Search Results

Search found 7417 results on 297 pages for 'customer relationship'.

Page 229/297 | < Previous Page | 225 226 227 228 229 230 231 232 233 234 235 236  | Next Page >

  • dynamic SQL not working as expected

    - by christine33990
    create or replace procedure createtables Authid current_user as begin execute immediate 'create table newcustomer as select * from customer'; end; create or replace procedure e is begin createtables; select * from newcustomer; end; I got two procedures above. first one will create a new tables called newcustomer, second procedure will call the first procedure and query to the newcustomer table. when I try to compile this code, it says the table is not yet created, I don't really get it as I have called createtables procedure so I assume I have created the table. Any help will be appreciated. Thanks

    Read the article

  • Ajax request. Which callback is executed first complete or success?

    - by Gutzofter
    I could spike this to find out, but I'm going to use SO. In my unit tests (qunit) I use the asynchShould (alias for asynchTest) test. Part of the assertion is to wait for the completion/success of the request. Like this: asyncShould('talk to customer list server', 1, function() { stop(2000); var forCustomerList = newCustomerListRequest(); forCustomerList.page = 'helpers/helper.php'; forCustomerList.data += '&action=customerListServer&DB=11001'; var originalSuccess = forCustomerList.success; forCustomerList.success = function(msg) { if (msg.flash !== undefined && msg.data !== undefined && msg.status !== undefined) { ok(true, 'json structure correct') } else { ok(false, 'json structure not correct'); } originalSuccess(msg); start(); }; testController.getServerData(forCustomerList); })

    Read the article

  • How do I specify a default value in a MS Access query?

    - by jheddings
    I have three tables similar to the following: tblInvoices: Number | Date | Customer tblInvDetails: Invoice | Quantity | Rate | Description tblPayments: Invoice | Date | Amount I have created a query called exInvDetails that adds an Amount column to tblInvDetails: SELECT tblInvDetails.*, [tblInvDetails.Quantity]*[tblInvDetails.Rate]* AS Amount FROM tblInvDetails; I then created a query exInvoices to add Total and Balance columns to tblInvoices: SELECT tblInvoices.*, (SELECT Sum(exInvDetails.Amount) FROM exInvDetails WHERE exInvDetails.Invoice = tblInvoices.Number) AS Total, (SELECT Sum(tblPayments.Amount) FROM tblPayments WHERE tblPayments.Invoice = tblInvoices.Number) AS Payments, (Total-Payments) AS Balance FROM tblInvoices; If there are no corresponding payments in tblPayments, the fields are null instead of 0. Is there a way to force the resulting query to put a 0 in this column?

    Read the article

  • web-development: how do you usually handle the "under costruction" page"?

    - by Patrick
    hi, I was wondering what's the best way to switch a website to a temporary "under costruction" page and switch it back to the new version. For example, in a website, my customer decided to switch from Joomla to Drupal and I had to create a subfolder for the new CMS, and then move all the content to the root folder. 1) Moving all the content back to the root folder always create some problems with file permissions, links, etc... 2) Creating a rewrite rule in .htaccess or forward with php is not a solution because another url is shown including the top folder. 3) Many host services do not allow to change the root directory, so this is not an option since I don't have access to apache config file. Thanks

    Read the article

  • moving a website built on struts to a CMS

    - by fabiobeta
    Hi. Imagine having developed a classical website with java&struts. Now you customer is learning that redeploying the application to change an image or a text is a significant cost. And it asks to add a function to the site: cms-like handling of the contents (editing, versioning, approved publishing). How would you handle this request? Would you develop it in the webapp? Would you merge the webapp with a CMS? Would tou MOVE the webapp into a cms? Would you run away?

    Read the article

  • Handling missing data

    - by soppotare
    Say I have a simple helpdesk application which logs calls made by users. I would typically have such fields in a table relating to the call e.g. CallID, Description, CustomerID etc. I Would also have a table of customers including CustomerID, Username, Password, FullName etc. Now when a user is deleted from the customers table then the inner join between the calls table and the users table to find out historically which user logged a call would produce no results. How do people usually deal with this? Have seperate customer and useraccount tables Just disable the accounts so the data is still available Record the customers name in the calls table as a seperate field. or any other methods / suggestions?

    Read the article

  • How do you insert new entries into an Access db table through an ASP.net website?

    - by CGF
    I need to insert new records into an Access database. I'm using Visual Studio 2008 and firstly create a asp.net website. I can connect to the information in Access databse using dataview or gridview and can query a particular entry (ie. Proposal No. -brings up all details linking to that proposal). I can then edit the details of that proposal and this would update the Access Db. What I need to do is to have a form that simply enters new details for a new customer. ie. Enter name [__] Enter Adress[__]. Then for this to update the database. By using the gridview or dataview I am able to view all fields that exist in the table and edit them. Is there a way that I can get a blank gridview/dataview template (which includes all the fields in the table) and fill it out to then update the database? Thanks

    Read the article

  • Forward traffic between two VLANs.

    - by Michael
    I have a small network with two VLANs. One is our internal network for basic file sharing, etc and the other is a public wifi network for our customers. The internal network is configured as 192.168.1.x and the public wifi is 192.168.11.x. We have one printer at 192.168.1.50. I would like to be able to have that printer available to our customer at 192.168.11.50. I suspect it can be done with iptables, but I'm brand new to it and I just can seem to work out the syntax. Can anyone offer any help? Oh, this is all running on a wrt54g router running Tomato.

    Read the article

  • VB.net Dataset display different column

    - by Josh
    Hello, I am sure this has to a comon thing I just can't find it. I am making a combobox from my data source. Basically, This is a projects form and the user needs to select the the primary contact which is contrained by the customer id (GETbyCustomerID) set in another field. I have it working... mostly except the combobox only displays the contact ID which is completely useless to the user. I need to know how to display the First and Last name (both are seperate columns in the table). Any help? I am just using the designer.

    Read the article

  • Group Objects by Common Key

    - by Marshmellow1328
    I have a list of Customers. Each customer has an address and some customers may actually have the same address. My ultimate goal is to group customers based on their address. I figure I could either put the customers in some sort of list-based structure and sort on the addresses, or I could drop the objects into some sort of map that allows multiple values per key. I will now make a pretty picture: List: A1 - C1, A1 - C2, A2 - C3, A3 - C4, A3 - C5 Map: A1 A2 A3 C1 C3 C4 C2 C5 Which option (or any others) do you see as the best solution? Are there any existing classes that will make development easier?

    Read the article

  • MySQL is there a Single Select to Query Various Unrelated Values from a database?

    - by zzapper
    I saw somewhere what seemed to be nested selects, one "master" select on the "outside" and a series of selects inside- is this possible? I'm not talking about joins as there is particular relation between the selects. I seem not to be explaining myself very well. I want to do a single query which will pull out a series of stats from various tables latest order, latest customer, largest order. Obviously I can do that with a series of selects. The example I saw was something like select ( select ... from tbl_1 where .., select ... from tbl_2 where .., select ... from tbl_3 where .., ... )

    Read the article

  • What is a better way to sort by a 5 star rating?

    - by Vizjerai
    I'm trying to sort a bunch of products by customer ratings using a 5 star system. The site I'm setting this up for does not have a lot of ratings and continue to add new products so it will usually have a few products with a low number of ratings. I tried using average star rating but that algorithm fails when there is a small number of ratings. Example a product that has 3x 5 star ratings would show up better than a product that has 100x 5 star ratings and 2x 2 star ratings. Shouldn't the second product show up higher because it is statistically more trustworthy because of the larger number of ratings?

    Read the article

  • jQuery .noconflict with prototype not working in (you guessed it) IE.

    - by Kyle Sevenoaks
    On my new customer page, I have successfully implemented a jQuery show/hide toggle alongside a Prototype script using jQuery's .noconflict. (Thanks to all for answers!) But as the world of the net is, IE's not playing ball. {literal} <script src="http://code.jquery.com/jquery-latest.js" type="text/javascript"> </script> <script type="text/javascript"> var $j = jQuery.noConflict(); $j(function() { $j("#button1").click(function() { $j("#show-hide").toggle("slow"); }); });? </script> {/literal} As you all must know by now, I'm just newly coming to all this jQuery stuff, so I have no idea what could cause it. Thanks for any help.

    Read the article

  • How do I create a certain control using Windows Forms in Visual C++?

    - by Dalze
    I am new to using Windows Forms in C++ (and just in general), and I am not exactly sure of the name or if it's even possible to do. Currently I am currently working on a school project in which we must make a program for an imaginary bookstore. I am trying right now to make a sort of list that shows what the "customer" is buying. I have to make it sort by price and ISBN and any other variable that the book has. In essence I am trying to make something like the following: I just need to know how to get started. I can't figure out what the name of the control is or how to even get it to sort every time the user clicks on the header.

    Read the article

  • Network license control for a Java application

    - by user1461615
    I have been tasked with providing some form of network license control for a Java application. The app would be stored on a network drive and run from a client machine. The basic idea is that it will be able to work out how many times it is being run concurrently and prevent the N+1th user from running the software where N is the number of concurrent licenses the customer has purchased. Is this possible somehow with a Java application? I implemented a "solution" which relied on multi-cast UDP communication between the running instances of the application but this didn't work because on most networks this kind of communication is blocked by security measures. Is there a better way? I don't even mind if it requires JNI/JNA. N.B. The solution does not have to be that sophisticated or highly secure.

    Read the article

  • correct mysql syntax error

    - by user2981651
    please could someone tell me the problem with this syntax because mysql 5.5.32 keeps tell me about an error CREATE TABLE `clients` ( `ID` tinyint(11) NOT NULL auto_increment, `title` varchar(10) NOT NULL default '', `firstName` varchar(30) NOT NULL default '', `lastName` varchar(30) NOT NULL default '', `address1` varchar(100) NOT NULL default '', `address2` varchar(100) NOT NULL default '', `town` varchar(100) NOT NULL default '', `province` varchar(100) NOT NULL default '', `country` varchar(40) NOT NULL default '', `postCode` varchar(20) NOT NULL default '', `telephone` varchar(20) NOT NULL default '', `email` varchar(100) NOT NULL default '', `cardNo` varchar(16) NOT NULL default '0000-00-00', `expiryDate` date NOT NULL default '0000-00-00', PRIMARY KEY (`ID`) ) TYPE=MyISAM COMMENT='customer table' AUTO_INCREMENT=1 ;

    Read the article

  • Normalization two types of customers into one table

    - by JDewzy
    I am trying to model a sales situation where you can sell to a person or to a business with a contact person. I cannot figure out the proper way to do this. It seems like 2 tables would be incorrect. But how do I model a Customer table that can be a business or a person? Would I just have a boolean for "business" and an additional "business_name" field that would default to Null. But then I have to do an if/then on the columns and that seems like poor design. Any advice, direction, or links is appreciated.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • What's New in ASP.NET 4

    - by Navaneeth
    The .NET Framework version 4 includes enhancements for ASP.NET 4 in targeted areas. Visual Studio 2010 and Microsoft Visual Web Developer Express also include enhancements and new features for improved Web development. This document provides an overview of many of the new features that are included in the upcoming release. This topic contains the following sections: ASP.NET Core Services ASP.NET Web Forms ASP.NET MVC Dynamic Data ASP.NET Chart Control Visual Web Developer Enhancements Web Application Deployment with Visual Studio 2010 Enhancements to ASP.NET Multi-Targeting ASP.NET Core Services ASP.NET 4 introduces many features that improve core ASP.NET services such as output caching and session state storage. Extensible Output Caching Since the time that ASP.NET 1.0 was released, output caching has enabled developers to store the generated output of pages, controls, and HTTP responses in memory. On subsequent Web requests, ASP.NET can serve content more quickly by retrieving the generated output from memory instead of regenerating the output from scratch. However, this approach has a limitation — generated content always has to be stored in memory. On servers that experience heavy traffic, the memory requirements for output caching can compete with memory requirements for other parts of a Web application. ASP.NET 4 adds extensibility to output caching that enables you to configure one or more custom output-cache providers. Output-cache providers can use any storage mechanism to persist HTML content. These storage options can include local or remote disks, cloud storage, and distributed cache engines. Output-cache provider extensibility in ASP.NET 4 lets you design more aggressive and more intelligent output-caching strategies for Web sites. For example, you can create an output-cache provider that caches the "Top 10" pages of a site in memory, while caching pages that get lower traffic on disk. Alternatively, you can cache every vary-by combination for a rendered page, but use a distributed cache so that the memory consumption is offloaded from front-end Web servers. You create a custom output-cache provider as a class that derives from the OutputCacheProvider type. You can then configure the provider in the Web.config file by using the new providers subsection of the outputCache element For more information and for examples that show how to configure the output cache, see outputCache Element for caching (ASP.NET Settings Schema). For more information about the classes that support caching, see the documentation for the OutputCache and OutputCacheProvider classes. By default, in ASP.NET 4, all HTTP responses, rendered pages, and controls use the in-memory output cache. The defaultProvider attribute for ASP.NET is AspNetInternalProvider. You can change the default output-cache provider used for a Web application by specifying a different provider name for defaultProvider attribute. In addition, you can select different output-cache providers for individual control and for individual requests and programmatically specify which provider to use. For more information, see the HttpApplication.GetOutputCacheProviderName(HttpContext) method. The easiest way to choose a different output-cache provider for different Web user controls is to do so declaratively by using the new providerName attribute in a page or control directive, as shown in the following example: <%@ OutputCache Duration="60" VaryByParam="None" providerName="DiskCache" %> Preloading Web Applications Some Web applications must load large amounts of data or must perform expensive initialization processing before serving the first request. In earlier versions of ASP.NET, for these situations you had to devise custom approaches to "wake up" an ASP.NET application and then run initialization code during the Application_Load method in the Global.asax file. To address this scenario, a new application preload manager (autostart feature) is available when ASP.NET 4 runs on IIS 7.5 on Windows Server 2008 R2. The preload feature provides a controlled approach for starting up an application pool, initializing an ASP.NET application, and then accepting HTTP requests. It lets you perform expensive application initialization prior to processing the first HTTP request. For example, you can use the application preload manager to initialize an application and then signal a load-balancer that the application was initialized and ready to accept HTTP traffic. To use the application preload manager, an IIS administrator sets an application pool in IIS 7.5 to be automatically started by using the following configuration in the applicationHost.config file: <applicationPools> <add name="MyApplicationPool" startMode="AlwaysRunning" /> </applicationPools> Because a single application pool can contain multiple applications, you specify individual applications to be automatically started by using the following configuration in the applicationHost.config file: <sites> <site name="MySite" id="1"> <application path="/" serviceAutoStartEnabled="true" serviceAutoStartProvider="PrewarmMyCache" > <!-- Additional content --> </application> </site> </sites> <!-- Additional content --> <serviceAutoStartProviders> <add name="PrewarmMyCache" type="MyNamespace.CustomInitialization, MyLibrary" /> </serviceAutoStartProviders> When an IIS 7.5 server is cold-started or when an individual application pool is recycled, IIS 7.5 uses the information in the applicationHost.config file to determine which Web applications have to be automatically started. For each application that is marked for preload, IIS7.5 sends a request to ASP.NET 4 to start the application in a state during which the application temporarily does not accept HTTP requests. When it is in this state, ASP.NET instantiates the type defined by the serviceAutoStartProvider attribute (as shown in the previous example) and calls into its public entry point. You create a managed preload type that has the required entry point by implementing the IProcessHostPreloadClient interface, as shown in the following example: public class CustomInitialization : System.Web.Hosting.IProcessHostPreloadClient { public void Preload(string[] parameters) { // Perform initialization. } } After your initialization code runs in the Preload method and after the method returns, the ASP.NET application is ready to process requests. Permanently Redirecting a Page Content in Web applications is often moved over the lifetime of the application. This can lead to links to be out of date, such as the links that are returned by search engines. In ASP.NET, developers have traditionally handled requests to old URLs by using the Redirect method to forward a request to the new URL. However, the Redirect method issues an HTTP 302 (Found) response (which is used for a temporary redirect). This results in an extra HTTP round trip. ASP.NET 4 adds a RedirectPermanent helper method that makes it easy to issue HTTP 301 (Moved Permanently) responses, as in the following example: RedirectPermanent("/newpath/foroldcontent.aspx"); Search engines and other user agents that recognize permanent redirects will store the new URL that is associated with the content, which eliminates the unnecessary round trip made by the browser for temporary redirects. Session State Compression By default, ASP.NET provides two options for storing session state across a Web farm. The first option is a session state provider that invokes an out-of-process session state server. The second option is a session state provider that stores data in a Microsoft SQL Server database. Because both options store state information outside a Web application's worker process, session state has to be serialized before it is sent to remote storage. If a large amount of data is saved in session state, the size of the serialized data can become very large. ASP.NET 4 introduces a new compression option for both kinds of out-of-process session state providers. By using this option, applications that have spare CPU cycles on Web servers can achieve substantial reductions in the size of serialized session state data. You can set this option using the new compressionEnabled attribute of the sessionState element in the configuration file. When the compressionEnabled configuration option is set to true, ASP.NET compresses (and decompresses) serialized session state by using the .NET Framework GZipStreamclass. The following example shows how to set this attribute. <sessionState mode="SqlServer" sqlConnectionString="data source=dbserver;Initial Catalog=aspnetstate" allowCustomSqlDatabase="true" compressionEnabled="true" /> ASP.NET Web Forms Web Forms has been a core feature in ASP.NET since the release of ASP.NET 1.0. Many enhancements have been in this area for ASP.NET 4, such as the following: The ability to set meta tags. More control over view state. Support for recently introduced browsers and devices. Easier ways to work with browser capabilities. Support for using ASP.NET routing with Web Forms. More control over generated IDs. The ability to persist selected rows in data controls. More control over rendered HTML in the FormView and ListView controls. Filtering support for data source controls. Enhanced support for Web standards and accessibility Setting Meta Tags with the Page.MetaKeywords and Page.MetaDescription Properties Two properties have been added to the Page class: MetaKeywords and MetaDescription. These two properties represent corresponding meta tags in the HTML rendered for a page, as shown in the following example: <head id="Head1" runat="server"> <title>Untitled Page</title> <meta name="keywords" content="keyword1, keyword2' /> <meta name="description" content="Description of my page" /> </head> These two properties work like the Title property does, and they can be set in the @ Page directive. For more information, see Page.MetaKeywords and Page.MetaDescription. Enabling View State for Individual Controls A new property has been added to the Control class: ViewStateMode. You can use this property to disable view state for all controls on a page except those for which you explicitly enable view state. View state data is included in a page's HTML and increases the amount of time it takes to send a page to the client and post it back. Storing more view state than is necessary can cause significant decrease in performance. In earlier versions of ASP.NET, you could reduce the impact of view state on a page's performance by disabling view state for specific controls. But sometimes it is easier to enable view state for a few controls that need it instead of disabling it for many that do not need it. For more information, see Control.ViewStateMode. Support for Recently Introduced Browsers and Devices ASP.NET includes a feature that is named browser capabilities that lets you determine the capabilities of the browser that a user is using. Browser capabilities are represented by the HttpBrowserCapabilities object which is stored in the HttpRequest.Browser property. Information about a particular browser's capabilities is defined by a browser definition file. In ASP.NET 4, these browser definition files have been updated to contain information about recently introduced browsers and devices such as Google Chrome, Research in Motion BlackBerry smart phones, and Apple iPhone. Existing browser definition files have also been updated. For more information, see How to: Upgrade an ASP.NET Web Application to ASP.NET 4 and ASP.NET Web Server Controls and Browser Capabilities. The browser definition files that are included with ASP.NET 4 are shown in the following list: •blackberry.browser •chrome.browser •Default.browser •firefox.browser •gateway.browser •generic.browser •ie.browser •iemobile.browser •iphone.browser •opera.browser •safari.browser A New Way to Define Browser Capabilities ASP.NET 4 includes a new feature referred to as browser capabilities providers. As the name suggests, this lets you build a provider that in turn lets you write custom code to determine browser capabilities. In ASP.NET version 3.5 Service Pack 1, you define browser capabilities in an XML file. This file resides in a machine-level folder or an application-level folder. Most developers do not need to customize these files, but for those who do, the provider approach can be easier than dealing with complex XML syntax. The provider approach makes it possible to simplify the process by implementing a common browser definition syntax, or a database that contains up-to-date browser definitions, or even a Web service for such a database. For more information about the new browser capabilities provider, see the What's New for ASP.NET 4 White Paper. Routing in ASP.NET 4 ASP.NET 4 adds built-in support for routing with Web Forms. Routing is a feature that was introduced with ASP.NET 3.5 SP1 and lets you configure an application to use URLs that are meaningful to users and to search engines because they do not have to specify physical file names. This can make your site more user-friendly and your site content more discoverable by search engines. For example, the URL for a page that displays product categories in your application might look like the following example: http://website/products.aspx?categoryid=12 By using routing, you can use the following URL to render the same information: http://website/products/software The second URL lets the user know what to expect and can result in significantly improved rankings in search engine results. the new features include the following: The PageRouteHandler class is a simple HTTP handler that you use when you define routes. You no longer have to write a custom route handler. The HttpRequest.RequestContext and Page.RouteData properties make it easier to access information that is passed in URL parameters. The RouteUrl expression provides a simple way to create a routed URL in markup. The RouteValue expression provides a simple way to extract URL parameter values in markup. The RouteParameter class makes it easier to pass URL parameter values to a query for a data source control (similar to FormParameter). You no longer have to change the Web.config file to enable routing. For more information about routing, see the following topics: ASP.NET Routing Walkthrough: Using ASP.NET Routing in a Web Forms Application How to: Define Routes for Web Forms Applications How to: Construct URLs from Routes How to: Access URL Parameters in a Routed Page Setting Client IDs The new ClientIDMode property makes it easier to write client script that references HTML elements rendered for server controls. Increasing use of Microsoft Ajax makes the need to do this more common. For example, you may have a data control that renders a long list of products with prices and you want to use client script to make a Web service call and update individual prices in the list as they change without refreshing the entire page. Typically you get a reference to an HTML element in client script by using the document.GetElementById method. You pass to this method the value of the id attribute of the HTML element you want to reference. In the case of elements that are rendered for ASP.NET server controls earlier versions of ASP.NET could make this difficult or impossible. You were not always able to predict what id values ASP.NET would generate, or ASP.NET could generate very long id values. The problem was especially difficult for data controls that would generate multiple rows for a single instance of the control in your markup. ASP.NET 4 adds two new algorithms for generating id attributes. These algorithms can generate id attributes that are easier to work with in client script because they are more predictable and that are easier to work with because they are simpler. For more information about how to use the new algorithms, see the following topics: ASP.NET Web Server Control Identification Walkthrough: Making Data-Bound Controls Easier to Access from JavaScript Walkthrough: Making Controls Located in Web User Controls Easier to Access from JavaScript How to: Access Controls from JavaScript by ID Persisting Row Selection in Data Controls The GridView and ListView controls enable users to select a row. In previous versions of ASP.NET, row selection was based on the row index on the page. For example, if you select the third item on page 1 and then move to page 2, the third item on page 2 is selected. In most cases, is more desirable not to select any rows on page 2. ASP.NET 4 supports Persisted Selection, a new feature that was initially supported only in Dynamic Data projects in the .NET Framework 3.5 SP1. When this feature is enabled, the selected item is based on the row data key. This means that if you select the third row on page 1 and move to page 2, nothing is selected on page 2. When you move back to page 1, the third row is still selected. This is a much more natural behavior than the behavior in earlier versions of ASP.NET. Persisted selection is now supported for the GridView and ListView controls in all projects. You can enable this feature in the GridView control, for example, by setting the EnablePersistedSelection property, as shown in the following example: <asp:GridView id="GridView2" runat="server" PersistedSelection="true"> </asp:GridView> FormView Control Enhancements The FormView control is enhanced to make it easier to style the content of the control with CSS. In previous versions of ASP.NET, the FormView control rendered it contents using an item template. This made styling more difficult in the markup because unexpected table row and table cell tags were rendered by the control. The FormView control supports RenderOuterTable, a property in ASP.NET 4. When this property is set to false, as show in the following example, the table tags are not rendered. This makes it easier to apply CSS style to the contents of the control. <asp:FormView ID="FormView1" runat="server" RenderTable="false"> For more information, see FormView Web Server Control Overview. ListView Control Enhancements The ListView control, which was introduced in ASP.NET 3.5, has all the functionality of the GridView control while giving you complete control over the output. This control has been made easier to use in ASP.NET 4. The earlier version of the control required that you specify a layout template that contained a server control with a known ID. The following markup shows a typical example of how to use the ListView control in ASP.NET 3.5. <asp:ListView ID="ListView1" runat="server"> <LayoutTemplate> <asp:PlaceHolder ID="ItemPlaceHolder" runat="server"></asp:PlaceHolder> </LayoutTemplate> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> In ASP.NET 4, the ListView control does not require a layout template. The markup shown in the previous example can be replaced with the following markup: <asp:ListView ID="ListView1" runat="server"> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> For more information, see ListView Web Server Control Overview. Filtering Data with the QueryExtender Control A very common task for developers who create data-driven Web pages is to filter data. This traditionally has been performed by building Where clauses in data source controls. This approach can be complicated, and in some cases the Where syntax does not let you take advantage of the full functionality of the underlying database. To make filtering easier, a new QueryExtender control has been added in ASP.NET 4. This control can be added to EntityDataSource or LinqDataSource controls in order to filter the data returned by these controls. Because the QueryExtender control relies on LINQ, but you do not to need to know how to write LINQ queries to use the query extender. The QueryExtender control supports a variety of filter options. The following lists QueryExtender filter options. Term Definition SearchExpression Searches a field or fields for string values and compares them to a specified string value. RangeExpression Searches a field or fields for values in a range specified by a pair of values. PropertyExpression Compares a specified value to a property value in a field. If the expression evaluates to true, the data that is being examined is returned. OrderByExpression Sorts data by a specified column and sort direction. CustomExpression Calls a function that defines custom filter in the page. For more information, see QueryExtenderQueryExtender Web Server Control Overview. Enhanced Support for Web Standards and Accessibility Earlier versions of ASP.NET controls sometimes render markup that does not conform to HTML, XHTML, or accessibility standards. ASP.NET 4 eliminates most of these exceptions. For details about how the HTML that is rendered by each control meets accessibility standards, see ASP.NET Controls and Accessibility. CSS for Controls that Can be Disabled In ASP.NET 3.5, when a control is disabled (see WebControl.Enabled), a disabled attribute is added to the rendered HTML element. For example, the following markup creates a Label control that is disabled: <asp:Label id="Label1" runat="server"   Text="Test" Enabled="false" /> In ASP.NET 3.5, the previous control settings generate the following HTML: <span id="Label1" disabled="disabled">Test</span> In HTML 4.01, the disabled attribute is not considered valid on span elements. It is valid only on input elements because it specifies that they cannot be accessed. On display-only elements such as span elements, browsers typically support rendering for a disabled appearance, but a Web page that relies on this non-standard behavior is not robust according to accessibility standards. For display-only elements, you should use CSS to indicate a disabled visual appearance. Therefore, by default ASP.NET 4 generates the following HTML for the control settings shown previously: <span id="Label1" class="aspNetDisabled">Test</span> You can change the value of the class attribute that is rendered by default when a control is disabled by setting the DisabledCssClass property. CSS for Validation Controls In ASP.NET 3.5, validation controls render a default color of red as an inline style. For example, the following markup creates a RequiredFieldValidator control: <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"   ErrorMessage="Required Field" ControlToValidate="RadioButtonList1" /> ASP.NET 3.5 renders the following HTML for the validator control: <span id="RequiredFieldValidator1"   style="color:Red;visibility:hidden;">RequiredFieldValidator</span> By default, ASP.NET 4 does not render an inline style to set the color to red. An inline style is used only to hide or show the validator, as shown in the following example: <span id="RequiredFieldValidator1"   style"visibility:hidden;">RequiredFieldValidator</span> Therefore, ASP.NET 4 does not automatically show error messages in red. For information about how to use CSS to specify a visual style for a validation control, see Validating User Input in ASP.NET Web Pages. CSS for the Hidden Fields Div Element ASP.NET uses hidden fields to store state information such as view state and control state. These hidden fields are contained by a div element. In ASP.NET 3.5, this div element does not have a class attribute or an id attribute. Therefore, CSS rules that affect all div elements could unintentionally cause this div to be visible. To avoid this problem, ASP.NET 4 renders the div element for hidden fields with a CSS class that you can use to differentiate the hidden fields div from others. The new classvalue is shown in the following example: <div class="aspNetHidden"> CSS for the Table, Image, and ImageButton Controls By default, in ASP.NET 3.5, some controls set the border attribute of rendered HTML to zero (0). The following example shows HTML that is generated by the Table control in ASP.NET 3.5: <table id="Table2" border="0"> The Image control and the ImageButton control also do this. Because this is not necessary and provides visual formatting information that should be provided by using CSS, the attribute is not generated in ASP.NET 4. CSS for the UpdatePanel and UpdateProgress Controls In ASP.NET 3.5, the UpdatePanel and UpdateProgress controls do not support expando attributes. This makes it impossible to set a CSS class on the HTMLelements that they render. In ASP.NET 4 these controls have been changed to accept expando attributes, as shown in the following example: <asp:UpdatePanel runat="server" class="myStyle"> </asp:UpdatePanel> The following HTML is rendered for this markup: <div id="ctl00_MainContent_UpdatePanel1" class="expandoclass"> </div> Eliminating Unnecessary Outer Tables In ASP.NET 3.5, the HTML that is rendered for the following controls is wrapped in a table element whose purpose is to apply inline styles to the entire control: FormView Login PasswordRecovery ChangePassword If you use templates to customize the appearance of these controls, you can specify CSS styles in the markup that you provide in the templates. In that case, no extra outer table is required. In ASP.NET 4, you can prevent the table from being rendered by setting the new RenderOuterTable property to false. Layout Templates for Wizard Controls In ASP.NET 3.5, the Wizard and CreateUserWizard controls generate an HTML table element that is used for visual formatting. In ASP.NET 4 you can use a LayoutTemplate element to specify the layout. If you do this, the HTML table element is not generated. In the template, you create placeholder controls to indicate where items should be dynamically inserted into the control. (This is similar to how the template model for the ListView control works.) For more information, see the Wizard.LayoutTemplate property. New HTML Formatting Options for the CheckBoxList and RadioButtonList Controls ASP.NET 3.5 uses HTML table elements to format the output for the CheckBoxList and RadioButtonList controls. To provide an alternative that does not use tables for visual formatting, ASP.NET 4 adds two new options to the RepeatLayout enumeration: UnorderedList. This option causes the HTML output to be formatted by using ul and li elements instead of a table. OrderedList. This option causes the HTML output to be formatted by using ol and li elements instead of a table. For examples of HTML that is rendered for the new options, see the RepeatLayout enumeration. Header and Footer Elements for the Table Control In ASP.NET 3.5, the Table control can be configured to render thead and tfoot elements by setting the TableSection property of the TableHeaderRow class and the TableFooterRow class. In ASP.NET 4 these properties are set to the appropriate values by default. CSS and ARIA Support for the Menu Control In ASP.NET 3.5, the Menu control uses HTML table elements for visual formatting, and in some configurations it is not keyboard-accessible. ASP.NET 4 addresses these problems and improves accessibility in the following ways: The generated HTML is structured as an unordered list (ul and li elements). CSS is used for visual formatting. The menu behaves in accordance with ARIA standards for keyboard access. You can use arrow keys to navigate menu items. (For information about ARIA, see Accessibility in Visual Studio and ASP.NET.) ARIA role and property attributes are added to the generated HTML. (Attributes are added by using JavaScript instead of included in the HTML, to avoid generating HTML that would cause markup validation errors.) Styles for the Menu control are rendered in a style block at the top of the page, instead of inline with the rendered HTML elements. If you want to use a separate CSS file so that you can modify the menu styles, you can set the Menu control's new IncludeStyleBlock property to false, in which case the style block is not generated. Valid XHTML for the HtmlForm Control In ASP.NET 3.5, the HtmlForm control (which is created implicitly by the <form runat="server"> tag) renders an HTML form element that has both name and id attributes. The name attribute is deprecated in XHTML 1.1. Therefore, this control does not render the name attribute in ASP.NET 4. Maintaining Backward Compatibility in Control Rendering An existing ASP.NET Web site might have code in it that assumes that controls are rendering HTML the way they do in ASP.NET 3.5. To avoid causing backward compatibility problems when you upgrade the site to ASP.NET 4, you can have ASP.NET continue to generate HTML the way it does in ASP.NET 3.5 after you upgrade the site. To do so, you can set the controlRenderingCompatibilityVersion attribute of the pages element to "3.5" in the Web.config file of an ASP.NET 4 Web site, as shown in the following example: <system.web>   <pages controlRenderingCompatibilityVersion="3.5"/> </system.web> If this setting is omitted, the default value is the same as the version of ASP.NET that the Web site targets. (For information about multi-targeting in ASP.NET, see .NET Framework Multi-Targeting for ASP.NET Web Projects.) ASP.NET MVC ASP.NET MVC helps Web developers build compelling standards-based Web sites that are easy to maintain because it decreases the dependency among application layers by using the Model-View-Controller (MVC) pattern. MVC provides complete control over the page markup. It also improves testability by inherently supporting Test Driven Development (TDD). Web sites created using ASP.NET MVC have a modular architecture. This allows members of a team to work independently on the various modules and can be used to improve collaboration. For example, developers can work on the model and controller layers (data and logic), while the designer work on the view (presentation). For tutorials, walkthroughs, conceptual content, code samples, and a complete API reference, see ASP.NET MVC 2. Dynamic Data Dynamic Data was introduced in the .NET Framework 3.5 SP1 release in mid-2008. This feature provides many enhancements for creating data-driven applications, such as the following: A RAD experience for quickly building a data-driven Web site. Automatic validation that is based on constraints defined in the data model. The ability to easily change the markup that is generated for fields in the GridView and DetailsView controls by using field templates that are part of your Dynamic Data project. For ASP.NET 4, Dynamic Data has been enhanced to give developers even more power for quickly building data-driven Web sites. For more information, see ASP.NET Dynamic Data Content Map. Enabling Dynamic Data for Individual Data-Bound Controls in Existing Web Applications You can use Dynamic Data features in existing ASP.NET Web applications that do not use scaffolding by enabling Dynamic Data for individual data-bound controls. Dynamic Data provides the presentation and data layer support for rendering these controls. When you enable Dynamic Data for data-bound controls, you get the following benefits: Setting default values for data fields. Dynamic Data enables you to provide default values at run time for fields in a data control. Interacting with the database without creating and registering a data model. Automatically validating the data that is entered by the user without writing any code. For more information, see Walkthrough: Enabling Dynamic Data in ASP.NET Data-Bound Controls. New Field Templates for URLs and E-mail Addresses ASP.NET 4 introduces two new built-in field templates, EmailAddress.ascx and Url.ascx. These templates are used for fields that are marked as EmailAddress or Url using the DataTypeAttribute attribute. For EmailAddress objects, the field is displayed as a hyperlink that is created by using the mailto: protocol. When users click the link, it opens the user's e-mail client and creates a skeleton message. Objects typed as Url are displayed as ordinary hyperlinks. The following example shows how to mark fields. [DataType(DataType.EmailAddress)] public object HomeEmail { get; set; } [DataType(DataType.Url)] public object Website { get; set; } Creating Links with the DynamicHyperLink Control Dynamic Data uses the new routing feature that was added in the .NET Framework 3.5 SP1 to control the URLs that users see when they access the Web site. The new DynamicHyperLink control makes it easy to build links to pages in a Dynamic Data site. For information, see How to: Create Table Action Links in Dynamic Data Support for Inheritance in the Data Model Both the ADO.NET Entity Framework and LINQ to SQL support inheritance in their data models. An example of this might be a database that has an InsurancePolicy table. It might also contain CarPolicy and HousePolicy tables that have the same fields as InsurancePolicy and then add more fields. Dynamic Data has been modified to understand inherited objects in the data model and to support scaffolding for the inherited tables. For more information, see Walkthrough: Mapping Table-per-Hierarchy Inheritance in Dynamic Data. Support for Many-to-Many Relationships (Entity Framework Only) The Entity Framework has rich support for many-to-many relationships between tables, which is implemented by exposing the relationship as a collection on an Entity object. New field templates (ManyToMany.ascx and ManyToMany_Edit.ascx) have been added to provide support for displaying and editing data that is involved in many-to-many relationships. For more information, see Working with Many-to-Many Data Relationships in Dynamic Data. New Attributes to Control Display and Support Enumerations The DisplayAttribute has been added to give you additional control over how fields are displayed. The DisplayNameAttribute attribute in earlier versions of Dynamic Data enabled you to change the name that is used as a caption for a field. The new DisplayAttribute class lets you specify more options for displaying a field, such as the order in which a field is displayed and whether a field will be used as a filter. The attribute also provides independent control of the name that is used for the labels in a GridView control, the name that is used in a DetailsView control, the help text for the field, and the watermark used for the field (if the field accepts text input). The EnumDataTypeAttribute class has been added to let you map fields to enumerations. When you apply this attribute to a field, you specify an enumeration type. Dynamic Data uses the new Enumeration.ascx field template to create UI for displaying and editing enumeration values. The template maps the values from the database to the names in the enumeration. Enhanced Support for Filters Dynamic Data 1.0 had built-in filters for Boolean columns and foreign-key columns. The filters did not let you specify the order in which they were displayed. The new DisplayAttribute attribute addresses this by giving you control over whether a column appears as a filter and in what order it will be displayed. An additional enhancement is that filtering support has been rewritten to use the new QueryExtender feature of Web Forms. This lets you create filters without requiring knowledge of the data source control that the filters will be used with. Along with these extensions, filters have also been turned into template controls, which lets you add new ones. Finally, the DisplayAttribute class mentioned earlier allows the default filter to be overridden, in the same way that UIHint allows the default field template for a column to be overridden. For more information, see Walkthrough: Filtering Rows in Tables That Have a Parent-Child Relationship and QueryableFilterRepeater. ASP.NET Chart Control The ASP.NET chart server control enables you to create ASP.NET pages applications that have simple, intuitive charts for complex statistical or financial analysis. The chart control supports the following features: Data series, chart areas, axes, legends, labels, titles, and more. Data binding. Data manipulation, such as copying, splitting, merging, alignment, grouping, sorting, searching, and filtering. Statistical formulas and financial formulas. Advanced chart appearance, such as 3-D, anti-aliasing, lighting, and perspective. Events and customizations. Interactivity and Microsoft Ajax. Support for the Ajax Content Delivery Network (CDN), which provides an optimized way for you to add Microsoft Ajax Library and jQuery scripts to your Web applications. For more information, see Chart Web Server Control Overview. Visual Web Developer Enhancements The following sections provide information about enhancements and new features in Visual Studio 2010 and Visual Web Developer Express. The Web page designer in Visual Studio 2010 has been enhanced for better CSS compatibility, includes additional support for HTML and ASP.NET markup snippets, and features a redesigned version of IntelliSense for JScript. Improved CSS Compatibility The Visual Web Developer designer in Visual Studio 2010 has been updated to improve CSS 2.1 standards compliance. The designer better preserves HTML source code and is more robust than in previous versions of Visual Studio. HTML and JScript Snippets In the HTML editor, IntelliSense auto-completes tag names. The IntelliSense Snippets feature auto-completes whole tags and more. In Visual Studio 2010, IntelliSense snippets are supported for JScript, alongside C# and Visual Basic, which were supported in earlier versions of Visual Studio. Visual Studio 2010 includes over 200 snippets that help you auto-complete common ASP.NET and HTML tags, including required attributes (such as runat="server") and common attributes specific to a tag (such as ID, DataSourceID, ControlToValidate, and Text). You can download additional snippets, or you can write your own snippets that encapsulate the blocks of markup that you or your team use for common tasks. For more information on HTML snippets, see Walkthrough: Using HTML Snippets. JScript IntelliSense Enhancements In Visual 2010, JScript IntelliSense has been redesigned to provide an even richer editing experience. IntelliSense now recognizes objects that have been dynamically generated by methods such as registerNamespace and by similar techniques used by other JavaScript frameworks. Performance has been improved to analyze large libraries of script and to display IntelliSense with little or no processing delay. Compatibility has been significantly increased to support almost all third-party libraries and to support diverse coding styles. Documentation comments are now parsed as you type and are immediately leveraged by IntelliSense. Web Application Deployment with Visual Studio 2010 For Web application projects, Visual Studio now provides tools that work with the IIS Web Deployment Tool (Web Deploy) to automate many processes that had to be done manually in earlier versions of ASP.NET. For example, the following tasks can now be automated: Creating an IIS application on the destination computer and configuring IIS settings. Copying files to the destination computer. Changing Web.config settings that must be different in the destination environment. Propagating changes to data or data structures in SQL Server databases that are used by the Web application. For more information about Web application deployment, see ASP.NET Deployment Content Map. Enhancements to ASP.NET Multi-Targeting ASP.NET 4 adds new features to the multi-targeting feature to make it easier to work with projects that target earlier versions of the .NET Framework. Multi-targeting was introduced in ASP.NET 3.5 to enable you to use the latest version of Visual Studio without having to upgrade existing Web sites or Web services to the latest version of the .NET Framework. In Visual Studio 2008, when you work with a project targeted for an earlier version of the .NET Framework, most features of the development environment adapt to the targeted version. However, IntelliSense displays language features that are available in the current version, and property windows display properties available in the current version. In Visual Studio 2010, only language features and properties available in the targeted version of the .NET Framework are shown. For more information about multi-targeting, see the following topics: .NET Framework Multi-Targeting for ASP.NET Web Projects ASP.NET Side-by-Side Execution Overview How to: Host Web Applications That Use Different Versions of the .NET Framework on the Same Server How to: Deploy Web Site Projects Targeted for Earlier Versions of the .NET Framework

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Sending mail with Gmail Account using System.Net.Mail in ASP.NET

    - by Jalpesh P. Vadgama
    Any web application is in complete without mail functionality you should have to write send mail functionality. Like if there is shopping cart application for example then when a order created on the shopping cart you need to send an email to administrator of website for Order notification and for customer you need to send an email of receipt of order. So any web application is not complete without sending email. This post is also all about sending email. In post I will explain that how we can send emails from our Gmail Account without purchasing any smtp server etc. There are some limitations for sending email from Gmail Account. Please note following things. Gmail will have fixed number of quota for sending emails per day. So you can not send more then that emails for the day. Your from email address always will be your account email address which you are using for sending email. You can not send an email to unlimited numbers of people. Gmail ant spamming policy will restrict this. Gmail provide both Popup and SMTP settings both should be active in your account where you testing. You can enable that via clicking on setting link in gmail account and go to Forwarding and POP/Imap. So if you are using mail functionality for limited emails then Gmail is Best option. But if you are sending thousand of email daily then it will not be Good Idea. Here is the code for sending mail from Gmail Account. using System.Net.Mail; namespace Experiement { public partial class WebForm1 : System.Web.UI.Page { protected void Page_Load(object sender,System.EventArgs e) { MailMessage mailMessage = new MailMessage(new MailAddress("[email protected]") ,new MailAddress("[email protected]")); mailMessage.Subject = "Sending mail through gmail account"; mailMessage.IsBodyHtml = true; mailMessage.Body = "<B>Sending mail thorugh gmail from asp.net</B>"; System.Net.NetworkCredential networkCredentials = new System.Net.NetworkCredential("[email protected]", "yourpassword"); SmtpClient smtpClient = new SmtpClient(); smtpClient.EnableSsl = true; smtpClient.UseDefaultCredentials = false; smtpClient.Credentials = networkCredentials; smtpClient.Host = "smtp.gmail.com"; smtpClient.Port = 587; smtpClient.Send(mailMessage); Response.Write("Mail Successfully sent"); } } } That’s run this application and you will get like below in your account. Technorati Tags: Gmail,System.NET.Mail,ASP.NET

    Read the article

  • Oracle Insurance Unveils Next Generation of Enterprise Document Automation: Oracle Documaker Enterprise Edition

    - by helen.pitts(at)oracle.com
    Oracle today announced the introduction of Oracle Documaker Enterprise Edition, the next generation of the company's market-leading Enterprise Document Automation (EDA) solution for dynamically creating, managing and delivering adaptive enterprise communications across multiple channels. "Insurers and other organizations need enterprise document automation that puts the power to manage the complete document lifecycle in the hands of the business user," said Srini Venkatasanthanam, vice president, Product Strategy, Oracle Insurancein the press release. "Built with features such as rules-based configurability and interactive processing, Oracle Documaker Enterprise Edition makes possible an adaptive approach to enterprise document automation - documents when, where and in the form they're needed." Key enhancements in Oracle Documaker Enterprise Edition include: Documaker Interactive, the newly renamed and redesigned Web-based iDocumaker module. Documaker Interactive enables users to quickly and interactively create and assemble compliant communications such as policy and claims correspondence directly from their desktops. Users benefits from built-in accelerators and rules-based configurability, pre-configured content as well as embedded workflow leveraging Oracle BPEL Process Manager. Documaker Documaker Factory, which helps enterprises reduce cost and improve operational efficiency through better management of their enterprise publishing operations. Dashboards, analytics, reporting and an administrative console provide insurers with greater insight and centralized control over document production allowing them to better adapt their resources based on business demands. Other enhancements include: enhanced business user empowerment; additional multi-language localization capabilities; and benefits from the use of powerful Oracle technologies such as the Oracle Application Development Framework for all interfaces and Oracle Universal Content Management (Oracle UCM) for enterprise content management. Drive Competitive Advantage and Growth: Deb Smallwood, founder of SMA Strategy Meets Action, a leading industry insurance analyst consulting firm and co-author of 3CM in Insurance: Customer Communications and Content Management published last month, noted in the press release that "maximum value can be gained from investments when Enterprise Document Automation (EDA) is viewed holistically and all forms of communication and all types of information are integrated across the entire enterprise. "Insurers that choose an approach that takes all communications, both structured and unstructured data, coming into the company from a wide range of channels, and then create seamless flows of information will have a real competitive advantage," Smallwood said. "This capability will soon become essential for selling, servicing, and ultimately driving growth through new business and retention." Learn More: Click here to watch a short flash demo that demonstrates the real business value offered by Oracle Documaker Enterprise Edition. You can also see how an insurance company can use Oracle Documaker Enterprise Edition to dynamically create, manage and publish adaptive enterprise content throughout the insurance business lifecycle for delivery across multiple channels by visiting Alamere Insurance, a fictional model insurance company created by Oracle to showcase how Oracle applications can be leveraged within the insurance enterprise. Meet Our Newest Oracle Insurance Blogger: I'm pleased to introduce our newest Oracle Insurance blogger, Susanne Hale. Susanne, who manages product marketing for Oracle Insurance EDA solutions, will be sharing insights about this topic along with examples of how our customers are transforming their enterprise communications using Oracle Documaker Enterprise Edition in future Oracle Insurance blog entries. Helen Pitts is senior product marketing manager for Oracle Insurance.

    Read the article

  • Developer’s Life – Every Developer is a Batman

    - by Pinal Dave
    Batman is one of the darkest superheroes in the fantasy canon.  He does not come to his powers through any sort of magical coincidence or radioactive insect, but through a lot of psychological scarring caused by witnessing the death of his parents.  Despite his dark back story, he possesses a lot of admirable abilities that I feel bear comparison to developers. Batman has the distinct advantage that his alter ego, Bruce Wayne is a millionaire (or billionaire in today’s reboots).  This means that he can spend his time working on his athletic abilities, building a secret lair, and investing his money in cool tools.  This might not be true for developers (well, most developers), but I still think there are many parallels. So how are developers like Batman? Well, read on my list of reasons. Develop Skills Batman works on his skills.  He didn’t get the strength to scale Gotham’s skyscrapers by inheriting his powers or suffering an industrial accident.  Developers also hone their skills daily.  They might not be doing pull-ups and scaling buldings, but I think their skills are just as impressive. Clear Goals Batman is driven to build a better Gotham.  He knows that the criminal who killed his parents was a small-time thief, not a super villain – so he has larger goals in mind than simply chasing one villain.  He wants his city as a whole to be better.  Developers are also driven to make things better.  It can be easy to get hung up on one problem, but in the end it is best to focus on the well-being of the system as a whole. Ultimate Teamplayers Batman is the hero Gotham needs – even when that means appearing to be the bad guys.  Developers probably know that feeling well.  Batman takes the fall for a crime he didn’t commit, and developers often have to deliver bad news about the limitations of their networks and servers.  It’s not always a job filled with glory and thanks, but someone has to do it. Always Ready Batman and the Boy Scouts have this in common – they are always prepared.  Let’s add developers to this list.  Batman has an amazing tool belt with gadgets and gizmos, and let’s not even get into all the functions of the Batmobile!  Developers’ skills might be the knowledge and skills they have developed, not tools they can carry in a utility belt, but that doesn’t make them any less impressive. 100% Dedication Bruce Wayne cultivates the personality of a playboy, never keeping the same girlfriend for long and spending his time partying.  Even though he hides it, his driving force is his deep concern and love for his friends and the city as a whole.  Developers also care a lot about their company and employees – even when it is driving them crazy.  You do your best work when you care about your job on a personal level. Quality Output Batman believes the city deserves to be saved.  The citizens might have a love-hate relationship with both Batman and Bruce Wayne, and employees might not always appreciate developers.  Batman and developers, though, keep working for the best of everyone. I hope you are all enjoying reading about developers-as-superheroes as much as I am enjoying writing about them.  Please tell me how else developers are like Superheroes in the comments – especially if you know any developers who are faster than a speeding bullet and can leap tall buildings in a single bound. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Developer, Superhero

    Read the article

  • Designing an email system to guarantee delivery

    - by GlenH7
    We are looking to expand our use of email for notification purposes. We understand it will generate more inbox volume, but we are being selective about which events we fire notification on in order to keep the signal-to-noise ratio high. The big question we are struggling with is designing a system that guarantees that the email was delivered. If an email isn't delivered, we will consider that an exception event that needs to be investigated. In reality, I say almost guarantees because there aren't any true guarantees with email. We're just looking for a practical solution to making sure the email got there and experiences others have had with the various approaches to guaranteeing delivery. For the TL;DR crowd - how do we go about designing a system to guarantee delivery of emails? What techniques should we consider so we know the emails were delivered? Our biggest area of concern is what techniques to use so that we know when a message is sent out that it either lands in an inbox or it failed and we need to do something else. Additional requirements: We're not at the stage of including an escalation response, but we'll want that in the future or so we think. Most notifications will be internal to our enterprise, but we will have some notifications being sent to external clients. Some of our application is in a hosted environment. We haven't determined if those servers can access our corporate email servers for relaying or if they'll be acting as their own mail servers. Base design / modules (at the moment): A module to assign tracking identification A module to send out emails A module to receive delivery notification (perhaps this is the same as the email module) A module that checks sent messages against delivery notification and alerts on undelivered email. Some references: Atwood: Send some email Email Tracking Some approaches: Request a response (aka read-receipt or Message Disposition Notification). Seems prone to failure since we have cross-compatibility issues due to differing mail servers and software. Return receipt (aka Delivery Status Notification). Not sure if all mail servers honor this request or not Require an action and therefore prove reply. Seems burdensome to force the recipients to perform an additional task not related to resolving the issue. And no, we haven't come up with a way of linking getting the issue fixed to whether or not the email was received. Force a click-through / Other site sign-in. Similar to requiring some sort of action, this seems like an additional burden and will annoy the users. On the other hand, it seems the most likely to guarantee someone received the notification. Hidden image tracking. Not all email providers automatically load the image, and how would we associate the image(s) with the email tracking ID? Outsource delivery. This gets us out of the email business, but goes back to how to guarantee the out-sourcer's receipt and subsequent delivery to the end recipient. As a related concern, there will be an n:n relationship between issue notification and recipients. The 1 issue : n recipients subset isn't as much of a concern although if we had a delivery failure we would want to investigate and fix the core issue. Of bigger concern is n issues : 1 recipient, and we're specifically concerned in making sure that all n issues were received by the recipient. How does forum software or issue tracking software handle this requirement? If a tracking identifier is used, Where is it placed in the email? In the Subject, or the Body?

    Read the article

  • This Week in Geek History: Gmail Goes Public, Deep Blue Wins at Chess, and the Birth of Thomas Edison

    - by Jason Fitzpatrick
    Every week we bring you a snapshot of the week in Geek History. This week we’re taking a peek at the public release of Gmail, the first time a computer won against a chess champion, and the birth of prolific inventor Thomas Edison. Gmail Goes Public It’s hard to believe that Gmail has only been around for seven years and that for the first three years of its life it was invite only. In 2007 Gmail dropped the invite only requirement (although they would hold onto the “beta” tag for another two years) and opened its doors for anyone to grab a username @gmail. For what seemed like an entire epoch in internet history Gmail had the slickest web-based email around with constant innovations and features rolling out from Gmail Labs. Only in the last year or so have major overhauls at competitors like Hotmail and Yahoo! Mail brought other services up to speed. Can’t stand reading a Week in Geek History entry without a random fact? Here you go: gmail.com was originally owned by the Garfield franchise and ran a service that delivered Garfield comics to your email inbox. No, we’re not kidding. Deep Blue Proves Itself a Chess Master Deep Blue was a super computer constructed by IBM with the sole purpose of winning chess matches. In 2011 with the all seeing eye of Google and the amazing computational abilities of engines like Wolfram Alpha we simply take powerful computers immersed in our daily lives for granted. The 1996 match against reigning world chest champion Garry Kasparov where in Deep Blue held its own, but ultimately lost, in a  4-2 match shook a lot of people up. What did it mean if something that was considered such an elegant and quintessentially human endeavor such as chess was so easy for a machine? A series of upgrades helped Deep Blue outright win a match against Kasparov in 1997 (seen in the photo above). After the win Deep Blue was retired and disassembled. Parts of Deep Blue are housed in the National Museum of History and the Computer History Museum. Birth of Thomas Edison Thomas Alva Edison was one of the most prolific inventors in history and holds an astounding 1,093 US Patents. He is responsible for outright inventing or greatly refining major innovations in the history of world culture including the phonograph, the movie camera, the carbon microphone used in nearly every telephone well into the 1980s, batteries for electric cars (a notion we’d take over a century to take seriously), voting machines, and of course his enormous contribution to electric distribution systems. Despite the role of scientist and inventor being largely unglamorous, Thomas Edison and his tumultuous relationship with fellow inventor Nikola Tesla have been fodder for everything from books, to comics, to movies, and video games. Other Notable Moments from This Week in Geek History Although we only shine the spotlight on three interesting facts a week in our Geek History column, that doesn’t mean we don’t have space to highlight a few more in passing. This week in Geek History: 1971 – Apollo 14 returns to Earth after third Lunar mission. 1974 – Birth of Robot Chicken creator Seth Green. 1986 – Death of Dune creator Frank Herbert. Goodnight Dune. 1997 – Simpsons becomes longest running animated show on television. Have an interesting bit of geek trivia to share? Shoot us an email to [email protected] with “history” in the subject line and we’ll be sure to add it to our list of trivia. Latest Features How-To Geek ETC Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines RGB? CMYK? Alpha? What Are Image Channels and What Do They Mean? Clean Up Google Calendar’s Interface in Chrome and Iron The Rise and Fall of Kramerica? [Seinfeld Video] GNOME Shell 3 Live CDs for OpenSUSE and Fedora Available for Testing Picplz Offers Special FX, Sharing, and Backup of Your Smartphone Pics BUILD! An Epic LEGO Stop Motion Film [VIDEO] The Lingering Glow of Sunset over a Winter Landscape Wallpaper

    Read the article

< Previous Page | 225 226 227 228 229 230 231 232 233 234 235 236  | Next Page >