorten your commute - using a good, predictive understanding of a few of these variables. In fact, you probably are already taking these inputs and instinctively building a predictive model that you act on daily to get to your destination more quickly. Now, when we apply the same method to very complex tasks, this modeling approach becomes much more challenging. Recent world events clearly demonstrated our inability to process vast amounts of information and variables that would have helped to more accurately predict the behavior of global financial markets or the occurrence and impact of a volcano eruption in Iceland. To make sense of issues like these, researchers, engineers and analysts create computer models of the almost infinite number of possible interactions in complex systems. But, they need increasingly more sophisticated computer models to better understand how the world behaves and to make fact-based predictions about the future. And, to do this, it requires a tremendous amount of computing power to process and examine the massive data deluge from cameras, digital sensors and precision instruments of all kinds. This is the key to creating more accurate and realistic models that expose the hidden meaning of data, which gives us the kind of insight we need to solve a myriad of challenges. We have made great strides in our ability to build these kinds of computer models, and yet they are still too difficult, expensive and time consuming to manage. Today, even the most complicated data-rich simulations cannot fully capture all of the intricacies and dependencies of the systems they are trying to model. That is why, across the scientific and engineering world, it is so hard to say with any certainty when or where the next volcano will erupt and what flight patterns it might affect, or to more accurately predict something like a global flu pandemic. So far, we just cannot collect, correlate and compute enough data to create an accurate forecast of the real world. But this is about to change. Innovations in technology are transforming our ability to measure, monitor and model how the world behaves. The implication for scientific research is profound, and it will transform the way we tackle global challenges like health care and climate change. It will also have a huge impact on engineering and business, delivering breakthroughs that could lead to the creation of new products, new businesses and even new industries. Because you are a subscriber to executive e-mails from Microsoft, I want you to be the first to know about a new effort focused specifically on empowering millions of the world's smartest problem solvers. Today, I am happy to introduce Microsoft's Technical Computing initiative. Our goal is to unleash the power of pervasive, accurate, real-time modeling to help people and organizations achieve their objectives and realize their potential. We are bringing together some of the brightest minds in the technical computing community across industry, academia and science at www.modelingtheworld.com to discuss trends, challenges and shared opportunities. New advances provide the foundation for tools and applications that will make technical computing more affordable and accessible where mathematical and computational principles are applied to solve practical problems. One day soon, complicated tasks like building a sophisticated computer model that would typically take a team of advanced software programmers months to build and days to run, will be accomplished in a single afternoon by a scientist, engineer or analyst working at the PC on their desktop. And as technology continues to advance, these models will become more complete and accurate in the way they represent the world. This will speed our ability to test new ideas, improve processes and advance our understanding of systems. Our technical computing initiative reflects the best of Microsoft's heritage. Ever since Bill Gates articulated the then far-fetched vision of "a computer on every desktop" in the early 1980's, Microsoft has been at the forefront of expanding the power and reach of computing to benefit the world. As someone who worked closely with Bill for many years at Microsoft, I am happy to share with you that the passion behind that vision is fully alive at Microsoft and is carried out in the creation of our new Technical Computing group. Enabling more people to make better predictions We have seen the impact of making greater computing power more available firsthand through our investments in high performance computing (HPC) over the past five years. Scientists, engineers and analysts in organizations of all sizes and sectors are finding that using distributed computational power creates societal impact, fuels scientific breakthroughs and delivers competitive advantages. For example, we have seen remarkable results from some of our current customers: Malaria strikes 300,000 to 500,000 people around the world each year. To help in the effort to eradicate malaria worldwide, scientists at Intellectual Ventures use software that simulates how the disease spreads and would respond to prevention and control methods, such as vaccines and the use of bed nets. Technical computing allows researchers to model more detailed parameters for more accurate results and receive those results in less than an hour, rather than waiting a full day. Aerospace engineering firm, a.i. solutions, Inc., needed a more powerful computing platform to keep up with the increasingly complex computational needs of its customers: NASA, the Department of Defense and other government agencies planning space flights. To meet that need, it adopted technical computing. Now, a.i. solutions can produce detailed predictions and analysis of the flight dynamics of a given spacecraft, from optimal launch times and orbit determination to attitude control and navigation, up to eight times faster. This enables them to avoid mistakes in any areas that can cause a space mission to fail and potentially result in the loss of life and millions of dollars. Western & Southern Financial Group faced the challenge of running ever larger and more complex actuarial models as its number of policyholders and products grew and regulatory requirements changed. The company chose an actuarial solution that runs on technical computing technology. The solution is easy for the company's IT staff to manage and adjust to meet business needs. The new solution helps the company reduce modeling time by up to 99 percent - letting the team fine-tune its models for more accurate product pricing and financial projections. Our Technical Computing direction Collaborating closely with partners across industry and academia, we must now extend the reach of technical computing even further to help predictive modelers and data explorers make faster, more accurate predictions. As we build the Technical Computing initiative, we will invest in three core areas: Technical computing to the cloud: Microsoft will play a leading role in bringing technical computing power to scientists, engineers and analysts through the cloud. Existing high- performance computing users will benefit from the ability to augment their on-premises systems with cloud resources that enable 'just-in-time' processing. This platform will help ensure processing resources are available whenever they are needed-reliably, consistently and quickly. Simplify parallel development: Today, computers are shipping with more processing power than ever, including multiple cores, but most modern software only uses a small amount of the available processing power. Parallel programs are extremely difficult to write, test and trouble shoot. However, a consistent model for parallel programming can help more developers unlock the tremendous power in today's modern computers and enable a new generation of technical computing. We are delivering new tools to automate and simplify writing software through parallel processing from the desktop... to the cluster... to the cloud. Develop powerful new technical computing tools and applications: We know scientists, engineers and analysts are pushing common tools (i.e., spreadsheets and databases) to the limits with complex, data-intensive models. They need easy access to more computing power and simplified tools to increase the speed of their work. We are building a platform to do this. Our development efforts will yield new, easy-to-use tools and applications that automate data acquisition, modeling, simulation, visualization, workflow and collaboration. This will allow them to spend more time on their work and less time wrestling with complicated technology. Thinking bigger There is so much left to be discovered and so many questions yet to be answered in the fascinating world around us. We believe the technical computing community will show us that we have not seen anything yet. Imagine just some of the breakthroughs this community could make possible: Better predictions to help improve the understanding of pandemics, contagion and global health trends. Climate change models that predict environmental, economic and human impact, accessible in real-time during key discussions and debates. More accurate prediction of natural disasters and their impact to develop more effective emergency response plans. With an ambitious charter in hand, this new team is ready to build on our progress to-date and execute Microsoft's technical computing vision over the months and years ahead. We will steadily invest in the right technologies, tools and talent, and work to bring together the technical computing community. I invite you to visit www.modelingtheworld.com today. We welcome your ideas and feedback. I look forward to making this journey with you and others who want to answer the world's biggest questions, discover solutions to problems that seem impossible and uncover a host of new opportunities to change the world we live in for the better. Bob

    Read the article

  • Does the "security" repository provides anything not found in the "updates" repository?

    - by netvope
    For the limited number of package I looked at (e.g. apache), I found that the package version in the updates repository is always newer than or equal to the version available in the security repository (provided that they exist). This gives me the impression that all security patches posted to the security repository are also posted to the updates repository. If this is true, I can remove all <release_name>-security entries in my apt sources.list and the <release_name>-updates entries will still give me the security patches. This will speed up apt-get update quite a bit. The best documentation I can found regarding the repositories is on the community help page "Important Security Updates (raring-security)". Patches for security vulnerabilities in Ubuntu packages. They are managed by the Ubuntu Security Team and are designed to change the behavior of the package as little as possible -- in fact, the minimum required to resolve the security problem. As a result, they tend to be very low-risk to apply and all users are urged to apply security updates. "Recommended Updates (raring-updates)". Updates for serious bugs in Ubuntu packaging that do not affect the security of the system. However, it does not mention whether the updates repository also includes everything in the security repository. Can anyone confirm (or disconfirm) this?

    Read the article

  • Architecting Python application consisting of many small scripts

    - by Duke Dougal
    I am building an application which, at the moment, consists of many small Python scripts. Each Python script processes items from one Amazon SQS queue. Emails come into an initial queue and are processed by a script and typically the script will do a small unit of processing (for example, parse email and store some database fields), then an item will be placed on the next queue for further processing, until eventually the email has finished going through the various scripts and queues. What I like about this approach is that it is very loosely coupled. However, I'm not sure how I should implement live. Should I make each script a daemon which is constantly polling it's inbound queue for things to do? Or should there be some overarching orchestration program or process? Or maybe I should not have lots of small Python scripts but one large application? Specific questions: How should I run each of these scripts - as a daemon with some sort or restart monitor to restart them in case they stop for any reason? If yes, should I have some program which orchestrates this? Or is the idea of many small script not a good one, would it make more sense to have a larger python program which contains all the functionality and does all the queue polling and execution of functionality for each queue? What is the current preferred approach to daemonising Python scripts? Broadly I would welcome any comments or opinions on any aspect of this. thanks

    Read the article

  • DON'T MISS: Live Webcast - Nimble SmartStack for Oracle with Cisco UCS (Nov 12)

    - by Zeynep Koch
    You are invited to the live webcast with Nimble Storage, Oracle and Cisco where we will talk about the new SmartStack solution from Nimble Storage that features Oracle Linux, Oracle VM and Cisco UCS products. In this webinar, you will learn how Nimble Storage SmartStack with Oracle and Cisco provides a converged infrastructure for Oracle Database environments with Oracle Linux and Oracle VM. SmartStack, built on best-of-breed components, delivers the performance and reliability needed for deploying Oracle on a single symmetric multiprocessing (SMP) server or Oracle Real Application Clusters (RAC) on multiple nodes.  When : Tuesday, November 12, 2013, 11:00 AM Pacific Time Panelists: Michele Resta, Director of Linux and Virtualization Alliances, Oracle John McAbel, Senior Product Manager, Cisco Ibby Rahmani, Solutions Marketing, Nimble Storage SmartStack™solutions provide pre-validated reference architectures that speed deployments and minimize risk.      The pre-validated converged infrastructure is based on an Oracle Validated Configuration that includes Oracle Database and Oracle Linux with the Unbreakable Enterprise Kernel.     The solution components include a Nimble Storage CS-Series array, two Cisco UCS B200 M3 blade servers, Oracle Linux 6 Update 4 with the Unbreakable Enterprise Kernel, and Oracle Database 11g Release 2 or Oracle Database 12c Release 1.     The Nimble Storage CS-Series is certified with Oracle VM 3.2 providing an even more flexible solution leveraging virtualization for functions such as test and development by delivering excellent random I/O performance in Oracle VM environments. Register today 

    Read the article

  • Other games that employ mechanics like the game "Diplomacy"

    - by Kevin Peno
    I'm doing a little bit of research and I'm hoping you can help me track down any games, other than Diplomacy (online version here), that employ all or some of the mechanics in Diplomacy (rules, short form). Examples I'm looking for: Simultaneous orders given prior to execution of orders In Diplomacy, players "write down" their moves and execute them "at the same time" Support, in terms of supporting an attacker or defender "take" a territory. In Diplomacy, no one unit is stronger than another you need to combine the strength of multiple units to attack other territories. Rules for how move conflicts are resolved Example, 2 units move into a space, but only one is allowed, what happens. I may add to this list later, but these are the primary things I'm looking for. If you need clarification on anything just let me know. Note: I tried asking this on GamingSE, but it was shot down. So, I am unsure where else I could post this. Since I am researching this for game development purposes, I assume this post is on topic. Please let me know if this is not the case. Please also feel free to re-categorize this. Thanks!

    Read the article

  • WPF or WinForms for Game Development and learning resources?

    - by Stephen Lee Parker
    I'm looking to create a game framework for my own personal use... I want to use WPF, but I'm unsure if that is a wise choice... The games I will be writing should not require high performance graphics, so I am hoping to build on native classes... I do not want to rely on external DLL's unless I generate them myself. The games will be for young children, say 4 to 8. Most will be learning puzzles or simple shooters. The most advanced will be a platform game (non-scrolling screen like the old Atari Miner 2049er game). I think I know how to write something like the old Atari Chopper Command (partially written and my 4 year old loves it, but I used WinForms and GDI), Pac-Man, Tetris, Astroids, Space Invaders, Slider Puzzle, but I do not really know how to write the platform game... In my mind, I'm getting caught in collision detection and how to make a character jump and how to make a character walk up a slope or steps... Can anyone point me to information on developing a platform game in C#? Would you suggest WinForms or WPF for game development? I'm not looking for great graphics and speed, just entertaining game play...

    Read the article

  • Building in Change: Project Construction in Asset Intensive Industries

    - by Sylvie MacKenzie, PMP
    According to a recent survey by the Economist Intelligence Unit, sponsored by Oracle, only 51% of project owners rated themselves as effective at delivering their projects to scope, budget, and schedule when confronted with change. In addition only 43% rated themselves as effective at anticipating potential change. Even with the best processes and technology in place, change is often an unavoidable part of the construction process. How organizations respond to change can mean the difference between delays and cost overruns, and projects being completed on schedule and on budget. Implementing Enterprise Project Portfolio Management and using a solution to help manage and automate those process can help asset intensive organizations: Govern project and program compliance and regulatory requirements for project success Unite project teams and stakeholders through collaboration and strong feedback methods to speed project completion Reduce the risk of cost and schedule overruns and any resulting penalties to deliver on time and on budget Effectively manage change throughout the project life cycle Ensure sufficient capacity, utilization, and availability of people, skills, and other resources to meet commitments. The results of the recent EIU survey, sponsored by Oracle:"Building in Change: Project Construction in Asset-Intensive Industries", will be revealed in an upcoming webinar with Hart Energy / Oil & Gas Investor, featuring the Economist Intelligence Unit and Oracle on April 11th at 1pm CST. Click here for further information or visit http://www.oilandgasinvestor.com/

    Read the article

  • How do I measure performance of a virtual server?

    - by Sergey
    I've got a VPS running Ubuntu. Being a virtual server, I understand that it shares resources with unknown number of other servers, and I'm noticing that it's considerably slower than my desktop machine. Is there some tool to measure the performance of the virtual machine? I'd be curious to see some approximate measure similar to bogomips, possibly for CPU (operations/sec), memory and disk read/write speed. I'd like to be able to compare those numbers to my desktop machine. I'm not interested in the specs of the actual physical machine my VPS is running on - by doing cat /proc/cpuinfo I can see that it's a nice quad-core Xeon machine, but it doesn't matter to me. I'm basically interested in how fast a program would run in my VPS - how many CPU operations it can make in a second, how many bytes to write to RAM or to disk. I only have ssh access to the machine so the tool need to be command-line. I could write a script which, say, does some calculations in a loop for a second and counts how many loops it was able to do, or something similar to measure disk and RAM performance. But I'm sure something like this already exists.

    Read the article

  • Organizations &amp; Architecture UNISA Studies &ndash; Chap 7

    - by MarkPearl
    Learning Outcomes Name different device categories Discuss the functions and structure of I/.O modules Describe the principles of Programmed I/O Describe the principles of Interrupt-driven I/O Describe the principles of DMA Discuss the evolution characteristic of I/O channels Describe different types of I/O interface Explain the principles of point-to-point and multipoint configurations Discuss the way in which a FireWire serial bus functions Discuss the principles of InfiniBand architecture External Devices An external device attaches to the computer by a link to an I/O module. The link is used to exchange control, status, and data between the I/O module and the external device. External devices can be classified into 3 categories… Human readable – e.g. video display Machine readable – e.g. magnetic disk Communications – e.g. wifi card I/O Modules An I/O module has two major functions… Interface to the processor and memory via the system bus or central switch Interface to one or more peripheral devices by tailored data links Module Functions The major functions or requirements for an I/O module fall into the following categories… Control and timing Processor communication Device communication Data buffering Error detection I/O function includes a control and timing requirement, to coordinate the flow of traffic between internal resources and external devices. Processor communication involves the following… Command decoding Data Status reporting Address recognition The I/O device must be able to perform device communication. This communication involves commands, status information, and data. An essential task of an I/O module is data buffering due to the relative slow speeds of most external devices. An I/O module is often responsible for error detection and for subsequently reporting errors to the processor. I/O Module Structure An I/O module functions to allow the processor to view a wide range of devices in a simple minded way. The I/O module may hide the details of timing, formats, and the electro mechanics of an external device so that the processor can function in terms of simple reads and write commands. An I/O channel/processor is an I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor. There are 3 techniques are possible for I/O operations Programmed I/O Interrupt[t I/O DMA Access Programmed I/O When a processor is executing a program and encounters an instruction relating to I/O it executes that instruction by issuing a command to the appropriate I/O module. With programmed I/O, the I/O module will perform the requested action and then set the appropriate bits in the I/O status register. The I/O module takes no further actions to alert the processor. I/O Commands To execute an I/O related instruction, the processor issues an address, specifying the particular I/O module and external device, and an I/O command. There are four types of I/O commands that an I/O module may receive when it is addressed by a processor… Control – used to activate a peripheral and tell it what to do Test – Used to test various status conditions associated with an I/O module and its peripherals Read – Causes the I/O module to obtain an item of data from the peripheral and place it in an internal buffer Write – Causes the I/O module to take an item of data form the data bus and subsequently transmit that data item to the peripheral The main disadvantage of this technique is it is a time consuming process that keeps the processor busy needlessly I/O Instructions With programmed I/O there is a close correspondence between the I/O related instructions that the processor fetches from memory and the I/O commands that the processor issues to an I/O module to execute the instructions. Typically there will be many I/O devices connected through I/O modules to the system – each device is given a unique identifier or address – when the processor issues an I/O command, the command contains the address of the address of the desired device, thus each I/O module must interpret the address lines to determine if the command is for itself. When the processor, main memory and I/O share a common bus, two modes of addressing are possible… Memory mapped I/O Isolated I/O (for a detailed explanation read page 245 of book) The advantage of memory mapped I/O over isolated I/O is that it has a large repertoire of instructions that can be used, allowing more efficient programming. The disadvantage of memory mapped I/O over isolated I/O is that valuable memory address space is sued up. Interrupts driven I/O Interrupt driven I/O works as follows… The processor issues an I/O command to a module and then goes on to do some other useful work The I/O module will then interrupts the processor to request service when is is ready to exchange data with the processor The processor then executes the data transfer and then resumes its former processing Interrupt Processing The occurrence of an interrupt triggers a number of events, both in the processor hardware and in software. When an I/O device completes an I/O operations the following sequence of hardware events occurs… The device issues an interrupt signal to the processor The processor finishes execution of the current instruction before responding to the interrupt The processor tests for an interrupt – determines that there is one – and sends an acknowledgement signal to the device that issues the interrupt. The acknowledgement allows the device to remove its interrupt signal The processor now needs to prepare to transfer control to the interrupt routine. To begin, it needs to save information needed to resume the current program at the point of interrupt. The minimum information required is the status of the processor and the location of the next instruction to be executed. The processor now loads the program counter with the entry location of the interrupt-handling program that will respond to this interrupt. It also saves the values of the process registers because the Interrupt operation may modify these The interrupt handler processes the interrupt – this includes examination of status information relating to the I/O operation or other event that caused an interrupt When interrupt processing is complete, the saved register values are retrieved from the stack and restored to the registers Finally, the PSW and program counter values from the stack are restored. Design Issues Two design issues arise in implementing interrupt I/O Because there will be multiple I/O modules, how does the processor determine which device issued the interrupt? If multiple interrupts have occurred, how does the processor decide which one to process? Addressing device recognition, 4 general categories of techniques are in common use… Multiple interrupt lines Software poll Daisy chain Bus arbitration For a detailed explanation of these approaches read page 250 of the textbook. Interrupt driven I/O while more efficient than simple programmed I/O still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor. Thus is suffers from two inherent drawbacks… The I/O transfer rate is limited by the speed with which the processor can test and service a device The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer Direct Memory Access When large volumes of data are to be moved, an efficient technique is direct memory access (DMA) DMA Function DMA involves an additional module on the system bus. The DMA module is capable of mimicking the processor and taking over control of the system from the processor. It needs to do this to transfer data to and from memory over the system bus. DMA must the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily (most common – referred to as cycle stealing). When the processor wishes to read or write a block of data, it issues a command to the DMA module by sending to the DMA module the following information… Whether a read or write is requested using the read or write control line between the processor and the DMA module The address of the I/O device involved, communicated on the data lines The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register The number of words to be read or written, communicated via the data lines and stored in the data count register The processor then continues with other work, it delegates the I/O operation to the DMA module which transfers the entire block of data, one word at a time, directly to or from memory without going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor, this the processor is involved only at the beginning and end of the transfer. I/O Channels and Processors Characteristics of I/O Channels As one proceeds along the evolutionary path, more and more of the I/O function is performed without CPU involvement. The I/O channel represents an extension of the DMA concept. An I/O channel ahs the ability to execute I/O instructions, which gives it complete control over I/O operations. In a computer system with such devices, the CPU does not execute I/O instructions – such instructions are stored in main memory to be executed by a special purpose processor in the I/O channel itself. Two types of I/O channels are common A selector channel controls multiple high-speed devices. A multiplexor channel can handle I/O with multiple characters as fast as possible to multiple devices. The external interface: FireWire and InfiniBand Types of Interfaces One major characteristic of the interface is whether it is serial or parallel parallel interface – there are multiple lines connecting the I/O module and the peripheral, and multiple bits are transferred simultaneously serial interface – there is only one line used to transmit data, and bits must be transmitted one at a time With new generation serial interfaces, parallel interfaces are becoming less common. In either case, the I/O module must engage in a dialogue with the peripheral. In general terms the dialog may look as follows… The I/O module sends a control signal requesting permission to send data The peripheral acknowledges the request The I/O module transfers data The peripheral acknowledges receipt of data For a detailed explanation of FireWire and InfiniBand technology read page 264 – 270 of the textbook

    Read the article

  • Watson Ties Against Human Jeopardy Opponents

    - by ETC
    In January we showed you a video of Waton in a practice round against Jeopardy champions Ken Jennings and Brad Rutter. Last night they squared off in a real round of Jeopardy with Watson in a tie with Rutter. Watson held his own against the two champions leveraging the 90 IBM Power 750 servers, 2,880 processors, and the 16TB of memory driving him to his full advantage. It was impressive to watch the round unfold and to see where Watson shined and where he faltered. Check out the video below to footage of Watson in training and then in action on Jeopardy. Pay special attention to the things that trip him up. Watson answers cut and dry questions with absolute lighting speed but stumbles when it comes to nuances in language–like finis vs. terminus in the train question that Jennings answered correctly. Watch Part 2 of the video above here. Latest Features How-To Geek ETC Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines MyPaint is an Open-Source Graphics App for Digital Painters Can the Birds and Pigs Really Be Friends in the End? [Angry Birds Video] Add the 2D Version of the New Unity Interface to Ubuntu 10.10 and 11.04 MightyMintyBoost Is a 3-in-1 Gadget Charger Watson Ties Against Human Jeopardy Opponents Peaceful Tropical Cavern Wallpaper

    Read the article

  • What causes bad performance in consumer apps?

    - by Crashworks
    My Comcast DVR takes at least three seconds to respond to every remote control keypress, making the simple task of watching television into a frustrating button-mashing experience. My iPhone takes at least fifteen seconds to display text messages and crashes ¼ of the times I try to bring up the iPad app; simply receiving and reading an email often takes well over a minute. Even the navcom in my car has mushy and unresponsive controls, often swallowing successive inputs if I make them less than a few seconds apart. These are all fixed-hardware end-consumer appliances for which usability should be paramount, and yet they all fail at basic responsiveness and latency. Their software is just too slow. What's behind this? Is it a technical problem, or a social one? Who or what is responsible? Is it because these were all written in managed, garbage-collected languages rather than native code? Is it the individual programmers who wrote the software for these devices? In all of these cases the app developers knew exactly what hardware platform they were targeting and what its capabilities were; did they not take it into account? Is it the guy who goes around repeating "optimization is the root of all evil," did he lead them astray? Was it a mentality of "oh it's just an additional 100ms" each time until all those milliseconds add up to minutes? Is it my fault, for having bought these products in the first place? This is a subjective question, with no single answer, but I'm often frustrated to see so many answers here saying "oh, don't worry about code speed, performance doesn't matter" when clearly at some point it does matter for the end-user who gets stuck with a slow, unresponsive, awful experience. So, at what point did things go wrong for these products? What can we as programmers do to avoid inflicting this pain on our own customers?

    Read the article

  • My experience working with Teradata SQL Assistant

    - by Kevin Shyr
    Originally posted on: http://geekswithblogs.net/LifeLongTechie/archive/2014/05/28/my-experience-working-with-teradata-sql-assistant.aspx To this date, I still haven't figure out how to "toggle" between my query windows. It seems like unless I click on that "new" button on top, whatever SQL I generate from right-click just overrides the current SQL in the window. I'm probably missing a "generate new sql in new window" setting The default Teradata SQL Assistant doesn't execute just the SQL query I highlighted. There is a setting I have to change first. I'm not really happy that the SQL assistant and SQL admin are different app. Still trying to get used to the fact that I can't quickly look up a table's keys/relationships while writing query. I have to switch between windows. LOVE the execution plan / explanation. I think that part is better done than MS SQL in some ways. The error messages can be better. I feel that Teradata .NET provider sends smaller query command over than others. I don't have any hard data to support my claim. One of my query in SSRS was passing multi-valued parameters to another query, and got error "Teradata 3577 row size or sort key size overflow". The search on this error says the solution is to cast result column into smaller data type, but I found that the problem was that the parameter passed into the where clause could not be too large. I wish Teradata SQL Assistant would remember the window size I just adjusted to. Every time I execute the query, the result set, query, and exec log auto re-adjust back to the default size. In SSMS, if I adjust the result set area to be smaller, it would stay like that if I execute query in the same window.

    Read the article

  • Fix Google Reader Lag by Blocking Google Plus Button

    - by Jason Fitzpatrick
    Chrome: Many Google Reader fans have noticed, since the upgrades last month, that the service is unbearably slow. Speed things up by blocking the Google Plus button. Ever since the upgrade from the old Google Reader interface to the new integrated-with-Google-Plus interface, many Google Reader users were reporting a painfully long lag between reading entries in Reader. Previously hitting a keyboard shortcut or arrow button to move you through the new stories was instant with no noticeable lag. After the upgrade a lag of 3-5 seconds per individual story became common (we experienced this annoying lag around the How-To Geek office immediately after the upgrade). One of the theories was that the addition of the Google Plus button to every article was causing memory issues. Geeks Are Sexy tested the theory by blocking this address: plusone.google.com/u/0/_/+1/fastbutton using AdBlock. While people were reporting great success with that move (and you may find it works great too) we didn’t have any luck. What did work for us was installing Chromeblock and, while visiting reader.google.com, clicking on the ChromeBlock toolbar button and blocking Google +1. After that the 3-5 second lag vanished and browsing articles was as snappy as it had been. Hit up the link below to grab a copy of Chromeblock. Amazon’s New Kindle Fire Tablet: the How-To Geek Review HTG Explains: How Hackers Take Over Web Sites with SQL Injection / DDoS Use Your Android Phone to Comparison Shop: 4 Scanner Apps Reviewed

    Read the article

  • SQL SERVER – Get Directory Structure using Extended Stored Procedure xp_dirtree

    - by pinaldave
    Many years ago I wrote article SQL SERVER – Get a List of Fixed Hard Drive and Free Space on Server where I demonstrated using undocumented Stored Procedure to find the drive letter in local system and available free space. I received question in email from reader asking if there any way he can list directory structure within the T-SQL. When I inquired more he suggested that he needs this because he wanted set up backup of the data in certain structure. Well, there is one undocumented stored procedure exists which can do the same. However, please be vary to use any undocumented procedures. xp_dirtree 'C:\Windows' Execution of the above stored procedure will give following result. If you prefer you can insert the data in the temptable and use the same for further use. Here is the quick script which will insert the data into the temptable and retrieve from the same. CREATE TABLE #TempTable (Subdirectory VARCHAR(512), Depth INT); INSERT INTO #TempTable (Subdirectory, Depth) EXEC xp_dirtree 'C:\Windows' SELECT Subdirectory, Depth FROM #TempTable; DROP TABLE #TempTable; Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Stored Procedure, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • How can I get the Creative Zen Touch to work?

    - by Hello71
    I've tried using gnomad2 (too lazy to configure all the dependencies) and Amarok (segfaulted when I tried to do anything with it). $ lsusb Bus 002 Device 004: ID 041e:4131 Creative Technology, Ltd Zen Touch (mtp) # SNIP OUTPUT # $ lsusb --verbose -s 002:004 Bus 002 Device 004: ID 041e:4131 Creative Technology, Ltd Zen Touch (mtp) Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 255 Vendor Specific Class bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 idVendor 0x041e Creative Technology, Ltd idProduct 0x4131 Zen Touch (mtp) bcdDevice 1.00 iManufacturer 1 Creative Technology Ltd iProduct 2 Creative Zen Touch iSerial 3 010125517D039098 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 39 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 16 Configuration 1 bmAttributes 0xc0 Self Powered MaxPower 440mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 0 (Defined at Interface level) bInterfaceSubClass 0 bInterfaceProtocol 0 iInterface 33 MTP Interface Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x83 EP 3 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 4 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 255 Vendor Specific Class bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 bNumConfigurations 1 can't get debug descriptor: Connection timed out Device Status: 0x0000 (Bus Powered)

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 28 (sys.dm_db_stats_properties)

    - by Tamarick Hill
    The sys.dm_db_stats_properties Dynamic Management Function returns information about the statistics that are currently on your database objects. This function takes two parameters, an object_id and a stats_id. Let’s have a look at the result set from this function against the AdventureWorks2012.Sales.SalesOrderHeader table. To obtain the object_id and stats_id I will use a CROSS APPLY with the sys.stats system table. SELECT sp.* FROM sys.stats s CROSS APPLY sys.dm_db_stats_properties(s.object_id, s.Stats_id) sp WHERE sp.object_id = object_id('Sales.SalesOrderHeader') The first two columns returned by this function are the object_id and the stats_id columns. The next column, ‘last_updated’, gives you the date and the time that a particular statistic was last updated. The next column, ‘rows’, gives you the total number of rows in the table as of the last statistic update date. The ‘rows_sampled’ column gives you the number of rows that were sampled to create the statistic. The ‘steps’ column represents the number of specific value ranges from the statistic histogram. The ‘unfiltered_rows’ column represents the number of rows before any filters are applied. If a particular statistic is not filtered, the ‘unfiltered_rows’ column will always equal the ‘rows’ column. Lastly we have the ‘modification_counter’ column which represents the number of modification to the leading column in a given statistic since the last time the statistic was updated. Probably the most important column from this Dynamic Management Function is the ‘last_updated’ column. You want to always ensure that you have accurate and updated statistics on your database objects. Accurate statistics are vital for the query optimizer to generate efficient and reliable query execution plans. Without accurate and updated statistics, the performance of your SQL Server would likely suffer. For more information about this Dynamic Management Function, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/jj553546.aspx Folllow me on Twitter @PrimeTimeDBA

    Read the article

< Previous Page | 218 219 220 221 222 223 224 225 226 227 228 229  | Next Page >