Search Results

Search found 5723 results on 229 pages for 'turing machines'.

Page 229/229 | < Previous Page | 225 226 227 228 229 

  • Partner Blog Series: PwC Perspectives - The Gotchas, The Do's and Don'ts for IDM Implementations

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableMediumList1Accent6 {mso-style-name:"Medium List 1 - Accent 6"; mso-tstyle-rowband-size:1; mso-tstyle-colband-size:1; mso-style-priority:65; mso-style-unhide:no; border-top:solid #E0301E 1.0pt; mso-border-top-themecolor:accent6; border-left:none; border-bottom:solid #E0301E 1.0pt; mso-border-bottom-themecolor:accent6; border-right:none; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Georgia","serif"; color:black; mso-themecolor:text1; mso-ansi-language:EN-GB;} table.MsoTableMediumList1Accent6FirstRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:cell-none; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; font-family:"Verdana","sans-serif"; mso-ascii-font-family:Georgia; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:Georgia; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:major-bidi;} table.MsoTableMediumList1Accent6LastRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; color:#968C6D; mso-themecolor:text2; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6FirstCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-column; mso-style-priority:65; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6LastCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6OddColumn {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} table.MsoTableMediumList1Accent6OddRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} table.MsoTableMediumList1Accent6 {mso-style-name:"Medium List 1 - Accent 6"; mso-tstyle-rowband-size:1; mso-tstyle-colband-size:1; mso-style-priority:65; mso-style-unhide:no; border-top:solid #E0301E 1.0pt; mso-border-top-themecolor:accent6; border-left:none; border-bottom:solid #E0301E 1.0pt; mso-border-bottom-themecolor:accent6; border-right:none; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Georgia","serif"; color:black; mso-themecolor:text1; mso-ansi-language:EN-GB;} table.MsoTableMediumList1Accent6FirstRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:cell-none; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; font-family:"Arial Narrow","sans-serif"; mso-ascii-font-family:Georgia; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:Georgia; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:major-bidi;} table.MsoTableMediumList1Accent6LastRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; color:#968C6D; mso-themecolor:text2; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6FirstCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:first-column; mso-style-priority:65; mso-style-unhide:no; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6LastCol {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:last-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-border-top:1.0pt solid #E0301E; mso-tstyle-border-top-themecolor:accent6; mso-tstyle-border-bottom:1.0pt solid #E0301E; mso-tstyle-border-bottom-themecolor:accent6; mso-ansi-font-weight:bold; mso-bidi-font-weight:bold;} table.MsoTableMediumList1Accent6OddColumn {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-column; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} table.MsoTableMediumList1Accent6OddRow {mso-style-name:"Medium List 1 - Accent 6"; mso-table-condition:odd-row; mso-style-priority:65; mso-style-unhide:no; mso-tstyle-shading:#F7CBC7; mso-tstyle-shading-themecolor:accent6; mso-tstyle-shading-themetint:63;} It is generally accepted among business communities that technology by itself is not a silver bullet to all problems, but when it is combined with leading practices, strategy, careful planning and execution, it can create a recipe for success. This post attempts to highlight some of the best practices along with dos & don’ts that our practice has accumulated over the years in the identity & access management space in general, and also in the context of R2, in particular. Best Practices The following section illustrates the leading practices in “How” to plan, implement and sustain a successful OIM deployment, based on our collective experience. Planning is critical, but often overlooked A common approach to planning an IAM program that we identify with our clients is the three step process involving a current state assessment, a future state roadmap and an executable strategy to get there. It is extremely beneficial for clients to assess their current IAM state, perform gap analysis, document the recommended controls to address the gaps, align future state roadmap to business initiatives and get buy in from all stakeholders involved to improve the chances of success. When designing an enterprise-wide solution, the scalability of the technology must accommodate the future growth of the enterprise and the projected identity transactions over several years. Aligning the implementation schedule of OIM to related information technology projects increases the chances of success. As a baseline, it is recommended to match hardware specifications to the sizing guide for R2 published by Oracle. Adherence to this will help ensure that the hardware used to support OIM will not become a bottleneck as the adoption of new services increases. If your Organization has numerous connected applications that rely on reconciliation to synchronize the access data into OIM, consider hosting dedicated instances to handle reconciliation. Finally, ensure the use of clustered environment for development and have at least three total environments to help facilitate a controlled migration to production. If your Organization is planning to implement role based access control, we recommend performing a role mining exercise and consolidate your enterprise roles to keep them manageable. In addition, many Organizations have multiple approval flows to control access to critical roles, applications and entitlements. If your Organization falls into this category, we highly recommend that you limit the number of approval workflows to a small set. Most Organizations have operations managed across data centers with backend database synchronization, if your Organization falls into this category, ensure that the overall latency between the datacenters when replicating the databases is less than ten milliseconds to ensure that there are no front office performance impacts. Ingredients for a successful implementation During the development phase of your project, there are a number of guidelines that can be followed to help increase the chances for success. Most implementations cannot be completed without the use of customizations. If your implementation requires this, it’s a good practice to perform code reviews to help ensure quality and reduce code bottlenecks related to performance. We have observed at our clients that the development process works best when team members adhere to coding leading practices. Plan for time to correct coding defects and ensure developers are empowered to report their own bugs for maximum transparency. Many organizations struggle with defining a consistent approach to managing logs. This is particularly important due to the amount of information that can be logged by OIM. We recommend Oracle Diagnostics Logging (ODL) as an alternative to be used for logging. ODL allows log files to be formatted in XML for easy parsing and does not require a server restart when the log levels are changed during troubleshooting. Testing is a vital part of any large project, and an OIM R2 implementation is no exception. We suggest that at least one lower environment should use production-like data and connectors. Configurations should match as closely as possible. For example, use secure channels between OIM and target platforms in pre-production environments to test the configurations, the migration processes of certificates, and the additional overhead that encryption could impose. Finally, we ask our clients to perform database backups regularly and before any major change event, such as a patch or migration between environments. In the lowest environments, we recommend to have at least a weekly backup in order to prevent significant loss of time and effort. Similarly, if your organization is using virtual machines for one or more of the environments, it is recommended to take frequent snapshots so that rollbacks can occur in the event of improper configuration. Operate & sustain the solution to derive maximum benefits When migrating OIM R2 to production, it is important to perform certain activities that will help achieve a smoother transition. At our clients, we have seen that splitting the OIM tables into their own tablespaces by categories (physical tables, indexes, etc.) can help manage database growth effectively. If we notice that a client hasn’t enabled the Oracle-recommended indexing in the applicable database, we strongly suggest doing so to improve performance. Additionally, we work with our clients to make sure that the audit level is set to fit the organization’s auditing needs and sometimes even allocate UPA tables and indexes into their own table-space for better maintenance. Finally, many of our clients have set up schedules for reconciliation tables to be archived at regular intervals in order to keep the size of the database(s) reasonable and result in optimal database performance. For our clients that anticipate availability issues with target applications, we strongly encourage the use of the offline provisioning capabilities of OIM R2. This reduces the provisioning process for a given target application dependency on target availability and help avoid broken workflows. To account for this and other abnormalities, we also advocate that OIM’s monitoring controls be configured to alert administrators on any abnormal situations. Within OIM R2, we have begun advising our clients to utilize the ‘profile’ feature to encapsulate multiple commonly requested accounts, roles, and/or entitlements into a single item. By setting up a number of profiles that can be searched for and used, users will spend less time performing the same exact steps for common tasks. We advise our clients to follow the Oracle recommended guides for database and application server tuning which provides a good baseline configuration. It offers guidance on database connection pools, connection timeouts, user interface threads and proper handling of adapters/plug-ins. All of these can be important configurations that will allow faster provisioning and web page response times. Many of our clients have begun to recognize the value of data mining and a remediation process during the initial phases of an implementation (to help ensure high quality data gets loaded) and beyond (to support ongoing maintenance and business-as-usual processes). A successful program always begins with identifying the data elements and assigning a classification level based on criticality, risk, and availability. It should finish by following through with a remediation process. Dos & Don’ts Here are the most common dos and don'ts that we socialize with our clients, derived from our experience implementing the solution. Dos Don’ts Scope the project into phases with realistic goals. Look for quick wins to show success and value to the stake holders. Avoid “boiling the ocean” and trying to integrate all enterprise applications in the first phase. Establish an enterprise ID (universal unique ID across the enterprise) earlier in the program. Avoid major UI customizations that require code changes. Have a plan in place to patch during the project, which helps alleviate any major issues or roadblocks (product and database). Avoid publishing all the target entitlements if you don't anticipate their usage during access request. Assess your current state and prepare a roadmap to address your operations, tactical and strategic goals, align it with your business priorities. Avoid integrating non-production environments with your production target systems. Defer complex integrations to the later phases and take advantage of lessons learned from previous phases Avoid creating multiple accounts for the same user on the same system, if there is an opportunity to do so. Have an identity and access data quality initiative built into your plan to identify and remediate data related issues early on. Avoid creating complex approval workflows that would negative impact productivity and SLAs. Identify the owner of the identity systems with fair IdM knowledge and empower them with authority to make product related decisions. This will help ensure overcome any design hurdles. Avoid creating complex designs that are not sustainable long term and would need major overhaul during upgrades. Shadow your internal or external consulting resources during the implementation to build the necessary product skills needed to operate and sustain the solution. Avoid treating IAM as a point solution and have appropriate level of communication and training plan for the IT and business users alike. Conclusion In our experience, Identity programs will struggle with scope, proper resourcing, and more. We suggest that companies consider the suggestions discussed in this post and leverage them to help enable their identity and access program. This concludes PwC blog series on R2 for the month and we sincerely hope that the information we have shared thus far has been beneficial. For more information or if you have questions, you can reach out to Rex Thexton, Senior Managing Director, PwC and or Dharma Padala, Director, PwC. We look forward to hearing from you. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:12.0pt; mso-para-margin-left:0in; line-height:12.0pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Arial; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Meet the Writers: Dharma Padala is a Director in the Advisory Security practice within PwC.  He has been implementing medium to large scale Identity Management solutions across multiple industries including utility, health care, entertainment, retail and financial sectors.   Dharma has 14 years of experience in delivering IT solutions out of which he has been implementing Identity Management solutions for the past 8 years. Praveen Krishna is a Manager in the Advisory Security practice within PwC.  Over the last decade Praveen has helped clients plan, architect and implement Oracle identity solutions across diverse industries.  His experience includes delivering security across diverse topics like network, infrastructure, application and data where he brings a holistic point of view to problem solving. Scott MacDonald is a Director in the Advisory Security practice within PwC.  He has consulted for several clients across multiple industries including financial services, health care, automotive and retail.   Scott has 10 years of experience in delivering Identity Management solutions. John Misczak is a member of the Advisory Security practice within PwC.  He has experience implementing multiple Identity and Access Management solutions, specializing in Oracle Identity Manager and Business Process Engineering Language (BPEL).

    Read the article

  • Windows 7 intermittently drops wired internet/lan connection.

    - by CraigTP
    In a nutshell, my Windows 7 Ultimate PC intermittently drops it's internet connection. Why? Background: My PC is wired to my ADSL modem/router which is directly connected to the phone line. I also have wireless connectivity turned on within the router for a laptop to connect wirelessly. Every few hours or so, when using my PC, I find I cannot access the internet and pages will not load. Eventually, Windows7 will update the network icon in the task-tray to show the exclamation mark symbol on the network icon. Opening up the Network And Sharing Centre will show the red cross between the "Multiple Networks" and "The Internet". Here's a picture of the "Network And Sharing Centre" (grabbed when everything was working!) As you can see, I'm running Sun's VirtualBox on this machine and that creates a Network connection for itself. This doesn't seem to affect the intermittent dropping (i.e. the intermittent drops occur whether the VirtualBox connection is in use or not). When the connection does drop, I cannot access any internet pages, nor can I access the router's web admin page at http://192.168.1.1/, so I'm assuming I've lost all local LAN access too. It's definitely not the router (or the internet connection itself) as my laptop, using the wireless connection (and running Vista Home Premium) continues to be able to access the internet (and the router's web admin pages) just fine. Every time this happens, I can immediately restore all internet and LAN access by opening Network Adapter page, disabling the "Local Area Connection" and then re-enabling it. Give it a few seconds and everything is fine again. I assume this is because, beneath the GUI, it's effectively doing an "ipconfig /release" then "ipconfig /renew". Why does this happen in the first place, though? I've googled for this and seen quite a few other people (even on MSDN/Technet forums) experiencing the same or almost the same problem, but with no clear resolution. Suggestions of turning off IPv6 on the LAN adapter, and ensuring there's no power management "sleeping" the network adapter have been tried but do not cure the problem. There does not seem to be any particular sequence of events that cause it to happen either. I've had it go twice in 20 minutes when just randomly browsing the web with no other traffic, and I've also had it go once then not go again for 2-3 hours with the same sort of usage. Can anyone tell me why this is happening and how to make it stop? EDIT: Additional information based upon the answer provided so far: Firstly, I forgot the mention that this is Windows 7 64 bit if that makes any difference at all. I mentioned that I don't think the VirtualBox network adpater is causing this problem in any way, and I also have VirtualBox installed on two other machines, one running Vista Home Premium and the other running XP. Neither of these machine experience the same network connectivity issues as the Windows 7 machine. The IP assignment for the Windows 7 machine is the same both before and after the "drop". I have a DHCP server on the router issuing IP Addresses, however my Windows 7 machine uses a static address. Here's the output from "ipconfig": Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Realtek PCIe GBE Family Controller DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes IPv4 Address. . . . . . . . . . . : 192.168.1.2(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 192.168.1.1 DNS Servers . . . . . . . . . . . : 192.168.1.1 NetBIOS over Tcpip. . . . . . . . : Enabled Within the system's event logs, the only event that relates to the connection dropping is a "DNS Client Event" and this is generated after the connection has dropped and is an event detailing that DNS information can't be found for whatever website I may be trying to access, just as the connection drops: Log Name: System Source: Microsoft-Windows-DNS-Client Event ID: 1014 Task Category: None Level: Warning Keywords: User: NETWORK SERVICE Description: Name resolution for the name weather.service.msn.com timed out after none of the configured DNS servers responded. The network adapter chipset is Realtek PCIe GBE Family Controller and I have confirmed that this is the correct chipset for the motherboard (Asus M4A77TD PRO), and in fact, Windows Update installed an updated driver for this on 12/Jan/2009. The details of the update say that it's a Realtek software update from December 2009. Incidentally, I was still having the same intermittent problems prior to this update. It seems to have made no difference at all. EDIT 2 (1 Feb 2010): In my quest to solve this problem, I have discovered some more interesting information. On another forum, someone suggested that I should try running Windows in "Safe Mode With Networking" and see if the problem continues to occur. This was a fantastic suggestion and I don't know why I didn't think of it sooner myself. So, I proceeded to run in Safe Mode with Networking for a number of hours, and amazingly, the "drops" didn't occur once. It was a positive discovery, however, due to the intermittent nature of the original problem, I wasn't completely convinced that the problem was cured. One thing I did note is that the fan on my GFX card was running alot louder than normal. This is due to the fact that I have an ASUS ENGTS250 graphics card (http://www.asus.com/product.aspx?P_ID=B6imcoax3MRY42f3) which had a known problem with a noisy fan until a BIOS update fixed the issue. (See the "Manufacturer Response" here: http://www.newegg.com/Product/Product.aspx?Item=N82E16814121334 for details). Well, running in safe mode had the fan running (incorrectly) at full speed (as it did before the BIOS update), but with an (apparently) stable network connection. Obviously some driver was not loaded for the GFX card when in Safe Mode so this got me thinking about the GFX card (since the very noisy fan was quite obvious when running in Safe Mode). I rebooted into normal mode, and found that Nvidia had a very up-to-date new driver for my GFX card (only about 1 week old), so I downloaded the appropriate driver and installed it. After installation and a reboot, I was able to use my PC for an entire day with NO NETWORK DROPS!!! This was on Saturday. However, on the Sunday, I also had my PC for pretty much the entire day and experienced 2 network drops. No other changes have been made to my PC in this time. So, the story seems to be that updating my graphics card drivers seems to have improved (if not completely fixed) the issue, however, I'm still searching for a proper fix for this problem. Hopefully, this information may help anyone who may have additional ideas as to why this problem is occuring in the first place. (And why does new GFX card drivers have anything to do with the network?) I appreciate everyone's feedback so far. However, I'll have to ask once more if anyone has any further ideas of how to fix this particular problem? Thanks in advance.

    Read the article

  • SSL / HTTP / No Response to Curl

    - by Alex McHale
    I am trying to send commands to a SOAP service, and getting nothing in reply. The SOAP service is at a completely separate site from either server I am testing with. I have written a dummy script with the SOAP XML embedded. When I run it at my local site, on any of three machines -- OSX, Ubuntu, or CentOS 5.3 -- it completes successfully with a good response. I then sent the script to our public host at Slicehost, where I fail to get the response back from the SOAP service. It accepts the TCP socket and proceeds with the SSL handshake. I do not however receive any valid HTTP response. This is the case whether I use my script or curl on the command line. I have rewritten the script using SOAP4R, Net::HTTP and Curb. All of which work at my local site, none of which work at the Slicehost site. I have tried to assemble the CentOS box as closely to match my Slicehost server as possible. I rebuilt the Slice to be a stock CentOS 5.3 and stock CentOS 5.4 with the same results. When I look at a tcpdump of the bad sessions on Slicehost, I see my script or curl send the XML to the remote server, and nothing comes back. When I look at the tcpdump at my local site, I see the response just fine. I have entirely disabled iptables on the Slice. Does anyone have any ideas what could be causing these results? Please let me know what additional information I can furnish. Thank you! Below is a wire trace of a sample session. The IP that starts with 173 is my server while the IP that starts with 12 is the SOAP server's. No. Time Source Destination Protocol Info 1 0.000000 173.45.x.x 12.36.x.x TCP 36872 > https [SYN] Seq=0 Win=5840 Len=0 MSS=1460 TSV=137633469 TSER=0 WS=6 Frame 1 (74 bytes on wire, 74 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 0, Len: 0 No. Time Source Destination Protocol Info 2 0.040000 12.36.x.x 173.45.x.x TCP https > 36872 [SYN, ACK] Seq=0 Ack=1 Win=8760 Len=0 MSS=1460 Frame 2 (62 bytes on wire, 62 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 0, Ack: 1, Len: 0 No. Time Source Destination Protocol Info 3 0.040000 173.45.x.x 12.36.x.x TCP 36872 > https [ACK] Seq=1 Ack=1 Win=5840 Len=0 Frame 3 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 1, Ack: 1, Len: 0 No. Time Source Destination Protocol Info 4 0.050000 173.45.x.x 12.36.x.x SSLv2 Client Hello Frame 4 (156 bytes on wire, 156 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 1, Ack: 1, Len: 102 Secure Socket Layer No. Time Source Destination Protocol Info 5 0.130000 12.36.x.x 173.45.x.x TCP [TCP segment of a reassembled PDU] Frame 5 (1434 bytes on wire, 1434 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 1, Ack: 103, Len: 1380 Secure Socket Layer No. Time Source Destination Protocol Info 6 0.130000 173.45.x.x 12.36.x.x TCP 36872 > https [ACK] Seq=103 Ack=1381 Win=8280 Len=0 Frame 6 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 103, Ack: 1381, Len: 0 No. Time Source Destination Protocol Info 7 0.130000 12.36.x.x 173.45.x.x TLSv1 Server Hello, Certificate, Server Hello Done Frame 7 (1280 bytes on wire, 1280 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 1381, Ack: 103, Len: 1226 [Reassembled TCP Segments (2606 bytes): #5(1380), #7(1226)] Secure Socket Layer No. Time Source Destination Protocol Info 8 0.130000 173.45.x.x 12.36.x.x TCP 36872 > https [ACK] Seq=103 Ack=2607 Win=11040 Len=0 Frame 8 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 103, Ack: 2607, Len: 0 No. Time Source Destination Protocol Info 9 0.130000 173.45.x.x 12.36.x.x TLSv1 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message Frame 9 (236 bytes on wire, 236 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 103, Ack: 2607, Len: 182 Secure Socket Layer No. Time Source Destination Protocol Info 10 0.190000 12.36.x.x 173.45.x.x TLSv1 Change Cipher Spec, Encrypted Handshake Message Frame 10 (97 bytes on wire, 97 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 2607, Ack: 285, Len: 43 Secure Socket Layer No. Time Source Destination Protocol Info 11 0.190000 173.45.x.x 12.36.x.x TLSv1 Application Data Frame 11 (347 bytes on wire, 347 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 285, Ack: 2650, Len: 293 Secure Socket Layer No. Time Source Destination Protocol Info 12 0.190000 173.45.x.x 12.36.x.x TCP [TCP segment of a reassembled PDU] Frame 12 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer No. Time Source Destination Protocol Info 13 0.450000 12.36.x.x 173.45.x.x TCP https > 36872 [ACK] Seq=2650 Ack=578 Win=64958 Len=0 Frame 13 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 2650, Ack: 578, Len: 0 No. Time Source Destination Protocol Info 14 0.450000 173.45.x.x 12.36.x.x TCP [TCP segment of a reassembled PDU] Frame 14 (206 bytes on wire, 206 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 2038, Ack: 2650, Len: 152 No. Time Source Destination Protocol Info 15 0.510000 12.36.x.x 173.45.x.x TCP [TCP Dup ACK 13#1] https > 36872 [ACK] Seq=2650 Ack=578 Win=64958 Len=0 Frame 15 (54 bytes on wire, 54 bytes captured) Ethernet II, Src: Dell_fb:49:a1 (00:21:9b:fb:49:a1), Dst: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6) Internet Protocol, Src: 12.36.x.x (12.36.x.x), Dst: 173.45.x.x (173.45.x.x) Transmission Control Protocol, Src Port: https (443), Dst Port: 36872 (36872), Seq: 2650, Ack: 578, Len: 0 No. Time Source Destination Protocol Info 16 0.850000 173.45.x.x 12.36.x.x TCP [TCP Retransmission] [TCP segment of a reassembled PDU] Frame 16 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer No. Time Source Destination Protocol Info 17 1.650000 173.45.x.x 12.36.x.x TCP [TCP Retransmission] [TCP segment of a reassembled PDU] Frame 17 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer No. Time Source Destination Protocol Info 18 3.250000 173.45.x.x 12.36.x.x TCP [TCP Retransmission] [TCP segment of a reassembled PDU] Frame 18 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer No. Time Source Destination Protocol Info 19 6.450000 173.45.x.x 12.36.x.x TCP [TCP Retransmission] [TCP segment of a reassembled PDU] Frame 19 (1514 bytes on wire, 1514 bytes captured) Ethernet II, Src: 40:40:17:3a:f4:e6 (40:40:17:3a:f4:e6), Dst: Dell_fb:49:a1 (00:21:9b:fb:49:a1) Internet Protocol, Src: 173.45.x.x (173.45.x.x), Dst: 12.36.x.x (12.36.x.x) Transmission Control Protocol, Src Port: 36872 (36872), Dst Port: https (443), Seq: 578, Ack: 2650, Len: 1460 Secure Socket Layer

    Read the article

  • nokia cell phone not accepting IP from dnsmasq dhcp server

    - by samix
    Hello, I having problem connecting a NOkia cell phone to my home wifi network. The wifi network is provided by a wireless card in a machine running Debian Testing and 2.6.26-2-686 kernel. The cars is D-Link DWL-G520 working in ap mode and has WPA encryption enabled. The wireless network is provided by hostapd using madwifi driver. Windows and Mac machines work properly with this wifi network. When I try to get the Nokia phone to connect to the wifi network, I get these lines in my dnsmasq log (to see lines without wrapping, here is the pastebin link for convenience - http://pastebin.com/m466c8fd2): Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 IEEE 802.11: disassociated Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 IEEE 802.11: associated Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 RADIUS: starting accounting session 4AE664FA-00000036 Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 WPA: pairwise key handshake completed (WPA) Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 WPA: group key handshake completed (WPA) Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 Available DHCP range: 192.168.5.150 -- 192.168.5.199 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 DHCPDISCOVER(ath0) 0.0.0.0 11:22:33:44:55:66 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 DHCPOFFER(ath0) 192.168.5.21 11:22:33:44:55:66 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 requested options: 12:hostname, 6:dns-server, 15:domain-name, Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 requested options: 1:netmask, 3:router, 28:broadcast, 120:sip-server Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 tags: known, ath0 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 next server: 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 1 option: 53:message-type 02 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 54:server-identifier 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 51:lease-time 00:00:46:50 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 58:T1 00:00:23:28 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 59:T2 00:00:3d:86 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 1:netmask 255.255.255.0 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 28:broadcast 192.168.5.255 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 3:router 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 6:dns-server 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 8 option: 15:domain-name home.pvt Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 3 option: 12:hostname NokiaCellPhone Anybody know the problem might be? If I switch off dnsmasq dhcp queries logging, i.e. if I decrease the verbosity of the log, all I see are two lines of DHCPDISCOVER(ath0) and DHCPOFFER(ath0) repeatedly in the log with no acceptance by the cell phone. It appears as though the phone is not accepting the dhcp offer. However, if I give the phone a static IP address in its configuration, it works properly on the wifi network. So it appears as though the problem is dhcp related. Hints? Suggestions? Installed stuff: $ dpkg -l dnsmasq hostap* | grep ^i ii dnsmasq 2.50-1 A small caching DNS proxy and DHCP/TFTP server ii dnsmasq-base 2.50-1 A small caching DNS proxy and DHCP/TFTP server ii hostapd 1:0.6.9-3 user space IEEE 802.11 AP and IEEE 802.1X/WPA/ Thanks. PS: Here is the DHCP tcp dump for more information (with mac addresses changed): $ sudo dhcpdump -i ath0 -h ^11:22:33:44:55:66 TIME: 2009-10-30 12:15:32.916 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:32.918 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:32.918 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:34.922 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:34.922 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:34.923 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:38.919 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:38.920 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:38.921 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:46.944 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:46.944 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:46.945 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:48.952 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 ... and so on ...

    Read the article

  • Unstable DNS with bind

    - by yasser abd
    we have a Centos machine called jupiter, on which I have installed bind9, On every other machine the DNS is set to be the IP address of jupiter (192.168.2.101), as you can see in the output of the following command in windows >ipconfig /all Windows IP Configuration Host Name . . . . . . . . . . . . : mypcs Primary Dns Suffix . . . . . . . : Node Type . . . . . . . . . . . . : Hybrid IP Routing Enabled. . . . . . . . : No WINS Proxy Enabled. . . . . . . . : No Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Broadcom NetXtreme 57xx Gigabit Controller Physical Address. . . . . . . . . : 00-1A-A0-AC-E4-CC DHCP Enabled. . . . . . . . . . . : Yes Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::c16d:3ae4:5907:30c4%8(Preferred) IPv4 Address. . . . . . . . . . . : 192.168.2.98(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Lease Obtained. . . . . . . . . . : Thursday, September 20, 2012 10:26:11 AM Lease Expires . . . . . . . . . . : Sunday, September 23, 2012 10:26:10 AM Default Gateway . . . . . . . . . : 192.168.2.1 DHCP Server . . . . . . . . . . . : 192.168.2.1 DHCPv6 IAID . . . . . . . . . . . : 201333408 DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-16-3A-50-01-00-1A-A0-AC-E4-CC DNS Servers . . . . . . . . . . . : 192.168.2.101 192.168.2.1 192.168.2.1 NetBIOS over Tcpip. . . . . . . . : Enabled All machines can always nslookup one of the domain (mydomain.com) that is set in the jupiter's DNS server, you can see that in the output of nslookup on the same windows machine: >nslookup mydomain.com Server: UnKnown Address: 192.168.2.101 Name: mydomain.com Address: 192.168.2.100 The problem is, sometimes mydomain.com can not be pinged, here is the output of the ping on the same windows machine >ping mydomain.com Ping request could not find host mydomain.com. Please check the name and try again. This looks very random, and happens once in a while, so the machine can lookup the DNS records but can't ping it, nor can browse the website that is hosted on mydomain.com, which should resolve to 192.168.2.100 On a linux machine that has the same DNS settings, the output of dig command for mydomain is as follows: $ dig mydomain.com ; <<>> DiG 9.8.2rc1-RedHat-9.8.2-0.10.rc1.el6_3.2 <<>> mydomain.com ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36090 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1 ;; QUESTION SECTION: ;mydomain.com. IN A ;; ANSWER SECTION: mydomain.com. 86400 IN A 192.168.2.100 ;; AUTHORITY SECTION: mydomain.com. 86400 IN NS jupiter. ;; ADDITIONAL SECTION: jupiter. 86400 IN A 192.168.2.101 ;; Query time: 1 msec ;; SERVER: 192.168.2.101#53(192.168.2.101) ;; WHEN: Thu Sep 20 16:32:14 2012 ;; MSG SIZE rcvd: 83 We've never had the same problem on MACs, they always resolve mydomain.com Here is how I have defined mydomain.com on Bind9's configs on Jupiter, notice that the name of the machine on 192.168.2.100 is venus, so I have this file: /var/named/named.venus: $TTL 1D @ IN SOA jupiter. admin.ourcompany.com. ( 2003052800 ; serial 86400 ; refresh 300 ; retry 604800 ; expire 3600 ; minimum ) @ IN NS jupiter. @ IN A 192.168.2.100 * IN A 192.168.2.100 /var/named/zones/named.venus.zone zone "mydomain.com" IN {type master;file "/var/named/named.venus";allow-update {none;};}; One thing to note is that I haven't defined reverse DNS lookups, only the forward DNS lookups are defined in Bind9 configs, not sure if that's relevant or not. So my question is, why is this being so unstable? what could be the cause?

    Read the article

  • connecting to a network using route command

    - by ami
    I have a computer with an external IP(192.168.223.220) and also an internal address (10.1.1.20) in order to connect to some servers that don't have external addresses only 10.1.1.xx . in order to connect to these servers from other machines I used the following command "route ADD 10.1.1.0 MASK 255.255.255.0 192.168.223.220" and than I was able to connect to the servers using there 10.1.1.xx address. The problem is that the hard disk of main server(192.168.223.220) died and was replaced and after the that I am not able to connect to the servers as before, the route command succeeds and I can ping 10.1.1.20 but not the other servers. Thanks I am using Windows XP and the print outs are D:\AurosHome\Scriptsipconfig /all Windows IP Configuration Host Name . . . . . . . . . . . . : N100-master Primary Dns Suffix . . . . . . . : Node Type . . . . . . . . . . . . : Unknown IP Routing Enabled. . . . . . . . : No WINS Proxy Enabled. . . . . . . . : No Ethernet adapter Local Area Connection 3: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Intel(R) PRO/1000 EB Network Connection with I/O Acceleration #2 Physical Address. . . . . . . . . : 00-30-48-34-BA-B9 Dhcp Enabled. . . . . . . . . . . : No IP Address. . . . . . . . . . . . : 192.168.225.180 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 192.168.225.254 DNS Servers . . . . . . . . . . . : 192.168.225.2 Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Intel(R) PRO/1000 EB Network Connection with I/O Acceleration Physical Address. . . . . . . . . : 00-30-48-34-BA-B8 Dhcp Enabled. . . . . . . . . . . : No IP Address. . . . . . . . . . . . : 10.1.1.20 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : Ethernet adapter Local Area Connection 2: Media State . . . . . . . . . . . : Media disconnected Description . . . . . . . . . . . : Mellanox IPoIB Adapter Physical Address. . . . . . . . . : 00-02-C9-25-34-0D D:\AurosHome\Scriptsroute print Interface List 0x1 ........................... MS TCP Loopback interface 0x2 ...00 30 48 34 ba b9 ...... Intel(R) PRO/1000 EB Network Connection with I/O Acceleration #2 - Packet Sche duler Miniport 0x3 ...00 30 48 34 ba b8 ...... Intel(R) PRO/1000 EB Network Connection with I/O Acceleration - Packet Schedul er Miniport 0x10005 ...00 02 c9 25 34 0d ...... Mellanox IPoIB Adapter - Packet Scheduler Miniport =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 192.168.225.254 192.168.225.180 10 10.1.1.0 255.255.255.0 10.1.1.20 10.1.1.20 10 10.1.1.20 255.255.255.255 127.0.0.1 127.0.0.1 10 10.255.255.255 255.255.255.255 10.1.1.20 10.1.1.20 10 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1 192.168.225.0 255.255.255.0 192.168.225.180 192.168.225.180 10 192.168.225.180 255.255.255.255 127.0.0.1 127.0.0.1 10 192.168.225.255 255.255.255.255 192.168.225.180 192.168.225.180 10 224.0.0.0 240.0.0.0 10.1.1.20 10.1.1.20 10 224.0.0.0 240.0.0.0 192.168.225.180 192.168.225.180 10 255.255.255.255 255.255.255.255 10.1.1.20 10.1.1.20 1 255.255.255.255 255.255.255.255 10.1.1.20 10005 1 255.255.255.255 255.255.255.255 192.168.225.180 192.168.225.180 1 Default Gateway: 192.168.225.254 Persistent Routes: None

    Read the article

  • GDI+ crashes when loading PNG from IStream

    - by konforce
    I wrote something to load PNG files from a custom C++ IStream via GDI+. It worked great until I ran it on Vista machines. Crashes every time. When compiled on VS 2008, I found that inserting code into the IStream::AddRef method, such as a cout, made the problem go away. When compiling with VS 2010, it still crashes regardless of that. I stripped the program down to its basics. I copied a FileStream straight from Microsoft's documentation. It can load PNGs when using Bitmap::FromFile. It can load JPEGs, GIFs, and BMPs via FromFile or FromStream. So in short: on Vista, PNG files loaded via Bitmap::FromStream crash. #pragma comment(lib, "gdiplus.lib") #include <iostream> #include <objidl.h> #include <gdiplus.h> class FileStream : public IStream { public: FileStream(HANDLE hFile) { _refcount = 1; _hFile = hFile; } ~FileStream() { if (_hFile != INVALID_HANDLE_VALUE) { ::CloseHandle(_hFile); } } public: HRESULT static OpenFile(LPCWSTR pName, IStream ** ppStream, bool fWrite) { HANDLE hFile = ::CreateFileW(pName, fWrite ? GENERIC_WRITE : GENERIC_READ, FILE_SHARE_READ, NULL, fWrite ? CREATE_ALWAYS : OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hFile == INVALID_HANDLE_VALUE) return HRESULT_FROM_WIN32(GetLastError()); *ppStream = new FileStream(hFile); if(*ppStream == NULL) CloseHandle(hFile); return S_OK; } virtual HRESULT STDMETHODCALLTYPE QueryInterface(REFIID iid, void ** ppvObject) { if (iid == __uuidof(IUnknown) || iid == __uuidof(IStream) || iid == __uuidof(ISequentialStream)) { *ppvObject = static_cast<IStream*>(this); AddRef(); return S_OK; } else return E_NOINTERFACE; } virtual ULONG STDMETHODCALLTYPE AddRef(void) { return (ULONG)InterlockedIncrement(&_refcount); } virtual ULONG STDMETHODCALLTYPE Release(void) { ULONG res = (ULONG) InterlockedDecrement(&_refcount); if (res == 0) delete this; return res; } // ISequentialStream Interface public: virtual HRESULT STDMETHODCALLTYPE Read(void* pv, ULONG cb, ULONG* pcbRead) { ULONG local_pcbRead; BOOL rc = ReadFile(_hFile, pv, cb, &local_pcbRead, NULL); if (pcbRead) *pcbRead = local_pcbRead; return (rc) ? S_OK : HRESULT_FROM_WIN32(GetLastError()); } virtual HRESULT STDMETHODCALLTYPE Write(void const* pv, ULONG cb, ULONG* pcbWritten) { BOOL rc = WriteFile(_hFile, pv, cb, pcbWritten, NULL); return rc ? S_OK : HRESULT_FROM_WIN32(GetLastError()); } // IStream Interface public: virtual HRESULT STDMETHODCALLTYPE SetSize(ULARGE_INTEGER) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE CopyTo(IStream*, ULARGE_INTEGER, ULARGE_INTEGER*, ULARGE_INTEGER*) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE Commit(DWORD) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE Revert(void) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE LockRegion(ULARGE_INTEGER, ULARGE_INTEGER, DWORD) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE UnlockRegion(ULARGE_INTEGER, ULARGE_INTEGER, DWORD) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE Clone(IStream **) { return E_NOTIMPL; } virtual HRESULT STDMETHODCALLTYPE Seek(LARGE_INTEGER liDistanceToMove, DWORD dwOrigin, ULARGE_INTEGER* lpNewFilePointer) { DWORD dwMoveMethod; switch(dwOrigin) { case STREAM_SEEK_SET: dwMoveMethod = FILE_BEGIN; break; case STREAM_SEEK_CUR: dwMoveMethod = FILE_CURRENT; break; case STREAM_SEEK_END: dwMoveMethod = FILE_END; break; default: return STG_E_INVALIDFUNCTION; break; } if (SetFilePointerEx(_hFile, liDistanceToMove, (PLARGE_INTEGER) lpNewFilePointer, dwMoveMethod) == 0) return HRESULT_FROM_WIN32(GetLastError()); return S_OK; } virtual HRESULT STDMETHODCALLTYPE Stat(STATSTG* pStatstg, DWORD grfStatFlag) { if (GetFileSizeEx(_hFile, (PLARGE_INTEGER) &pStatstg->cbSize) == 0) return HRESULT_FROM_WIN32(GetLastError()); return S_OK; } private: volatile HANDLE _hFile; volatile LONG _refcount; }; #define USE_STREAM int main() { Gdiplus::GdiplusStartupInput gdiplusStartupInput; ULONG_PTR gdiplusToken; Gdiplus::GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL); Gdiplus::Bitmap *bmp; #ifndef USE_STREAM bmp = Gdiplus::Bitmap::FromFile(L"test.png", false); if (!bmp) { std::cerr << " Unable to open image file." << std::endl; return 1; } #else IStream *s; if (FileStream::OpenFile(L"test.png", &s, false) != S_OK) { std::cerr << "Unable to open image file." << std::endl; return 1; } bmp = Gdiplus::Bitmap::FromStream(s, false); #endif std::cout << "Image is " << bmp->GetWidth() << " by " << bmp->GetHeight() << std::endl; Gdiplus::GdiplusShutdown(gdiplusToken); #ifdef USE_STREAM s->Release(); #endif return 0; } Tracing and debugging, shows that it does make some calls to the IStream class. It crashes inside of lastResult = DllExports::GdipCreateBitmapFromStream(stream, &bitmap); from GdiPlusBitmap.h, which is a static inline wrapper over the flat API. Other than the reference counting, the only IStream methods it calls is stat (for file size), read, and seek. Call stack looks like: ntdll.dll!_DbgBreakPoint@0() + 0x1 bytes ntdll.dll!_RtlpBreakPointHeap@4() + 0x28 bytes ntdll.dll!_RtlpValidateHeapEntry@12() + 0x70a3c bytes ntdll.dll!_RtlDebugFreeHeap@12() + 0x9a bytes ntdll.dll!@RtlpFreeHeap@16() + 0x13cdd bytes ntdll.dll!_RtlFreeHeap@12() + 0x2e49 bytes kernel32.dll!_HeapFree@12() + 0x14 bytes ole32.dll!CRetailMalloc_Free() + 0x1c bytes ole32.dll!_CoTaskMemFree@4() + 0x13 bytes GdiPlus.dll!GpPngDecoder::GetImageInfo() + 0x68 bytes GdiPlus.dll!GpDecodedImage::InternalGetImageInfo() + 0x3c bytes GdiPlus.dll!GpDecodedImage::GetImageInfo() + 0x18 bytes GdiPlus.dll!CopyOnWriteBitmap::CopyOnWriteBitmap() + 0x49 bytes GdiPlus.dll!CopyOnWriteBitmap::Create() + 0x1d bytes GdiPlus.dll!GpBitmap::GpBitmap() + 0x2c bytes I was unable to find anybody else with the same problem, so I assume there's something wrong with my implementation...

    Read the article

  • Tip/Trick: Fix Common SEO Problems Using the URL Rewrite Extension

    - by ScottGu
    Search engine optimization (SEO) is important for any publically facing web-site.  A large % of traffic to sites now comes directly from search engines, and improving your site’s search relevancy will lead to more users visiting your site from search engine queries.  This can directly or indirectly increase the money you make through your site. This blog post covers how you can use the free Microsoft URL Rewrite Extension to fix a bunch of common SEO problems that your site might have.  It takes less than 15 minutes (and no code changes) to apply 4 simple URL Rewrite rules to your site, and in doing so cause search engines to drive more visitors and traffic to your site.  The techniques below work equally well with both ASP.NET Web Forms and ASP.NET MVC based sites.  They also works with all versions of ASP.NET (and even work with non-ASP.NET content). [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Measuring the SEO of your website with the Microsoft SEO Toolkit A few months ago I blogged about the free SEO Toolkit that we’ve shipped.  This useful tool enables you to automatically crawl/scan your site for SEO correctness, and it then flags any SEO issues it finds.  I highly recommend downloading and using the tool against any public site you work on.  It makes it easy to spot SEO issues you might have in your site, and pinpoint ways to optimize it further. Below is a simple example of a report I ran against one of my sites (www.scottgu.com) prior to applying the URL Rewrite rules I’ll cover later in this blog post:   Search Relevancy and URL Splitting Two of the important things that search engines evaluate when assessing your site’s “search relevancy” are: How many other sites link to your content.  Search engines assume that if a lot of people around the web are linking to your content, then it is likely useful and so weight it higher in relevancy. The uniqueness of the content it finds on your site.  If search engines find that the content is duplicated in multiple places around the Internet (or on multiple URLs on your site) then it is likely to drop the relevancy of the content. One of the things you want to be very careful to avoid when building public facing sites is to not allow different URLs to retrieve the same content within your site.  Doing so will hurt with both of the situations above.  In particular, allowing external sites to link to the same content with multiple URLs will cause your link-count and page-ranking to be split up across those different URLs (and so give you a smaller page rank than what it would otherwise be if it was just one URL).  Not allowing external sites to link to you in different ways sounds easy in theory – but you might wonder what exactly this means in practice and how you avoid it. 4 Really Common SEO Problems Your Sites Might Have Below are 4 really common scenarios that can cause your site to inadvertently expose multiple URLs for the same content.  When this happens external sites linking to yours will end up splitting their page links across multiple URLs - and as a result cause you to have a lower page ranking with search engines than you deserve. SEO Problem #1: Default Document IIS (and other web servers) supports the concept of a “default document”.  This allows you to avoid having to explicitly specify the page you want to serve at either the root of the web-site/application, or within a sub-directory.  This is convenient – but means that by default this content is available via two different publically exposed URLs (which is bad).  For example: http://scottgu.com/ http://scottgu.com/default.aspx SEO Problem #2: Different URL Casings Web developers often don’t realize URLs are case sensitive to search engines on the web.  This means that search engines will treat the following links as two completely different URLs: http://scottgu.com/Albums.aspx http://scottgu.com/albums.aspx SEO Problem #3: Trailing Slashes Consider the below two URLs – they might look the same at first, but they are subtly different. The trailing slash creates yet another situation that causes search engines to treat the URLs as different and so split search rankings: http://scottgu.com http://scottgu.com/ SEO Problem #4: Canonical Host Names Sometimes sites support scenarios where they support a web-site with both a leading “www” hostname prefix as well as just the hostname itself.  This causes search engines to treat the URLs as different and split search rankling: http://scottgu.com/albums.aspx/ http://www.scottgu.com/albums.aspx/ How to Easily Fix these SEO Problems in 10 minutes (or less) using IIS Rewrite If you haven’t been careful when coding your sites, chances are you are suffering from one (or more) of the above SEO problems.  Addressing these issues will improve your search engine relevancy ranking and drive more traffic to your site. The “good news” is that fixing the above 4 issues is really easy using the URL Rewrite Extension.  This is a completely free Microsoft extension available for IIS 7.x (on Windows Server 2008, Windows Server 2008 R2, Windows 7 and Windows Vista).  The great thing about using the IIS Rewrite extension is that it allows you to fix the above problems *without* having to change any code within your applications.  You can easily install the URL Rewrite Extension in under 3 minutes using the Microsoft Web Platform Installer (a free tool we ship that automates setting up web servers and development machines).  Just click the green “Install Now” button on the URL Rewrite Spotlight page to install it on your Windows Server 2008, Windows 7 or Windows Vista machine: Once installed you’ll find that a new “URL Rewrite” icon is available within the IIS 7 Admin Tool: Double-clicking the icon will open up the URL Rewrite admin panel – which will display the list of URL Rewrite rules configured for a particular application or site: Notice that our rewrite rule list above is currently empty (which is the default when you first install the extension).  We can click the “Add Rule…” link button in the top-right of the panel to add and enable new URL Rewriting logic for our site.  Scenario 1: Handling Default Document Scenarios One of the SEO problems I discussed earlier in this post was the scenario where the “default document” feature of IIS causes you to inadvertently expose two URLs for the same content on your site.  For example: http://scottgu.com/ http://scottgu.com/default.aspx We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the second URL to instead go to the first one.  We will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve.  Let’s look at how we can create such a rule.  We’ll begin by clicking the “Add Rule” link in the screenshot above.  This will cause the below dialog to display: We’ll select the “Blank Rule” template within the “Inbound rules” section to create a new custom URL Rewriting rule.  This will display an empty pane like below: Don’t worry – setting up the above rule is easy.  The following 4 steps explain how to do so: Step 1: Name the Rule Our first step will be to name the rule we are creating.  Naming it with a descriptive name will make it easier to find and understand later.  Let’s name this rule our “Default Document URL Rewrite” rule: Step 2: Setup the Regular Expression that Matches this Rule Our second step will be to specify a regular expression filter that will cause this rule to execute when an incoming URL matches the regex pattern.   Don’t worry if you aren’t good with regular expressions - I suck at them too. The trick is to know someone who is good at them or copy/paste them from a web-site.  Below we are going to specify the following regular expression as our pattern rule: (.*?)/?Default\.aspx$ This pattern will match any URL string that ends with Default.aspx. The "(.*?)" matches any preceding character zero or more times. The "/?" part says to match the slash symbol zero or one times. The "$" symbol at the end will ensure that the pattern will only match strings that end with Default.aspx.  Combining all these regex elements allows this rule to work not only for the root of your web site (e.g. http://scottgu.com/default.aspx) but also for any application or subdirectory within the site (e.g. http://scottgu.com/photos/default.aspx.  Because the “ignore case” checkbox is selected it will match both “Default.aspx” as well as “default.aspx” within the URL.   One nice feature built-into the rule editor is a “Test pattern” button that you can click to bring up a dialog that allows you to test out a few URLs with the rule you are configuring: Above I've added a “products/default.aspx” URL and clicked the “Test” button.  This will give me immediate feedback on whether the rule will execute for it.  Step 3: Setup a Permanent Redirect Action We’ll then setup an action to occur when our regular expression pattern matches the incoming URL: In the dialog above I’ve changed the “Action Type” drop down to be a “Redirect” action.  The “Redirect Type” will be a HTTP 301 Permanent redirect – which means search engines will follow it. I’ve also set the “Redirect URL” property to be: {R:1}/ This indicates that we want to redirect the web client requesting the original URL to a new URL that has the originally requested URL path - minus the "Default.aspx" in it.  For example, requests for http://scottgu.com/default.aspx will be redirected to http://scottgu.com/, and requests for http://scottgu.com/photos/default.aspx will be redirected to http://scottgu.com/photos/ The "{R:N}" regex construct, where N >= 0, is called a back-reference and N is the back-reference index. In the case of our pattern "(.*?)/?Default\.aspx$", if the input URL is "products/Default.aspx" then {R:0} will contain "products/Default.aspx" and {R:1} will contain "products".  We are going to use this {R:1}/ value to be the URL we redirect users to.  Step 4: Apply and Save the Rule Our final step is to click the “Apply” button in the top right hand of the IIS admin tool – which will cause the tool to persist the URL Rewrite rule into our application’s root web.config file (under a <system.webServer/rewrite> configuration section): <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Because IIS 7.x and ASP.NET share the same web.config files, you can actually just copy/paste the above code into your web.config files using Visual Studio and skip the need to run the admin tool entirely.  This also makes adding/deploying URL Rewrite rules with your ASP.NET applications really easy. Step 5: Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://scottgu.com/ http://scottgu.com/default.aspx Notice that the second URL automatically redirects to the first one.  Because it is a permanent redirect, search engines will follow the URL and should update the page ranking of http://scottgu.com to include links to http://scottgu.com/default.aspx as well. Scenario 2: Different URL Casing Another common SEO problem I discussed earlier in this post is that URLs are case sensitive to search engines on the web.  This means that search engines will treat the following links as two completely different URLs: http://scottgu.com/Albums.aspx http://scottgu.com/albums.aspx We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the first URL to instead go to the second (all lower-case) one.  Like before, we will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve. To create such a rule we’ll click the “Add Rule” link in the URL Rewrite admin tool again.  This will cause the “Add Rule” dialog to appear again: Unlike the previous scenario (where we created a “Blank Rule”), with this scenario we can take advantage of a built-in “Enforce lowercase URLs” rule template.  When we click the “ok” button we’ll see the following dialog which asks us if we want to create a rule that enforces the use of lowercase letters in URLs: When we click the “Yes” button we’ll get a pre-written rule that automatically performs a permanent redirect if an incoming URL has upper-case characters in it – and automatically send users to a lower-case version of the URL: We can click the “Apply” button to use this rule “as-is” and have it apply to all incoming URLs to our site.  Because my www.scottgu.com site uses ASP.NET Web Forms, I’m going to make one small change to the rule we generated above – which is to add a condition that will ensure that URLs to ASP.NET’s built-in “WebResource.axd” handler are excluded from our case-sensitivity URL Rewrite logic.  URLs to the WebResource.axd handler will only come from server-controls emitted from my pages – and will never be linked to from external sites.  While my site will continue to function fine if we redirect these URLs to automatically be lower-case – doing so isn’t necessary and will add an extra HTTP redirect to many of my pages.  The good news is that adding a condition that prevents my URL Rewriting rule from happening with certain URLs is easy.  We simply need to expand the “Conditions” section of the form above We can then click the “Add” button to add a condition clause.  This will bring up the “Add Condition” dialog: Above I’ve entered {URL} as the Condition input – and said that this rule should only execute if the URL does not match a regex pattern which contains the string “WebResource.axd”.  This will ensure that WebResource.axd URLs to my site will be allowed to execute just fine without having the URL be re-written to be all lower-case. Note: If you have static resources (like references to .jpg, .css, and .js files) within your site that currently use upper-case characters you’ll probably want to add additional condition filter clauses so that URLs to them also don’t get redirected to be lower-case (just add rules for patterns like .jpg, .gif, .js, etc).  Your site will continue to work fine if these URLs get redirected to be lower case (meaning the site won’t break) – but it will cause an extra HTTP redirect to happen on your site for URLs that don’t need to be redirected for SEO reasons.  So setting up a condition clause makes sense to add. When I click the “ok” button above and apply our lower-case rewriting rule the admin tool will save the following additional rule to our web.config file: <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>                 <rule name="Lower Case URLs" stopProcessing="true">                     <match url="[A-Z]" ignoreCase="false" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{ToLower:{URL}}" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://scottgu.com/Albums.aspx http://scottgu.com/albums.aspx Notice that the first URL (which has a capital “A”) automatically does a redirect to a lower-case version of the URL.  Scenario 3: Trailing Slashes Another common SEO problem I discussed earlier in this post is the scenario of trailing slashes within URLs.  The trailing slash creates yet another situation that causes search engines to treat the URLs as different and so split search rankings: http://scottgu.com http://scottgu.com/ We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the first URL (that does not have a trailing slash) to instead go to the second one that does.  Like before, we will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve.  To create such a rule we’ll click the “Add Rule” link in the URL Rewrite admin tool again.  This will cause the “Add Rule” dialog to appear again: The URL Rewrite admin tool has a built-in “Append or remove the trailing slash symbol” rule template.  When we select it and click the “ok” button we’ll see the following dialog which asks us if we want to create a rule that automatically redirects users to a URL with a trailing slash if one isn’t present: Like within our previous lower-casing rewrite rule we’ll add one additional condition clause that will exclude WebResource.axd URLs from being processed by this rule.  This will avoid an unnecessary redirect for happening for those URLs. When we click the “OK” button we’ll get a pre-written rule that automatically performs a permanent redirect if the URL doesn’t have a trailing slash – and if the URL is not processed by either a directory or a file.  This will save the following additional rule to our web.config file: <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>                 <rule name="Lower Case URLs" stopProcessing="true">                     <match url="[A-Z]" ignoreCase="false" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{ToLower:{URL}}" />                 </rule>                 <rule name="Trailing Slash" stopProcessing="true">                     <match url="(.*[^/])$" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />                         <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{R:1}/" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://scottgu.com http://scottgu.com/ Notice that the first URL (which has no trailing slash) automatically does a redirect to a URL with the trailing slash.  Because it is a permanent redirect, search engines will follow the URL and update the page ranking. Scenario 4: Canonical Host Names The final SEO problem I discussed earlier are scenarios where a site works with both a leading “www” hostname prefix as well as just the hostname itself.  This causes search engines to treat the URLs as different and split search rankling: http://www.scottgu.com/albums.aspx http://scottgu.com/albums.aspx We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the first URL (that has a www prefix) to instead go to the second URL.  Like before, we will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve.  To create such a rule we’ll click the “Add Rule” link in the URL Rewrite admin tool again.  This will cause the “Add Rule” dialog to appear again: The URL Rewrite admin tool has a built-in “Canonical domain name” rule template.  When we select it and click the “ok” button we’ll see the following dialog which asks us if we want to create a redirect rule that automatically redirects users to a primary host name URL: Above I’m entering the primary URL address I want to expose to the web: scottgu.com.  When we click the “OK” button we’ll get a pre-written rule that automatically performs a permanent redirect if the URL has another leading domain name prefix.  This will save the following additional rule to our web.config file: <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Cannonical Hostname">                     <match url="(.*)" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{HTTP_HOST}" pattern="^scottgu\.com$" negate="true" />                     </conditions>                     <action type="Redirect" url="http://scottgu.com/{R:1}" />                 </rule>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>                 <rule name="Lower Case URLs" stopProcessing="true">                     <match url="[A-Z]" ignoreCase="false" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{ToLower:{URL}}" />                 </rule>                 <rule name="Trailing Slash" stopProcessing="true">                     <match url="(.*[^/])$" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />                         <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{R:1}/" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://www.scottgu.com/albums.aspx http://scottgu.com/albums.aspx Notice that the first URL (which has the “www” prefix) now automatically does a redirect to the second URL which does not have the www prefix.  Because it is a permanent redirect, search engines will follow the URL and update the page ranking. 4 Simple Rules for Improved SEO The above 4 rules are pretty easy to setup and should take less than 15 minutes to configure on existing sites you already have.  The beauty of using a solution like the URL Rewrite Extension is that you can take advantage of it without having to change code within your web-site – and without having to break any existing links already pointing at your site.  Users who follow existing links will be automatically redirected to the new URLs you wish to publish.  And search engines will start to give your site a higher search relevancy ranking – which will list your site higher in search results and drive more traffic to it. Customizing your URL Rewriting rules further is easy to-do either by editing the web.config file directly, or alternatively, just double click the URL Rewrite icon within the IIS 7.x admin tool and it will list all the active rules for your web-site or application: Clicking any of the rules above will open the rules editor back up and allow you to tweak/customize/save them further. Summary Measuring and improving SEO is something every developer building a public-facing web-site needs to think about and focus on.  If you haven’t already, download and use the SEO Toolkit to analyze the SEO of your sites today. New URL Routing features in ASP.NET MVC and ASP.NET Web Forms 4 make it much easier to build applications that have more control over the URLs that are published.  Tools like the URL Rewrite Extension that I’ve talked about in this blog post make it much easier to improve the URLs that are published from sites you already have built today – without requiring you to change a lot of code. The URL Rewrite Extension provides a bunch of additional great capabilities – far beyond just SEO - as well.  I’ll be covering these additional capabilities more in future blog posts. Hope this helps, Scott

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Why should you choose Oracle WebLogic 12c instead of JBoss EAP 6?

    - by Ricardo Ferreira
    In this post, I will cover some technical differences between Oracle WebLogic 12c and JBoss EAP 6, which was released a couple days ago from Red Hat. This article claims to help you in the evaluation of key points that you should consider when choosing for an Java EE application server. In the following sections, I will present to you some important aspects that most customers ask us when they are seriously evaluating for an middleware infrastructure, specially if you are considering JBoss for some reason. I would suggest that you keep the following question in mind while you are reading the points: "Why should I choose JBoss instead of WebLogic?" 1) Multi Datacenter Deployment and Clustering - D/R ("Disaster & Recovery") architecture support is embedded on the WebLogic Server 12c product. JBoss EAP 6 on the other hand has no direct D/R support included, Red Hat relies on third-part tools with higher prices. When you consider a middleware solution to host your business critical application, you should worry with every architectural aspect that are related with the solution. Fail-over support is one little aspect of a truly reliable solution. If you do not worry about D/R, your solution will not be reliable. Having said that, with Red Hat and JBoss EAP 6, you have this extra cost that will increase considerably the total cost of ownership of the solution. As we commonly hear from analysts, open-source are not so cheaper when you start seeing the big picture. - WebLogic Server 12c supports advanced LAN clustering, detection of death servers and have a common alert framework. JBoss EAP 6 on the other hand has limited LAN clustering support with no server death detection. They do not generate any alerts when servers goes down (only if you buy JBoss ON which is a separated technology, but until now does not support JBoss EAP 6) and manual intervention are required when servers goes down. In most cases, admin people must rely on "kill -9", "tail -f someFile.log" and "ps ax | grep java" commands to manage failures and clustering anomalies. - WebLogic Server 12c supports the concept of Node Manager, which is a separated process that runs on the physical | virtual servers that allows extend the administration of the cluster to WebLogic managed servers that are often distributed across multiple machines and geographic locations. JBoss EAP 6 on the other hand has no equivalent technology. Whole server instances must be managed individually. - WebLogic Server 12c Node Manager supports Coherence to boost performance when managing servers. JBoss EAP 6 on the other hand has no similar technology. There is no way to coordinate JBoss and infiniband instances provided by JBoss using high throughput and low latency protocols like InfiniBand. The Node Manager feature also allows another very important feature that JBoss EAP lacks: secure the administration. When using WebLogic Node Manager, all the administration tasks are sent to the managed servers in a secure tunel protected by a certificate, which means that the transport layer that separates the WebLogic administration console from the managed servers are secured by SSL. - WebLogic Server 12c are now integrated with OTD ("Oracle Traffic Director") which is a web server technology derived from the former Sun iPlanet Web Server. This software complements the web server support offered by OHS ("Oracle HTTP Server"). Using OTD, WebLogic instances are load-balanced by a high powerful software that knows how to handle SDP ("Socket Direct Protocol") over InfiniBand, which boost performance when used with engineered systems technologies like Oracle Exalogic Elastic Cloud. JBoss EAP 6 on the other hand only offers support to Apache Web Server with custom modules created to deal with JBoss clusters, but only across standard TCP/IP networks.  2) Application and Runtime Diagnostics - WebLogic Server 12c have diagnostics capabilities embedded on the server called WLDF ("WebLogic Diagnostic Framework") so there is no need to rely on third-part tools. JBoss EAP 6 on the other hand has no diagnostics capabilities. Their only diagnostics tool is the log generated by the application server. Admin people are encouraged to analyse thousands of log lines to find out what is going on. - WebLogic Server 12c complement WLDF with JRockit MC ("Mission Control"), which provides to administrators and developers a complete insight about the JVM performance, behavior and possible bottlenecks. WebLogic Server 12c also have an classloader analysis tool embedded, and even a log analyzer tool that enables administrators and developers to view logs of multiple servers at the same time. JBoss EAP 6 on the other hand relies on third-part tools to do something similar. Again, only log searching are offered to find out whats going on. - WebLogic Server 12c offers end-to-end traceability and monitoring available through Oracle EM ("Enterprise Manager"), including monitoring of business transactions that flows through web servers, ESBs, application servers and database servers, all of this with high deep JVM analysis and diagnostics. JBoss EAP 6 on the other hand, even using JBoss ON ("Operations Network"), which is a separated technology, does not support those features. Red Hat relies on third-part tools to provide direct Oracle database traceability across JVMs. One of those tools are Oracle EM for non-Oracle middleware that manage JBoss, Tomcat, Websphere and IIS transparently. - WebLogic Server 12c with their JRockit support offers a tool called JRockit Flight Recorder, which can give developers a complete visibility of a certain period of application production monitoring with zero extra overhead. This automatic recording allows you to deep analyse threads latency, memory leaks, thread contention, resource utilization, stack overflow damages and GC ("Garbage Collection") cycles, to observe in real time stop-the-world phenomenons, generational, reference count and parallel collects and mutator threads analysis. JBoss EAP 6 don't even dream to support something similar, even because they don't have their own JVM. 3) Application Server Administration - WebLogic Server 12c offers a complete administration console complemented with scripting and macro-like recording capabilities. A single WebLogic console can managed up to hundreds of WebLogic servers belonging to the same domain. JBoss EAP 6 on the other hand has a limited console and provides a XML centric administration. JBoss, after ten years, started the development of a rudimentary centralized administration that still leave a lot of administration tasks aside, so admin people and developers must touch scripts and XML configuration files for most advanced and even simple administration tasks. This lead applications to error prone and risky deployments. Even using JBoss ON, JBoss EAP are not able to offer decent administration features for admin people which must be high skilled in JBoss internal architecture and its managing capabilities. - Oracle EM is available to manage multiple domains, databases, application servers, operating systems and virtualization, with a complete end-to-end visibility. JBoss ON does not provide management capabilities across the complete architecture, only basic monitoring. Even deployment must be done aside JBoss ON which does no integrate well with others softwares than JBoss. Until now, JBoss ON does not supports JBoss EAP 6, so even their minimal support for JBoss are not available for JBoss EAP 6 leaving customers uncovered and subject to high skilled JBoss admin people. - WebLogic Server 12c has the same administration model whatever is the topology selected by the customer. JBoss EAP 6 on the other hand differentiates between two operational models: standalone-mode and domain-mode, that are not consistent with each other. Depending on the mode used, the administration skill is different. - WebLogic Server 12c has no point-of-failures processes, and it does not need to define any specialized server. Domain model in WebLogic is available for years (at least ten years or more) and is production proven. JBoss EAP 6 on the other hand needs special processes to garantee JBoss integrity, the PC ("Process-Controller") and the HC ("Host-Controller"). Different from WebLogic, the domain model in JBoss is quite new (one year at tops) of maturity, and need to mature considerably until start doing things like WebLogic domain model does. - WebLogic Server 12c supports parallel deployment model which enables some artifacts being deployed at the same time. JBoss EAP 6 on the other hand does not have any similar feature. Every deployment are done atomically in the containers. This means that if you have a huge EAR (an EAR of 120 MB of size for instance) and deploy onto JBoss EAP 6, this EAR will take some minutes in order to starting accept thread requests. The same EAR deployed onto WebLogic Server 12c will reduce the deployment time at least in 2X compared to JBoss. 4) Support and Upgrades - WebLogic Server 12c has patch management available. JBoss EAP 6 on the other hand has no patch management available, each JBoss EAP instance should be patched manually. To achieve such feature, you need to buy a separated technology called JBoss ON ("Operations Network") that manage this type of stuff. But until now, JBoss ON does not support JBoss EAP 6 so, in practice, JBoss EAP 6 does not have this feature. - WebLogic Server 12c supports previuous WebLogic domains without any reconfiguration since its kernel is robust and mature since its creation in 1995. JBoss EAP 6 on the other hand has a proven lack of supportability between JBoss AS 4, 5, 6 and 7. Different kernels and messaging engines were implemented in JBoss stack in the last five years reveling their incapacity to create a well architected and proven middleware technology. - WebLogic Server 12c has patch prescription based on customer configuration. JBoss EAP 6 on the other hand has no such capability. People need to create ticket supports and have their installations revised by Red Hat support guys to gain some patch prescription from them. - Oracle WebLogic Server independent of the version has 8 years of support of new patches and has lifetime release of existing patches beyond that. JBoss EAP 6 on the other hand provides patches for a specific application server version up to 5 years after the release date. JBoss EAP 4 and previous versions had only 4 years. A good question that Red Hat will argue to answer is: "what happens when you find issues after year 5"?  5) RAC ("Real Application Clusters") Support - WebLogic Server 12c ships with a specific JDBC driver to leverage Oracle RAC clustering capabilities (Fast-Application-Notification, Transaction Affinity, Fast-Connection-Failover, etc). Oracle JDBC thin driver are also available. JBoss EAP 6 on the other hand ships only the standard Oracle JDBC thin driver. Load balancing with Oracle RAC are not supported. Manual intervention in case of planned or unplanned RAC downtime are necessary. In JBoss EAP 6, situation does not reestablish automatically after downtime. - WebLogic Server 12c has a feature called Active GridLink for Oracle RAC which provides up to 3X performance on OLTP applications. This seamless integration between WebLogic and Oracle database enable more value added to critical business applications leveraging their investments in Oracle database technology and Oracle middleware. JBoss EAP 6 on the other hand has no performance gains at all, even when admin people implement some kind of connection-pooling tuning. - WebLogic Server 12c also supports transaction and web session affinity to the Oracle RAC, which provides aditional gains of performance. This is particularly interesting if you are creating a reliable solution that are distributed not only in an LAN cluster, but into a different data center. JBoss EAP 6 on the other hand has no such support. 6) Standards and Technology Support - WebLogic Server 12c is fully Java EE 6 compatible and production ready since december of 2011. JBoss EAP 6 on the other hand became fully compatible with Java EE 6 only in the community version after three months, and production ready only in a few days considering that this article was written in June of 2012. Red Hat says that they are the masters of innovation and technology proliferation, but compared with Oracle and even other proprietary vendors like IBM, they historically speaking are lazy to deliver the most newest technologies and standards adherence. - Oracle is the steward of Java, driving innovation into the platform from commercial and open-source vendors. Red Hat on the other hand does not have its own JVM and relies on third-part JVMs to complete their application server offer. 95% of Red Hat customers are using Oracle HotSpot as JVM, which means that without Oracle involvement, their support are limited exclusively to the application server layer and we all know that most problems are happens in the JVM layer. - WebLogic Server 12c supports natively JDK 7, which empower developers to explore the maximum of the Java platform productivity when writing code. This feature differentiate WebLogic from others application servers (except GlassFish that are also managed by Oracle) because the usage of JDK 7 introduce such remarkable productivity features like the "try-with-resources" enhancement, catching multiple exceptions with one try block, Strings in the switch statements, JVM improvements in terms of JDBC, I/O, networking, security, concurrency and of course, the most important feature of Java 7: native support for multiple non-Java languages. More features regarding JDK 7 can be found here. JBoss EAP 6 on the other hand does not support JDK 7 officially, they comment in their community version that "Java SE 7 can be used with JBoss 7" which does not gives you any guarantees of enterprise support for JDK 7. - Oracle WebLogic Server 12c supports integration with Spring framework allowing Spring applications to use WebLogic special transaction manager, exposing bean interfaces to WebLogic MBeans to take advantage of all WebLogic monitoring and administration advantages. JBoss EAP 6 on the other hand has no special integration with Spring. In fact, Red Hat offers a suspicious package called "JBoss Web Platform" that in theory supports Spring, but in practice this package does not offers any special integration. It is just a facility for Red Hat customers to have support from both JBoss and Spring technology using the same customer support. 7) Lightweight Development - Oracle WebLogic Server 12c and Oracle GlassFish are completely integrated and can share applications without any modifications. Starting with the 12c version, WebLogic now understands natively GlassFish deployment descriptors and specific configurations in order to offer you a truly and reliable migration path from a community Java EE application server to a enterprise middleware product like WebLogic. JBoss EAP 6 on the other hand has no support to natively reuse an existing (or still in development) application from JBoss AS community server. Users of JBoss suffer of critical issues during deployment time that includes: changing the libraries and dependencies of the application, patching the DTD or XSD deployment descriptors, refactoring of the application layers due classloading issues and anomalies, rebuilding of persistence, business and web layers due issues with "usage of the certified version of an certain dependency" or "frameworks that Red Hat potentially does not recommend" etc. If you have the culture or enterprise IT directive of developing Java EE applications using community middleware to in a certain future, transition to enterprise (supported by a vendor) middleware, Oracle WebLogic plus Oracle GlassFish offers you a more sustainable solution. - WebLogic Server 12c has a very light ZIP distribution (less than 165 MB). JBoss EAP 6 ZIP size is around 130 MB, together with JBoss ON you have more 100 MB resulting in a higher download footprint. This is particularly interesting if you plan to use automated setup of application server instances (for example, to rapidly setup a development or staging environment) using Maven or Hudson. - WebLogic Server 12c has a complete integration with Maven allowing developers to setup WebLogic domains with few commands. Tasks like downloading WebLogic, installation, domain creation, data sources deployment are completely integrated. JBoss EAP 6 on the other hand has a limited offer integration with those tools.  - WebLogic Server 12c has a startup mode called WLX that turns-off EJB, JMS and JCA containers leaving enabled only the web container with Java EE 6 web profile. JBoss EAP 6 on the other hand has no such feature, you need to disable manually the containers that you do not want to use. - WebLogic Server 12c supports fastswap, which enables you to change classes without redeployment. This is particularly interesting if you are developing patches for the application that is already deployed and you do not want to redeploy the entire application. This is the same behavior that most application servers offers to JSP pages, but with WebLogic Server 12c, you have the same feature for Java classes in general. JBoss EAP 6 on the other hand has no such support. Even JBoss EAP 5 does not support this until now. 8) JMS and Messaging - WebLogic Server 12c has a proven and high scalable JMS implementation since its initial release in 1995. JBoss EAP 6 on the other hand has a still immature technology called HornetQ, which was introduced in JBoss EAP 5 replacing everything that was implemented in the previous versions. Red Hat loves to introduce new technologies across JBoss versions, playing around with customers and their investments. And when they are asked about why they have changed the implementation and caused such a mess, their answer is always: "the previous implementation was inadequate and not aligned with the community strategy so we are creating a new a improved one". This Red Hat practice leads to uncomfortable investments that in a near future (sometimes less than a year) will be affected in someway. - WebLogic Server 12c has troubleshooting and monitoring features included on the WebLogic console and WLDF. JBoss EAP 6 on the other hand has no direct monitoring on the console, activity is reflected only on the logs, no debug logs available in case of JMS issues. - WebLogic Server 12c has extremely good performance and scalability. JBoss EAP 6 on the other hand has a JMS storage mechanism relying on Oracle database or MySQL. This means that if an issue in production happens and Red Hat affirms that an performance issue is happening due to database problems, they will not support you on the performance issue. They will orient you to call Oracle instead. - WebLogic Server 12c supports messaging enterprise features like SAF ("Store and Forward"), Distributed Queues/Topics and Foreign JMS providers support that leverage JMS implementations without compromise developer code making things completely transparent. JBoss EAP 6 on the other hand do not even dream to support such features. 9) Caching and Grid - Coherence, which is the leading and most mature data grid technology from Oracle, is available since early 2000 and was integrated with WebLogic in 2009. Coherence and WebLogic clusters can be both managed from WebLogic administrative console. Even Node Manager supports Coherence. JBoss on the other hand discontinued JBoss Cache, which was their caching implementation just like they did with the messaging implementation (JBossMQ) which was a issue for long term customers. JBoss EAP 6 ships InfiniSpan version 1.0 which is immature and lack a proven record of successful cases and reliability. - WebLogic Server 12c has a feature called ActiveCache which uses Coherence to, without any code changes, replicate HTTP sessions from both WebLogic and other application servers like JBoss, Tomcat, Websphere, GlassFish and even Microsoft IIS. JBoss EAP 6 on the other hand does have such support and even when they do in the future, they probably will support only their own application server. - Coherence can be used to manage both L1 and L2 cache levels, providing support to Oracle TopLink and others JPA compliant implementations, even Hibernate. JBoss EAP 6 and Infinispan on the other hand supports only Hibernate. And most important of all: Infinispan does not have any successful case of L1 or L2 caching level support using Hibernate, which lead us to reflect about its viability. 10) Performance - WebLogic Server 12c is certified with Oracle Exalogic Elastic Cloud and can run unchanged applications at this engineered system. This approach can benefit customers from Exalogic optimization's of both kernel and JVM layers to boost performance in terms of 10X for web, OLTP, JMS and grid applications. JBoss EAP 6 on the other hand has no investment on engineered systems: customers do not have the choice to deploy on a Java ultra fast system if their project becomes relevant and performance issues are detected. - WebLogic Server 12c maintains a performance gain across each new release: starting on WebLogic 5.1, the overall performance gain has been close to 4X, which close to a 20% gain release by release. JBoss on the other hand does not provide SPECJAppServer or SPECJEnterprise performance benchmarks. Their so called "performance gains" remains hidden in their customer environments, which lead us to think if it is true or not since we will never get access to those environments. - WebLogic Server 12c has industry performance benchmarks with submissions across platforms and configurations leading SPECJ. Oracle WebLogic leads SPECJAppServer performance in multiple categories, fitting all customer topologies like: dual-node, single-node, multi-node and multi-node with RAC. JBoss... again, does not provide any SPECJAppServer performance benchmarks. - WebLogic Server 12c has a feature called work manager which allows your application to embrace new performance levels based on critical resource utilization of the CPUs usage. Work managers prioritizes work and allocates threads based on an execution model that takes into account administrator-defined parameters and actual run-time performance and throughput. JBoss EAP 6 on the other hand has no compared feature and probably they never will. Not supporting such feature like work managers, JBoss EAP 6 forces admin people and specially developers to uncover performance gains in a intrusive way, rewriting the code and doing performance refactorings. 11) Professional Services Support - WebLogic Server 12c and any other technology sold by Oracle give customers the possibility of hire OCS ("Oracle Consulting Services") to manage critical scenarios, deployment assistance of new applications, high skilled consultancy of architecture, best practices and people allocation together with customer teams. All OCS services are available without any restrictions, having the customer bought software from Oracle or just starting their implementation before any acquisition. JBoss EAP 6 or Red Hat to be more specifically, only offers professional services if you buy subscriptions from them. If you are developing a new critical application for your business and need the help of Red Hat for a serious issue or architecture decision, they will probably say: "OK... I can help you but after you buy subscriptions from me". Red Hat also does not allows their professional services consultants to manage environments that uses community based software. They will probably force you to first buy a subscription, download their "enterprise" version and them, optionally hire their consultants. - Oracle provides you our university to educate your team into our technologies, including of course specialized trainings of WebLogic application server. At any time and location, you can hire Oracle to train your team so you get trustful knowledge according to your specific needs. Certifications for the products are also available if your technical people desire to differentiate themselves as professionals. Red Hat on the other hand have a limited pool of resources to train your team in their technologies. Basically they are selling training and certification for RHEL ("Red Hat Enterprise Linux") but if you demand more specialized training in JBoss middleware, they will probably connect you to some "certified" partner localized training since they are apparently discontinuing their education center, at least here in Brazil. They were not able to reproduce their success with RHEL education to their middleware division since they need first sell the subscriptions to after gives you specialized training. And again, they only offer you specialized training based on their enterprise version (EAP in the case of JBoss) which means that the courses will be a quite outdated. There are reports of developers that took official training's from Red Hat at this year (2012) and in a certain JBoss advanced course, Red Hat supposedly covered JBossMQ as the messaging subsystem, and even the printed material provided was based on JBossMQ since the training was created for JBoss EAP 4.3. 12) Encouraging Transparency without Ulterior Motives - WebLogic Server 12c like any other software from Oracle can be downloaded any time from anywhere, you should only possess an OTN ("Oracle Technology Network") credential and you can download any enterprise software how many times you want. And is not some kind of "trial" version. It is the official binaries that will be running for ever in your data center. Oracle does not encourages the usage of "specific versions" of our software. The binaries you buy from Oracle are the same binaries anyone in the world could download and use for testing and personal education. JBoss EAP 6 on the other hand are not available for download unless you buy a subscription and get access to the Red Hat enterprise repositories. If you need to test, learn or just start creating your application using Red Hat's middleware software, you should download it from the community website. You are not allowed to download the enterprise version that, according to Red Hat are more secure, reliable and robust. But no one of us want to start the development of a software with an unsecured, unreliable and not scalable middleware right? So what you do? You are "invited" by Red Hat to buy subscriptions from them to get access to the "cool" version of the software. - WebLogic Server 12c prices are publicly available in the Oracle website. If you want to know right now how much WebLogic will cost to your organization, just click here and get access to our price list. In the case of WebLogic, check out the "US Oracle Technology Commercial Price List". Oracle also encourages you to get in touch with a sales representative to discuss discounts that would make possible the investment into our technology. But you are not required to do this, only if you are interested in buying our technology or maybe you want to discuss some discount scenarios. JBoss EAP 6 on the other hand does not have its cost publicly available in Red Hat's website or in any other media, at least is not so easy to get such information. The only link you will possibly find in their website is a "Contact a Sales Representative" link. This is not a very good relationship between an customer and an vendor. This is not an example of transparency, mainly when the software are sold as open. In this situations, customers expects to see the software prices publicly available, so they can have the chance to decide, based on the existing features of the software, if the cost is fair or not. Conclusion Oracle WebLogic is the most mature, secure, reliable and scalable Java EE application server of the market, and have a proven record of success around the globe to prove it's majority. Don't lose the chance to discover today how WebLogic could fit your needs and sustain your global IT middleware strategy, no matter if your strategy are completely based on the Cloud or not.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Extending Oracle CEP with Predictive Analytics

    - by vikram.shukla(at)oracle.com
    Introduction: OCEP is often used as a business rules engine to execute a set of business logic rules via CQL statements, and take decisions based on the outcome of those rules. There are times where configuring rules manually is sufficient because an application needs to deal with only a small and well-defined set of static rules. However, in many situations customers don't want to pre-define such rules for two reasons. First, they are dealing with events with lots of columns and manually crafting such rules for each column or a set of columns and combinations thereof is almost impossible. Second, they are content with probabilistic outcomes and do not care about 100% precision. The former is the case when a user is dealing with data with high dimensionality, the latter when an application can live with "false" positives as they can be discarded after further inspection, say by a Human Task component in a Business Process Management software. The primary goal of this blog post is to show how this can be achieved by combining OCEP with Oracle Data Mining® and leveraging the latter's rich set of algorithms and functionality to do predictive analytics in real time on streaming events. The secondary goal of this post is also to show how OCEP can be extended to invoke any arbitrary external computation in an RDBMS from within CEP. The extensible facility is known as the JDBC cartridge. The rest of the post describes the steps required to achieve this: We use the dataset available at http://blogs.oracle.com/datamining/2010/01/fraud_and_anomaly_detection_made_simple.html to showcase the capabilities. We use it to show how transaction anomalies or fraud can be detected. Building the model: Follow the self-explanatory steps described at the above URL to build the model.  It is very simple - it uses built-in Oracle Data Mining PL/SQL packages to cleanse, normalize and build the model out of the dataset.  You can also use graphical Oracle Data Miner®  to build the models. To summarize, it involves: Specifying which algorithms to use. In this case we use Support Vector Machines as we're trying to find anomalies in highly dimensional dataset.Build model on the data in the table for the algorithms specified. For this example, the table was populated in the scott/tiger schema with appropriate privileges. Configuring the Data Source: This is the first step in building CEP application using such an integration.  Our datasource looks as follows in the server config file.  It is advisable that you use the Visualizer to add it to the running server dynamically, rather than manually edit the file.    <data-source>         <name>DataMining</name>         <data-source-params>             <jndi-names>                 <element>DataMining</element>             </jndi-names>             <global-transactions-protocol>OnePhaseCommit</global-transactions-protocol>         </data-source-params>         <connection-pool-params>             <credential-mapping-enabled></credential-mapping-enabled>             <test-table-name>SQL SELECT 1 from DUAL</test-table-name>             <initial-capacity>1</initial-capacity>             <max-capacity>15</max-capacity>             <capacity-increment>1</capacity-increment>         </connection-pool-params>         <driver-params>             <use-xa-data-source-interface>true</use-xa-data-source-interface>             <driver-name>oracle.jdbc.OracleDriver</driver-name>             <url>jdbc:oracle:thin:@localhost:1522:orcl</url>             <properties>                 <element>                     <value>scott</value>                     <name>user</name>                 </element>                 <element>                     <value>{Salted-3DES}AzFE5dDbO2g=</value>                     <name>password</name>                 </element>                                 <element>                     <name>com.bea.core.datasource.serviceName</name>                     <value>oracle11.2g</value>                 </element>                 <element>                     <name>com.bea.core.datasource.serviceVersion</name>                     <value>11.2.0</value>                 </element>                 <element>                     <name>com.bea.core.datasource.serviceObjectClass</name>                     <value>java.sql.Driver</value>                 </element>             </properties>         </driver-params>     </data-source>   Designing the EPN: The EPN is very simple in this example. We briefly describe each of the components. The adapter ("DataMiningAdapter") reads data from a .csv file and sends it to the CQL processor downstream. The event payload here is same as that of the table in the database (refer to the attached project or do a "desc table-name" from a SQL*PLUS prompt). While this is for convenience in this example, it need not be the case. One can still omit fields in the streaming events, and need not match all columns in the table on which the model was built. Better yet, it does not even need to have the same name as columns in the table, as long as you alias them in the USING clause of the mining function. (Caveat: they still need to draw values from a similar universe or domain, otherwise it constitutes incorrect usage of the model). There are two things in the CQL processor ("DataMiningProc") that make scoring possible on streaming events. 1.      User defined cartridge function Please refer to the OCEP CQL reference manual to find more details about how to define such functions. We include the function below in its entirety for illustration. <?xml version="1.0" encoding="UTF-8"?> <jdbcctxconfig:config     xmlns:jdbcctxconfig="http://www.bea.com/ns/wlevs/config/application"     xmlns:jc="http://www.oracle.com/ns/ocep/config/jdbc">        <jc:jdbc-ctx>         <name>Oracle11gR2</name>         <data-source>DataMining</data-source>               <function name="prediction2">                                 <param name="CQLMONTH" type="char"/>                      <param name="WEEKOFMONTH" type="int"/>                      <param name="DAYOFWEEK" type="char" />                      <param name="MAKE" type="char" />                      <param name="ACCIDENTAREA"   type="char" />                      <param name="DAYOFWEEKCLAIMED"  type="char" />                      <param name="MONTHCLAIMED" type="char" />                      <param name="WEEKOFMONTHCLAIMED" type="int" />                      <param name="SEX" type="char" />                      <param name="MARITALSTATUS"   type="char" />                      <param name="AGE" type="int" />                      <param name="FAULT" type="char" />                      <param name="POLICYTYPE"   type="char" />                      <param name="VEHICLECATEGORY"  type="char" />                      <param name="VEHICLEPRICE" type="char" />                      <param name="FRAUDFOUND" type="int" />                      <param name="POLICYNUMBER" type="int" />                      <param name="REPNUMBER" type="int" />                      <param name="DEDUCTIBLE"   type="int" />                      <param name="DRIVERRATING"  type="int" />                      <param name="DAYSPOLICYACCIDENT"   type="char" />                      <param name="DAYSPOLICYCLAIM" type="char" />                      <param name="PASTNUMOFCLAIMS" type="char" />                      <param name="AGEOFVEHICLES" type="char" />                      <param name="AGEOFPOLICYHOLDER" type="char" />                      <param name="POLICEREPORTFILED" type="char" />                      <param name="WITNESSPRESNT" type="char" />                      <param name="AGENTTYPE" type="char" />                      <param name="NUMOFSUPP" type="char" />                      <param name="ADDRCHGCLAIM"   type="char" />                      <param name="NUMOFCARS" type="char" />                      <param name="CQLYEAR" type="int" />                      <param name="BASEPOLICY" type="char" />                                     <return-component-type>char</return-component-type>                                                      <sql><![CDATA[             SELECT to_char(PREDICTION_PROBABILITY(CLAIMSMODEL, '0' USING *))               AS probability             FROM (SELECT  :CQLMONTH AS MONTH,                                            :WEEKOFMONTH AS WEEKOFMONTH,                          :DAYOFWEEK AS DAYOFWEEK,                           :MAKE AS MAKE,                           :ACCIDENTAREA AS ACCIDENTAREA,                           :DAYOFWEEKCLAIMED AS DAYOFWEEKCLAIMED,                           :MONTHCLAIMED AS MONTHCLAIMED,                           :WEEKOFMONTHCLAIMED,                             :SEX AS SEX,                           :MARITALSTATUS AS MARITALSTATUS,                            :AGE AS AGE,                           :FAULT AS FAULT,                           :POLICYTYPE AS POLICYTYPE,                            :VEHICLECATEGORY AS VEHICLECATEGORY,                           :VEHICLEPRICE AS VEHICLEPRICE,                           :FRAUDFOUND AS FRAUDFOUND,                           :POLICYNUMBER AS POLICYNUMBER,                           :REPNUMBER AS REPNUMBER,                           :DEDUCTIBLE AS DEDUCTIBLE,                            :DRIVERRATING AS DRIVERRATING,                           :DAYSPOLICYACCIDENT AS DAYSPOLICYACCIDENT,                            :DAYSPOLICYCLAIM AS DAYSPOLICYCLAIM,                           :PASTNUMOFCLAIMS AS PASTNUMOFCLAIMS,                           :AGEOFVEHICLES AS AGEOFVEHICLES,                           :AGEOFPOLICYHOLDER AS AGEOFPOLICYHOLDER,                           :POLICEREPORTFILED AS POLICEREPORTFILED,                           :WITNESSPRESNT AS WITNESSPRESENT,                           :AGENTTYPE AS AGENTTYPE,                           :NUMOFSUPP AS NUMOFSUPP,                           :ADDRCHGCLAIM AS ADDRCHGCLAIM,                            :NUMOFCARS AS NUMOFCARS,                           :CQLYEAR AS YEAR,                           :BASEPOLICY AS BASEPOLICY                 FROM dual)                 ]]>         </sql>        </function>     </jc:jdbc-ctx> </jdbcctxconfig:config> 2.      Invoking the function for each event. Once this function is defined, you can invoke it from CQL as follows: <?xml version="1.0" encoding="UTF-8"?> <wlevs:config xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">   <processor>     <name>DataMiningProc</name>     <rules>        <query id="q1"><![CDATA[                     ISTREAM(SELECT S.CQLMONTH,                                   S.WEEKOFMONTH,                                   S.DAYOFWEEK, S.MAKE,                                   :                                         S.BASEPOLICY,                                    C.F AS probability                                                 FROM                                 StreamDataChannel [NOW] AS S,                                 TABLE(prediction2@Oracle11gR2(S.CQLMONTH,                                      S.WEEKOFMONTH,                                      S.DAYOFWEEK,                                       S.MAKE, ...,                                      S.BASEPOLICY) AS F of char) AS C)                       ]]></query>                 </rules>               </processor>           </wlevs:config>   Finally, the last stage in the EPN prints out the probability of the event being an anomaly. One can also define a threshold in CQL to filter out events that are normal, i.e., below a certain mark as defined by the analyst or designer. Sample Runs: Now let's see how this behaves when events are streamed through CEP. We use only two events for brevity, one normal and other one not. This is one of the "normal" looking events and the probability of it being anomalous is less than 60%. Event is: eventType=DataMiningOutEvent object=q1  time=2904821976256 S.CQLMONTH=Dec, S.WEEKOFMONTH=5, S.DAYOFWEEK=Wednesday, S.MAKE=Honda, S.ACCIDENTAREA=Urban, S.DAYOFWEEKCLAIMED=Tuesday, S.MONTHCLAIMED=Jan, S.WEEKOFMONTHCLAIMED=1, S.SEX=Female, S.MARITALSTATUS=Single, S.AGE=21, S.FAULT=Policy Holder, S.POLICYTYPE=Sport - Liability, S.VEHICLECATEGORY=Sport, S.VEHICLEPRICE=more than 69000, S.FRAUDFOUND=0, S.POLICYNUMBER=1, S.REPNUMBER=12, S.DEDUCTIBLE=300, S.DRIVERRATING=1, S.DAYSPOLICYACCIDENT=more than 30, S.DAYSPOLICYCLAIM=more than 30, S.PASTNUMOFCLAIMS=none, S.AGEOFVEHICLES=3 years, S.AGEOFPOLICYHOLDER=26 to 30, S.POLICEREPORTFILED=No, S.WITNESSPRESENT=No, S.AGENTTYPE=External, S.NUMOFSUPP=none, S.ADDRCHGCLAIM=1 year, S.NUMOFCARS=3 to 4, S.CQLYEAR=1994, S.BASEPOLICY=Liability, probability=.58931702982118561 isTotalOrderGuarantee=true\nAnamoly probability: .58931702982118561 However, the following event is scored as an anomaly with a very high probability of  89%. So there is likely to be something wrong with it. A close look reveals that the value of "deductible" field (10000) is not "normal". What exactly constitutes normal here?. If you run the query on the database to find ALL distinct values for the "deductible" field, it returns the following set: {300, 400, 500, 700} Event is: eventType=DataMiningOutEvent object=q1  time=2598483773496 S.CQLMONTH=Dec, S.WEEKOFMONTH=5, S.DAYOFWEEK=Wednesday, S.MAKE=Honda, S.ACCIDENTAREA=Urban, S.DAYOFWEEKCLAIMED=Tuesday, S.MONTHCLAIMED=Jan, S.WEEKOFMONTHCLAIMED=1, S.SEX=Female, S.MARITALSTATUS=Single, S.AGE=21, S.FAULT=Policy Holder, S.POLICYTYPE=Sport - Liability, S.VEHICLECATEGORY=Sport, S.VEHICLEPRICE=more than 69000, S.FRAUDFOUND=0, S.POLICYNUMBER=1, S.REPNUMBER=12, S.DEDUCTIBLE=10000, S.DRIVERRATING=1, S.DAYSPOLICYACCIDENT=more than 30, S.DAYSPOLICYCLAIM=more than 30, S.PASTNUMOFCLAIMS=none, S.AGEOFVEHICLES=3 years, S.AGEOFPOLICYHOLDER=26 to 30, S.POLICEREPORTFILED=No, S.WITNESSPRESENT=No, S.AGENTTYPE=External, S.NUMOFSUPP=none, S.ADDRCHGCLAIM=1 year, S.NUMOFCARS=3 to 4, S.CQLYEAR=1994, S.BASEPOLICY=Liability, probability=.89171554529576691 isTotalOrderGuarantee=true\nAnamoly probability: .89171554529576691 Conclusion: By way of this example, we show: real-time scoring of events as they flow through CEP leveraging Oracle Data Mining.how CEP applications can invoke complex arbitrary external computations (function shipping) in an RDBMS.

    Read the article

  • Node.js Adventure - Storage Services and Service Runtime

    - by Shaun
    When I described on how to host a Node.js application on Windows Azure, one of questions might be raised about how to consume the vary Windows Azure services, such as the storage, service bus, access control, etc.. Interact with windows azure services is available in Node.js through the Windows Azure Node.js SDK, which is a module available in NPM. In this post I would like to describe on how to use Windows Azure Storage (a.k.a. WAS) as well as the service runtime.   Consume Windows Azure Storage Let’s firstly have a look on how to consume WAS through Node.js. As we know in the previous post we can host Node.js application on Windows Azure Web Site (a.k.a. WAWS) as well as Windows Azure Cloud Service (a.k.a. WACS). In theory, WAWS is also built on top of WACS worker roles with some more features. Hence in this post I will only demonstrate for hosting in WACS worker role. The Node.js code can be used when consuming WAS when hosted on WAWS. But since there’s no roles in WAWS, the code for consuming service runtime mentioned in the next section cannot be used for WAWS node application. We can use the solution that I created in my last post. Alternatively we can create a new windows azure project in Visual Studio with a worker role, add the “node.exe” and “index.js” and install “express” and “node-sqlserver” modules, make all files as “Copy always”. In order to use windows azure services we need to have Windows Azure Node.js SDK, as knows as a module named “azure” which can be installed through NPM. Once we downloaded and installed, we need to include them in our worker role project and make them as “Copy always”. You can use my “Copy all always” tool mentioned in my last post to update the currently worker role project file. You can also find the source code of this tool here. The source code of Windows Azure SDK for Node.js can be found in its GitHub page. It contains two parts. One is a CLI tool which provides a cross platform command line package for Mac and Linux to manage WAWS and Windows Azure Virtual Machines (a.k.a. WAVM). The other is a library for managing and consuming vary windows azure services includes tables, blobs, queues, service bus and the service runtime. I will not cover all of them but will only demonstrate on how to use tables and service runtime information in this post. You can find the full document of this SDK here. Back to Visual Studio and open the “index.js”, let’s continue our application from the last post, which was working against Windows Azure SQL Database (a.k.a. WASD). The code should looks like this. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:ac6271ya9e.database.windows.net,1433;Database=synctile;Uid=shaunxu@ac6271ya9e;Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Now let’s create a new function, copy the records from WASD to table service. 1. Delete the table named “resource”. 2. Create a new table named “resource”. These 2 steps ensures that we have an empty table. 3. Load all records from the “resource” table in WASD. 4. For each records loaded from WASD, insert them into the table one by one. 5. Prompt to user when finished. In order to use table service we need the storage account and key, which can be found from the developer portal. Just select the storage account and click the Manage Keys button. Then create two local variants in our Node.js application for the storage account name and key. Since we need to use WAS we need to import the azure module. Also I created another variant stored the table name. In order to work with table service I need to create the storage client for table service. This is very similar as the Windows Azure SDK for .NET. As the code below I created a new variant named “client” and use “createTableService”, specified my storage account name and key. 1: var azure = require("azure"); 2: var storageAccountName = "synctile"; 3: var storageAccountKey = "/cOy9L7xysXOgPYU9FjDvjrRAhaMX/5tnOpcjqloPNDJYucbgTy7MOrAW7CbUg6PjaDdmyl+6pkwUnKETsPVNw=="; 4: var tableName = "resource"; 5: var client = azure.createTableService(storageAccountName, storageAccountKey); Now create a new function for URL “/was/init” so that we can trigger it through browser. Then in this function we will firstly load all records from WASD. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: } 18: } 19: }); 20: } 21: }); 22: }); When we succeed loaded all records we can start to transform them into table service. First I need to recreate the table in table service. This can be done by deleting and creating the table through table client I had just created previously. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: // transform the records 26: } 27: }); 28: }); 29: } 30: } 31: }); 32: } 33: }); 34: }); As you can see, the azure SDK provide its methods in callback pattern. In fact, almost all modules in Node.js use the callback pattern. For example, when I deleted a table I invoked “deleteTable” method, provided the name of the table and a callback function which will be performed when the table had been deleted or failed. Underlying, the azure module will perform the table deletion operation in POSIX async threads pool asynchronously. And once it’s done the callback function will be performed. This is the reason we need to nest the table creation code inside the deletion function. If we perform the table creation code after the deletion code then they will be invoked in parallel. Next, for each records in WASD I created an entity and then insert into the table service. Finally I send the response to the browser. Can you find a bug in the code below? I will describe it later in this post. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: // transform the records 26: for (var i = 0; i < results.rows.length; i++) { 27: var entity = { 28: "PartitionKey": results.rows[i][1], 29: "RowKey": results.rows[i][0], 30: "Value": results.rows[i][2] 31: }; 32: client.insertEntity(tableName, entity, function (error) { 33: if (error) { 34: error["target"] = "insertEntity"; 35: res.send(500, error); 36: } 37: else { 38: console.log("entity inserted"); 39: } 40: }); 41: } 42: // send the 43: console.log("all done"); 44: res.send(200, "All done!"); 45: } 46: }); 47: }); 48: } 49: } 50: }); 51: } 52: }); 53: }); Now we can publish it to the cloud and have a try. But normally we’d better test it at the local emulator first. In Node.js SDK there are three build-in properties which provides the account name, key and host address for local storage emulator. We can use them to initialize our table service client. We also need to change the SQL connection string to let it use my local database. The code will be changed as below. 1: // windows azure sql database 2: //var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:ac6271ya9e.database.windows.net,1433;Database=synctile;Uid=shaunxu@ac6271ya9e;Pwd=eszqu94XZY;Encrypt=yes;Connection Timeout=30;"; 3: // sql server 4: var connectionString = "Driver={SQL Server Native Client 11.0};Server={.};Database={Caspar};Trusted_Connection={Yes};"; 5:  6: var azure = require("azure"); 7: var storageAccountName = "synctile"; 8: var storageAccountKey = "/cOy9L7xysXOgPYU9FjDvjrRAhaMX/5tnOpcjqloPNDJYucbgTy7MOrAW7CbUg6PjaDdmyl+6pkwUnKETsPVNw=="; 9: var tableName = "resource"; 10: // windows azure storage 11: //var client = azure.createTableService(storageAccountName, storageAccountKey); 12: // local storage emulator 13: var client = azure.createTableService(azure.ServiceClient.DEVSTORE_STORAGE_ACCOUNT, azure.ServiceClient.DEVSTORE_STORAGE_ACCESS_KEY, azure.ServiceClient.DEVSTORE_TABLE_HOST); Now let’s run the application and navigate to “localhost:12345/was/init” as I hosted it on port 12345. We can find it transformed the data from my local database to local table service. Everything looks fine. But there is a bug in my code. If we have a look on the Node.js command window we will find that it sent response before all records had been inserted, which is not what I expected. The reason is that, as I mentioned before, Node.js perform all IO operations in non-blocking model. When we inserted the records we executed the table service insert method in parallel, and the operation of sending response was also executed in parallel, even though I wrote it at the end of my logic. The correct logic should be, when all entities had been copied to table service with no error, then I will send response to the browser, otherwise I should send error message to the browser. To do so I need to import another module named “async”, which helps us to coordinate our asynchronous code. Install the module and import it at the beginning of the code. Then we can use its “forEach” method for the asynchronous code of inserting table entities. The first argument of “forEach” is the array that will be performed. The second argument is the operation for each items in the array. And the third argument will be invoked then all items had been performed or any errors occurred. Here we can send our response to browser. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: async.forEach(results.rows, 26: // transform the records 27: function (row, callback) { 28: var entity = { 29: "PartitionKey": row[1], 30: "RowKey": row[0], 31: "Value": row[2] 32: }; 33: client.insertEntity(tableName, entity, function (error) { 34: if (error) { 35: callback(error); 36: } 37: else { 38: console.log("entity inserted."); 39: callback(null); 40: } 41: }); 42: }, 43: // send reponse 44: function (error) { 45: if (error) { 46: error["target"] = "insertEntity"; 47: res.send(500, error); 48: } 49: else { 50: console.log("all done"); 51: res.send(200, "All done!"); 52: } 53: } 54: ); 55: } 56: }); 57: }); 58: } 59: } 60: }); 61: } 62: }); 63: }); Run it locally and now we can find the response was sent after all entities had been inserted. Query entities against table service is simple as well. Just use the “queryEntity” method from the table service client and providing the partition key and row key. We can also provide a complex query criteria as well, for example the code here. In the code below I queried an entity by the partition key and row key, and return the proper localization value in response. 1: app.get("/was/:key/:culture", function (req, res) { 2: var key = req.params.key; 3: var culture = req.params.culture; 4: client.queryEntity(tableName, culture, key, function (error, entity) { 5: if (error) { 6: res.send(500, error); 7: } 8: else { 9: res.json(entity); 10: } 11: }); 12: }); And then tested it on local emulator. Finally if we want to publish this application to the cloud we should change the database connection string and storage account. For more information about how to consume blob and queue service, as well as the service bus please refer to the MSDN page.   Consume Service Runtime As I mentioned above, before we published our application to the cloud we need to change the connection string and account information in our code. But if you had played with WACS you should have known that the service runtime provides the ability to retrieve configuration settings, endpoints and local resource information at runtime. Which means we can have these values defined in CSCFG and CSDEF files and then the runtime should be able to retrieve the proper values. For example we can add some role settings though the property window of the role, specify the connection string and storage account for cloud and local. And the can also use the endpoint which defined in role environment to our Node.js application. In Node.js SDK we can get an object from “azure.RoleEnvironment”, which provides the functionalities to retrieve the configuration settings and endpoints, etc.. In the code below I defined the connection string variants and then use the SDK to retrieve and initialize the table client. 1: var connectionString = ""; 2: var storageAccountName = ""; 3: var storageAccountKey = ""; 4: var tableName = ""; 5: var client; 6:  7: azure.RoleEnvironment.getConfigurationSettings(function (error, settings) { 8: if (error) { 9: console.log("ERROR: getConfigurationSettings"); 10: console.log(JSON.stringify(error)); 11: } 12: else { 13: console.log(JSON.stringify(settings)); 14: connectionString = settings["SqlConnectionString"]; 15: storageAccountName = settings["StorageAccountName"]; 16: storageAccountKey = settings["StorageAccountKey"]; 17: tableName = settings["TableName"]; 18:  19: console.log("connectionString = %s", connectionString); 20: console.log("storageAccountName = %s", storageAccountName); 21: console.log("storageAccountKey = %s", storageAccountKey); 22: console.log("tableName = %s", tableName); 23:  24: client = azure.createTableService(storageAccountName, storageAccountKey); 25: } 26: }); In this way we don’t need to amend the code for the configurations between local and cloud environment since the service runtime will take care of it. At the end of the code we will listen the application on the port retrieved from SDK as well. 1: azure.RoleEnvironment.getCurrentRoleInstance(function (error, instance) { 2: if (error) { 3: console.log("ERROR: getCurrentRoleInstance"); 4: console.log(JSON.stringify(error)); 5: } 6: else { 7: console.log(JSON.stringify(instance)); 8: if (instance["endpoints"] && instance["endpoints"]["nodejs"]) { 9: var endpoint = instance["endpoints"]["nodejs"]; 10: app.listen(endpoint["port"]); 11: } 12: else { 13: app.listen(8080); 14: } 15: } 16: }); But if we tested the application right now we will find that it cannot retrieve any values from service runtime. This is because by default, the entry point of this role was defined to the worker role class. In windows azure environment the service runtime will open a named pipeline to the entry point instance, so that it can connect to the runtime and retrieve values. But in this case, since the entry point was worker role and the Node.js was opened inside the role, the named pipeline was established between our worker role class and service runtime, so our Node.js application cannot use it. To fix this problem we need to open the CSDEF file under the azure project, add a new element named Runtime. Then add an element named EntryPoint which specify the Node.js command line. So that the Node.js application will have the connection to service runtime, then it’s able to read the configurations. Start the Node.js at local emulator we can find it retrieved the connections, storage account for local. And if we publish our application to azure then it works with WASD and storage service through the configurations for cloud.   Summary In this post I demonstrated how to use Windows Azure SDK for Node.js to interact with storage service, especially the table service. I also demonstrated on how to use WACS service runtime, how to retrieve the configuration settings and the endpoint information. And in order to make the service runtime available to my Node.js application I need to create an entry point element in CSDEF file and set “node.exe” as the entry point. I used five posts to introduce and demonstrate on how to run a Node.js application on Windows platform, how to use Windows Azure Web Site and Windows Azure Cloud Service worker role to host our Node.js application. I also described how to work with other services provided by Windows Azure platform through Windows Azure SDK for Node.js. Node.js is a very new and young network application platform. But since it’s very simple and easy to learn and deploy, as well as, it utilizes single thread non-blocking IO model, Node.js became more and more popular on web application and web service development especially for those IO sensitive projects. And as Node.js is very good at scaling-out, it’s more useful on cloud computing platform. Use Node.js on Windows platform is new, too. The modules for SQL database and Windows Azure SDK are still under development and enhancement. It doesn’t support SQL parameter in “node-sqlserver”. It does support using storage connection string to create the storage client in “azure”. But Microsoft is working on make them easier to use, working on add more features and functionalities.   PS, you can download the source code here. You can download the source code of my “Copy all always” tool here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • OpenVPN - Windows 8 to Windows 2008 Server, not connecting

    - by niico
    I have followed this tutorial about setting up an OpenVPN Server on Windows Server - and a client on Windows (in this case Windows 8). The server appears to be running fine - but it is not connecting with this error: Mon Jul 22 19:09:04 2013 Warning: cannot open --log file: C:\Program Files\OpenVPN\log\my-laptop.log: Access is denied. (errno=5) Mon Jul 22 19:09:04 2013 OpenVPN 2.3.2 x86_64-w64-mingw32 [SSL (OpenSSL)] [LZO] [PKCS11] [eurephia] [IPv6] built on Jun 3 2013 Mon Jul 22 19:09:04 2013 MANAGEMENT: TCP Socket listening on [AF_INET]127.0.0.1:25340 Mon Jul 22 19:09:04 2013 Need hold release from management interface, waiting... Mon Jul 22 19:09:05 2013 MANAGEMENT: Client connected from [AF_INET]127.0.0.1:25340 Mon Jul 22 19:09:05 2013 MANAGEMENT: CMD 'state on' Mon Jul 22 19:09:05 2013 MANAGEMENT: CMD 'log all on' Mon Jul 22 19:09:05 2013 MANAGEMENT: CMD 'hold off' Mon Jul 22 19:09:05 2013 MANAGEMENT: CMD 'hold release' Mon Jul 22 19:09:05 2013 Socket Buffers: R=[65536->65536] S=[65536->65536] Mon Jul 22 19:09:05 2013 UDPv4 link local: [undef] Mon Jul 22 19:09:05 2013 UDPv4 link remote: [AF_INET]66.666.66.666:9999 Mon Jul 22 19:09:05 2013 MANAGEMENT: >STATE:1374494945,WAIT,,, Mon Jul 22 19:10:05 2013 TLS Error: TLS key negotiation failed to occur within 60 seconds (check your network connectivity) Mon Jul 22 19:10:05 2013 TLS Error: TLS handshake failed Mon Jul 22 19:10:05 2013 SIGUSR1[soft,tls-error] received, process restarting Mon Jul 22 19:10:05 2013 MANAGEMENT: >STATE:1374495005,RECONNECTING,tls-error,, Mon Jul 22 19:10:05 2013 Restart pause, 2 second(s) Note I have changed the IP and port no (it uses a non-standard port for security reasons). That port is open on the hardware firewall. The server logs are showing a connection attempt from my client: TLS: Initial packet from [AF_INET]118.68.xx.xx:65011, sid=081af4ed xxxxxxxx Mon Jul 22 14:19:15 2013 118.68.xx.xx:65011 TLS Error: TLS key negotiation failed to occur within 60 seconds (check your network connectivity) How can I problem solve this & find the problem? Thx Update - Client config file: ############################################## # Sample client-side OpenVPN 2.0 config file # # for connecting to multi-client server. # # # # This configuration can be used by multiple # # clients, however each client should have # # its own cert and key files. # # # # On Windows, you might want to rename this # # file so it has a .ovpn extension # ############################################## # Specify that we are a client and that we # will be pulling certain config file directives # from the server. client # Use the same setting as you are using on # the server. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. ;dev tap dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel # if you have more than one. On XP SP2, # you may need to disable the firewall # for the TAP adapter. ;dev-node MyTap # Are we connecting to a TCP or # UDP server? Use the same setting as # on the server. ;proto tcp proto udp # The hostname/IP and port of the server. # You can have multiple remote entries # to load balance between the servers. remote 00.00.00.00 1194 ;remote 00.00.00.00 9999 ;remote my-server-2 1194 # Choose a random host from the remote # list for load-balancing. Otherwise # try hosts in the order specified. ;remote-random # Keep trying indefinitely to resolve the # host name of the OpenVPN server. Very useful # on machines which are not permanently connected # to the internet such as laptops. resolv-retry infinite # Most clients don't need to bind to # a specific local port number. nobind # Downgrade privileges after initialization (non-Windows only) ;user nobody ;group nobody # Try to preserve some state across restarts. persist-key persist-tun # If you are connecting through an # HTTP proxy to reach the actual OpenVPN # server, put the proxy server/IP and # port number here. See the man page # if your proxy server requires # authentication. ;http-proxy-retry # retry on connection failures ;http-proxy [proxy server] [proxy port #] # Wireless networks often produce a lot # of duplicate packets. Set this flag # to silence duplicate packet warnings. ;mute-replay-warnings # SSL/TLS parms. # See the server config file for more # description. It's best to use # a separate .crt/.key file pair # for each client. A single ca # file can be used for all clients. ca "C:\\Program Files\\OpenVPN\\config\\ca.crt" cert "C:\\Program Files\\OpenVPN\\config\\my-laptop.crt" key "C:\\Program Files\\OpenVPN\\config\\my-laptop.key" # Verify server certificate by checking # that the certicate has the nsCertType # field set to "server". This is an # important precaution to protect against # a potential attack discussed here: # http://openvpn.net/howto.html#mitm # # To use this feature, you will need to generate # your server certificates with the nsCertType # field set to "server". The build-key-server # script in the easy-rsa folder will do this. ns-cert-type server # If a tls-auth key is used on the server # then every client must also have the key. ;tls-auth ta.key 1 # Select a cryptographic cipher. # If the cipher option is used on the server # then you must also specify it here. ;cipher x # Enable compression on the VPN link. # Don't enable this unless it is also # enabled in the server config file. comp-lzo # Set log file verbosity. verb 3 # Silence repeating messages ;mute 20 Server config file: ################################################# # Sample OpenVPN 2.0 config file for # # multi-client server. # # # # This file is for the server side # # of a many-clients <-> one-server # # OpenVPN configuration. # # # # OpenVPN also supports # # single-machine <-> single-machine # # configurations (See the Examples page # # on the web site for more info). # # # # This config should work on Windows # # or Linux/BSD systems. Remember on # # Windows to quote pathnames and use # # double backslashes, e.g.: # # "C:\\Program Files\\OpenVPN\\config\\foo.key" # # # # Comments are preceded with '#' or ';' # ################################################# # Which local IP address should OpenVPN # listen on? (optional) ;local 00.00.00.00 # Which TCP/UDP port should OpenVPN listen on? # If you want to run multiple OpenVPN instances # on the same machine, use a different port # number for each one. You will need to # open up this port on your firewall. std 1194 port 1194 # TCP or UDP server? ;proto tcp proto udp # "dev tun" will create a routed IP tunnel, # "dev tap" will create an ethernet tunnel. # Use "dev tap0" if you are ethernet bridging # and have precreated a tap0 virtual interface # and bridged it with your ethernet interface. # If you want to control access policies # over the VPN, you must create firewall # rules for the the TUN/TAP interface. # On non-Windows systems, you can give # an explicit unit number, such as tun0. # On Windows, use "dev-node" for this. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. ;dev tap dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel if you # have more than one. On XP SP2 or higher, # you may need to selectively disable the # Windows firewall for the TAP adapter. # Non-Windows systems usually don't need this. ;dev-node MyTap # SSL/TLS root certificate (ca), certificate # (cert), and private key (key). Each client # and the server must have their own cert and # key file. The server and all clients will # use the same ca file. # # See the "easy-rsa" directory for a series # of scripts for generating RSA certificates # and private keys. Remember to use # a unique Common Name for the server # and each of the client certificates. # # Any X509 key management system can be used. # OpenVPN can also use a PKCS #12 formatted key file # (see "pkcs12" directive in man page). ca "C:\\Program Files\\OpenVPN\\config\\ca.crt" cert "C:\\Program Files\\OpenVPN\\config\\server.crt" key "C:\\Program Files\\OpenVPN\\config\\server.key" # Diffie hellman parameters. # Generate your own with: # openssl dhparam -out dh1024.pem 1024 # Substitute 2048 for 1024 if you are using # 2048 bit keys. dh "C:\\Program Files\\OpenVPN\\config\\dh2048.pem" # Configure server mode and supply a VPN subnet # for OpenVPN to draw client addresses from. # The server will take 10.8.0.1 for itself, # the rest will be made available to clients. # Each client will be able to reach the server # on 10.8.0.1. Comment this line out if you are # ethernet bridging. See the man page for more info. server 10.8.0.0 255.255.255.0 # Maintain a record of client <-> virtual IP address # associations in this file. If OpenVPN goes down or # is restarted, reconnecting clients can be assigned # the same virtual IP address from the pool that was # previously assigned. ifconfig-pool-persist ipp.txt # Configure server mode for ethernet bridging. # You must first use your OS's bridging capability # to bridge the TAP interface with the ethernet # NIC interface. Then you must manually set the # IP/netmask on the bridge interface, here we # assume 10.8.0.4/255.255.255.0. Finally we # must set aside an IP range in this subnet # (start=10.8.0.50 end=10.8.0.100) to allocate # to connecting clients. Leave this line commented # out unless you are ethernet bridging. ;server-bridge 10.8.0.4 255.255.255.0 10.8.0.50 10.8.0.100 # Configure server mode for ethernet bridging # using a DHCP-proxy, where clients talk # to the OpenVPN server-side DHCP server # to receive their IP address allocation # and DNS server addresses. You must first use # your OS's bridging capability to bridge the TAP # interface with the ethernet NIC interface. # Note: this mode only works on clients (such as # Windows), where the client-side TAP adapter is # bound to a DHCP client. ;server-bridge # Push routes to the client to allow it # to reach other private subnets behind # the server. Remember that these # private subnets will also need # to know to route the OpenVPN client # address pool (10.8.0.0/255.255.255.0) # back to the OpenVPN server. ;push "route 192.168.10.0 255.255.255.0" ;push "route 192.168.20.0 255.255.255.0" # To assign specific IP addresses to specific # clients or if a connecting client has a private # subnet behind it that should also have VPN access, # use the subdirectory "ccd" for client-specific # configuration files (see man page for more info). # EXAMPLE: Suppose the client # having the certificate common name "Thelonious" # also has a small subnet behind his connecting # machine, such as 192.168.40.128/255.255.255.248. # First, uncomment out these lines: ;client-config-dir ccd ;route 192.168.40.128 255.255.255.248 # Then create a file ccd/Thelonious with this line: # iroute 192.168.40.128 255.255.255.248 # This will allow Thelonious' private subnet to # access the VPN. This example will only work # if you are routing, not bridging, i.e. you are # using "dev tun" and "server" directives. # EXAMPLE: Suppose you want to give # Thelonious a fixed VPN IP address of 10.9.0.1. # First uncomment out these lines: ;client-config-dir ccd ;route 10.9.0.0 255.255.255.252 # Then add this line to ccd/Thelonious: # ifconfig-push 10.9.0.1 10.9.0.2 # Suppose that you want to enable different # firewall access policies for different groups # of clients. There are two methods: # (1) Run multiple OpenVPN daemons, one for each # group, and firewall the TUN/TAP interface # for each group/daemon appropriately. # (2) (Advanced) Create a script to dynamically # modify the firewall in response to access # from different clients. See man # page for more info on learn-address script. ;learn-address ./script # If enabled, this directive will configure # all clients to redirect their default # network gateway through the VPN, causing # all IP traffic such as web browsing and # and DNS lookups to go through the VPN # (The OpenVPN server machine may need to NAT # or bridge the TUN/TAP interface to the internet # in order for this to work properly). ;push "redirect-gateway def1 bypass-dhcp" # Certain Windows-specific network settings # can be pushed to clients, such as DNS # or WINS server addresses. CAVEAT: # http://openvpn.net/faq.html#dhcpcaveats # The addresses below refer to the public # DNS servers provided by opendns.com. ;push "dhcp-option DNS 208.67.222.222" ;push "dhcp-option DNS 208.67.220.220" # Uncomment this directive to allow differenta # clients to be able to "see" each other. # By default, clients will only see the server. # To force clients to only see the server, you # will also need to appropriately firewall the # server's TUN/TAP interface. ;client-to-client # Uncomment this directive if multiple clients # might connect with the same certificate/key # files or common names. This is recommended # only for testing purposes. For production use, # each client should have its own certificate/key # pair. # # IF YOU HAVE NOT GENERATED INDIVIDUAL # CERTIFICATE/KEY PAIRS FOR EACH CLIENT, # EACH HAVING ITS OWN UNIQUE "COMMON NAME", # UNCOMMENT THIS LINE OUT. ;duplicate-cn # The keepalive directive causes ping-like # messages to be sent back and forth over # the link so that each side knows when # the other side has gone down. # Ping every 10 seconds, assume that remote # peer is down if no ping received during # a 120 second time period. keepalive 10 120 # For extra security beyond that provided # by SSL/TLS, create an "HMAC firewall" # to help block DoS attacks and UDP port flooding. # # Generate with: # openvpn --genkey --secret ta.key # # The server and each client must have # a copy of this key. # The second parameter should be '0' # on the server and '1' on the clients. ;tls-auth ta.key 0 # This file is secret # Select a cryptographic cipher. # This config item must be copied to # the client config file as well. ;cipher BF-CBC # Blowfish (default) ;cipher AES-128-CBC # AES ;cipher DES-EDE3-CBC # Triple-DES # Enable compression on the VPN link. # If you enable it here, you must also # enable it in the client config file. comp-lzo # The maximum number of concurrently connected # clients we want to allow. ;max-clients 100 # It's a good idea to reduce the OpenVPN # daemon's privileges after initialization. # # You can uncomment this out on # non-Windows systems. ;user nobody ;group nobody # The persist options will try to avoid # accessing certain resources on restart # that may no longer be accessible because # of the privilege downgrade. persist-key persist-tun # Output a short status file showing # current connections, truncated # and rewritten every minute. status openvpn-status.log # By default, log messages will go to the syslog (or # on Windows, if running as a service, they will go to # the "\Program Files\OpenVPN\log" directory). # Use log or log-append to override this default. # "log" will truncate the log file on OpenVPN startup, # while "log-append" will append to it. Use one # or the other (but not both). ;log openvpn.log ;log-append openvpn.log # Set the appropriate level of log # file verbosity. # # 0 is silent, except for fatal errors # 4 is reasonable for general usage # 5 and 6 can help to debug connection problems # 9 is extremely verbose verb 3 # Silence repeating messages. At most 20 # sequential messages of the same message # category will be output to the log. ;mute 20 I have changed IP's for security

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

  • IIS: No Session being handed out, but only in production

    - by Wayne
    I've reproduced this in a simple project - details below. It's a WCF service in ASP.NET compatibility mode. What I'm seeing is that when run on the dev machine (Win7), a HTTP session id is available inside the service operation (HttpContext.Current.Session is non-null). But when deployed to the server (Win2k8R2), I get "No session". On both machines the app is configured to use the classic app pool, and the app pools themselves are configured identically as far as I can tell. The only differences I can discern between the two applications is that on the dev box, under "Handler Mappings", ISAPI-dll is disabled (not on the server), and on the server there's a spurious handler called "AboMapperCustom-7105160" (does not exist on the dev box). What should I be looking at next? Am I missing something head-slappingly simple? Service is this: [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class Service2 { [OperationContract] public string DoWork() { if (HttpContext.Current != null) { if (HttpContext.Current.Session != null) { return "SessionId: " + HttpContext.Current.Session.SessionID; } else { return "No Session"; } } else { return "No Context"; } } } Config is: <?xml version="1.0" encoding="UTF-8"?> <configuration> <configSections> <section name="log4net" type="log4net.Config.Log4NetConfigurationSectionHandler,log4net, Version=1.2.9.0, Culture=neutral, PublicKeyToken=b32731d11ce58905" /> <sectionGroup name="system.web.extensions" type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="scriptResourceHandler" type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <sectionGroup name="webServices" type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="jsonSerialization" type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="Everywhere" /> <section name="profileService" type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="authenticationService" type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="roleService" type="System.Web.Configuration.ScriptingRoleServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> </sectionGroup> </sectionGroup> </sectionGroup> </configSections> <log4net> <appender name="LogFile" type="log4net.Appender.RollingFileAppender"> <file value="C:\Temp\Test.log4net.log" /> <rollingStyle value="Once" /> <maxSizeRollBackups value="10" /> <layout type="log4net.Layout.PatternLayout"> <conversionPattern value="%d{ISO8601} [%5t] %-5p %c{1} %m%n" /> </layout> </appender> <root> <level value="DEBUG" /> <appender-ref ref="LogFile" /> </root> </log4net> <appSettings /> <connectionStrings /> <system.web> <compilation debug="true"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> </assemblies> </compilation> <!-- The <authentication> section enables configuration of the security authentication mode used by ASP.NET to identify an incoming user. --> <authentication mode="Windows" /> <!-- The <customErrors> section enables configuration of what to do if/when an unhandled error occurs during the execution of a request. Specifically, it enables developers to configure html error pages to be displayed in place of a error stack trace. --> <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm"> <error statusCode="403" redirect="NoAccess.htm" /> <error statusCode="404" redirect="FileNotFound.htm" /> </customErrors> <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </controls> </pages> <httpHandlers> <remove verb="*" path="*.asmx" /> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false" /> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </httpModules> </system.web> <system.codedom> <compilers> <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <providerOption name="CompilerVersion" value="v3.5" /> <providerOption name="WarnAsError" value="false" /> </compiler> </compilers> </system.codedom> <!-- The system.webServer section is required for running ASP.NET AJAX under Internet Information Services 7.0. It is not necessary for previous version of IIS. --> <system.webServer> <validation validateIntegratedModeConfiguration="false" /> <modules> <remove name="ScriptModule" /> <add name="ScriptModule" preCondition="managedHandler" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </modules> <handlers> <remove name="WebServiceHandlerFactory-Integrated" /> <remove name="ScriptHandlerFactory" /> <remove name="ScriptHandlerFactoryAppServices" /> <remove name="ScriptResource" /> <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </handlers> </system.webServer> <runtime> <assemblyBinding appliesTo="v2.0.50727" xmlns="urn:schemas-microsoft-com:asm.v1"> <dependentAssembly> <assemblyIdentity name="System.Web.Extensions" publicKeyToken="31bf3856ad364e35" /> <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0" /> </dependentAssembly> <dependentAssembly> <assemblyIdentity name="System.Web.Extensions.Design" publicKeyToken="31bf3856ad364e35" /> <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0" /> </dependentAssembly> </assemblyBinding> </runtime> <system.serviceModel> <bindings> <basicHttpBinding> <binding name="BasicHttpBinding_Service2" maxBufferSize="2147483647" maxReceivedMessageSize="2147483647"> <security mode="TransportCredentialOnly"> <transport clientCredentialType="Windows" /> </security> </binding> </basicHttpBinding> </bindings> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" /> <behaviors> <serviceBehaviors> <behavior name="WebApplication3.Service2Behavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> <services> <service behaviorConfiguration="WebApplication3.Service2Behavior" name="WebApplication3.Service2"> <endpoint address="" binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding_Service2" contract="WebApplication3.Service2" /> </service> </services> </system.serviceModel> <system.diagnostics> <sources> <source name="System.ServiceModel" switchValue="Information, ActivityTracing" propagateActivity="true"> <listeners> <add name="traceListener" type="System.Diagnostics.XmlWriterTraceListener" initializeData="c:\Temp\Test2.svclog" /> </listeners> </source> </sources> <trace autoflush="true" indentsize="4"> <listeners> <add name="traceListener2" type="System.Diagnostics.TextWriterTraceListener" initializeData="c:\Temp\Test.log" traceOutputOptions="DateTime" /> </listeners> </trace> </system.diagnostics> </configuration> Testing with a simple console app: class Program { static void Main(string[] args) { ServiceReference1.Service2Client client = new ServiceReference1.Service2Client(); Console.WriteLine(client.DoWork()); Console.ReadKey(); } }

    Read the article

  • strange segmentation fault during function return

    - by Kyle
    I am running a program on 2 different machines. On one it works fine without issue. On the other it results in a segmentation fault. Through debugging, I have figured out where the fault occurs, but I can't figure out a logical reason for it to happen. In one function I have the following code: pass_particles(particle_grid, particle_properties, input_data, coll_eros_track, collision_number_part, world, grid_rank_lookup, grid_locations); cout<<"done passing particles"<<endl; The function pass_particles looks like: void pass_particles(map<int,map<int,Particle> > & particle_grid, std::vector<Particle_props> & particle_properties, User_input& input_data, data_tracking & coll_eros_track, vector<int> & collision_number_part, mpi::communicator & world, std::map<int,int> & grid_rank_lookup, map<int,std::vector<double> > & grid_locations) { //cout<<"east-west"<<endl; //east-west exchange (x direction) map<int, vector<Particle> > particles_to_be_sent_east; map<int, vector<Particle> > particles_to_be_sent_west; vector<Particle> particles_received_east; vector<Particle> particles_received_west; int counter_x_sent=0; int counter_x_received=0; for(grid_iter=particle_grid.begin();grid_iter!=particle_grid.end();grid_iter++) { map<int,Particle>::iterator part_iter; for (part_iter=grid_iter->second.begin();part_iter!=grid_iter->second.end();) { if (particle_properties[part_iter->second.global_part_num()].particle_in_box()[grid_iter->first]) { //decide if a particle has left the box...need to consider whether particle was already outside the box if ((part_iter->second.position().x()<(grid_locations[grid_iter->first][0]) && part_iter->second.position().x()>(grid_locations[grid_iter->first-input_data.z_numboxes()][0])) || (input_data.periodic_walls_x() && (grid_iter->first-floor(grid_iter->first/(input_data.xz_numboxes()))*input_data.xz_numboxes()<input_data.z_numboxes()) && (part_iter->second.position().x()>(grid_locations[input_data.total_boxes()-1][0])))) { particles_to_be_sent_west[grid_iter->first].push_back(part_iter->second); particle_properties[particle_grid[grid_iter->first][part_iter->first].global_part_num()].particle_in_box()[grid_iter->first]=false; counter_sent++; counter_x_sent++; } else if ((part_iter->second.position().x()>(grid_locations[grid_iter->first][1]) && part_iter->second.position().x()<(grid_locations[grid_iter->first+input_data.z_numboxes()][1])) || (input_data.periodic_walls_x() && (grid_iter->first-floor(grid_iter->first/(input_data.xz_numboxes()))*input_data.xz_numboxes())>input_data.xz_numboxes()-input_data.z_numboxes()-1) && (part_iter->second.position().x()<(grid_locations[0][1]))) { particles_to_be_sent_east[grid_iter->first].push_back(part_iter->second); particle_properties[particle_grid[grid_iter->first][part_iter->first].global_part_num()].particle_in_box()[grid_iter->first]=false; counter_sent++; counter_x_sent++; } //select particles in overlap areas to send to neighboring cells else if ((part_iter->second.position().x()>(grid_locations[grid_iter->first][0]) && part_iter->second.position().x()<(grid_locations[grid_iter->first][0]+input_data.diam_large()))) { particles_to_be_sent_west[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } else if ((part_iter->second.position().x()<(grid_locations[grid_iter->first][1]) && part_iter->second.position().x()>(grid_locations[grid_iter->first][1]-input_data.diam_large()))) { particles_to_be_sent_east[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } ++part_iter; } else if (particles_received_current[grid_iter->first].find(part_iter->first)!=particles_received_current[grid_iter->first].end()) { if ((part_iter->second.position().x()>(grid_locations[grid_iter->first][0]) && part_iter->second.position().x()<(grid_locations[grid_iter->first][0]+input_data.diam_large()))) { particles_to_be_sent_west[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } else if ((part_iter->second.position().x()<(grid_locations[grid_iter->first][1]) && part_iter->second.position().x()>(grid_locations[grid_iter->first][1]-input_data.diam_large()))) { particles_to_be_sent_east[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } part_iter++; } else { particle_grid[grid_iter->first].erase(part_iter++); counter_removed++; } } } world.barrier(); mpi::request reqs_x_send[particles_to_be_sent_west.size()+particles_to_be_sent_east.size()]; vector<multimap<int,int> > box_sent_x_info; box_sent_x_info.resize(world.size()); vector<multimap<int,int> > box_received_x_info; box_received_x_info.resize(world.size()); int counter_x_reqs=0; //send particles for(grid_iter_vec=particles_to_be_sent_west.begin();grid_iter_vec!=particles_to_be_sent_west.end();grid_iter_vec++) { if (grid_iter_vec->second.size()!=0) { //send a particle. 50 will be "west" tag if (input_data.periodic_walls_x() && (grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes()))*input_data.xz_numboxes()<input_data.z_numboxes())) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1)], grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1), particles_to_be_sent_west[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1)]].insert(pair<int,int>(world.rank(), grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1))); } else if (!(grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes()))*input_data.xz_numboxes()<input_data.z_numboxes())) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()], grid_iter_vec->first - input_data.z_numboxes(), particles_to_be_sent_west[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()]].insert(pair<int,int>(world.rank(),grid_iter_vec->first - input_data.z_numboxes())); } } } for(grid_iter_vec=particles_to_be_sent_east.begin();grid_iter_vec!=particles_to_be_sent_east.end();grid_iter_vec++) { if (grid_iter_vec->second.size()!=0) { //send a particle. 60 will be "east" tag if (input_data.periodic_walls_x() && (grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes())*input_data.xz_numboxes())>input_data.xz_numboxes()-input_data.z_numboxes()-1)) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)], 2000000000-(grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)), particles_to_be_sent_east[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)]].insert(pair<int,int>(world.rank(),2000000000-(grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)))); } else if (!(grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes())*input_data.xz_numboxes())>input_data.xz_numboxes()-input_data.z_numboxes()-1)) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()], 2000000000-(grid_iter_vec->first + input_data.z_numboxes()), particles_to_be_sent_east[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()]].insert(pair<int,int>(world.rank(), 2000000000-(grid_iter_vec->first + input_data.z_numboxes()))); } } } counter=0; for (int i=0;i<world.size();i++) { //if (world.rank()!=i) //{ reqs[counter++]=world.isend(i,1000000000,box_sent_x_info[i]); reqs[counter++]=world.irecv(i,1000000000,box_received_x_info[i]); //} } mpi::wait_all(reqs, reqs + world.size()*2); //receive particles //receive west particles for (int j=0;j<world.size();j++) { multimap<int,int>::iterator received_info_iter; for (received_info_iter=box_received_x_info[j].begin();received_info_iter!=box_received_x_info[j].end();received_info_iter++) { //receive the message if (received_info_iter->second<1000000000) { //receive the message world.recv(received_info_iter->first,received_info_iter->second,particles_received_west); //loop through all the received particles and add them to the particle_grid for this processor for (unsigned int i=0;i<particles_received_west.size();i++) { particle_grid[received_info_iter->second].insert(pair<int,Particle>(particles_received_west[i].global_part_num(),particles_received_west[i])); if(particles_received_west[i].position().x()>grid_locations[received_info_iter->second][0] && particles_received_west[i].position().x()<grid_locations[received_info_iter->second][1]) { particle_properties[particles_received_west[i].global_part_num()].particle_in_box()[received_info_iter->second]=true; } counter_received++; counter_x_received++; } } else { //receive the message world.recv(received_info_iter->first,received_info_iter->second,particles_received_east); //loop through all the received particles and add them to the particle_grid for this processor for (unsigned int i=0;i<particles_received_east.size();i++) { particle_grid[2000000000-received_info_iter->second].insert(pair<int,Particle>(particles_received_east[i].global_part_num(),particles_received_east[i])); if(particles_received_east[i].position().x()>grid_locations[2000000000-received_info_iter->second][0] && particles_received_east[i].position().x()<grid_locations[2000000000-received_info_iter->second][1]) { particle_properties[particles_received_east[i].global_part_num()].particle_in_box()[2000000000-received_info_iter->second]=true; } counter_received++; counter_x_received++; } } } } mpi::wait_all(reqs_y_send, reqs_y_send + particles_to_be_sent_bottom.size()+particles_to_be_sent_top.size()); mpi::wait_all(reqs_z_send, reqs_z_send + particles_to_be_sent_south.size()+particles_to_be_sent_north.size()); mpi::wait_all(reqs_x_send, reqs_x_send + particles_to_be_sent_west.size()+particles_to_be_sent_east.size()); cout<<"x sent "<<counter_x_sent<<" and received "<<counter_x_received<<" from rank "<<world.rank()<<endl; cout<<"rank "<<world.rank()<<" sent "<<counter_sent<<" and received "<<counter_received<<" and removed "<<counter_removed<<endl; cout<<"done passing"<<endl; } I only posted some of the code (so ignore the fact that some variables may appear to be undefined, as they are in a portion of the code I didn't post) When I run the code (on the machine in which it fails), I get done passing but not done passing particles I am lost as to what could possibly cause a segmentation fault between the end of the called function and the next line in the calling function and why it would happen on one machine and not another.

    Read the article

  • MySQL Config File for Large System

    - by Jonathon
    We are running MySQL on a Windows 2003 Server Enterpise Edition box. MySQL is about the only program running on the box. We have approx. 8 slaves replicated to it, but my understanding is that having multiple slaves connecting to the same master does not significantly slow down performance, if at all. The master server has 16G RAM, 10 Terabyte drives in RAID 10, and four dual-core processors. From what I have seen from other sites, we have a really robust machine as our master db server. We just upgraded from a machine with only 4G RAM, but with similar hard drives, RAID, etc. It also ran Apache on it, so it was our db server and our application server. It was getting a little slow, so we split the db server onto this new machine and kept the application server on the first machine. We also distributed the application load amongst a few of our other slave servers, which also run the application. The problem is the new db server has mysqld.exe consuming 95-100% of CPU almost all the time and is really causing the app to run slowly. I know we have several queries and table structures that could be better optimized, but since they worked okay on the older, smaller server, I assume that our my.ini (MySQL config) file is not properly configured. Most of what I see on the net is for setting config files on small machines, so can anyone help me get the my.ini file correct for a large dedicated machine like ours? I just don't see how mysqld could get so bogged down! FYI: We have about 100 queries per second. We only use MyISAM tables, so skip-innodb is set in the ini file. And yes, I know it is reading the ini file correctly because I can change some settings (like the server-id and it will kill the server at startup). Here is the my.ini file: #MySQL Server Instance Configuration File # ---------------------------------------------------------------------- # Generated by the MySQL Server Instance Configuration Wizard # # # Installation Instructions # ---------------------------------------------------------------------- # # On Linux you can copy this file to /etc/my.cnf to set global options, # mysql-data-dir/my.cnf to set server-specific options # (@localstatedir@ for this installation) or to # ~/.my.cnf to set user-specific options. # # On Windows you should keep this file in the installation directory # of your server (e.g. C:\Program Files\MySQL\MySQL Server X.Y). To # make sure the server reads the config file use the startup option # "--defaults-file". # # To run run the server from the command line, execute this in a # command line shell, e.g. # mysqld --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" # # To install the server as a Windows service manually, execute this in a # command line shell, e.g. # mysqld --install MySQLXY --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" # # And then execute this in a command line shell to start the server, e.g. # net start MySQLXY # # # Guildlines for editing this file # ---------------------------------------------------------------------- # # In this file, you can use all long options that the program supports. # If you want to know the options a program supports, start the program # with the "--help" option. # # More detailed information about the individual options can also be # found in the manual. # # # CLIENT SECTION # ---------------------------------------------------------------------- # # The following options will be read by MySQL client applications. # Note that only client applications shipped by MySQL are guaranteed # to read this section. If you want your own MySQL client program to # honor these values, you need to specify it as an option during the # MySQL client library initialization. # [client] port=3306 [mysql] default-character-set=latin1 # SERVER SECTION # ---------------------------------------------------------------------- # # The following options will be read by the MySQL Server. Make sure that # you have installed the server correctly (see above) so it reads this # file. # [mysqld] # The TCP/IP Port the MySQL Server will listen on port=3306 #Path to installation directory. All paths are usually resolved relative to this. basedir="D:/MySQL/" #Path to the database root datadir="D:/MySQL/data" # The default character set that will be used when a new schema or table is # created and no character set is defined default-character-set=latin1 # The default storage engine that will be used when create new tables when default-storage-engine=MYISAM # Set the SQL mode to strict #sql-mode="STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION" # we changed this because there are a couple of queries that can get blocked otherwise sql-mode="" #performance configs skip-locking max_allowed_packet = 1M table_open_cache = 512 # The maximum amount of concurrent sessions the MySQL server will # allow. One of these connections will be reserved for a user with # SUPER privileges to allow the administrator to login even if the # connection limit has been reached. max_connections=1510 # Query cache is used to cache SELECT results and later return them # without actual executing the same query once again. Having the query # cache enabled may result in significant speed improvements, if your # have a lot of identical queries and rarely changing tables. See the # "Qcache_lowmem_prunes" status variable to check if the current value # is high enough for your load. # Note: In case your tables change very often or if your queries are # textually different every time, the query cache may result in a # slowdown instead of a performance improvement. query_cache_size=168M # The number of open tables for all threads. Increasing this value # increases the number of file descriptors that mysqld requires. # Therefore you have to make sure to set the amount of open files # allowed to at least 4096 in the variable "open-files-limit" in # section [mysqld_safe] table_cache=3020 # Maximum size for internal (in-memory) temporary tables. If a table # grows larger than this value, it is automatically converted to disk # based table This limitation is for a single table. There can be many # of them. tmp_table_size=30M # How many threads we should keep in a cache for reuse. When a client # disconnects, the client's threads are put in the cache if there aren't # more than thread_cache_size threads from before. This greatly reduces # the amount of thread creations needed if you have a lot of new # connections. (Normally this doesn't give a notable performance # improvement if you have a good thread implementation.) thread_cache_size=64 #*** MyISAM Specific options # The maximum size of the temporary file MySQL is allowed to use while # recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE. # If the file-size would be bigger than this, the index will be created # through the key cache (which is slower). myisam_max_sort_file_size=100G # If the temporary file used for fast index creation would be bigger # than using the key cache by the amount specified here, then prefer the # key cache method. This is mainly used to force long character keys in # large tables to use the slower key cache method to create the index. myisam_sort_buffer_size=64M # Size of the Key Buffer, used to cache index blocks for MyISAM tables. # Do not set it larger than 30% of your available memory, as some memory # is also required by the OS to cache rows. Even if you're not using # MyISAM tables, you should still set it to 8-64M as it will also be # used for internal temporary disk tables. key_buffer_size=3072M # Size of the buffer used for doing full table scans of MyISAM tables. # Allocated per thread, if a full scan is needed. read_buffer_size=2M read_rnd_buffer_size=8M # This buffer is allocated when MySQL needs to rebuild the index in # REPAIR, OPTIMZE, ALTER table statements as well as in LOAD DATA INFILE # into an empty table. It is allocated per thread so be careful with # large settings. sort_buffer_size=2M #*** INNODB Specific options *** innodb_data_home_dir="D:/MySQL InnoDB Datafiles/" # Use this option if you have a MySQL server with InnoDB support enabled # but you do not plan to use it. This will save memory and disk space # and speed up some things. skip-innodb # Additional memory pool that is used by InnoDB to store metadata # information. If InnoDB requires more memory for this purpose it will # start to allocate it from the OS. As this is fast enough on most # recent operating systems, you normally do not need to change this # value. SHOW INNODB STATUS will display the current amount used. innodb_additional_mem_pool_size=11M # If set to 1, InnoDB will flush (fsync) the transaction logs to the # disk at each commit, which offers full ACID behavior. If you are # willing to compromise this safety, and you are running small # transactions, you may set this to 0 or 2 to reduce disk I/O to the # logs. Value 0 means that the log is only written to the log file and # the log file flushed to disk approximately once per second. Value 2 # means the log is written to the log file at each commit, but the log # file is only flushed to disk approximately once per second. innodb_flush_log_at_trx_commit=1 # The size of the buffer InnoDB uses for buffering log data. As soon as # it is full, InnoDB will have to flush it to disk. As it is flushed # once per second anyway, it does not make sense to have it very large # (even with long transactions). innodb_log_buffer_size=6M # InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and # row data. The bigger you set this the less disk I/O is needed to # access data in tables. On a dedicated database server you may set this # parameter up to 80% of the machine physical memory size. Do not set it # too large, though, because competition of the physical memory may # cause paging in the operating system. Note that on 32bit systems you # might be limited to 2-3.5G of user level memory per process, so do not # set it too high. innodb_buffer_pool_size=500M # Size of each log file in a log group. You should set the combined size # of log files to about 25%-100% of your buffer pool size to avoid # unneeded buffer pool flush activity on log file overwrite. However, # note that a larger logfile size will increase the time needed for the # recovery process. innodb_log_file_size=100M # Number of threads allowed inside the InnoDB kernel. The optimal value # depends highly on the application, hardware as well as the OS # scheduler properties. A too high value may lead to thread thrashing. innodb_thread_concurrency=10 #replication settings (this is the master) log-bin=log server-id = 1 Thanks for all the help. It is greatly appreciated.

    Read the article

  • Why is there a /etc/init.d/mysql file on this Slackware machine? How could it have gotten there?

    - by jasonspiro
    A client of my IT-consulting service owns a web-development shop. He's been having problems with a Slackware 12.0 server running MySQL 5.0.67. The machine was set up by the client's sysadmin, who left on bad terms. My client no longer employs a sysadmin. As far as I can tell, the only copy of MySQL that's installed is the one described in /var/log/packages/mysql-5.0.67-i486-1: PACKAGE NAME: mysql-5.0.67-i486-1 COMPRESSED PACKAGE SIZE: 16828 K UNCOMPRESSED PACKAGE SIZE: 33840 K PACKAGE LOCATION: /var/slapt-get/archives/./slackware/ap/mysql-5.0.67-i486-1.tgz PACKAGE DESCRIPTION: mysql: mysql (SQL-based relational database server) mysql: mysql: MySQL is a fast, multi-threaded, multi-user, and robust SQL mysql: (Structured Query Language) database server. It comes with a nice API mysql: which makes it easy to integrate into other applications. mysql: mysql: The home page for MySQL is http://www.mysql.com/ mysql: mysql: mysql: mysql: FILE LIST: ./ var/ var/lib/ var/lib/mysql/ var/run/ var/run/mysql/ install/ install/doinst.sh install/slack-desc usr/ usr/include/ usr/include/mysql/ usr/include/mysql/my_alloc.h usr/include/mysql/sql_common.h usr/include/mysql/my_dbug.h usr/include/mysql/errmsg.h usr/include/mysql/my_pthread.h usr/include/mysql/my_list.h usr/include/mysql/mysql.h usr/include/mysql/sslopt-vars.h usr/include/mysql/my_config.h usr/include/mysql/mysql_com.h usr/include/mysql/m_string.h usr/include/mysql/sslopt-case.h usr/include/mysql/my_xml.h usr/include/mysql/sql_state.h usr/include/mysql/my_global.h usr/include/mysql/my_sys.h usr/include/mysql/mysqld_ername.h usr/include/mysql/mysqld_error.h usr/include/mysql/sslopt-longopts.h usr/include/mysql/keycache.h usr/include/mysql/my_net.h usr/include/mysql/mysql_version.h usr/include/mysql/my_no_pthread.h usr/include/mysql/decimal.h usr/include/mysql/readline.h usr/include/mysql/my_attribute.h usr/include/mysql/typelib.h usr/include/mysql/my_dir.h usr/include/mysql/raid.h usr/include/mysql/m_ctype.h usr/include/mysql/mysql_embed.h usr/include/mysql/mysql_time.h usr/include/mysql/my_getopt.h usr/lib/ usr/lib/mysql/ usr/lib/mysql/libmysqlclient_r.so.15.0.0 usr/lib/mysql/libmysqlclient_r.la usr/lib/mysql/libmyisammrg.a usr/lib/mysql/libmystrings.a usr/lib/mysql/libmyisam.a usr/lib/mysql/libmysqlclient.so.15.0.0 usr/lib/mysql/libmysqlclient_r.a usr/lib/mysql/libmysqlclient.a usr/lib/mysql/libheap.a usr/lib/mysql/libvio.a usr/lib/mysql/libmysqlclient.la usr/lib/mysql/libmysys.a usr/lib/mysql/libdbug.a usr/bin/ usr/bin/comp_err usr/bin/my_print_defaults usr/bin/resolve_stack_dump usr/bin/msql2mysql usr/bin/mysqltestmanager-pwgen usr/bin/myisampack usr/bin/replace usr/bin/mysqld_multi usr/bin/mysqlaccess usr/bin/mysql_install_db usr/bin/innochecksum usr/bin/myisam_ftdump usr/bin/mysqlcheck usr/bin/mysqltest usr/bin/mysql_upgrade_shell usr/bin/mysql_secure_installation usr/bin/mysql_fix_extensions usr/bin/mysqld_safe usr/bin/mysql_explain_log usr/bin/mysqlimport usr/bin/myisamlog usr/bin/mysql_tzinfo_to_sql usr/bin/mysql_upgrade usr/bin/mysqltestmanager usr/bin/mysql_fix_privilege_tables usr/bin/mysql_find_rows usr/bin/mysql_convert_table_format usr/bin/mysqltestmanagerc usr/bin/mysqlhotcopy usr/bin/mysqldump usr/bin/mysqlshow usr/bin/mysqlbug usr/bin/mysql_config usr/bin/mysqldumpslow usr/bin/mysql_waitpid usr/bin/mysqlbinlog usr/bin/mysql_client_test usr/bin/perror usr/bin/mysql usr/bin/myisamchk usr/bin/mysql_setpermission usr/bin/mysqladmin usr/bin/mysql_zap usr/bin/mysql_tableinfo usr/bin/resolveip usr/share/ usr/share/mysql/ usr/share/mysql/errmsg.txt usr/share/mysql/swedish/ usr/share/mysql/swedish/errmsg.sys usr/share/mysql/mysql_system_tables_data.sql usr/share/mysql/mysql.server usr/share/mysql/hungarian/ usr/share/mysql/hungarian/errmsg.sys usr/share/mysql/norwegian/ usr/share/mysql/norwegian/errmsg.sys usr/share/mysql/slovak/ usr/share/mysql/slovak/errmsg.sys usr/share/mysql/spanish/ usr/share/mysql/spanish/errmsg.sys usr/share/mysql/polish/ usr/share/mysql/polish/errmsg.sys usr/share/mysql/ukrainian/ usr/share/mysql/ukrainian/errmsg.sys usr/share/mysql/danish/ usr/share/mysql/danish/errmsg.sys usr/share/mysql/romanian/ usr/share/mysql/romanian/errmsg.sys usr/share/mysql/english/ usr/share/mysql/english/errmsg.sys usr/share/mysql/charsets/ usr/share/mysql/charsets/latin2.xml usr/share/mysql/charsets/greek.xml usr/share/mysql/charsets/koi8r.xml usr/share/mysql/charsets/latin1.xml usr/share/mysql/charsets/cp866.xml usr/share/mysql/charsets/geostd8.xml usr/share/mysql/charsets/cp1250.xml usr/share/mysql/charsets/koi8u.xml usr/share/mysql/charsets/cp852.xml usr/share/mysql/charsets/hebrew.xml usr/share/mysql/charsets/latin7.xml usr/share/mysql/charsets/README usr/share/mysql/charsets/ascii.xml usr/share/mysql/charsets/cp1251.xml usr/share/mysql/charsets/macce.xml usr/share/mysql/charsets/latin5.xml usr/share/mysql/charsets/Index.xml usr/share/mysql/charsets/macroman.xml usr/share/mysql/charsets/cp1256.xml usr/share/mysql/charsets/keybcs2.xml usr/share/mysql/charsets/swe7.xml usr/share/mysql/charsets/armscii8.xml usr/share/mysql/charsets/dec8.xml usr/share/mysql/charsets/cp1257.xml usr/share/mysql/charsets/hp8.xml usr/share/mysql/charsets/cp850.xml usr/share/mysql/korean/ usr/share/mysql/korean/errmsg.sys usr/share/mysql/german/ usr/share/mysql/german/errmsg.sys usr/share/mysql/mi_test_all.res usr/share/mysql/greek/ usr/share/mysql/greek/errmsg.sys usr/share/mysql/french/ usr/share/mysql/french/errmsg.sys usr/share/mysql/mysql_fix_privilege_tables.sql usr/share/mysql/dutch/ usr/share/mysql/dutch/errmsg.sys usr/share/mysql/serbian/ usr/share/mysql/serbian/errmsg.sys usr/share/mysql/mysql_system_tables.sql usr/share/mysql/my-huge.cnf usr/share/mysql/portuguese/ usr/share/mysql/portuguese/errmsg.sys usr/share/mysql/japanese/ usr/share/mysql/japanese/errmsg.sys usr/share/mysql/mysql_test_data_timezone.sql usr/share/mysql/russian/ usr/share/mysql/russian/errmsg.sys usr/share/mysql/czech/ usr/share/mysql/czech/errmsg.sys usr/share/mysql/fill_help_tables.sql usr/share/mysql/estonian/ usr/share/mysql/estonian/errmsg.sys usr/share/mysql/my-medium.cnf usr/share/mysql/norwegian-ny/ usr/share/mysql/norwegian-ny/errmsg.sys usr/share/mysql/my-small.cnf usr/share/mysql/mysql-log-rotate usr/share/mysql/italian/ usr/share/mysql/italian/errmsg.sys usr/share/mysql/my-large.cnf usr/share/mysql/ndb-config-2-node.ini usr/share/mysql/binary-configure usr/share/mysql/mi_test_all usr/share/mysql/mysqld_multi.server usr/share/mysql/my-innodb-heavy-4G.cnf usr/doc/ usr/doc/mysql-5.0.67/ usr/doc/mysql-5.0.67/README usr/doc/mysql-5.0.67/Docs/ usr/doc/mysql-5.0.67/Docs/INSTALL-BINARY usr/doc/mysql-5.0.67/COPYING usr/info/ usr/info/mysql.info.gz usr/libexec/ usr/libexec/mysqld usr/libexec/mysqlmanager usr/man/ usr/man/man8/ usr/man/man8/mysqlmanager.8.gz usr/man/man8/mysqld.8.gz usr/man/man1/ usr/man/man1/mysql_zap.1.gz usr/man/man1/mysql_setpermission.1.gz usr/man/man1/mysql_tzinfo_to_sql.1.gz usr/man/man1/msql2mysql.1.gz usr/man/man1/mysql_tableinfo.1.gz usr/man/man1/mysql_explain_log.1.gz usr/man/man1/mysqlcheck.1.gz usr/man/man1/comp_err.1.gz usr/man/man1/my_print_defaults.1.gz usr/man/man1/mysqlbinlog.1.gz usr/man/man1/myisam_ftdump.1.gz usr/man/man1/mysql_upgrade.1.gz usr/man/man1/mysql.1.gz usr/man/man1/mysql_client_test.1.gz usr/man/man1/resolve_stack_dump.1.gz usr/man/man1/mysql_fix_extensions.1.gz usr/man/man1/mysqlmanagerc.1.gz usr/man/man1/mysql_config.1.gz usr/man/man1/mysqlshow.1.gz usr/man/man1/myisamlog.1.gz usr/man/man1/replace.1.gz usr/man/man1/mysqlmanager-pwgen.1.gz usr/man/man1/mysqltest.1.gz usr/man/man1/innochecksum.1.gz usr/man/man1/mysqladmin.1.gz usr/man/man1/perror.1.gz usr/man/man1/mysql_waitpid.1.gz usr/man/man1/mysql_convert_table_format.1.gz usr/man/man1/mysqlman.1.gz usr/man/man1/mysqlimport.1.gz usr/man/man1/mysqlbug.1.gz usr/man/man1/mysql_find_rows.1.gz usr/man/man1/myisampack.1.gz usr/man/man1/myisamchk.1.gz usr/man/man1/mysql_fix_privilege_tables.1.gz usr/man/man1/mysql-stress-test.pl.1.gz usr/man/man1/resolveip.1.gz usr/man/man1/make_win_bin_dist.1.gz usr/man/man1/mysqlhotcopy.1.gz usr/man/man1/mysqld_multi.1.gz usr/man/man1/safe_mysqld.1.gz usr/man/man1/mysql_secure_installation.1.gz usr/man/man1/mysql_install_db.1.gz usr/man/man1/mysqldump.1.gz usr/man/man1/mysql-test-run.pl.1.gz usr/man/man1/mysqld_safe.1.gz usr/man/man1/mysqlaccess.1.gz usr/man/man1/mysql.server.1.gz usr/man/man1/make_win_src_distribution.1.gz etc/ etc/rc.d/ etc/rc.d/rc.mysqld.new etc/my-huge.cnf etc/my-medium.cnf etc/my-small.cnf etc/my-large.cnf /etc/rc.d/rc.mysqld is an ordinary Slackware-type start/stop script: #!/bin/sh # Start/stop/restart mysqld. # # Copyright 2003 Patrick J. Volkerding, Concord, CA # Copyright 2003 Slackware Linux, Inc., Concord, CA # # This program comes with NO WARRANTY, to the extent permitted by law. # You may redistribute copies of this program under the terms of the # GNU General Public License. # To start MySQL automatically at boot, be sure this script is executable: # chmod 755 /etc/rc.d/rc.mysqld # Before you can run MySQL, you must have a database. To install an initial # database, do this as root: # # su - mysql # mysql_install_db # # Note that step one is becoming the mysql user. It's important to do this # before making any changes to the database, or mysqld won't be able to write # to it later (this can be fixed with 'chown -R mysql.mysql /var/lib/mysql'). # To allow outside connections to the database comment out the next line. # If you don't need incoming network connections, then leave the line # uncommented to improve system security. #SKIP="--skip-networking" # Start mysqld: mysqld_start() { if [ -x /usr/bin/mysqld_safe ]; then # If there is an old PID file (no mysqld running), clean it up: if [ -r /var/run/mysql/mysql.pid ]; then if ! ps axc | grep mysqld 1> /dev/null 2> /dev/null ; then echo "Cleaning up old /var/run/mysql/mysql.pid." rm -f /var/run/mysql/mysql.pid fi fi /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/run/mysql/mysql.pid $SKIP & fi } # Stop mysqld: mysqld_stop() { # If there is no PID file, ignore this request... if [ -r /var/run/mysql/mysql.pid ]; then killall mysqld # Wait at least one minute for it to exit, as we don't know how big the DB is... for second in 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 \ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 60 ; do if [ ! -r /var/run/mysql/mysql.pid ]; then break; fi sleep 1 done if [ "$second" = "60" ]; then echo "WARNING: Gave up waiting for mysqld to exit!" sleep 15 fi fi } # Restart mysqld: mysqld_restart() { mysqld_stop mysqld_start } case "$1" in 'start') mysqld_start ;; 'stop') mysqld_stop ;; 'restart') mysqld_restart ;; *) echo "usage $0 start|stop|restart" esac But there's also an unexpected init script on the machine, named /etc/init.d/mysql: #!/bin/sh # Copyright Abandoned 1996 TCX DataKonsult AB & Monty Program KB & Detron HB # This file is public domain and comes with NO WARRANTY of any kind # MySQL daemon start/stop script. # Usually this is put in /etc/init.d (at least on machines SYSV R4 based # systems) and linked to /etc/rc3.d/S99mysql and /etc/rc0.d/K01mysql. # When this is done the mysql server will be started when the machine is # started and shut down when the systems goes down. # Comments to support chkconfig on RedHat Linux # chkconfig: 2345 64 36 # description: A very fast and reliable SQL database engine. # Comments to support LSB init script conventions ### BEGIN INIT INFO # Provides: mysql # Required-Start: $local_fs $network $remote_fs # Should-Start: ypbind nscd ldap ntpd xntpd # Required-Stop: $local_fs $network $remote_fs # Default-Start: 2 3 4 5 # Default-Stop: 0 1 6 # Short-Description: start and stop MySQL # Description: MySQL is a very fast and reliable SQL database engine. ### END INIT INFO # If you install MySQL on some other places than /usr, then you # have to do one of the following things for this script to work: # # - Run this script from within the MySQL installation directory # - Create a /etc/my.cnf file with the following information: # [mysqld] # basedir=<path-to-mysql-installation-directory> # - Add the above to any other configuration file (for example ~/.my.ini) # and copy my_print_defaults to /usr/bin # - Add the path to the mysql-installation-directory to the basedir variable # below. # # If you want to affect other MySQL variables, you should make your changes # in the /etc/my.cnf, ~/.my.cnf or other MySQL configuration files. # If you change base dir, you must also change datadir. These may get # overwritten by settings in the MySQL configuration files. #basedir= #datadir= # Default value, in seconds, afterwhich the script should timeout waiting # for server start. # Value here is overriden by value in my.cnf. # 0 means don't wait at all # Negative numbers mean to wait indefinitely service_startup_timeout=900 # The following variables are only set for letting mysql.server find things. # Set some defaults pid_file=/var/run/mysql/mysql.pid server_pid_file=/var/run/mysql/mysql.pid use_mysqld_safe=1 user=mysql if test -z "$basedir" then basedir=/usr bindir=/usr/bin if test -z "$datadir" then datadir=/var/lib/mysql fi sbindir=/usr/sbin libexecdir=/usr/libexec else bindir="$basedir/bin" if test -z "$datadir" then datadir="$basedir/data" fi sbindir="$basedir/sbin" libexecdir="$basedir/libexec" fi # datadir_set is used to determine if datadir was set (and so should be # *not* set inside of the --basedir= handler.) datadir_set= # # Use LSB init script functions for printing messages, if possible # lsb_functions="/lib/lsb/init-functions" if test -f $lsb_functions ; then . $lsb_functions else log_success_msg() { echo " SUCCESS! $@" } log_failure_msg() { echo " ERROR! $@" } fi PATH=/sbin:/usr/sbin:/bin:/usr/bin:$basedir/bin export PATH mode=$1 # start or stop shift other_args="$*" # uncommon, but needed when called from an RPM upgrade action # Expected: "--skip-networking --skip-grant-tables" # They are not checked here, intentionally, as it is the resposibility # of the "spec" file author to give correct arguments only. case `echo "testing\c"`,`echo -n testing` in *c*,-n*) echo_n= echo_c= ;; *c*,*) echo_n=-n echo_c= ;; *) echo_n= echo_c='\c' ;; esac parse_server_arguments() { for arg do case "$arg" in --basedir=*) basedir=`echo "$arg" | sed -e 's/^[^=]*=//'` bindir="$basedir/bin" if test -z "$datadir_set"; then datadir="$basedir/data" fi sbindir="$basedir/sbin" libexecdir="$basedir/libexec" ;; --datadir=*) datadir=`echo "$arg" | sed -e 's/^[^=]*=//'` datadir_set=1 ;; --user=*) user=`echo "$arg" | sed -e 's/^[^=]*=//'` ;; --pid-file=*) server_pid_file=`echo "$arg" | sed -e 's/^[^=]*=//'` ;; --service-startup-timeout=*) service_startup_timeout=`echo "$arg" | sed -e 's/^[^=]*=//'` ;; --use-mysqld_safe) use_mysqld_safe=1;; --use-manager) use_mysqld_safe=0;; esac done } parse_manager_arguments() { for arg do case "$arg" in --pid-file=*) pid_file=`echo "$arg" | sed -e 's/^[^=]*=//'` ;; --user=*) user=`echo "$arg" | sed -e 's/^[^=]*=//'` ;; esac done } wait_for_pid () { verb="$1" manager_pid="$2" # process ID of the program operating on the pid-file i=0 avoid_race_condition="by checking again" while test $i -ne $service_startup_timeout ; do case "$verb" in 'created') # wait for a PID-file to pop into existence. test -s $pid_file && i='' && break ;; 'removed') # wait for this PID-file to disappear test ! -s $pid_file && i='' && break ;; *) echo "wait_for_pid () usage: wait_for_pid created|removed manager_pid" exit 1 ;; esac # if manager isn't running, then pid-file will never be updated if test -n "$manager_pid"; then if kill -0 "$manager_pid" 2>/dev/null; then : # the manager still runs else # The manager may have exited between the last pid-file check and now. if test -n "$avoid_race_condition"; then avoid_race_condition="" continue # Check again. fi # there's nothing that will affect the file. log_failure_msg "Manager of pid-file quit without updating file." return 1 # not waiting any more. fi fi echo $echo_n ".$echo_c" i=`expr $i + 1` sleep 1 done if test -z "$i" ; then log_success_msg return 0 else log_failure_msg return 1 fi } # Get arguments from the my.cnf file, # the only group, which is read from now on is [mysqld] if test -x ./bin/my_print_defaults then print_defaults="./bin/my_print_defaults" elif test -x $bindir/my_print_defaults then print_defaults="$bindir/my_print_defaults" elif test -x $bindir/mysql_print_defaults then print_defaults="$bindir/mysql_print_defaults" else # Try to find basedir in /etc/my.cnf conf=/etc/my.cnf print_defaults= if test -r $conf then subpat='^[^=]*basedir[^=]*=\(.*\)$' dirs=`sed -e "/$subpat/!d" -e 's//\1/' $conf` for d in $dirs do d=`echo $d | sed -e 's/[ ]//g'` if test -x "$d/bin/my_print_defaults" then print_defaults="$d/bin/my_print_defaults" break fi if test -x "$d/bin/mysql_print_defaults" then print_defaults="$d/bin/mysql_print_defaults" break fi done fi # Hope it's in the PATH ... but I doubt it test -z "$print_defaults" && print_defaults="my_print_defaults" fi # # Read defaults file from 'basedir'. If there is no defaults file there # check if it's in the old (depricated) place (datadir) and read it from there # extra_args="" if test -r "$basedir/my.cnf" then extra_args="-e $basedir/my.cnf" else if test -r "$datadir/my.cnf" then extra_args="-e $datadir/my.cnf" fi fi parse_server_arguments `$print_defaults $extra_args mysqld server mysql_server mysql.server` # Look for the pidfile parse_manager_arguments `$print_defaults $extra_args manager` # # Set pid file if not given # if test -z "$pid_file" then pid_file=$datadir/mysqlmanager-`/bin/hostname`.pid else case "$pid_file" in /* ) ;; * ) pid_file="$datadir/$pid_file" ;; esac fi if test -z "$server_pid_file" then server_pid_file=$datadir/`/bin/hostname`.pid else case "$server_pid_file" in /* ) ;; * ) server_pid_file="$datadir/$server_pid_file" ;; esac fi case "$mode" in 'start') # Start daemon # Safeguard (relative paths, core dumps..) cd $basedir manager=$bindir/mysqlmanager if test -x $libexecdir/mysqlmanager then manager=$libexecdir/mysqlmanager elif test -x $sbindir/mysqlmanager then manager=$sbindir/mysqlmanager fi echo $echo_n "Starting MySQL" if test -x $manager -a "$use_mysqld_safe" = "0" then if test -n "$other_args" then log_failure_msg "MySQL manager does not support options '$other_args'" exit 1 fi # Give extra arguments to mysqld with the my.cnf file. This script may # be overwritten at next upgrade. $manager --user=$user --pid-file=$pid_file >/dev/null 2>&1 & wait_for_pid created $!; return_value=$? # Make lock for RedHat / SuSE if test -w /var/lock/subsys then touch /var/lock/subsys/mysqlmanager fi exit $return_value elif test -x $bindir/mysqld_safe then # Give extra arguments to mysqld with the my.cnf file. This script # may be overwritten at next upgrade. pid_file=$server_pid_file $bindir/mysqld_safe --datadir=$datadir --pid-file=$server_pid_file $other_args >/dev/null 2>&1 & wait_for_pid created $!; return_value=$? # Make lock for RedHat / SuSE if test -w /var/lock/subsys then touch /var/lock/subsys/mysql fi exit $return_value else log_failure_msg "Couldn't find MySQL manager ($manager) or server ($bindir/mysqld_safe)" fi ;; 'stop') # Stop daemon. We use a signal here to avoid having to know the # root password. # The RedHat / SuSE lock directory to remove lock_dir=/var/lock/subsys/mysqlmanager # If the manager pid_file doesn't exist, try the server's if test ! -s "$pid_file" then pid_file=$server_pid_file lock_dir=/var/lock/subsys/mysql fi if test -s "$pid_file" then mysqlmanager_pid=`cat $pid_file` echo $echo_n "Shutting down MySQL" kill $mysqlmanager_pid # mysqlmanager should remove the pid_file when it exits, so wait for it. wait_for_pid removed "$mysqlmanager_pid"; return_value=$? # delete lock for RedHat / SuSE if test -f $lock_dir then rm -f $lock_dir fi exit $return_value else log_failure_msg "MySQL manager or server PID file could not be found!" fi ;; 'restart') # Stop the service and regardless of whether it was # running or not, start it again. if $0 stop $other_args; then $0 start $other_args else log_failure_msg "Failed to stop running server, so refusing to try to start." exit 1 fi ;; 'reload'|'force-reload') if test -s "$server_pid_file" ; then read mysqld_pid < $server_pid_file kill -HUP $mysqld_pid && log_success_msg "Reloading service MySQL" touch $server_pid_file else log_failure_msg "MySQL PID file could not be found!" exit 1 fi ;; 'status') # First, check to see if pid file exists if test -s "$server_pid_file" ; then read mysqld_pid < $server_pid_file if kill -0 $mysqld_pid 2>/dev/null ; then log_success_msg "MySQL running ($mysqld_pid)" exit 0 else log_failure_msg "MySQL is not running, but PID file exists" exit 1 fi else # Try to find appropriate mysqld process mysqld_pid=`pidof $sbindir/mysqld` if test -z $mysqld_pid ; then if test "$use_mysqld_safe" = "0" ; then lockfile=/var/lock/subsys/mysqlmanager else lockfile=/var/lock/subsys/mysql fi if test -f $lockfile ; then log_failure_msg "MySQL is not running, but lock exists" exit 2 fi log_failure_msg "MySQL is not running" exit 3 else log_failure_msg "MySQL is running but PID file could not be found" exit 4 fi fi ;; *) # usage echo "Usage: $0 {start|stop|restart|reload|force-reload|status} [ MySQL server options ]" exit 1 ;; esac exit 0 An unimportant aside: The previous users of the machine kept a messy home directory. Their home directory was /root. I've pasted a copy at http://www.pastebin.ca/2167496. My question: Why is there a /etc/init.d/mysql file on this Slackware machine? How could it have gotten there? P.S. This question is far from perfect. Please feel free to edit it.

    Read the article

  • RHEL 5.5 Yum Update Fails Dependency Error

    - by user65788
    I have 30 different RHEL 5.5 machines that will not update some 33 packages via Yum. Does anyone know why these packages will not install and how to correct this? Yum clean all does not fix the issue, however skip broken will allow other updates to install but I am really after a way to clear this up for good. They are stock boxes with RHEL subscription and not using any yum repositories other than Red Hat's own official repositories. They have not been updated for over a year! yum update Loaded plugins: rhnplugin, security rhel-i386-client-5 | 1.4 kB 00:00 rhel-i386-client-5/primary | 2.8 MB 00:09 rhel-i386-client-5 6607/6607 Skipping security plugin, no data Setting up Update Process Resolving Dependencies Skipping security plugin, no data --> Running transaction check ---> Package autofs.i386 1:5.0.1-0.rc2.143.el5_5.6 set to be updated ---> Package cpp.i386 0:4.1.2-48.el5 set to be updated --> Processing Dependency: curl = 7.15.5-2.1.el5_3.5 for package: curl-devel ---> Package curl.i386 0:7.15.5-9.el5 set to be updated --> Processing Dependency: cyrus-sasl-lib = 2.1.22-5.el5 for package: cyrus-sasl-devel ---> Package cyrus-sasl-lib.i386 0:2.1.22-5.el5_4.3 set to be updated ---> Package cyrus-sasl-md5.i386 0:2.1.22-5.el5_4.3 set to be updated ---> Package cyrus-sasl-plain.i386 0:2.1.22-5.el5_4.3 set to be updated --> Processing Dependency: db4 = 4.3.29-10.el5 for package: db4-devel ---> Package db4.i386 0:4.3.29-10.el5_5.2 set to be updated --> Processing Dependency: dbus = 1.1.2-12.el5 for package: dbus-devel ---> Package dbus.i386 0:1.1.2-14.el5 set to be updated ---> Package dbus-libs.i386 0:1.1.2-14.el5 set to be updated ---> Package dbus-x11.i386 0:1.1.2-14.el5 set to be updated ---> Package e2fsprogs.i386 0:1.39-23.el5_5.1 set to be updated --> Processing Dependency: e2fsprogs-libs = 1.39-23.el5 for package: e2fsprogs-devel ---> Package e2fsprogs-libs.i386 0:1.39-23.el5_5.1 set to be updated ---> Package esc.i386 0:1.1.0-12.el5 set to be updated --> Processing Dependency: expat = 1.95.8-8.2.1 for package: expat-devel ---> Package expat.i386 0:1.95.8-8.3.el5_5.3 set to be updated ---> Package firefox.i386 0:3.6.13-2.el5 set to be updated --> Processing Dependency: freetype = 2.2.1-21.el5_3 for package: freetype-devel ---> Package freetype.i386 0:2.2.1-28.el5_5.1 set to be updated --> Processing Dependency: gcc = 4.1.2-46.el5_4.1 for package: gcc-c++ --> Processing Dependency: gcc = 4.1.2-46.el5_4.1 for package: gcc-gfortran ---> Package gcc.i386 0:4.1.2-48.el5 set to be updated --> Processing Dependency: gd = 2.0.33-9.4.el5_1.1 for package: gd-devel ---> Package gd.i386 0:2.0.33-9.4.el5_4.2 set to be updated --> Processing Dependency: gnome-vfs2 = 2.16.2-4.el5 for package: gnome-vfs2-devel ---> Package gnome-vfs2.i386 0:2.16.2-6.el5_5.1 set to be updated ---> Package gnome-vfs2-smb.i386 0:2.16.2-6.el5_5.1 set to be updated --> Processing Dependency: gnutls = 1.4.1-3.el5_3.5 for package: gnutls-devel ---> Package gnutls.i386 0:1.4.1-3.el5_4.8 set to be updated --> Processing Dependency: gtk2 = 2.10.4-20.el5 for package: gtk2-devel ---> Package gtk2.i386 0:2.10.4-21.el5_5.6 set to be updated --> Processing Dependency: hal = 0.5.8.1-52.el5 for package: hal-devel ---> Package hal.i386 0:0.5.8.1-59.el5 set to be updated --> Processing Dependency: krb5-libs = 1.6.1-36.el5 for package: krb5-devel ---> Package krb5-libs.i386 0:1.6.1-36.el5_5.6 set to be updated ---> Package krb5-workstation.i386 0:1.6.1-36.el5_5.6 set to be updated --> Processing Dependency: libXi = 1.0.1-3.1 for package: libXi-devel ---> Package libXi.i386 0:1.0.1-4.el5_4 set to be updated --> Processing Dependency: libXrandr = 1.1.1-3.1 for package: libXrandr-devel ---> Package libXrandr.i386 0:1.1.1-3.3 set to be updated --> Processing Dependency: libXt = 1.0.2-3.1.fc6 for package: libXt-devel ---> Package libXt.i386 0:1.0.2-3.2.el5 set to be updated --> Processing Dependency: libgfortran = 4.1.2-46.el5_4.1 for package: gcc-gfortran ---> Package libgfortran.i386 0:4.1.2-48.el5 set to be updated --> Processing Dependency: libsepol = 1.15.2-2.el5 for package: libsepol-devel ---> Package libsepol.i386 0:1.15.2-3.el5 set to be updated --> Processing Dependency: libstdc++ = 4.1.2-46.el5_4.1 for package: gcc-c++ --> Processing Dependency: libstdc++ = 4.1.2-46.el5_4.1 for package: libstdc++-devel ---> Package libstdc++.i386 0:4.1.2-48.el5 set to be updated --> Processing Dependency: mesa-libGL = 6.5.1-7.7.el5 for package: mesa-libGL-devel ---> Package mesa-libGL.i386 0:6.5.1-7.8.el5 set to be updated --> Processing Dependency: mesa-libGLU = 6.5.1-7.7.el5 for package: mesa-libGLU-devel ---> Package mesa-libGLU.i386 0:6.5.1-7.8.el5 set to be updated --> Processing Dependency: newt = 0.52.2-12.el5_4.1 for package: newt-devel ---> Package newt.i386 0:0.52.2-15.el5 set to be updated --> Processing Dependency: nspr = 4.7.6-1.el5_4 for package: nspr-devel ---> Package nspr.i386 0:4.8.6-1.el5 set to be updated --> Processing Dependency: nss = 3.12.3.99.3-1.el5_3.2 for package: nss-devel ---> Package nss.i386 0:3.12.8-1.el5 set to be updated ---> Package nss-tools.i386 0:3.12.8-1.el5 set to be updated --> Processing Dependency: openldap = 2.3.43-3.el5 for package: openldap-devel ---> Package openldap.i386 0:2.3.43-12.el5_5.3 set to be updated ---> Package openldap-clients.i386 0:2.3.43-12.el5_5.3 set to be updated --> Processing Dependency: openssl = 0.9.8e-12.el5 for package: openssl-devel ---> Package openssl.i686 0:0.9.8e-12.el5_5.7 set to be updated --> Processing Dependency: pam = 0.99.6.2-6.el5 for package: pam-devel ---> Package pam.i386 0:0.99.6.2-6.el5_5.2 set to be updated --> Processing Dependency: popt = 1.10.2.3-18.el5 for package: rpm-devel --> Processing Dependency: popt = 1.10.2.3-18.el5 for package: rpm-build ---> Package popt.i386 0:1.10.2.3-20.el5_5.1 set to be updated --> Processing Dependency: python = 2.4.3-27.el5 for package: python-devel ---> Package python.i386 0:2.4.3-27.el5_5.3 set to be updated --> Processing Dependency: rpm = 4.4.2.3-18.el5 for package: rpm-devel --> Processing Dependency: rpm = 4.4.2.3-18.el5 for package: rpm-build ---> Package rpm.i386 0:4.4.2.3-20.el5_5.1 set to be updated --> Processing Dependency: rpm-libs = 4.4.2.3-18.el5 for package: rpm-devel --> Processing Dependency: rpm-libs = 4.4.2.3-18.el5 for package: rpm-build ---> Package rpm-libs.i386 0:4.4.2.3-20.el5_5.1 set to be updated ---> Package rpm-python.i386 0:4.4.2.3-20.el5_5.1 set to be updated ---> Package xulrunner.i386 0:1.9.2.13-3.el5 set to be updated ---> Package xulrunner-devel.i386 0:1.9.2.7-2.el5 set to be updated --> Processing Dependency: xulrunner = 1.9.2.7-2.el5 for package: xulrunner-devel --> Processing Dependency: nss-devel >= 3.12.6 for package: xulrunner-devel --> Processing Dependency: nspr-devel >= 4.8 for package: xulrunner-devel --> Processing Dependency: libnotify-devel for package: xulrunner-devel ---> Package yelp.i386 0:2.16.0-26.el5 set to be updated rhel-i386-client-5/filelists | 16 MB 00:45 --> Finished Dependency Resolution xulrunner-devel-1.9.2.7-2.el5.i386 from rhel-i386-client-5 has depsolving problems --> Missing Dependency: libnotify-devel is needed by package xulrunner-devel-1.9.2.7-2.el5.i386 (rhel-i386-client-5) mesa-libGLU-devel-6.5.1-7.7.el5.i386 from installed has depsolving problems --> Missing Dependency: mesa-libGLU = 6.5.1-7.7.el5 is needed by package mesa-libGLU-devel-6.5.1-7.7.el5.i386 (installed) python-devel-2.4.3-27.el5.i386 from installed has depsolving problems --> Missing Dependency: python = 2.4.3-27.el5 is needed by package python-devel-2.4.3-27.el5.i386 (installed) nss-devel-3.12.3.99.3-1.el5_3.2.i386 from installed has depsolving problems --> Missing Dependency: nss = 3.12.3.99.3-1.el5_3.2 is needed by package nss-devel-3.12.3.99.3-1.el5_3.2.i386 (installed) libstdc++-devel-4.1.2-46.el5_4.1.i386 from installed has depsolving problems --> Missing Dependency: libstdc++ = 4.1.2-46.el5_4.1 is needed by package libstdc++-devel-4.1.2-46.el5_4.1.i386 (installed) xulrunner-devel-1.9.2.7-2.el5.i386 from rhel-i386-client-5 has depsolving problems --> Missing Dependency: nspr-devel >= 4.8 is needed by package xulrunner-devel-1.9.2.7-2.el5.i386 (rhel-i386-client-5) gcc-c++-4.1.2-46.el5_4.1.i386 from installed has depsolving problems --> Missing Dependency: libstdc++ = 4.1.2-46.el5_4.1 is needed by package gcc-c++-4.1.2-46.el5_4.1.i386 (installed) rpm-devel-4.4.2.3-18.el5.i386 from installed has depsolving problems --> Missing Dependency: rpm-libs = 4.4.2.3-18.el5 is needed by package rpm-devel-4.4.2.3-18.el5.i386 (installed) xulrunner-devel-1.9.2.7-2.el5.i386 from rhel-i386-client-5 has depsolving problems --> Missing Dependency: xulrunner = 1.9.2.7-2.el5 is needed by package xulrunner-devel-1.9.2.7-2.el5.i386 (rhel-i386-client-5) nspr-devel-4.7.6-1.el5_4.i386 from installed has depsolving problems --> Missing Dependency: nspr = 4.7.6-1.el5_4 is needed by package nspr-devel-4.7.6-1.el5_4.i386 (installed) libXrandr-devel-1.1.1-3.1.i386 from installed has depsolving problems --> Missing Dependency: libXrandr = 1.1.1-3.1 is needed by package libXrandr-devel-1.1.1-3.1.i386 (installed) libsepol-devel-1.15.2-2.el5.i386 from installed has depsolving problems --> Missing Dependency: libsepol = 1.15.2-2.el5 is needed by package libsepol-devel-1.15.2-2.el5.i386 (installed) libXt-devel-1.0.2-3.1.fc6.i386 from installed has depsolving problems --> Missing Dependency: libXt = 1.0.2-3.1.fc6 is needed by package libXt-devel-1.0.2-3.1.fc6.i386 (installed) mesa-libGL-devel-6.5.1-7.7.el5.i386 from installed has depsolving problems --> Missing Dependency: mesa-libGL = 6.5.1-7.7.el5 is needed by package mesa-libGL-devel-6.5.1-7.7.el5.i386 (installed) openldap-devel-2.3.43-3.el5.i386 from installed has depsolving problems --> Missing Dependency: openldap = 2.3.43-3.el5 is needed by package openldap-devel-2.3.43-3.el5.i386 (installed) openssl-devel-0.9.8e-12.el5.i386 from installed has depsolving problems --> Missing Dependency: openssl = 0.9.8e-12.el5 is needed by package openssl-devel-0.9.8e-12.el5.i386 (installed) dbus-devel-1.1.2-12.el5.i386 from installed has depsolving problems --> Missing Dependency: dbus = 1.1.2-12.el5 is needed by package dbus-devel-1.1.2-12.el5.i386 (installed) newt-devel-0.52.2-12.el5_4.1.i386 from installed has depsolving problems --> Missing Dependency: newt = 0.52.2-12.el5_4.1 is needed by package newt-devel-0.52.2-12.el5_4.1.i386 (installed) gnome-vfs2-devel-2.16.2-4.el5.i386 from installed has depsolving problems --> Missing Dependency: gnome-vfs2 = 2.16.2-4.el5 is needed by package gnome-vfs2-devel-2.16.2-4.el5.i386 (installed) gnutls-devel-1.4.1-3.el5_3.5.i386 from installed has depsolving problems --> Missing Dependency: gnutls = 1.4.1-3.el5_3.5 is needed by package gnutls-devel-1.4.1-3.el5_3.5.i386 (installed) rpm-build-4.4.2.3-18.el5.i386 from installed has depsolving problems --> Missing Dependency: rpm-libs = 4.4.2.3-18.el5 is needed by package rpm-build-4.4.2.3-18.el5.i386 (installed) gd-devel-2.0.33-9.4.el5_1.1.i386 from installed has depsolving problems --> Missing Dependency: gd = 2.0.33-9.4.el5_1.1 is needed by package gd-devel-2.0.33-9.4.el5_1.1.i386 (installed) e2fsprogs-devel-1.39-23.el5.i386 from installed has depsolving problems --> Missing Dependency: e2fsprogs-libs = 1.39-23.el5 is needed by package e2fsprogs-devel-1.39-23.el5.i386 (installed) xulrunner-devel-1.9.2.7-2.el5.i386 from rhel-i386-client-5 has depsolving problems --> Missing Dependency: nss-devel >= 3.12.6 is needed by package xulrunner-devel-1.9.2.7-2.el5.i386 (rhel-i386-client-5) krb5-devel-1.6.1-36.el5.i386 from installed has depsolving problems --> Missing Dependency: krb5-libs = 1.6.1-36.el5 is needed by package krb5-devel-1.6.1-36.el5.i386 (installed) gcc-gfortran-4.1.2-46.el5_4.1.i386 from installed has depsolving problems --> Missing Dependency: libgfortran = 4.1.2-46.el5_4.1 is needed by package gcc-gfortran-4.1.2-46.el5_4.1.i386 (installed) curl-devel-7.15.5-2.1.el5_3.5.i386 from installed has depsolving problems --> Missing Dependency: curl = 7.15.5-2.1.el5_3.5 is needed by package curl-devel-7.15.5-2.1.el5_3.5.i386 (installed) pam-devel-0.99.6.2-6.el5.i386 from installed has depsolving problems --> Missing Dependency: pam = 0.99.6.2-6.el5 is needed by package pam-devel-0.99.6.2-6.el5.i386 (installed) rpm-build-4.4.2.3-18.el5.i386 from installed has depsolving problems --> Missing Dependency: rpm = 4.4.2.3-18.el5 is needed by package rpm-build-4.4.2.3-18.el5.i386 (installed) expat-devel-1.95.8-8.2.1.i386 from installed has depsolving problems --> Missing Dependency: expat = 1.95.8-8.2.1 is needed by package expat-devel-1.95.8-8.2.1.i386 (installed) gcc-c++-4.1.2-46.el5_4.1.i386 from installed has depsolving problems --> Missing Dependency: gcc = 4.1.2-46.el5_4.1 is needed by package gcc-c++-4.1.2-46.el5_4.1.i386 (installed) gtk2-devel-2.10.4-20.el5.i386 from installed has depsolving problems --> Missing Dependency: gtk2 = 2.10.4-20.el5 is needed by package gtk2-devel-2.10.4-20.el5.i386 (installed) gcc-gfortran-4.1.2-46.el5_4.1.i386 from installed has depsolving problems --> Missing Dependency: gcc = 4.1.2-46.el5_4.1 is needed by package gcc-gfortran-4.1.2-46.el5_4.1.i386 (installed) cyrus-sasl-devel-2.1.22-5.el5.i386 from installed has depsolving problems --> Missing Dependency: cyrus-sasl-lib = 2.1.22-5.el5 is needed by package cyrus-sasl-devel-2.1.22-5.el5.i386 (installed) rpm-devel-4.4.2.3-18.el5.i386 from installed has depsolving problems --> Missing Dependency: popt = 1.10.2.3-18.el5 is needed by package rpm-devel-4.4.2.3-18.el5.i386 (installed) db4-devel-4.3.29-10.el5.i386 from installed has depsolving problems --> Missing Dependency: db4 = 4.3.29-10.el5 is needed by package db4-devel-4.3.29-10.el5.i386 (installed) rpm-build-4.4.2.3-18.el5.i386 from installed has depsolving problems --> Missing Dependency: popt = 1.10.2.3-18.el5 is needed by package rpm-build-4.4.2.3-18.el5.i386 (installed) rpm-devel-4.4.2.3-18.el5.i386 from installed has depsolving problems --> Missing Dependency: rpm = 4.4.2.3-18.el5 is needed by package rpm-devel-4.4.2.3-18.el5.i386 (installed) libXi-devel-1.0.1-3.1.i386 from installed has depsolving problems --> Missing Dependency: libXi = 1.0.1-3.1 is needed by package libXi-devel-1.0.1-3.1.i386 (installed) hal-devel-0.5.8.1-52.el5.i386 from installed has depsolving problems --> Missing Dependency: hal = 0.5.8.1-52.el5 is needed by package hal-devel-0.5.8.1-52.el5.i386 (installed) freetype-devel-2.2.1-21.el5_3.i386 from installed has depsolving problems --> Missing Dependency: freetype = 2.2.1-21.el5_3 is needed by package freetype-devel-2.2.1-21.el5_3.i386 (installed) Error: Missing Dependency: libgfortran = 4.1.2-46.el5_4.1 is needed by package gcc-gfortran-4.1.2-46.el5_4.1.i386 (installed) Error: Missing Dependency: libsepol = 1.15.2-2.el5 is needed by package libsepol-devel-1.15.2-2.el5.i386 (installed) Error: Missing Dependency: libstdc++ = 4.1.2-46.el5_4.1 is needed by package gcc-c++-4.1.2-46.el5_4.1.i386 (installed) Error: Missing Dependency: mesa-libGL = 6.5.1-7.7.el5 is needed by package mesa-libGL-devel-6.5.1-7.7.el5.i386 (installed) Error: Missing Dependency: mesa-libGLU = 6.5.1-7.7.el5 is needed by package mesa-libGLU-devel-6.5.1-7.7.el5.i386 (installed) Error: Missing Dependency: freetype = 2.2.1-21.el5_3 is needed by package freetype-devel-2.2.1-21.el5_3.i386 (installed) Error: Missing Dependency: hal = 0.5.8.1-52.el5 is needed by package hal-devel-0.5.8.1-52.el5.i386 (installed) Error: Missing Dependency: libXt = 1.0.2-3.1.fc6 is needed by package libXt-devel-1.0.2-3.1.fc6.i386 (installed) Error: Missing Dependency: openldap = 2.3.43-3.el5 is needed by package openldap-devel-2.3.43-3.el5.i386 (installed) Error: Missing Dependency: libstdc++ = 4.1.2-46.el5_4.1 is needed by package libstdc++-devel-4.1.2-46.el5_4.1.i386 (installed) Error: Missing Dependency: nss-devel >= 3.12.6 is needed by package xulrunner-devel-1.9.2.7-2.el5.i386 (rhel-i386-client-5) Error: Missing Dependency: newt = 0.52.2-12.el5_4.1 is needed by package newt-devel-0.52.2-12.el5_4.1.i386 (installed) Error: Missing Dependency: gnutls = 1.4.1-3.el5_3.5 is needed by package gnutls-devel-1.4.1-3.el5_3.5.i386 (installed) Error: Missing Dependency: gnome-vfs2 = 2.16.2-4.el5 is needed by package gnome-vfs2-devel-2.16.2-4.el5.i386 (installed) Error: Missing Dependency: libXrandr = 1.1.1-3.1 is needed by package libXrandr-devel-1.1.1-3.1.i386 (installed) Error: Missing Dependency: python = 2.4.3-27.el5 is needed by package python-devel-2.4.3-27.el5.i386 (installed) Error: Missing Dependency: gcc = 4.1.2-46.el5_4.1 is needed by package gcc-c++-4.1.2-46.el5_4.1.i386 (installed) Error: Missing Dependency: libnotify-devel is needed by package xulrunner-devel-1.9.2.7-2.el5.i386 (rhel-i386-client-5) Error: Missing Dependency: popt = 1.10.2.3-18.el5 is needed by package rpm-devel-4.4.2.3-18.el5.i386 (installed) Error: Missing Dependency: openssl = 0.9.8e-12.el5 is needed by package openssl-devel-0.9.8e-12.el5.i386 (installed) Error: Missing Dependency: curl = 7.15.5-2.1.el5_3.5 is needed by package curl-devel-7.15.5-2.1.el5_3.5.i386 (installed) Error: Missing Dependency: xulrunner = 1.9.2.7-2.el5 is needed by package xulrunner-devel-1.9.2.7-2.el5.i386 (rhel-i386-client-5) Error: Missing Dependency: nspr = 4.7.6-1.el5_4 is needed by package nspr-devel-4.7.6-1.el5_4.i386 (installed) Error: Missing Dependency: nss = 3.12.3.99.3-1.el5_3.2 is needed by package nss-devel-3.12.3.99.3-1.el5_3.2.i386 (installed) Error: Missing Dependency: popt = 1.10.2.3-18.el5 is needed by package rpm-build-4.4.2.3-18.el5.i386 (installed) Error: Missing Dependency: libXi = 1.0.1-3.1 is needed by package libXi-devel-1.0.1-3.1.i386 (installed) Error: Missing Dependency: nspr-devel >= 4.8 is needed by package xulrunner-devel-1.9.2.7-2.el5.i386 (rhel-i386-client-5) Error: Missing Dependency: pam = 0.99.6.2-6.el5 is needed by package pam-devel-0.99.6.2-6.el5.i386 (installed) Error: Missing Dependency: rpm = 4.4.2.3-18.el5 is needed by package rpm-build-4.4.2.3-18.el5.i386 (installed) Error: Missing Dependency: cyrus-sasl-lib = 2.1.22-5.el5 is needed by package cyrus-sasl-devel-2.1.22-5.el5.i386 (installed) Error: Missing Dependency: gtk2 = 2.10.4-20.el5 is needed by package gtk2-devel-2.10.4-20.el5.i386 (installed) Error: Missing Dependency: dbus = 1.1.2-12.el5 is needed by package dbus-devel-1.1.2-12.el5.i386 (installed) Error: Missing Dependency: db4 = 4.3.29-10.el5 is needed by package db4-devel-4.3.29-10.el5.i386 (installed) Error: Missing Dependency: rpm-libs = 4.4.2.3-18.el5 is needed by package rpm-build-4.4.2.3-18.el5.i386 (installed) Error: Missing Dependency: gcc = 4.1.2-46.el5_4.1 is needed by package gcc-gfortran-4.1.2-46.el5_4.1.i386 (installed) Error: Missing Dependency: expat = 1.95.8-8.2.1 is needed by package expat-devel-1.95.8-8.2.1.i386 (installed) Error: Missing Dependency: gd = 2.0.33-9.4.el5_1.1 is needed by package gd-devel-2.0.33-9.4.el5_1.1.i386 (installed) Error: Missing Dependency: krb5-libs = 1.6.1-36.el5 is needed by package krb5-devel-1.6.1-36.el5.i386 (installed) Error: Missing Dependency: rpm = 4.4.2.3-18.el5 is needed by package rpm-devel-4.4.2.3-18.el5.i386 (installed) Error: Missing Dependency: rpm-libs = 4.4.2.3-18.el5 is needed by package rpm-devel-4.4.2.3-18.el5.i386 (installed) Error: Missing Dependency: e2fsprogs-libs = 1.39-23.el5 is needed by package e2fsprogs-devel-1.39-23.el5.i386 (installed) You could try using --skip-broken to work around the problem You could try running: package-cleanup --problems package-cleanup --dupes rpm -Va --nofiles --nodigest The repolist is yum repolist all Loaded plugins: rhnplugin, security repo id repo name status rhel-debuginfo Red Hat Enterprise Linux 5Client - i386 - Deb disabled rhel-debuginfo-beta Red Hat Enterprise Linux 5Client Beta - i386 disabled rhel-i386-client-5 Red Hat Enterprise Linux Desktop (v. 5 for 32 enabled: 6,607 repolist: 6,607

    Read the article

  • Zen and the Art of File and Folder Organization

    - by Mark Virtue
    Is your desk a paragon of neatness, or does it look like a paper-bomb has gone off? If you’ve been putting off getting organized because the task is too huge or daunting, or you don’t know where to start, we’ve got 40 tips to get you on the path to zen mastery of your filing system. For all those readers who would like to get their files and folders organized, or, if they’re already organized, better organized—we have compiled a complete guide to getting organized and staying organized, a comprehensive article that will hopefully cover every possible tip you could want. Signs that Your Computer is Poorly Organized If your computer is a mess, you’re probably already aware of it.  But just in case you’re not, here are some tell-tale signs: Your Desktop has over 40 icons on it “My Documents” contains over 300 files and 60 folders, including MP3s and digital photos You use the Windows’ built-in search facility whenever you need to find a file You can’t find programs in the out-of-control list of programs in your Start Menu You save all your Word documents in one folder, all your spreadsheets in a second folder, etc Any given file that you’re looking for may be in any one of four different sets of folders But before we start, here are some quick notes: We’re going to assume you know what files and folders are, and how to create, save, rename, copy and delete them The organization principles described in this article apply equally to all computer systems.  However, the screenshots here will reflect how things look on Windows (usually Windows 7).  We will also mention some useful features of Windows that can help you get organized. Everyone has their own favorite methodology of organizing and filing, and it’s all too easy to get into “My Way is Better than Your Way” arguments.  The reality is that there is no perfect way of getting things organized.  When I wrote this article, I tried to keep a generalist and objective viewpoint.  I consider myself to be unusually well organized (to the point of obsession, truth be told), and I’ve had 25 years experience in collecting and organizing files on computers.  So I’ve got a lot to say on the subject.  But the tips I have described here are only one way of doing it.  Hopefully some of these tips will work for you too, but please don’t read this as any sort of “right” way to do it. At the end of the article we’ll be asking you, the reader, for your own organization tips. Why Bother Organizing At All? For some, the answer to this question is self-evident. And yet, in this era of powerful desktop search software (the search capabilities built into the Windows Vista and Windows 7 Start Menus, and third-party programs like Google Desktop Search), the question does need to be asked, and answered. I have a friend who puts every file he ever creates, receives or downloads into his My Documents folder and doesn’t bother filing them into subfolders at all.  He relies on the search functionality built into his Windows operating system to help him find whatever he’s looking for.  And he always finds it.  He’s a Search Samurai.  For him, filing is a waste of valuable time that could be spent enjoying life! It’s tempting to follow suit.  On the face of it, why would anyone bother to take the time to organize their hard disk when such excellent search software is available?  Well, if all you ever want to do with the files you own is to locate and open them individually (for listening, editing, etc), then there’s no reason to ever bother doing one scrap of organization.  But consider these common tasks that are not achievable with desktop search software: Find files manually.  Often it’s not convenient, speedy or even possible to utilize your desktop search software to find what you want.  It doesn’t work 100% of the time, or you may not even have it installed.  Sometimes its just plain faster to go straight to the file you want, if you know it’s in a particular sub-folder, rather than trawling through hundreds of search results. Find groups of similar files (e.g. all your “work” files, all the photos of your Europe holiday in 2008, all your music videos, all the MP3s from Dark Side of the Moon, all your letters you wrote to your wife, all your tax returns).  Clever naming of the files will only get you so far.  Sometimes it’s the date the file was created that’s important, other times it’s the file format, and other times it’s the purpose of the file.  How do you name a collection of files so that they’re easy to isolate based on any of the above criteria?  Short answer, you can’t. Move files to a new computer.  It’s time to upgrade your computer.  How do you quickly grab all the files that are important to you?  Or you decide to have two computers now – one for home and one for work.  How do you quickly isolate only the work-related files to move them to the work computer? Synchronize files to other computers.  If you have more than one computer, and you need to mirror some of your files onto the other computer (e.g. your music collection), then you need a way to quickly determine which files are to be synced and which are not.  Surely you don’t want to synchronize everything? Choose which files to back up.  If your backup regime calls for multiple backups, or requires speedy backups, then you’ll need to be able to specify which files are to be backed up, and which are not.  This is not possible if they’re all in the same folder. Finally, if you’re simply someone who takes pleasure in being organized, tidy and ordered (me! me!), then you don’t even need a reason.  Being disorganized is simply unthinkable. Tips on Getting Organized Here we present our 40 best tips on how to get organized.  Or, if you’re already organized, to get better organized. Tip #1.  Choose Your Organization System Carefully The reason that most people are not organized is that it takes time.  And the first thing that takes time is deciding upon a system of organization.  This is always a matter of personal preference, and is not something that a geek on a website can tell you.  You should always choose your own system, based on how your own brain is organized (which makes the assumption that your brain is, in fact, organized). We can’t instruct you, but we can make suggestions: You may want to start off with a system based on the users of the computer.  i.e. “My Files”, “My Wife’s Files”, My Son’s Files”, etc.  Inside “My Files”, you might then break it down into “Personal” and “Business”.  You may then realize that there are overlaps.  For example, everyone may want to share access to the music library, or the photos from the school play.  So you may create another folder called “Family”, for the “common” files. You may decide that the highest-level breakdown of your files is based on the “source” of each file.  In other words, who created the files.  You could have “Files created by ME (business or personal)”, “Files created by people I know (family, friends, etc)”, and finally “Files created by the rest of the world (MP3 music files, downloaded or ripped movies or TV shows, software installation files, gorgeous desktop wallpaper images you’ve collected, etc).”  This system happens to be the one I use myself.  See below:  Mark is for files created by meVC is for files created by my company (Virtual Creations)Others is for files created by my friends and familyData is the rest of the worldAlso, Settings is where I store the configuration files and other program data files for my installed software (more on this in tip #34, below). Each folder will present its own particular set of requirements for further sub-organization.  For example, you may decide to organize your music collection into sub-folders based on the artist’s name, while your digital photos might get organized based on the date they were taken.  It can be different for every sub-folder! Another strategy would be based on “currentness”.  Files you have yet to open and look at live in one folder.  Ones that have been looked at but not yet filed live in another place.  Current, active projects live in yet another place.  All other files (your “archive”, if you like) would live in a fourth folder. (And of course, within that last folder you’d need to create a further sub-system based on one of the previous bullet points). Put some thought into this – changing it when it proves incomplete can be a big hassle!  Before you go to the trouble of implementing any system you come up with, examine a wide cross-section of the files you own and see if they will all be able to find a nice logical place to sit within your system. Tip #2.  When You Decide on Your System, Stick to It! There’s nothing more pointless than going to all the trouble of creating a system and filing all your files, and then whenever you create, receive or download a new file, you simply dump it onto your Desktop.  You need to be disciplined – forever!  Every new file you get, spend those extra few seconds to file it where it belongs!  Otherwise, in just a month or two, you’ll be worse off than before – half your files will be organized and half will be disorganized – and you won’t know which is which! Tip #3.  Choose the Root Folder of Your Structure Carefully Every data file (document, photo, music file, etc) that you create, own or is important to you, no matter where it came from, should be found within one single folder, and that one single folder should be located at the root of your C: drive (as a sub-folder of C:\).  In other words, do not base your folder structure in standard folders like “My Documents”.  If you do, then you’re leaving it up to the operating system engineers to decide what folder structure is best for you.  And every operating system has a different system!  In Windows 7 your files are found in C:\Users\YourName, whilst on Windows XP it was C:\Documents and Settings\YourName\My Documents.  In UNIX systems it’s often /home/YourName. These standard default folders tend to fill up with junk files and folders that are not at all important to you.  “My Documents” is the worst offender.  Every second piece of software you install, it seems, likes to create its own folder in the “My Documents” folder.  These folders usually don’t fit within your organizational structure, so don’t use them!  In fact, don’t even use the “My Documents” folder at all.  Allow it to fill up with junk, and then simply ignore it.  It sounds heretical, but: Don’t ever visit your “My Documents” folder!  Remove your icons/links to “My Documents” and replace them with links to the folders you created and you care about! Create your own file system from scratch!  Probably the best place to put it would be on your D: drive – if you have one.  This way, all your files live on one drive, while all the operating system and software component files live on the C: drive – simply and elegantly separated.  The benefits of that are profound.  Not only are there obvious organizational benefits (see tip #10, below), but when it comes to migrate your data to a new computer, you can (sometimes) simply unplug your D: drive and plug it in as the D: drive of your new computer (this implies that the D: drive is actually a separate physical disk, and not a partition on the same disk as C:).  You also get a slight speed improvement (again, only if your C: and D: drives are on separate physical disks). Warning:  From tip #12, below, you will see that it’s actually a good idea to have exactly the same file system structure – including the drive it’s filed on – on all of the computers you own.  So if you decide to use the D: drive as the storage system for your own files, make sure you are able to use the D: drive on all the computers you own.  If you can’t ensure that, then you can still use a clever geeky trick to store your files on the D: drive, but still access them all via the C: drive (see tip #17, below). If you only have one hard disk (C:), then create a dedicated folder that will contain all your files – something like C:\Files.  The name of the folder is not important, but make it a single, brief word. There are several reasons for this: When creating a backup regime, it’s easy to decide what files should be backed up – they’re all in the one folder! If you ever decide to trade in your computer for a new one, you know exactly which files to migrate You will always know where to begin a search for any file If you synchronize files with other computers, it makes your synchronization routines very simple.   It also causes all your shortcuts to continue to work on the other machines (more about this in tip #24, below). Once you’ve decided where your files should go, then put all your files in there – Everything!  Completely disregard the standard, default folders that are created for you by the operating system (“My Music”, “My Pictures”, etc).  In fact, you can actually relocate many of those folders into your own structure (more about that below, in tip #6). The more completely you get all your data files (documents, photos, music, etc) and all your configuration settings into that one folder, then the easier it will be to perform all of the above tasks. Once this has been done, and all your files live in one folder, all the other folders in C:\ can be thought of as “operating system” folders, and therefore of little day-to-day interest for us. Here’s a screenshot of a nicely organized C: drive, where all user files are located within the \Files folder:   Tip #4.  Use Sub-Folders This would be our simplest and most obvious tip.  It almost goes without saying.  Any organizational system you decide upon (see tip #1) will require that you create sub-folders for your files.  Get used to creating folders on a regular basis. Tip #5.  Don’t be Shy About Depth Create as many levels of sub-folders as you need.  Don’t be scared to do so.  Every time you notice an opportunity to group a set of related files into a sub-folder, do so.  Examples might include:  All the MP3s from one music CD, all the photos from one holiday, or all the documents from one client. It’s perfectly okay to put files into a folder called C:\Files\Me\From Others\Services\WestCo Bank\Statements\2009.  That’s only seven levels deep.  Ten levels is not uncommon.  Of course, it’s possible to take this too far.  If you notice yourself creating a sub-folder to hold only one file, then you’ve probably become a little over-zealous.  On the other hand, if you simply create a structure with only two levels (for example C:\Files\Work) then you really haven’t achieved any level of organization at all (unless you own only six files!).  Your “Work” folder will have become a dumping ground, just like your Desktop was, with most likely hundreds of files in it. Tip #6.  Move the Standard User Folders into Your Own Folder Structure Most operating systems, including Windows, create a set of standard folders for each of its users.  These folders then become the default location for files such as documents, music files, digital photos and downloaded Internet files.  In Windows 7, the full list is shown below: Some of these folders you may never use nor care about (for example, the Favorites folder, if you’re not using Internet Explorer as your browser).  Those ones you can leave where they are.  But you may be using some of the other folders to store files that are important to you.  Even if you’re not using them, Windows will still often treat them as the default storage location for many types of files.  When you go to save a standard file type, it can become annoying to be automatically prompted to save it in a folder that’s not part of your own file structure. But there’s a simple solution:  Move the folders you care about into your own folder structure!  If you do, then the next time you go to save a file of the corresponding type, Windows will prompt you to save it in the new, moved location. Moving the folders is easy.  Simply drag-and-drop them to the new location.  Here’s a screenshot of the default My Music folder being moved to my custom personal folder (Mark): Tip #7.  Name Files and Folders Intelligently This is another one that almost goes without saying, but we’ll say it anyway:  Do not allow files to be created that have meaningless names like Document1.doc, or folders called New Folder (2).  Take that extra 20 seconds and come up with a meaningful name for the file/folder – one that accurately divulges its contents without repeating the entire contents in the name. Tip #8.  Watch Out for Long Filenames Another way to tell if you have not yet created enough depth to your folder hierarchy is that your files often require really long names.  If you need to call a file Johnson Sales Figures March 2009.xls (which might happen to live in the same folder as Abercrombie Budget Report 2008.xls), then you might want to create some sub-folders so that the first file could be simply called March.xls, and living in the Clients\Johnson\Sales Figures\2009 folder. A well-placed file needs only a brief filename! Tip #9.  Use Shortcuts!  Everywhere! This is probably the single most useful and important tip we can offer.  A shortcut allows a file to be in two places at once. Why would you want that?  Well, the file and folder structure of every popular operating system on the market today is hierarchical.  This means that all objects (files and folders) always live within exactly one parent folder.  It’s a bit like a tree.  A tree has branches (folders) and leaves (files).  Each leaf, and each branch, is supported by exactly one parent branch, all the way back to the root of the tree (which, incidentally, is exactly why C:\ is called the “root folder” of the C: drive). That hard disks are structured this way may seem obvious and even necessary, but it’s only one way of organizing data.  There are others:  Relational databases, for example, organize structured data entirely differently.  The main limitation of hierarchical filing structures is that a file can only ever be in one branch of the tree – in only one folder – at a time.  Why is this a problem?  Well, there are two main reasons why this limitation is a problem for computer users: The “correct” place for a file, according to our organizational rationale, is very often a very inconvenient place for that file to be located.  Just because it’s correctly filed doesn’t mean it’s easy to get to.  Your file may be “correctly” buried six levels deep in your sub-folder structure, but you may need regular and speedy access to this file every day.  You could always move it to a more convenient location, but that would mean that you would need to re-file back to its “correct” location it every time you’d finished working on it.  Most unsatisfactory. A file may simply “belong” in two or more different locations within your file structure.  For example, say you’re an accountant and you have just completed the 2009 tax return for John Smith.  It might make sense to you to call this file 2009 Tax Return.doc and file it under Clients\John Smith.  But it may also be important to you to have the 2009 tax returns from all your clients together in the one place.  So you might also want to call the file John Smith.doc and file it under Tax Returns\2009.  The problem is, in a purely hierarchical filing system, you can’t put it in both places.  Grrrrr! Fortunately, Windows (and most other operating systems) offers a way for you to do exactly that:  It’s called a “shortcut” (also known as an “alias” on Macs and a “symbolic link” on UNIX systems).  Shortcuts allow a file to exist in one place, and an icon that represents the file to be created and put anywhere else you please.  In fact, you can create a dozen such icons and scatter them all over your hard disk.  Double-clicking on one of these icons/shortcuts opens up the original file, just as if you had double-clicked on the original file itself. Consider the following two icons: The one on the left is the actual Word document, while the one on the right is a shortcut that represents the Word document.  Double-clicking on either icon will open the same file.  There are two main visual differences between the icons: The shortcut will have a small arrow in the lower-left-hand corner (on Windows, anyway) The shortcut is allowed to have a name that does not include the file extension (the “.docx” part, in this case) You can delete the shortcut at any time without losing any actual data.  The original is still intact.  All you lose is the ability to get to that data from wherever the shortcut was. So why are shortcuts so great?  Because they allow us to easily overcome the main limitation of hierarchical file systems, and put a file in two (or more) places at the same time.  You will always have files that don’t play nice with your organizational rationale, and can’t be filed in only one place.  They demand to exist in two places.  Shortcuts allow this!  Furthermore, they allow you to collect your most often-opened files and folders together in one spot for convenient access.  The cool part is that the original files stay where they are, safe forever in their perfectly organized location. So your collection of most often-opened files can – and should – become a collection of shortcuts! If you’re still not convinced of the utility of shortcuts, consider the following well-known areas of a typical Windows computer: The Start Menu (and all the programs that live within it) The Quick Launch bar (or the Superbar in Windows 7) The “Favorite folders” area in the top-left corner of the Windows Explorer window (in Windows Vista or Windows 7) Your Internet Explorer Favorites or Firefox Bookmarks Each item in each of these areas is a shortcut!  Each of those areas exist for one purpose only:  For convenience – to provide you with a collection of the files and folders you access most often. It should be easy to see by now that shortcuts are designed for one single purpose:  To make accessing your files more convenient.  Each time you double-click on a shortcut, you are saved the hassle of locating the file (or folder, or program, or drive, or control panel icon) that it represents. Shortcuts allow us to invent a golden rule of file and folder organization: “Only ever have one copy of a file – never have two copies of the same file.  Use a shortcut instead” (this rule doesn’t apply to copies created for backup purposes, of course!) There are also lesser rules, like “don’t move a file into your work area – create a shortcut there instead”, and “any time you find yourself frustrated with how long it takes to locate a file, create a shortcut to it and place that shortcut in a convenient location.” So how to we create these massively useful shortcuts?  There are two main ways: “Copy” the original file or folder (click on it and type Ctrl-C, or right-click on it and select Copy):  Then right-click in an empty area of the destination folder (the place where you want the shortcut to go) and select Paste shortcut: Right-drag (drag with the right mouse button) the file from the source folder to the destination folder.  When you let go of the mouse button at the destination folder, a menu pops up: Select Create shortcuts here. Note that when shortcuts are created, they are often named something like Shortcut to Budget Detail.doc (windows XP) or Budget Detail – Shortcut.doc (Windows 7).   If you don’t like those extra words, you can easily rename the shortcuts after they’re created, or you can configure Windows to never insert the extra words in the first place (see our article on how to do this). And of course, you can create shortcuts to folders too, not just to files! Bottom line: Whenever you have a file that you’d like to access from somewhere else (whether it’s convenience you’re after, or because the file simply belongs in two places), create a shortcut to the original file in the new location. Tip #10.  Separate Application Files from Data Files Any digital organization guru will drum this rule into you.  Application files are the components of the software you’ve installed (e.g. Microsoft Word, Adobe Photoshop or Internet Explorer).  Data files are the files that you’ve created for yourself using that software (e.g. Word Documents, digital photos, emails or playlists). Software gets installed, uninstalled and upgraded all the time.  Hopefully you always have the original installation media (or downloaded set-up file) kept somewhere safe, and can thus reinstall your software at any time.  This means that the software component files are of little importance.  Whereas the files you have created with that software is, by definition, important.  It’s a good rule to always separate unimportant files from important files. So when your software prompts you to save a file you’ve just created, take a moment and check out where it’s suggesting that you save the file.  If it’s suggesting that you save the file into the same folder as the software itself, then definitely don’t follow that suggestion.  File it in your own folder!  In fact, see if you can find the program’s configuration option that determines where files are saved by default (if it has one), and change it. Tip #11.  Organize Files Based on Purpose, Not on File Type If you have, for example a folder called Work\Clients\Johnson, and within that folder you have two sub-folders, Word Documents and Spreadsheets (in other words, you’re separating “.doc” files from “.xls” files), then chances are that you’re not optimally organized.  It makes little sense to organize your files based on the program that created them.  Instead, create your sub-folders based on the purpose of the file.  For example, it would make more sense to create sub-folders called Correspondence and Financials.  It may well be that all the files in a given sub-folder are of the same file-type, but this should be more of a coincidence and less of a design feature of your organization system. Tip #12.  Maintain the Same Folder Structure on All Your Computers In other words, whatever organizational system you create, apply it to every computer that you can.  There are several benefits to this: There’s less to remember.  No matter where you are, you always know where to look for your files If you copy or synchronize files from one computer to another, then setting up the synchronization job becomes very simple Shortcuts can be copied or moved from one computer to another with ease (assuming the original files are also copied/moved).  There’s no need to find the target of the shortcut all over again on the second computer Ditto for linked files (e.g Word documents that link to data in a separate Excel file), playlists, and any files that reference the exact file locations of other files. This applies even to the drive that your files are stored on.  If your files are stored on C: on one computer, make sure they’re stored on C: on all your computers.  Otherwise all your shortcuts, playlists and linked files will stop working! Tip #13.  Create an “Inbox” Folder Create yourself a folder where you store all files that you’re currently working on, or that you haven’t gotten around to filing yet.  You can think of this folder as your “to-do” list.  You can call it “Inbox” (making it the same metaphor as your email system), or “Work”, or “To-Do”, or “Scratch”, or whatever name makes sense to you.  It doesn’t matter what you call it – just make sure you have one! Once you have finished working on a file, you then move it from the “Inbox” to its correct location within your organizational structure. You may want to use your Desktop as this “Inbox” folder.  Rightly or wrongly, most people do.  It’s not a bad place to put such files, but be careful:  If you do decide that your Desktop represents your “to-do” list, then make sure that no other files find their way there.  In other words, make sure that your “Inbox”, wherever it is, Desktop or otherwise, is kept free of junk – stray files that don’t belong there. So where should you put this folder, which, almost by definition, lives outside the structure of the rest of your filing system?  Well, first and foremost, it has to be somewhere handy.  This will be one of your most-visited folders, so convenience is key.  Putting it on the Desktop is a great option – especially if you don’t have any other folders on your Desktop:  the folder then becomes supremely easy to find in Windows Explorer: You would then create shortcuts to this folder in convenient spots all over your computer (“Favorite Links”, “Quick Launch”, etc). Tip #14.  Ensure You have Only One “Inbox” Folder Once you’ve created your “Inbox” folder, don’t use any other folder location as your “to-do list”.  Throw every incoming or created file into the Inbox folder as you create/receive it.  This keeps the rest of your computer pristine and free of randomly created or downloaded junk.  The last thing you want to be doing is checking multiple folders to see all your current tasks and projects.  Gather them all together into one folder. Here are some tips to help ensure you only have one Inbox: Set the default “save” location of all your programs to this folder. Set the default “download” location for your browser to this folder. If this folder is not your desktop (recommended) then also see if you can make a point of not putting “to-do” files on your desktop.  This keeps your desktop uncluttered and Zen-like: (the Inbox folder is in the bottom-right corner) Tip #15.  Be Vigilant about Clearing Your “Inbox” Folder This is one of the keys to staying organized.  If you let your “Inbox” overflow (i.e. allow there to be more than, say, 30 files or folders in there), then you’re probably going to start feeling like you’re overwhelmed:  You’re not keeping up with your to-do list.  Once your Inbox gets beyond a certain point (around 30 files, studies have shown), then you’ll simply start to avoid it.  You may continue to put files in there, but you’ll be scared to look at it, fearing the “out of control” feeling that all overworked, chaotic or just plain disorganized people regularly feel. So, here’s what you can do: Visit your Inbox/to-do folder regularly (at least five times per day). Scan the folder regularly for files that you have completed working on and are ready for filing.  File them immediately. Make it a source of pride to keep the number of files in this folder as small as possible.  If you value peace of mind, then make the emptiness of this folder one of your highest (computer) priorities If you know that a particular file has been in the folder for more than, say, six weeks, then admit that you’re not actually going to get around to processing it, and move it to its final resting place. Tip #16.  File Everything Immediately, and Use Shortcuts for Your Active Projects As soon as you create, receive or download a new file, store it away in its “correct” folder immediately.  Then, whenever you need to work on it (possibly straight away), create a shortcut to it in your “Inbox” (“to-do”) folder or your desktop.  That way, all your files are always in their “correct” locations, yet you still have immediate, convenient access to your current, active files.  When you finish working on a file, simply delete the shortcut. Ideally, your “Inbox” folder – and your Desktop – should contain no actual files or folders.  They should simply contain shortcuts. Tip #17.  Use Directory Symbolic Links (or Junctions) to Maintain One Unified Folder Structure Using this tip, we can get around a potential hiccup that we can run into when creating our organizational structure – the issue of having more than one drive on our computer (C:, D:, etc).  We might have files we need to store on the D: drive for space reasons, and yet want to base our organized folder structure on the C: drive (or vice-versa). Your chosen organizational structure may dictate that all your files must be accessed from the C: drive (for example, the root folder of all your files may be something like C:\Files).  And yet you may still have a D: drive and wish to take advantage of the hundreds of spare Gigabytes that it offers.  Did you know that it’s actually possible to store your files on the D: drive and yet access them as if they were on the C: drive?  And no, we’re not talking about shortcuts here (although the concept is very similar). By using the shell command mklink, you can essentially take a folder that lives on one drive and create an alias for it on a different drive (you can do lots more than that with mklink – for a full rundown on this programs capabilities, see our dedicated article).  These aliases are called directory symbolic links (and used to be known as junctions).  You can think of them as “virtual” folders.  They function exactly like regular folders, except they’re physically located somewhere else. For example, you may decide that your entire D: drive contains your complete organizational file structure, but that you need to reference all those files as if they were on the C: drive, under C:\Files.  If that was the case you could create C:\Files as a directory symbolic link – a link to D:, as follows: mklink /d c:\files d:\ Or it may be that the only files you wish to store on the D: drive are your movie collection.  You could locate all your movie files in the root of your D: drive, and then link it to C:\Files\Media\Movies, as follows: mklink /d c:\files\media\movies d:\ (Needless to say, you must run these commands from a command prompt – click the Start button, type cmd and press Enter) Tip #18. Customize Your Folder Icons This is not strictly speaking an organizational tip, but having unique icons for each folder does allow you to more quickly visually identify which folder is which, and thus saves you time when you’re finding files.  An example is below (from my folder that contains all files downloaded from the Internet): To learn how to change your folder icons, please refer to our dedicated article on the subject. Tip #19.  Tidy Your Start Menu The Windows Start Menu is usually one of the messiest parts of any Windows computer.  Every program you install seems to adopt a completely different approach to placing icons in this menu.  Some simply put a single program icon.  Others create a folder based on the name of the software.  And others create a folder based on the name of the software manufacturer.  It’s chaos, and can make it hard to find the software you want to run. Thankfully we can avoid this chaos with useful operating system features like Quick Launch, the Superbar or pinned start menu items. Even so, it would make a lot of sense to get into the guts of the Start Menu itself and give it a good once-over.  All you really need to decide is how you’re going to organize your applications.  A structure based on the purpose of the application is an obvious candidate.  Below is an example of one such structure: In this structure, Utilities means software whose job it is to keep the computer itself running smoothly (configuration tools, backup software, Zip programs, etc).  Applications refers to any productivity software that doesn’t fit under the headings Multimedia, Graphics, Internet, etc. In case you’re not aware, every icon in your Start Menu is a shortcut and can be manipulated like any other shortcut (copied, moved, deleted, etc). With the Windows Start Menu (all version of Windows), Microsoft has decided that there be two parallel folder structures to store your Start Menu shortcuts.  One for you (the logged-in user of the computer) and one for all users of the computer.  Having two parallel structures can often be redundant:  If you are the only user of the computer, then having two parallel structures is totally redundant.  Even if you have several users that regularly log into the computer, most of your installed software will need to be made available to all users, and should thus be moved out of the “just you” version of the Start Menu and into the “all users” area. To take control of your Start Menu, so you can start organizing it, you’ll need to know how to access the actual folders and shortcut files that make up the Start Menu (both versions of it).  To find these folders and files, click the Start button and then right-click on the All Programs text (Windows XP users should right-click on the Start button itself): The Open option refers to the “just you” version of the Start Menu, while the Open All Users option refers to the “all users” version.  Click on the one you want to organize. A Windows Explorer window then opens with your chosen version of the Start Menu selected.  From there it’s easy.  Double-click on the Programs folder and you’ll see all your folders and shortcuts.  Now you can delete/rename/move until it’s just the way you want it. Note:  When you’re reorganizing your Start Menu, you may want to have two Explorer windows open at the same time – one showing the “just you” version and one showing the “all users” version.  You can drag-and-drop between the windows. Tip #20.  Keep Your Start Menu Tidy Once you have a perfectly organized Start Menu, try to be a little vigilant about keeping it that way.  Every time you install a new piece of software, the icons that get created will almost certainly violate your organizational structure. So to keep your Start Menu pristine and organized, make sure you do the following whenever you install a new piece of software: Check whether the software was installed into the “just you” area of the Start Menu, or the “all users” area, and then move it to the correct area. Remove all the unnecessary icons (like the “Read me” icon, the “Help” icon (you can always open the help from within the software itself when it’s running), the “Uninstall” icon, the link(s)to the manufacturer’s website, etc) Rename the main icon(s) of the software to something brief that makes sense to you.  For example, you might like to rename Microsoft Office Word 2010 to simply Word Move the icon(s) into the correct folder based on your Start Menu organizational structure And don’t forget:  when you uninstall a piece of software, the software’s uninstall routine is no longer going to be able to remove the software’s icon from the Start Menu (because you moved and/or renamed it), so you’ll need to remove that icon manually. Tip #21.  Tidy C:\ The root of your C: drive (C:\) is a common dumping ground for files and folders – both by the users of your computer and by the software that you install on your computer.  It can become a mess. There’s almost no software these days that requires itself to be installed in C:\.  99% of the time it can and should be installed into C:\Program Files.  And as for your own files, well, it’s clear that they can (and almost always should) be stored somewhere else. In an ideal world, your C:\ folder should look like this (on Windows 7): Note that there are some system files and folders in C:\ that are usually and deliberately “hidden” (such as the Windows virtual memory file pagefile.sys, the boot loader file bootmgr, and the System Volume Information folder).  Hiding these files and folders is a good idea, as they need to stay where they are and are almost never needed to be opened or even seen by you, the user.  Hiding them prevents you from accidentally messing with them, and enhances your sense of order and well-being when you look at your C: drive folder. Tip #22.  Tidy Your Desktop The Desktop is probably the most abused part of a Windows computer (from an organization point of view).  It usually serves as a dumping ground for all incoming files, as well as holding icons to oft-used applications, plus some regularly opened files and folders.  It often ends up becoming an uncontrolled mess.  See if you can avoid this.  Here’s why… Application icons (Word, Internet Explorer, etc) are often found on the Desktop, but it’s unlikely that this is the optimum place for them.  The “Quick Launch” bar (or the Superbar in Windows 7) is always visible and so represents a perfect location to put your icons.  You’ll only be able to see the icons on your Desktop when all your programs are minimized.  It might be time to get your application icons off your desktop… You may have decided that the Inbox/To-do folder on your computer (see tip #13, above) should be your Desktop.  If so, then enough said.  Simply be vigilant about clearing it and preventing it from being polluted by junk files (see tip #15, above).  On the other hand, if your Desktop is not acting as your “Inbox” folder, then there’s no reason for it to have any data files or folders on it at all, except perhaps a couple of shortcuts to often-opened files and folders (either ongoing or current projects).  Everything else should be moved to your “Inbox” folder. In an ideal world, it might look like this: Tip #23.  Move Permanent Items on Your Desktop Away from the Top-Left Corner When files/folders are dragged onto your desktop in a Windows Explorer window, or when shortcuts are created on your Desktop from Internet Explorer, those icons are always placed in the top-left corner – or as close as they can get.  If you have other files, folders or shortcuts that you keep on the Desktop permanently, then it’s a good idea to separate these permanent icons from the transient ones, so that you can quickly identify which ones the transients are.  An easy way to do this is to move all your permanent icons to the right-hand side of your Desktop.  That should keep them separated from incoming items. Tip #24.  Synchronize If you have more than one computer, you’ll almost certainly want to share files between them.  If the computers are permanently attached to the same local network, then there’s no need to store multiple copies of any one file or folder – shortcuts will suffice.  However, if the computers are not always on the same network, then you will at some point need to copy files between them.  For files that need to permanently live on both computers, the ideal way to do this is to synchronize the files, as opposed to simply copying them. We only have room here to write a brief summary of synchronization, not a full article.  In short, there are several different types of synchronization: Where the contents of one folder are accessible anywhere, such as with Dropbox Where the contents of any number of folders are accessible anywhere, such as with Windows Live Mesh Where any files or folders from anywhere on your computer are synchronized with exactly one other computer, such as with the Windows “Briefcase”, Microsoft SyncToy, or (much more powerful, yet still free) SyncBack from 2BrightSparks.  This only works when both computers are on the same local network, at least temporarily. A great advantage of synchronization solutions is that once you’ve got it configured the way you want it, then the sync process happens automatically, every time.  Click a button (or schedule it to happen automatically) and all your files are automagically put where they’re supposed to be. If you maintain the same file and folder structure on both computers, then you can also sync files depend upon the correct location of other files, like shortcuts, playlists and office documents that link to other office documents, and the synchronized files still work on the other computer! Tip #25.  Hide Files You Never Need to See If you have your files well organized, you will often be able to tell if a file is out of place just by glancing at the contents of a folder (for example, it should be pretty obvious if you look in a folder that contains all the MP3s from one music CD and see a Word document in there).  This is a good thing – it allows you to determine if there are files out of place with a quick glance.  Yet sometimes there are files in a folder that seem out of place but actually need to be there, such as the “folder art” JPEGs in music folders, and various files in the root of the C: drive.  If such files never need to be opened by you, then a good idea is to simply hide them.  Then, the next time you glance at the folder, you won’t have to remember whether that file was supposed to be there or not, because you won’t see it at all! To hide a file, simply right-click on it and choose Properties: Then simply tick the Hidden tick-box:   Tip #26.  Keep Every Setup File These days most software is downloaded from the Internet.  Whenever you download a piece of software, keep it.  You’ll never know when you need to reinstall the software. Further, keep with it an Internet shortcut that links back to the website where you originally downloaded it, in case you ever need to check for updates. See tip #33 below for a full description of the excellence of organizing your setup files. Tip #27.  Try to Minimize the Number of Folders that Contain Both Files and Sub-folders Some of the folders in your organizational structure will contain only files.  Others will contain only sub-folders.  And you will also have some folders that contain both files and sub-folders.  You will notice slight improvements in how long it takes you to locate a file if you try to avoid this third type of folder.  It’s not always possible, of course – you’ll always have some of these folders, but see if you can avoid it. One way of doing this is to take all the leftover files that didn’t end up getting stored in a sub-folder and create a special “Miscellaneous” or “Other” folder for them. Tip #28.  Starting a Filename with an Underscore Brings it to the Top of a List Further to the previous tip, if you name that “Miscellaneous” or “Other” folder in such a way that its name begins with an underscore “_”, then it will appear at the top of the list of files/folders. The screenshot below is an example of this.  Each folder in the list contains a set of digital photos.  The folder at the top of the list, _Misc, contains random photos that didn’t deserve their own dedicated folder: Tip #29.  Clean Up those CD-ROMs and (shudder!) Floppy Disks Have you got a pile of CD-ROMs stacked on a shelf of your office?  Old photos, or files you archived off onto CD-ROM (or even worse, floppy disks!) because you didn’t have enough disk space at the time?  In the meantime have you upgraded your computer and now have 500 Gigabytes of space you don’t know what to do with?  If so, isn’t it time you tidied up that stack of disks and filed them into your gorgeous new folder structure? So what are you waiting for?  Bite the bullet, copy them all back onto your computer, file them in their appropriate folders, and then back the whole lot up onto a shiny new 1000Gig external hard drive! Useful Folders to Create This next section suggests some useful folders that you might want to create within your folder structure.  I’ve personally found them to be indispensable. The first three are all about convenience – handy folders to create and then put somewhere that you can always access instantly.  For each one, it’s not so important where the actual folder is located, but it’s very important where you put the shortcut(s) to the folder.  You might want to locate the shortcuts: On your Desktop In your “Quick Launch” area (or pinned to your Windows 7 Superbar) In your Windows Explorer “Favorite Links” area Tip #30.  Create an “Inbox” (“To-Do”) Folder This has already been mentioned in depth (see tip #13), but we wanted to reiterate its importance here.  This folder contains all the recently created, received or downloaded files that you have not yet had a chance to file away properly, and it also may contain files that you have yet to process.  In effect, it becomes a sort of “to-do list”.  It doesn’t have to be called “Inbox” – you can call it whatever you want. Tip #31.  Create a Folder where Your Current Projects are Collected Rather than going hunting for them all the time, or dumping them all on your desktop, create a special folder where you put links (or work folders) for each of the projects you’re currently working on. You can locate this folder in your “Inbox” folder, on your desktop, or anywhere at all – just so long as there’s a way of getting to it quickly, such as putting a link to it in Windows Explorer’s “Favorite Links” area: Tip #32.  Create a Folder for Files and Folders that You Regularly Open You will always have a few files that you open regularly, whether it be a spreadsheet of your current accounts, or a favorite playlist.  These are not necessarily “current projects”, rather they’re simply files that you always find yourself opening.  Typically such files would be located on your desktop (or even better, shortcuts to those files).  Why not collect all such shortcuts together and put them in their own special folder? As with the “Current Projects” folder (above), you would want to locate that folder somewhere convenient.  Below is an example of a folder called “Quick links”, with about seven files (shortcuts) in it, that is accessible through the Windows Quick Launch bar: See tip #37 below for a full explanation of the power of the Quick Launch bar. Tip #33.  Create a “Set-ups” Folder A typical computer has dozens of applications installed on it.  For each piece of software, there are often many different pieces of information you need to keep track of, including: The original installation setup file(s).  This can be anything from a simple 100Kb setup.exe file you downloaded from a website, all the way up to a 4Gig ISO file that you copied from a DVD-ROM that you purchased. The home page of the software manufacturer (in case you need to look up something on their support pages, their forum or their online help) The page containing the download link for your actual file (in case you need to re-download it, or download an upgraded version) The serial number Your proof-of-purchase documentation Any other template files, plug-ins, themes, etc that also need to get installed For each piece of software, it’s a great idea to gather all of these files together and put them in a single folder.  The folder can be the name of the software (plus possibly a very brief description of what it’s for – in case you can’t remember what the software does based in its name).  Then you would gather all of these folders together into one place, and call it something like “Software” or “Setups”. If you have enough of these folders (I have several hundred, being a geek, collected over 20 years), then you may want to further categorize them.  My own categorization structure is based on “platform” (operating system): The last seven folders each represents one platform/operating system, while _Operating Systems contains set-up files for installing the operating systems themselves.  _Hardware contains ROMs for hardware I own, such as routers. Within the Windows folder (above), you can see the beginnings of the vast library of software I’ve compiled over the years: An example of a typical application folder looks like this: Tip #34.  Have a “Settings” Folder We all know that our documents are important.  So are our photos and music files.  We save all of these files into folders, and then locate them afterwards and double-click on them to open them.  But there are many files that are important to us that can’t be saved into folders, and then searched for and double-clicked later on.  These files certainly contain important information that we need, but are often created internally by an application, and saved wherever that application feels is appropriate. A good example of this is the “PST” file that Outlook creates for us and uses to store all our emails, contacts, appointments and so forth.  Another example would be the collection of Bookmarks that Firefox stores on your behalf. And yet another example would be the customized settings and configuration files of our all our software.  Granted, most Windows programs store their configuration in the Registry, but there are still many programs that use configuration files to store their settings. Imagine if you lost all of the above files!  And yet, when people are backing up their computers, they typically only back up the files they know about – those that are stored in the “My Documents” folder, etc.  If they had a hard disk failure or their computer was lost or stolen, their backup files would not include some of the most vital files they owned.  Also, when migrating to a new computer, it’s vital to ensure that these files make the journey. It can be a very useful idea to create yourself a folder to store all your “settings” – files that are important to you but which you never actually search for by name and double-click on to open them.  Otherwise, next time you go to set up a new computer just the way you want it, you’ll need to spend hours recreating the configuration of your previous computer! So how to we get our important files into this folder?  Well, we have a few options: Some programs (such as Outlook and its PST files) allow you to place these files wherever you want.  If you delve into the program’s options, you will find a setting somewhere that controls the location of the important settings files (or “personal storage” – PST – when it comes to Outlook) Some programs do not allow you to change such locations in any easy way, but if you get into the Registry, you can sometimes find a registry key that refers to the location of the file(s).  Simply move the file into your Settings folder and adjust the registry key to refer to the new location. Some programs stubbornly refuse to allow their settings files to be placed anywhere other then where they stipulate.  When faced with programs like these, you have three choices:  (1) You can ignore those files, (2) You can copy the files into your Settings folder (let’s face it – settings don’t change very often), or (3) you can use synchronization software, such as the Windows Briefcase, to make synchronized copies of all your files in your Settings folder.  All you then have to do is to remember to run your sync software periodically (perhaps just before you run your backup software!). There are some other things you may decide to locate inside this new “Settings” folder: Exports of registry keys (from the many applications that store their configurations in the Registry).  This is useful for backup purposes or for migrating to a new computer Notes you’ve made about all the specific customizations you have made to a particular piece of software (so that you’ll know how to do it all again on your next computer) Shortcuts to webpages that detail how to tweak certain aspects of your operating system or applications so they are just the way you like them (such as how to remove the words “Shortcut to” from the beginning of newly created shortcuts).  In other words, you’d want to create shortcuts to half the pages on the How-To Geek website! Here’s an example of a “Settings” folder: Windows Features that Help with Organization This section details some of the features of Microsoft Windows that are a boon to anyone hoping to stay optimally organized. Tip #35.  Use the “Favorite Links” Area to Access Oft-Used Folders Once you’ve created your great new filing system, work out which folders you access most regularly, or which serve as great starting points for locating the rest of the files in your folder structure, and then put links to those folders in your “Favorite Links” area of the left-hand side of the Windows Explorer window (simply called “Favorites” in Windows 7):   Some ideas for folders you might want to add there include: Your “Inbox” folder (or whatever you’ve called it) – most important! The base of your filing structure (e.g. C:\Files) A folder containing shortcuts to often-accessed folders on other computers around the network (shown above as Network Folders) A folder containing shortcuts to your current projects (unless that folder is in your “Inbox” folder) Getting folders into this area is very simple – just locate the folder you’re interested in and drag it there! Tip #36.  Customize the Places Bar in the File/Open and File/Save Boxes Consider the screenshot below: The highlighted icons (collectively known as the “Places Bar”) can be customized to refer to any folder location you want, allowing instant access to any part of your organizational structure. Note:  These File/Open and File/Save boxes have been superseded by new versions that use the Windows Vista/Windows 7 “Favorite Links”, but the older versions (shown above) are still used by a surprisingly large number of applications. The easiest way to customize these icons is to use the Group Policy Editor, but not everyone has access to this program.  If you do, open it up and navigate to: User Configuration > Administrative Templates > Windows Components > Windows Explorer > Common Open File Dialog If you don’t have access to the Group Policy Editor, then you’ll need to get into the Registry.  Navigate to: HKEY_CURRENT_USER \ Software \ Microsoft  \ Windows \ CurrentVersion \ Policies \ comdlg32 \ Placesbar It should then be easy to make the desired changes.  Log off and log on again to allow the changes to take effect. Tip #37.  Use the Quick Launch Bar as a Application and File Launcher That Quick Launch bar (to the right of the Start button) is a lot more useful than people give it credit for.  Most people simply have half a dozen icons in it, and use it to start just those programs.  But it can actually be used to instantly access just about anything in your filing system: For complete instructions on how to set this up, visit our dedicated article on this topic. Tip #38.  Put a Shortcut to Windows Explorer into Your Quick Launch Bar This is only necessary in Windows Vista and Windows XP.  The Microsoft boffins finally got wise and added it to the Windows 7 Superbar by default. Windows Explorer – the program used for managing your files and folders – is one of the most useful programs in Windows.  Anyone who considers themselves serious about being organized needs instant access to this program at any time.  A great place to create a shortcut to this program is in the Windows XP and Windows Vista “Quick Launch” bar: To get it there, locate it in your Start Menu (usually under “Accessories”) and then right-drag it down into your Quick Launch bar (and create a copy). Tip #39.  Customize the Starting Folder for Your Windows 7 Explorer Superbar Icon If you’re on Windows 7, your Superbar will include a Windows Explorer icon.  Clicking on the icon will launch Windows Explorer (of course), and will start you off in your “Libraries” folder.  Libraries may be fine as a starting point, but if you have created yourself an “Inbox” folder, then it would probably make more sense to start off in this folder every time you launch Windows Explorer. To change this default/starting folder location, then first right-click the Explorer icon in the Superbar, and then right-click Properties:Then, in Target field of the Windows Explorer Properties box that appears, type %windir%\explorer.exe followed by the path of the folder you wish to start in.  For example: %windir%\explorer.exe C:\Files If that folder happened to be on the Desktop (and called, say, “Inbox”), then you would use the following cleverness: %windir%\explorer.exe shell:desktop\Inbox Then click OK and test it out. Tip #40.  Ummmmm…. No, that’s it.  I can’t think of another one.  That’s all of the tips I can come up with.  I only created this one because 40 is such a nice round number… Case Study – An Organized PC To finish off the article, I have included a few screenshots of my (main) computer (running Vista).  The aim here is twofold: To give you a sense of what it looks like when the above, sometimes abstract, tips are applied to a real-life computer, and To offer some ideas about folders and structure that you may want to steal to use on your own PC. Let’s start with the C: drive itself.  Very minimal.  All my files are contained within C:\Files.  I’ll confine the rest of the case study to this folder: That folder contains the following: Mark: My personal files VC: My business (Virtual Creations, Australia) Others contains files created by friends and family Data contains files from the rest of the world (can be thought of as “public” files, usually downloaded from the Net) Settings is described above in tip #34 The Data folder contains the following sub-folders: Audio:  Radio plays, audio books, podcasts, etc Development:  Programmer and developer resources, sample source code, etc (see below) Humour:  Jokes, funnies (those emails that we all receive) Movies:  Downloaded and ripped movies (all legal, of course!), their scripts, DVD covers, etc. Music:  (see below) Setups:  Installation files for software (explained in full in tip #33) System:  (see below) TV:  Downloaded TV shows Writings:  Books, instruction manuals, etc (see below) The Music folder contains the following sub-folders: Album covers:  JPEG scans Guitar tabs:  Text files of guitar sheet music Lists:  e.g. “Top 1000 songs of all time” Lyrics:  Text files MIDI:  Electronic music files MP3 (representing 99% of the Music folder):  MP3s, either ripped from CDs or downloaded, sorted by artist/album name Music Video:  Video clips Sheet Music:  usually PDFs The Data\Writings folder contains the following sub-folders: (all pretty self-explanatory) The Data\Development folder contains the following sub-folders: Again, all pretty self-explanatory (if you’re a geek) The Data\System folder contains the following sub-folders: These are usually themes, plug-ins and other downloadable program-specific resources. The Mark folder contains the following sub-folders: From Others:  Usually letters that other people (friends, family, etc) have written to me For Others:  Letters and other things I have created for other people Green Book:  None of your business Playlists:  M3U files that I have compiled of my favorite songs (plus one M3U playlist file for every album I own) Writing:  Fiction, philosophy and other musings of mine Mark Docs:  Shortcut to C:\Users\Mark Settings:  Shortcut to C:\Files\Settings\Mark The Others folder contains the following sub-folders: The VC (Virtual Creations, my business – I develop websites) folder contains the following sub-folders: And again, all of those are pretty self-explanatory. Conclusion These tips have saved my sanity and helped keep me a productive geek, but what about you? What tips and tricks do you have to keep your files organized?  Please share them with us in the comments.  Come on, don’t be shy… Similar Articles Productive Geek Tips Fix For When Windows Explorer in Vista Stops Showing File NamesWhy Did Windows Vista’s Music Folder Icon Turn Yellow?Print or Create a Text File List of the Contents in a Directory the Easy WayCustomize the Windows 7 or Vista Send To MenuAdd Copy To / Move To on Windows 7 or Vista Right-Click Menu TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Track Daily Goals With 42Goals Video Toolbox is a Superb Online Video Editor Fun with 47 charts and graphs Tomorrow is Mother’s Day Check the Average Speed of YouTube Videos You’ve Watched OutlookStatView Scans and Displays General Usage Statistics

    Read the article

  • Network outside internal not reaching TMG Forefront 2010 (Hyper-V environment)

    - by Pascal
    Below is my environment: I have 1 physical machine running Windows 2008 R2, with the Hyper-V role. This machine has 3 physical NICs: One for Internet One for Internal Network One for Wireless Network All 3 have their respective Virtual Networks in Hyper-V, and I have an extra Private virutal machine network for a DMZ Network. In one of the virtual machines, I have TMG Forefront 2010 SP1 installed, with all 4 networks available to it. Below is the IPCONFIG /ALL at the firewall: Windows IP Configuration Host Name . . . . . . . . . . . . : FRW-EXP1-02 Primary Dns Suffix . . . . . . . : exp1.eti.br Node Type . . . . . . . . . . . . : Hybrid IP Routing Enabled. . . . . . . . : Yes WINS Proxy Enabled. . . . . . . . : No DNS Suffix Search List. . . . . . : exp1.eti.br Ethernet adapter Internet: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter #4 Physical Address. . . . . . . . . : 00-15-5D-01-06-0E DHCP Enabled. . . . . . . . . . . : Yes Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::6d05:6033:4cfc:bdf5%15(Preferred) IPv4 Address. . . . . . . . . . . : 189.100.110.xxx(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.240.0 Lease Obtained. . . . . . . . . . : quarta-feira, 5 de janeiro de 2011 11:17:24 Lease Expires . . . . . . . . . . : quarta-feira, 5 de janeiro de 2011 16:07:02 Default Gateway . . . . . . . . . : 189.100.96.xxx DHCP Server . . . . . . . . . . . : 201.6.2.43 DHCPv6 IAID . . . . . . . . . . . : 436213085 DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-14-6D-75-6F-00-15-5D-01-06-0B DNS Servers . . . . . . . . . . . : 201.6.2.163 201.6.2.43 NetBIOS over Tcpip. . . . . . . . : Enabled Ethernet adapter Rede Interna: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter #3 Physical Address. . . . . . . . . : 00-15-5D-01-06-0C DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::51ff:4723:ce4c:bbc3%14(Preferred) IPv4 Address. . . . . . . . . . . : 10.50.75.10(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : DHCPv6 IAID . . . . . . . . . . . : 352327005 DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-14-6D-75-6F-00-15-5D-01-06-0B DNS Servers . . . . . . . . . . . : 10.50.75.1 10.50.75.2 NetBIOS over Tcpip. . . . . . . . : Enabled Ethernet adapter DMZ: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter #2 Physical Address. . . . . . . . . : 00-15-5D-01-06-0A DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::d4c5:75cf:e9aa:73e1%13(Preferred) IPv4 Address. . . . . . . . . . . : 192.168.10.1(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : DHCPv6 IAID . . . . . . . . . . . : 301995357 DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-14-6D-75-6F-00-15-5D-01-06-0B DNS Servers . . . . . . . . . . . : fec0:0:0:ffff::1%1 fec0:0:0:ffff::2%1 fec0:0:0:ffff::3%1 NetBIOS over Tcpip. . . . . . . . : Enabled Ethernet adapter Wireless: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter Physical Address. . . . . . . . . : 00-15-5D-01-06-0B DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::459:8ca6:d02:8da1%11(Preferred) IPv4 Address. . . . . . . . . . . : 192.168.1.10(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : DHCPv6 IAID . . . . . . . . . . . : 234886493 DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-14-6D-75-6F-00-15-5D-01-06-0B DNS Servers . . . . . . . . . . . : fec0:0:0:ffff::1%1 fec0:0:0:ffff::2%1 fec0:0:0:ffff::3%1 NetBIOS over Tcpip. . . . . . . . : Enabled I have the Networks below at Forefront: External: IP addresses external to the Forefront TMG Networks Internal: 10.50.75.0 - 10.50.75.255 Local Host: Perimiter: 192.168.10.0 - 192.168.10.255 Wireless: 192.168.1.0 - 192.168.1.255 In the Networks Rules, I have: 1 => Route => Local Host => All Networks 2 => Route => Quarantined; VPN => Internal 3 => NAT => Internal; VPN => Perimiter 4 => NAT => Internal; Perimiter; Quarantined; VPN; Wireless => External My problem is that I can only communicate with the Internal and External networks. If a ping www.google.com or 10.50.75.21 from the Forefront VM, I get answer backs without a problem. If I try to ping a machine at the Perimiter network or the Wireless network, it doesn't get routed back to Forefront, and it's the default gateway on all Networks. Here as ping samples: PS C:\Users\Administrator.TPB1> ping www.google.com Pinging www.l.google.com [64.233.163.104] with 32 bytes of data: Reply from 64.233.163.104: bytes=32 time=11ms TTL=58 Reply from 64.233.163.104: bytes=32 time=8ms TTL=58 Ping statistics for 64.233.163.104: Packets: Sent = 2, Received = 2, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 8ms, Maximum = 11ms, Average = 9ms Control-C PS C:\Users\Administrator.TPB1> ping 10.50.75.21 Pinging 10.50.75.21 with 32 bytes of data: Reply from 10.50.75.21: bytes=32 time=1ms TTL=128 Reply from 10.50.75.21: bytes=32 time=1ms TTL=128 Reply from 10.50.75.21: bytes=32 time=1ms TTL=128 Reply from 10.50.75.21: bytes=32 time=1ms TTL=128 Ping statistics for 10.50.75.21: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 1ms, Maximum = 1ms, Average = 1ms PS C:\Users\Administrator.TPB1> ping 192.168.10.3 Pinging 192.168.10.3 with 32 bytes of data: Reply from 192.168.10.1: Destination host unreachable. Request timed out. Request timed out. Request timed out. Ping statistics for 192.168.10.3: Packets: Sent = 4, Received = 1, Lost = 3 (75% loss), PS C:\Users\Administrator.TPB1> The ping to the 192.168.10.3 gets the Destination host unreachable. Below is the ipconfig for the perimiter VM: PS C:\Users\Administrator.Administrator> ipconfig /all Windows IP Configuration Host Name . . . . . . . . . . . . : app-exp1-02 Primary Dns Suffix . . . . . . . : Node Type . . . . . . . . . . . . : Unkown IP Routing Enabled. . . . . . . . : No WINS Proxy Enabled. . . . . . . . : No Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter Physical Address. . . . . . . . . : 00-15-5D-01-06-08 DHCP Enabled. . . . . . . . . . . : No IPv4 Address. . . . . . . . . . . : 192.168.10.3 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 192.168.10.1 DNS Servers . . . . . . . . . . . : 201.6.2.163 201.6.2.43 Trying to ping 192.168.10.1 ( the gateway ) from the DMZ machine also does not work. When I use Log & Reports to monitor packets from Wireless network and Perimiter network, I don't get any packets link PING or HTTP that I try to send. But I do get a lot of spoofing messages for NETBIOS broadcasts... it's like Forefront thinks it's coming from a different network, but I don't know why. Please Help! Tks

    Read the article

< Previous Page | 225 226 227 228 229