Search Results

Search found 13164 results on 527 pages for 'model validations'.

Page 227/527 | < Previous Page | 223 224 225 226 227 228 229 230 231 232 233 234  | Next Page >

  • Understanding Data Science: Recent Studies

    - by Joe Lamantia
    If you need such a deeper understanding of data science than Drew Conway's popular venn diagram model, or Josh Wills' tongue in cheek characterization, "Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician." two relatively recent studies are worth reading.   'Analyzing the Analyzers,' an O'Reilly e-book by Harlan Harris, Sean Patrick Murphy, and Marck Vaisman, suggests four distinct types of data scientists -- effectively personas, in a design sense -- based on analysis of self-identified skills among practitioners.  The scenario format dramatizes the different personas, making what could be a dry statistical readout of survey data more engaging.  The survey-only nature of the data,  the restriction of scope to just skills, and the suggested models of skill-profiles makes this feel like the sort of exercise that data scientists undertake as an every day task; collecting data, analyzing it using a mix of statistical techniques, and sharing the model that emerges from the data mining exercise.  That's not an indictment, simply an observation about the consistent feel of the effort as a product of data scientists, about data science.  And the paper 'Enterprise Data Analysis and Visualization: An Interview Study' by researchers Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffery Heer considers data science within the larger context of industrial data analysis, examining analytical workflows, skills, and the challenges common to enterprise analysis efforts, and identifying three archetypes of data scientist.  As an interview-based study, the data the researchers collected is richer, and there's correspondingly greater depth in the synthesis.  The scope of the study included a broader set of roles than data scientist (enterprise analysts) and involved questions of workflow and organizational context for analytical efforts in general.  I'd suggest this is useful as a primer on analytical work and workers in enterprise settings for those who need a baseline understanding; it also offers some genuinely interesting nuggets for those already familiar with discovery work. We've undertaken a considerable amount of research into discovery, analytical work/ers, and data science over the past three years -- part of our programmatic approach to laying a foundation for product strategy and highlighting innovation opportunities -- and both studies complement and confirm much of the direct research into data science that we conducted. There were a few important differences in our findings, which I'll share and discuss in upcoming posts.

    Read the article

  • dependency injection example project suggestion

    - by TokenMacGuy
    I'm exploring dependency injection and trying to make the exercise as pythonic as possible; existing dependency injection frameworks seem very java-like. I've made some pretty good progress building my own framework, but I could really use a model project to validate the framework against. An ideal suggestion would be something that is hard without dependency injection, but is otherwise conceptually trivial.

    Read the article

  • Congratulations to the 2012 Oracle Spatial Award Winners!

    - by Mandy Ho
    I just returned from the 2012 Location Intelligence and Oracle Spatial User conference in Washington, DC, held by Directions Magazine. It was a great conference with presentations from across the country and globe, networking with Oracle Spatial users and meeting new customers and partners. As part of the yearly event, Oracle recognizes special customers and partners for their contributions to advancing mainstream solutions using geospatial technology. This was the 8th year that Oracle has recognized innovative, industry leaders.   The awards were given in three categories: Education/Research, Innovator and Partnership. Here's a little on each of the award winners. Education and Research Award Winner: Technical University of Berlin The Institute for Geodesy and Geoinformation Science of the Technical University of Berlin (TU Berlin) was selected for its leading research work in mapping of urban and regional space onto virtual 3D-city and landscape models, and use of Oracle Spatial, including 3D Vector and Georaster type support, as the data management platform. Innovator Award Winner:  Istanbul Metropolitan Municipality Istanbul is the 3rd largest metropolitan area in Europe. One of their greatest challenges is organizing efficient public transportation for citizens and visitors. There are 15 types of transportations organized by 8 different agencies. To solve this problem, the Directorate of GIS of Istanbul Metropolitan Municipality has created a multi-model itinerary system to help citizens in their decision process for using public transport or their private cars. They choose to use Oracle Spatial Network Model as the solution in our system together with Java and SOAP web services.  Partnership Award Winners: CSoft Group and OSCARS. The Partnership award is given to the ISV or integrator who have demonstrated outstanding achievements in partnering with Oracle on the development side, in taking solutions to market.  CSoft Group- the largest Russion integrator and consultancy provider in CAD and GIS. CSoft was selected by the Oracle Spatial product development organization for the key role in delivering geospatial solutions based on Oracle Database and Fusion Middleware to the Russian market. OSCARS - Provides consulting/training in France, Belgium and Luxembourg. With only 3 full time staff, they have achieved significant success with leading edge customer implementations leveraging the latest Oracle Spatial/MapViewer technologies, and delivering training throughout Europe.  Finally, we also awarded two Special Recognition awards for two partners that helped contribute to the Oracle Partner Network Spatial Specialization. These two partners provided insight and technical expertise from a partner perspective to help launch the new certification program for Oracle Spatial Technologies. Award Winners: ThinkHuddle and OSCARS  For more pictures on the conference and the awards, visit our facebook page: http://www.facebook.com/OracleDatabase

    Read the article

  • Get Started with .Net and Apache Cassandra

    - by Sazzad Hossain
    Just came across a easy and nice to read article explaining how to get started with noSQL database system. These no relational databases are getting increasingly popular to tackle the distribution and large data set problems.Cassandra's ColumnFamily data model offers the convenience of column indexes with the performance of log-structured updates, strong support for materialized views, and powerful built-in caching.The article is nicely written by Kellabyte  and shows step by step process how to get going with the programming in a .net platform.Read more here.

    Read the article

  • Agile Like Jazz

    - by Jeff Certain
    (I’ve been sitting on this for a week or so now, thinking that it needed to be tightened up a bit to make it less rambling. Since that’s clearly not going to happen, reader beware!) I had the privilege of spending around 90 minutes last night sitting and listening to Sonny Rollins play a concert at the Disney Center in LA. If you don’t know who Sonny Rollins is, I don’t know how to explain the experience; if you know who he is, I don’t need to. Suffice it to say that he has been recording professionally for over 50 years, and helped create an entire genre of music. A true master by any definition. One of the most intriguing aspects of a concert like this, however, is watching the master step aside and let the rest of the musicians play. Not just play their parts, but really play… letting them take over the spotlight, to strut their stuff, to soak up enthusiastic applause from the crowd. Maybe a lot of it has to do with the fact that Sonny Rollins has been doing this for more than a half-century. Maybe it has something to do with a kind of patience you learn when you’re on the far side of 80 – and the man can still blow a mean sax for 90 minutes without stopping! Maybe it has to do with the fact that he was out there for the love of the music and the love of the show, not because he had anything to prove to anyone and, I like to think, not for the money. Perhaps it had more to do with the fact that, when you’re at that level of mastery, the other musicians are going to be good. Really good. Whatever the reasons, there was a incredible freedom on that stage – the ability to improvise, for each musician to showcase their own specialization and skills, and them come back to the common theme, back to being on the same page, as it were. All this took place in the same venue that is home to the L.A. Phil. Somehow, I can’t ever see the same kind of free-wheeling improvisation happening in that context. And, since I’m a geek, I started thinking about agility. Rollins has put together a quintet that reflects his own particular style and past. No upright bass or piano for Rollins – drums, bongos, electric guitar and bass guitar along with his sax. It’s not about the mix of instruments. Other trios, quartets, and sextets use different mixes of instruments. New Orleans jazz tends towards trombones instead of sax; some prefer cornet or trumpet. But no matter what the choice of instruments, size matters. Team sizes are something I’ve been thinking about for a while. We’re on a quest to rethink how our teams are organized. They just feel too big, too unwieldy. In fact, they really don’t feel like teams at all. Most of the time, they feel more like collections or people who happen to report to the same manager. I attribute this to a couple factors. One is over-specialization; we have a tendency to have people work in silos. Although the teams are product-focused, within them our developers are both generalists and specialists. On the one hand, we expect them to be able to build an entire vertical slice of the application; on the other hand, each developer tends to be responsible for the vertical slice. As a result, developers often work on their own piece of the puzzle, in isolation. This sort of feels like working on a jigsaw in a group – each person taking a set of colors and piecing them together to reveal a portion of the overall picture. But what inevitably happens when you go to meld all those pieces together? Inevitably, you have some sections that are too big to move easily. These sections end up falling apart under their own weight as you try to move them. Not only that, but there are other challenges – figuring out where that section fits, and how to tie it into the rest of the puzzle. Often, this is when you find a few pieces need to be added – these pieces are “glue,” if you will. The other issue that arises is due to the overhead of maintaining communications in a team. My mother, who worked in IT for around 30 years, once told me that 20% per team member is a good rule of thumb for maintaining communication. While this is a rule of thumb, it seems to imply that any team over about 6 people is going to become less agile simple because of the communications burden. Teams of ten or twelve seem like they fall into the philharmonic organizational model. Complicated pieces of music requiring dozens of players to all be on the same page requires a much different model than the jazz quintet. There’s much less room for improvisation, originality or freedom. (There are probably orchestral musicians who will take exception to this characterization; I’m calling it like I see it from the cheap seats.) And, there’s one guy up front who is running the show, whose job is to keep all of those dozens of players on the same page, to facilitate communications. Somehow, the orchestral model doesn’t feel much like a self-organizing team, either. The first violin may be the best violinist in the orchestra, but they don’t get to perform free-wheeling solos. I’ve never heard of an orchestra getting together for a jam session. But I have heard of teams that organize their work based on the developers available, rather than organizing the developers based on the work required. I have heard of teams where desired functionality is deferred – or worse yet, schedules are missed – because one critical person doesn’t have any bandwidth available. I’ve heard of teams where people simply don’t have the big picture, because there is too much communication overhead for everyone to be aware of everything that is happening on a project. I once heard Paul Rayner say something to the effect of “you have a process that is perfectly designed to give you exactly the results you have.” Given a choice, I want a process that’s much more like jazz than orchestral music. I want a process that doesn’t burden me with lots of forms and checkboxes and stuff. Give me the simplest, most lightweight process that will work – and a smaller team of the best developers I can find. This seems like the kind of process that will get the kind of result I want to be part of.

    Read the article

  • OpenGL 2.1+ Render with data returned form assimp library

    - by Bình Nguyên
    I have just readed this tutorial about load a 3D model file: http://www.lighthouse3d.com/cg-topics/code-samples/importing-3d-models-with-assimp/#comment-14551. Its render routine uses a recursive_render function to scan all node. My question: What is a aiNode struct store? What different form this method and above method: for (int i=0; imNumMesh; ++i) { draw scene-mMeshes[i]; } Thanks for reading!

    Read the article

  • Using Oracle BPM to Extend Oracle Applications

    - by Michelle Kimihira
    Author: Srikant Subramaniam, Senior Principal Product Manager, Oracle Fusion Middleware Customers often modify applications to meet their specific business needs - varying regulatory requirements, unique business processes, product mix transition, etc. Traditional implementation practices for such modifications are typically invasive in nature and introduce risk into projects, affect time-to-market and ease of use, and ultimately increase the costs of running and maintaining the applications. Another downside of these traditional implementation practices is that they literally cast the application in stone, making it difficult for end-users to tailor their individual work environments to meet specific needs, without getting IT involved. For many businesses, however, IT lacks the capacity to support such rapid business changes. As a result, adopting innovative solutions to change the economics of customization becomes an imperative rather than a choice. Let's look at a banking process in Siebel Financial Services and Oracle Policy Automation (OPA) using Oracle Business Process Management. This approach makes modifications simple, quick to implement and easy to maintain/upgrade. The process model is based on the Loan Origination Process Accelerator, i.e., a set of ready to deploy business solutions developed by Oracle using Business Process Management (BPM) 11g, containing customizable and extensible pre-built processes to fit specific customer requirements. This use case is a branch-based loan origination process. Origination includes a number of steps ranging from accepting a loan application, applicant identity and background verification (Know Your Customer), credit assessment, risk evaluation and the eventual disbursal of funds (or rejection of the application). We use BPM to model all of these individual tasks and integrate (via web services) with: Siebel Financial Services and (simulated) backend applications: FLEXCUBE for loan management, Background Verification and Credit Rating. The process flow starts in Siebel when a customer applies for loan, switches to OPA for eligibility verification and product recommendations, before handing it off to BPM for approvals. OPA Connector for Siebel simplifies integration with Siebel’s web services framework by saving directly into Siebel the results from the self-service interview. This combination of user input and product recommendation invokes the BPM process for loan origination. At the end of the approval process, we update Siebel and the financial app to complete the loop. We use BPM Process Spaces to display role-specific data via dashboards, including the ability to track the status of a given process (flow trace). Loan Underwriters have visibility into the product mix (loan categories), status of loan applications (count of approved/rejected/pending), volume and values of loans approved per processing center, processing times, requested vs. approved amount and other relevant business metrics. Summary Oracle recommends the use of Fusion Middleware as an extensions platform for applications. This approach makes modifications simple, quick to implement and easy to maintain/upgrade applications (by moving customizations away from applications to the process layer). It is also easier to manage processes that span multiple applications by using Oracle BPM. Additional Information Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • How to activate subwoofer in Inspiron 17r?

    - by alfC
    I have a Dell Inspiron 17r, after a fresh install of 12.10, the subwoofer seems to be not utilized. No sound comes from it and in the Sound Control Panel the settings appear grayed out (see screenshot). How can I activate the subwoofer? I tried adding the line options snd-hda-intel model=dell in the file /etc/modprobe.d/alsa-base.conf and enable-lfe-remixing = yes default-sample-channels = 3 in the file /etc/pulse/daemon.conf, but still doesn't work.

    Read the article

  • View Link inConsistency

    - by Abhishek Dwivedi
    What is View Link Consistency? When multiple instances (say VO1, VO2, VO3 etc) of an EO-based VO are based on the same underlying EO, a new row created in one of these VO instances (say VO1)can be automatically added (without re-query) to the row sets of the others (VO2, VO3 etc ). This capability is known as the view link consistency. This feature works for any VO for which it is enabled, regardless of whether they are involved in a view link or not. What causes View Link inConsistency? Unless jbo.viewlink.consistent  is disabled for this VO (or globally), or setAssociationConsistent(false) is applied, any of the following can cause View Link inConsistency.  1. setWhereClause 2. Unreferenced secondary EO 3. findByViewCriteria() 4. Using view link accessor row set Why does this happen - View Link inConsistency? Well, there can be one of the following reasons. a. In case of 1 & 2, the view link consistency flag is disabled on that view object. b. As far as 3 is concerned, findByViewCriteria is used to retrieve a new row set to process programmatically without changing the contents of the default row set. In this case, unlike previous cases, the view link consistency flag is not disabled, meaning that the changes in the default row set would be reflected in the new row set.  However, the opposite doesn't hold true. For instance, if a row is deleted from this new row set, the corresponding row in the default row set does not get deleted. In one of my features, which involved deletion of row(s), I resolved the view link inconsistency issue by replacing findByViewCriteria by applyViewCriteria. b. For 4, it's similar to 3 - whenever a view link accessor row set is retrieved, a new row set is created. Now, creating new row set does not mean re-executing the query each time, only creating a new instance of a RowSet object with its default iterator reset to the "slot" before the first row. Also, please note that this new row set always originates from an internally created view object instance, not one you that added to the data model. This internal view object instance is created as needed and added with a system-defined name to the root application module. Anyway, the very reason a distinct, internally-created view object instance is used is to guarantee that it remains unaffected by developer-related changes to their own view objects instances in the data model.

    Read the article

  • Oracle's Vision of the CRM Industry

    Anthony Lye, Senior Vice President for Oracle's CRM Solutions talks to Cliff Godwin about the state of the Customer Relationship Management Industry today, Oracle's CRM Vision and Oracle's comprehensive CRM On Demand Model.

    Read the article

  • Adobe Air turn based multiplayer Game, sockets vs http bandwidth

    - by Arin Aivazian
    I am developing an Adobe Air multiplayer game for iPad. It is turn based and not realtime. It is like checkers game. I want to use a client server model. I have found 2 options to connect to server so far: socket connection and http requests My question is: Is the bandwidth requirement for socket connection vs http requests different? I need the game to work with very low speed internet connections

    Read the article

  • SSIS Design Patterns Training in London 8-11 Sep!

    - by andyleonard
    A few seats remain for my course SQL Server Integration Services 2012 Design Patterns to be delivered in London 8-11 Sep 2014. Register today to learn more about: New features in SSIS 2012 and 2014 Advanced patterns for loading data warehouses Error handling The (new) Project Deployment Model Scripting in SSIS The (new) SSIS Catalog Designing custom SSIS tasks Executing, managing, monitoring, and administering SSIS in the enterprise Business Intelligence Markup Language (Biml) BimlScript ETL Instrumentation...(read more)

    Read the article

  • Tutoriel JavaScript : Présentation des événements du DOM, par Philippe Beaucart

    L'objectif de cet article, relativement exhaustif, est de permettre de comprendre comment manipuler les évènements DOM en JavaScript. Avant d'aborder les évènements du DOM (Document Object Model), vous devez comprendre la construction arborescente d'un document HTML, avec les notions inhérentes de n%u0153uds, de n%u0153ud parent et de n%u0153ud enfant. Idéalement, vous pouvez acquérir préalablement la notion d'arbre XML qui est le fondement de la construction arborescente des documents HTML.

    Read the article

  • Unit testing in Django

    - by acjohnson55
    I'm really struggling to write effective unit tests for a large Django project. I have reasonably good test coverage, but I've come to realize that the tests I've been writing are definitely integration/acceptance tests, not unit tests at all, and I have critical portions of my application that are not being tested effectively. I want to fix this ASAP. Here's my problem. My schema is deeply relational, and heavily time-oriented, giving my model object high internal coupling and lots of state. Many of my model methods query based on time intervals, and I've got a lot of auto_now_add going on in timestamped fields. So take a method that looks like this for example: def summary(self, startTime=None, endTime=None): # ... logic to assign a proper start and end time # if none was provided, probably using datetime.now() objects = self.related_model_set.manager_method.filter(...) return sum(object.key_method(startTime, endTime) for object in objects) How does one approach testing something like this? Here's where I am so far. It occurs to me that the unit testing objective should be given some mocked behavior by key_method on its arguments, is summary correctly filtering/aggregating to produce a correct result? Mocking datetime.now() is straightforward enough, but how can I mock out the rest of the behavior? I could use fixtures, but I've heard pros and cons of using fixtures for building my data (poor maintainability being a con that hits home for me). I could also setup my data through the ORM, but that can be limiting, because then I have to create related objects as well. And the ORM doesn't let you mess with auto_now_add fields manually. Mocking the ORM is another option, but not only is it tricky to mock deeply nested ORM methods, but the logic in the ORM code gets mocked out of the test, and mocking seems to make the test really dependent on the internals and dependencies of the function-under-test. The toughest nuts to crack seem to be the functions like this, that sit on a few layers of models and lower-level functions and are very dependent on the time, even though these functions may not be super complicated. My overall problem is that no matter how I seem to slice it, my tests are looking way more complex than the functions they are testing.

    Read the article

  • Generic log analyzer that produces reports

    - by Eugene
    About 600 customers use our application. We have very detailed logs for everything that happens in the application, from changes in the data model, memory and CPU/GPU usage to clicks on the UI elements. We want to be able to parse the logs coming from these customers and analyze them to understand how users use our application and what happens internally in the application. Is there a log analyzer that can produce such reports automatically?

    Read the article

  • Asset missing problem XNA

    - by ChocoMan
    I'm using VS2010 with XNA 4.0 and I'm trying to load an FBX model with texture on the screen. The problem I'm having is this error: Missing Asset: C:\Users\ChocoMan\Documents\Visual Studio 2010\Projects\XNAGame\Documents\Visual Studio\Projects\XNAGame\XNAGameContent\Textures\texture.bmp but the actual path to the texture is C:\Users\ChocoMan\Documents\Visual Studio\Projects\XNAGame\XNAGameContent\Textures\texture.bmp Also, when I linked the texture in Maya, I used the above address. Does anyone know why VS is looking for an incorrect address that doesnt exist?

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • User Group meeting in Copenhagen for #powerpivot

    - by Marco Russo (SQLBI)
    The next Monday, March 21st, I will join a special event organized by the Danish SQL Server User Group , Excelbi.dk and the Swedish SQL Server User Group . The meeting will start at 18:00 at the Radisson Royal Blu in Copenhagen, and this is the topic we will discuss. PowerPivot / BISM and the future of a BI Solution The next version of Analysis Services will offer the BI Semantic Model (BISM) that is based on Vertipaq, the same engine that runs PowerPivot. DAX and PowerPivot have been created as...(read more)

    Read the article

  • #DAX Query Plan in SQL Server 2012 #Tabular

    - by Marco Russo (SQLBI)
    The SQL Server Profiler provides you many information regarding the internal behavior of DAX queries sent to a BISM Tabular model. Similar to MDX, also in DAX there is a Formula Engine (FE) and a Storage Engine (SE). The SE is usually handled by Vertipaq (unless you are using DirectQuery mode) and Vertipaq SE Query classes of events gives you a SQL-like syntax that represents the query sent to the storage engine. Another interesting class of events is the DAX Query Plan , which contains a couple...(read more)

    Read the article

  • Given a project and working with 1 other person - never worked with someone before

    - by Celeritas
    I'm taking a class where I work with a partner to implement the link layer of the OSI model. I've worked programmed with a partner once before and it went bad. Is the goal to divide the work up and decides who does what or should one person code and the other person reviews and switch roles after a while? Any tips are much appreciated. Literally I know nothing about working with a partner to program so even if it's basic please tell me.

    Read the article

  • Four New Videos on ASP.NET MVC 2

    Microsoft?s Jon Galloway has recorded 4 new ?quick hit? videos to help you get up to speed on new features in ASP.NET MVC 2. Learn about HTML Encoding, Strongly Typed Helpers, Model Validation, and Template Customization in these newest videos.

    Read the article

  • Generating geometry when using VBO

    - by onedayitwillmake
    Currently I am working on a project in which I generate geometry based on the players movement. A glorified very long trail, composed of quads. I am doing this by storing a STD::Vector, and removing the oldest verticies once enough exist, and then calling glDrawArrays. I am interested in switching to a shader based model, usually examples I see the VBO is generated at start and then that's basically it. What is the best route to go about creating geometry in real time, using shader / VBO approach

    Read the article

< Previous Page | 223 224 225 226 227 228 229 230 231 232 233 234  | Next Page >