Search Results

Search found 5300 results on 212 pages for 'my handy references'.

Page 23/212 | < Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >

  • ASP.NET Tooltips Extender Control

    Tooltips is always a good usability practice to display descripitve and meaningful message on UI, which provide guidance and extra information to users visually. However, I cannot find this kind of handy "control" in the latest version (40412) of the AJAX control toolkit. (Feature request?) The traditional HTML "title" or "tooltips" tag of control cannot make the users (nor even developers) happy, so I searched and found this Tooltip Extender control today. It is nice and handy for...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Tool Review: Telerik JustDecompile

    - by Sam Abraham
    In the next few lines, I will be providing a brief review of Telerik’s JustDecompile, a free .Net decompiler and assembly browser. In using Telerik’s 2012 Q3 JustDecompile release, one can see many great features.  First off, I loved the built-in options for loading .Net assemblies automatically using the Open->Load Framework menu option. Other options enable loading assemblies from GAC, XAP URL or locally from disk. The ability to create an “Assembly List” is quiet handy for grouping and saving a “List” of DLLs to load. All loaded assemblies are shown in the left panel of a split-panel screen. Clicking an assembly expands all namespaces within. Drilling further to class level displays the actual source code in the right panel in either IL, C# or Visual Basic. In conclusion, JustDecompile has grown and quickly matured into an indispensible handy tool for us developers. Telerik’s effort in maintaining and updating JustDecompile as well as the company’s commitment to keeping it free is much appreciated and valued.

    Read the article

  • Where Was That Session Again??? - PartnerNetwork Exchange Room Maps

    - by Get_Specialized!
    So as I was preparing my session schedule I was trying to visually picture where the Partner Exchange sessions at at Oracle OpenWorld 2012 were. So I've placed them in my blog as a handy resource once I was onsite. Possibly a few partners will also find them handy. Sunday the PartnerExchange keynote is in Moscone North  Hall D.  Afterwards you will find PartnerExchange tracks in Moscone South Hall. And then on Monday through Thursday there are PartnerExchange session tracks at the Marriott Marquis.

    Read the article

  • Lost in Code?

    - by Geertjan
    Sometimes you're coding and you find yourself forgetting your context. For example, look at this situation: The cursor is on line 52. Imagine you're coding there and you're puzzling on some problem for some time. Wouldn't it be handy to know, without scrolling up (and then back down again to where you were working), what the method signature looks like? And does the method begin two lines above the visible code or 10 lines? That information can now, in NetBeans iDE 7.3 (and already in the 7.3 Beta) very easily be ascertained, by putting the cursor on the closing brace of the code block: As you can see, a new vertical line is shown parallel to the line numbers, connecting the end of the method with its start, as well as, at the top of the editor, the complete method signature, together with the number of the line on which it's found. Very handy. Same support is found for other file types, such as in JavaScript files.

    Read the article

  • Setting up a new Silverlight 4 Project with WCF RIA Services

    - by Kevin Grossnicklaus
    Many of my clients are actively using Silverlight 4 and RIA Services to build powerful line of business applications.  Getting things set up correctly is critical to being to being able to take full advantage of the RIA services plumbing and when developers struggle with the setup they tend to shy away from the solution as a whole.  I’m a big proponent of RIA services and wanted to take the opportunity to share some of my experiences in setting up these types of projects.  In late 2010 I presented a RIA Services Master Class here in St. Louis, MO through my firm (ArchitectNow) and the information shared in this post was promised during that presentation. One other thing I want to mention before diving in is the existence of a number of other great posts on this subject.  I’ve learned a lot from many of them and wanted to call out a few of them.  The purpose of my post is to point out some of the gotchas that people get caught up on in the process but I would still encourage you to do as much additional research as you can to find the perfect setup for your needs. Here are a few additional blog posts and articles you should check out on the subject: http://msdn.microsoft.com/en-us/library/ee707351(VS.91).aspx http://adam-thompson.com/post/2010/07/03/Getting-Started-with-WCF-RIA-Services-for-Silverlight-4.aspx Technologies I don’t intend for this post to turn into a full WCF RIA Services tutorial but I did want to point out what technologies we will be using: Visual Studio.NET 2010 Silverlight 4.0 WCF RIA Services for Visual Studio 2010 Entity Framework 4.0 I also wanted to point out that the screenshots came from my personal development box which has a number of additional plug-ins and frameworks loaded so a few of the screenshots might not match 100% with what you see on your own machines. If you do not have Visual Studio 2010 you can download the express version from http://www.microsoft.com/express.  The Silverlight 4.0 tools and the WCF RIA Services components are installed via the Web Platform Installer (http://www.microsoft.com/web/download). Also, the examples given in this post are done in C#…sorry to you VB folks but the concepts are 100% identical. Setting up anew RIA Services Project This section will provide a step-by-step walkthrough of setting up a new RIA services project using a shared DLL for server side code and a simple Entity Framework model for data access.  All projects are created with the consistent ArchitectNow.RIAServices filename prefix and default namespace.  This would be modified to match your companies standards. First, open Visual Studio and open the new project window via File->New->Project.  In the New Project window, select the Silverlight folder in the Installed Templates section on the left and select “Silverlight Application” as your project type.  Verify your solution name and location are set appropriately.  Note that the project name we specified in the example below ends with .Client.  This indicates the name which will be given to our Silverlight project. I consider Silverlight a client-side technology and thus use this name to reflect that.  Click Ok to continue. During the creation on a new Silverlight 4 project you will be prompted with the following dialog to create a new web ASP.NET web project to host your Silverlight content.  As we are demonstrating the setup of a WCF RIA Services infrastructure, make sure the “Enable WCF RIA Services” option is checked and click OK.  Obviously, there are some other options here which have an effect on your solution and you are welcome to look around.  For our example we are going to leave the ASP.NET Web Application Project selected.  If you are interested in having your Silverlight project hosted in an MVC 2 application or a Web Site project these options are available as well.  Also, whichever web project type you select, the name can be modified here as well.  Note that it defaults to the same name as your Silverlight project with the addition of a .Web suffix. At this point, your full Silverlight 4 project and host ASP.NET Web Application should be created and will now display in your Visual Studio solution explorer as part of a single Visual Studio solution as follows: Now we want to add our WCF RIA Services projects to this same solution.  To do so, right-click on the Solution node in the solution explorer and select Add->New Project.  In the New Project dialog again select the Silverlight folder under the Visual C# node on the left and, in the main area of the screen, select the WCF RIA Services Class Library project template as shown below.  Make sure your project name is set appropriately as well.  For the sample below, we will name the project “ArchitectNow.RIAServices.Server.Entities”.   The .Server.Entities suffix we use is meant to simply indicate that this particular project will contain our WCF RIA Services entity classes (as you will see below).  Click OK to continue. Once you have created the WCF RIA Services Class Library specified above, Visual Studio will automatically add TWO projects to your solution.  The first will be an project called .Server.Entities (using our naming conventions) and the other will have the same name with a .Web extension.  The full solution (with all 4 projects) is shown in the image below.  The .Entities project will essentially remain empty and is actually a Silverlight 4 class library that will contain generated RIA Services domain objects.  It will be referenced by our front-end Silverlight project and thus allow for simplified sharing of code between the client and the server.   The .Entities.Web project is a .NET 4.0 class library into which we will put our data access code (via Entity Framework).  This is our server side code and business logic and the RIA Services plumbing will maintain a link between this project and the front end.  Specific entities such as our domain objects and other code we set to be shared will be copied automatically into the .Entities project to be used in both the front end and the back end. At this point, we want to do a little cleanup of the projects in our solution and we will do so by deleting the “Class1.cs” class from both the .Entities project and the .Entities.Web project.  (Has anyone ever intentionally named a class “Class1”?) Next, we need to configure a few references to make RIA Services work.  THIS IS A KEY STEP THAT CAUSES MANY HEADACHES FOR DEVELOPERS NEW TO THIS INFRASTRUCTURE! Using the Add References dialog in Visual Studio, add a project reference from the *.Client project (our Silverlight 4 client) to the *.Entities project (our RIA Services class library).  Next, again using the Add References dialog in Visual Studio, add a project reference from the *.Client.Web project (our ASP.NET host project) to the *.Entities.Web project (our back-end data services DLL).  To get to the Add References dialog, simply right-click on the project you with to add a reference to in the Visual Studio solution explorer and select “Add Reference” from the resulting context menu.  You will want to make sure these references are added as “Project” references to simplify your future debugging.  To reiterate the reference direction using the project names we have utilized in this example thus far:  .Client references .Entities and .Client.Web reference .Entities.Web.  If you have opted for a different naming convention, then the Silverlight project must reference the RIA Services Silverlight class library and the ASP.NET host project must reference the server-side class library. Next, we are going to add a new Entity Framework data model to our data services project (.Entities.Web).  We will do this by right clicking on this project (ArchitectNow.Server.Entities.Web in the above diagram) and selecting Add->New Project.  In the New Project dialog we will select ADO.NET Entity Data Model as in the following diagram.  For now we will call this simply SampleDataModel.edmx and click OK. It is worth pointing out that WCF RIA Services is in no way tied to the Entity Framework as a means of accessing data and any data access technology is supported (as long as the server side implementation maps to the RIA Services pattern which is a topic beyond the scope of this post).  We are using EF to quickly demonstrate the RIA Services concepts and setup infrastructure, as such, I am not providing a database schema with this post but am instead connecting to a small sample database on my local machine.  The following diagram shows a simple EF Data Model with two tables that I reverse engineered from a local data store.   If you are putting together your own solution, feel free to reverse engineer a few tables from any local database to which you have access. At this point, once you have an EF data model generated as an EDMX into your .Entites.Web project YOU MUST BUILD YOUR SOLUTION.  I know it seems strange to call that out but it important that the solution be built at this point for the next step to be successful.  Obviously, if you have any build errors, these must be addressed at this point. At this point we will add a RIA Services Domain Service to our .Entities.Web project (our server side code).  We will need to right-click on the .Entities.Web project and select Add->New Item.  In the Add New Item dialog, select Domain Service Class and verify the name of your new Domain Service is correct (ours is called SampleService.cs in the image below).  Next, click "Add”. After clicking “Add” to include the Domain Service Class in the selected project, you will be presented with the following dialog.  In it, you can choose which entities from the selected EDMX to include in your services and if they should be allowed to be edited (i.e. inserted, updated, or deleted) via this service.  If the “Available DataContext/ObjectContext classes” dropdown is empty, this indicates you have not yes successfully built your project after adding your EDMX.  I would also recommend verifying that the “Generate associated classes for metadata” option is selected.  Once you have selected the appropriate options, click “OK”. Once you have added the domain service class to the .Entities.Web project, the resulting solution should look similar to the following: Note that in the solution you now have a SampleDataModel.edmx which represents your EF data mapping to your database and a SampleService.cs which will contain a large amount of generated RIA Services code which RIA Services utilizes to access this data from the Silverlight front-end.  You will put all your server side data access code and logic into the SampleService.cs class.  The SampleService.metadata.cs class is for decorating the generated domain objects with attributes from the System.ComponentModel.DataAnnotations namespace for validation purposes. FINAL AND KEY CONFIGURATION STEP!  One key step that causes significant headache to developers configuring RIA Services for the first time is the fact that, when we added the EDMX to the .Entities.Web project for our EF data access, a connection string was generated and placed within a newly generated App.Context file within that project.  While we didn’t point it out at the time you can see it in the image above.  This connection string will be required for the EF data model to successfully locate it’s data.  Also, when we added the Domain Service class to the .Entities.Web project, a number of RIA Services configuration options were added to the same App.Config file.   Unfortunately, when we ultimately begin to utilize the RIA Services infrastructure, our Silverlight UI will be making RIA services calls through the ASP.NET host project (i.e. .Client.Web).  This host project has a reference to the .Entities.Web project which actually contains the code so all will pass through correctly EXCEPT the fact that the host project will utilize it’s own Web.Config for any configuration settings.  For this reason we must now merge all the sections of the App.Config file in the .Entities.Web project into the Web.Config file in the .Client.Web project.  I know this is a bit tedious and I wish there were a simpler solution but it is required for our RIA Services Domain Service to be made available to the front end Silverlight project.  Much of this manual merge can be achieved by simply cutting and pasting from App.Config into Web.Config.  Unfortunately, the <system.webServer> section will exist in both and the contents of this section will need to be manually merged.  Fortunately, this is a step that needs to be taken only once per solution.  As you add additional data structures and Domain Services methods to the server no additional changes will be necessary to the Web.Config. Next Steps At this point, we have walked through the basic setup of a simple RIA services solution.  Unfortunately, there is still a lot to know about RIA services and we have not even begun to take advantage of the plumbing which we just configured (meaning we haven’t even made a single RIA services call).  I plan on posting a few more introductory posts over the next few weeks to take us to this step.  If you have any questions on the content in this post feel free to reach out to me via this Blog and I’ll gladly point you in (hopefully) the right direction. Resources Prior to closing out this post, I wanted to share a number or resources to help you get started with RIA services.  While I plan on posting more on the subject, I didn’t invent any of this stuff and wanted to give credit to the following areas for helping me put a lot of these pieces into place.   The books and online resources below will go a long way to making you extremely productive with RIA services in the shortest time possible.  The only thing required of you is the dedication to take advantage of the resources available. Books Pro Business Applications with Silverlight 4 http://www.amazon.com/Pro-Business-Applications-Silverlight-4/dp/1430272074/ref=sr_1_2?ie=UTF8&qid=1291048751&sr=8-2 Silverlight 4 in Action http://www.amazon.com/Silverlight-4-Action-Pete-Brown/dp/1935182374/ref=sr_1_1?ie=UTF8&qid=1291048751&sr=8-1 Pro Silverlight for the Enterprise (Books for Professionals by Professionals) http://www.amazon.com/Pro-Silverlight-Enterprise-Books-Professionals/dp/1430218673/ref=sr_1_3?ie=UTF8&qid=1291048751&sr=8-3 Web Content RIA Services http://channel9.msdn.com/Blogs/RobBagby/NET-RIA-Services-in-5-Minutes http://silverlight.net/riaservices/ http://www.silverlight.net/learn/videos/all/net-ria-services-intro/ http://www.silverlight.net/learn/videos/all/ria-services-support-visual-studio-2010/ http://channel9.msdn.com/learn/courses/Silverlight4/SL4BusinessModule2/SL4LOB_02_01_RIAServices http://www.myvbprof.com/MainSite/index.aspx#/zSL4_RIA_01 http://channel9.msdn.com/blogs/egibson/silverlight-firestarter-ria-services http://msdn.microsoft.com/en-us/library/ee707336%28v=VS.91%29.aspx Silverlight www.silverlight.net http://msdn.microsoft.com/en-us/silverlight4trainingcourse.aspx http://channel9.msdn.com/shows/silverlighttv

    Read the article

  • Azure WNS to Win8 - Push Notifications for Metro Apps

    - by JoshReuben
    Background The Windows Azure Toolkit for Windows 8 allows you to build a Windows Azure Cloud Service that can send Push Notifications to registered Metro apps via Windows Notification Service (WNS). Some configuration is required - you need to: Register the Metro app for Windows Live Application Management Provide Package SID & Client Secret to WNS Modify the Azure Cloud App cscfg file and the Metro app package.appxmanifest file to contain matching Metro package name, SID and client secret. The Mechanism: These notifications take the form of XAML Tile, Toast, Raw or Badge UI notifications. The core engine is provided via the WNS nuget recipe, which exposes an API for constructing payloads and posting notifications to WNS. An application receives push notifications by requesting a notification channel from WNS, which returns a channel URI that the application then registers with a cloud service. In the cloud service, A WnsAccessTokenProvider authenticates with WNS by providing its credentials, the package SID and secret key, and receives in return an access token that the provider caches and can reuse for multiple notification requests. The cloud service constructs a notification request by filling out a template class that contains the information that will be sent with the notification, including text and image references. Using the channel URI of a registered client, the cloud service can then send a notification whenever it has an update for the user. The package contains the NotificationSendUtils class for submitting notifications. The Windows Azure Toolkit for Windows 8 (WAT) provides the PNWorker sample pair of solutions - The Azure server side contains a WebRole & a WorkerRole. The WebRole allows submission of new push notifications into an Azure Queue which the WorkerRole extracts and processes. Further background resources: http://watwindows8.codeplex.com/ - Windows Azure Toolkit for Windows 8 http://watwindows8.codeplex.com/wikipage?title=Push%20Notification%20Worker%20Sample - WAT WNS sample setup http://watwindows8.codeplex.com/wikipage?title=Using%20the%20Windows%208%20Cloud%20Application%20Services%20Application – using Windows 8 with Cloud Application Services A bit of Configuration Register the Metro apps for Windows Live Application Management From the current app manifest of your metro app Publish tab, copy the Package Display Name and the Publisher From: https://manage.dev.live.com/Build/ Package name: <-- we need to change this Client secret: keep this Package Security Identifier (SID): keep this Verify the app here: https://manage.dev.live.com/Applications/Index - so this step is done "If you wish to send push notifications in your application, provide your Package Security Identifier (SID) and client secret to WNS." Provide Package SID & Client Secret to WNS http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx - How to authenticate with WNS https://appdev.microsoft.com/StorePortals/en-us/Account/Signup/PurchaseSubscription - register app with dashboard - need registration code or register a new account & pay $170 shekels http://msdn.microsoft.com/en-us/library/windows/apps/hh868184.aspx - Registering for a Windows Store developer account http://msdn.microsoft.com/en-us/library/windows/apps/hh868187.aspx - Picking a Microsoft account for the Windows Store The WNS Nuget Recipe The WNS Recipe is a nuget package that provides an API for authenticating against WNS, constructing payloads and posting notifications to WNS. After installing this package, a WnsRecipe assembly is added to project references. To send notifications using WNS, first register the application at the Windows Push Notifications & Live Connect portal to obtain Package Security Identifier (SID) and a secret key that your cloud service uses to authenticate with WNS. An application receives push notifications by requesting a notification channel from WNS, which returns a channel URI that the application then registers with a cloud service. In the cloud service, the WnsAccessTokenProvider authenticates with WNS by providing its credentials, the package SID and secret key, and receives in return an access token that the provider caches and can reuse for multiple notification requests. The cloud service constructs a notification request by filling out a template class that contains the information that will be sent with the notification, including text and image references.Using the channel URI of a registered client, the cloud service can then send a notification whenever it has an update for the user. var provider = new WnsAccessTokenProvider(clientId, clientSecret); var notification = new ToastNotification(provider) {     ToastType = ToastType.ToastText02,     Text = new List<string> { "blah"} }; notification.Send(channelUri); the WNS Recipe is instrumented to write trace information via a trace listener – configuratively or programmatically from Application_Start(): WnsDiagnostics.Enable(); WnsDiagnostics.TraceSource.Listeners.Add(new DiagnosticMonitorTraceListener()); WnsDiagnostics.TraceSource.Switch.Level = SourceLevels.Verbose; The WAT PNWorker Sample The Azure server side contains a WebRole & a WorkerRole. The WebRole allows submission of new push notifications into an Azure Queue which the WorkerRole extracts and processes. Overview of Push Notification Worker Sample The toolkit includes a sample application based on the same solution structure as the one created by theWindows 8 Cloud Application Services project template. The sample demonstrates how to off-load the job of sending Windows Push Notifications using a Windows Azure worker role. You can find the source code in theSamples\PNWorker folder. This folder contains a full version of the sample application showing how to use Windows Push Notifications using ASP.NET Membership as the authentication mechanism. The sample contains two different solution files: WATWindows.Azure.sln: This solution must be opened with Visual Studio 2010 and contains the projects related to the Windows Azure web and worker roles. WATWindows.Client.sln: This solution must be opened with Visual Studio 11 and contains the Windows Metro style application project. Only Visual Studio 2010 supports Windows Azure cloud projects so you currently need to use this edition to launch the server application. This will change in a future release of the Windows Azure tools when support for Visual Studio 11 is enabled. Important: Setting up the PNWorker Sample Before running the PNWorker sample, you need to register the application and configure it: 1. Register the app: To register your application, go to the Windows Live Application Management site for Metro style apps at https://manage.dev.live.com/build and sign in with your Windows Live ID. In the Windows Push Notifications & Live Connect page, enter the following information. Package Display Name PNWorker.Sample Publisher CN=127.0.0.1, O=TESTING ONLY, OU=Windows Azure DevFabric 2. 3. Once you register the application, make a note of the values shown in the portal for Client Secret,Package Name and Package SID. 4. Configure the app - double-click the SetupSample.cmd file located inside the Samples\PNWorker folder to launch a tool that will guide you through the process of configuring the sample. setup runs a PowerShell script that requires running with administration privileges to allow the scripts to execute in your machine. When prompted, enter the Client Secret, Package Name, and Package Security Identifier you obtained previously and wait until the tool finishes configuring your sample. Running the PNWorker Sample To run this sample, you must run both the client and the server application projects. 1. Open Visual Studio 2010 as an administrator. Open the WATWindows.Azure.sln solution. Set the start-up project of the solution as the cloud project. Run the app in the dev fabric to test. 2. Open Visual Studio 11 and open the WATWindows.Client.sln solution. Run the Metro client application. In the client application, click Reopen channel and send to server. à the application opens the channel and registers it with the cloud application, & the Output area shows the channel URI. 3. Refresh the WebRole's Push Notifications page to see the UI list the newly registered client. 4. Send notifications to the client application by clicking the Send Notification button. Setup 3 command files + 1 powershell script: SetupSample.cmd –> SetupWPNS.vbs –> SetupWPNS.cmd –> SetupWPNS.UpdateWPNSCredentialsInServiceConfiguration.ps1 appears to set PackageName – from manifest Client Id package security id (SID) – from registration Client Secret – from registration The following configs are modified: WATWindows\ServiceConfiguration.Cloud.cscfg WATWindows\ServiceConfiguration.Local.cscfg WATWindows.Client\package.appxmanifest WatWindows.Notifications A class library – it references the following WNS DLL: C:\WorkDev\CountdownValue\AzureToolkits\WATWindows8\Samples\PNWorker\packages\WnsRecipe.0.0.3.0\lib\net40\WnsRecipe.dll NotificationJobRequest A DataContract for triggering notifications:     using System.Runtime.Serialization; using Microsoft.Windows.Samples.Notifications;     [DataContract]     [KnownType(typeof(WnsAccessTokenProvider))] public class NotificationJobRequest     {               [DataMember] public bool ProcessAsync { get; set; }          [DataMember] public string Payload { get; set; }         [DataMember] public string ChannelUrl { get; set; }         [DataMember] public NotificationType NotificationType { get; set; }         [DataMember] public IAccessTokenProvider AccessTokenProvider { get; set; }         [DataMember] public NotificationSendOptions NotificationSendOptions{ get; set; }     } Investigated these types: WnsAccessTokenProvider – a DataContract that contains the client Id and client secret NotificationType – an enum that can be: Tile, Toast, badge, Raw IAccessTokenProvider – get or reset the access token NotificationSendOptions – SecondsTTL, NotificationPriority (enum), isCache, isRequestForStatus, Tag   There is also a NotificationJobSerializer class which basically wraps a DataContractSerializer serialization / deserialization of NotificationJobRequest The WNSNotificationJobProcessor class This class wraps the NotificationSendUtils API – it periodically extracts any NotificationJobRequest objects from a CloudQueue and submits them to WNS. The ProcessJobMessageRequest method – this is the punchline: it will deserialize a CloudQueueMessage into a NotificationJobRequest & send pass its contents to NotificationUtils to SendAsynchronously / SendSynchronously, (and then dequeue the message).     public override void ProcessJobMessageRequest(CloudQueueMessage notificationJobMessageRequest)         { Trace.WriteLine("Processing a new Notification Job Request", "Information"); NotificationJobRequest pushNotificationJob =                 NotificationJobSerializer.Deserialize(notificationJobMessageRequest.AsString); if (pushNotificationJob != null)             { if (pushNotificationJob.ProcessAsync)                 { Trace.WriteLine("Sending the notification asynchronously", "Information"); NotificationSendUtils.SendAsynchronously( new Uri(pushNotificationJob.ChannelUrl),                         pushNotificationJob.AccessTokenProvider,                         pushNotificationJob.Payload,                         result => this.ProcessSendResult(pushNotificationJob, result),                         result => this.ProcessSendResultError(pushNotificationJob, result),                         pushNotificationJob.NotificationType,                         pushNotificationJob.NotificationSendOptions);                 } else                 { Trace.WriteLine("Sending the notification synchronously", "Information"); NotificationSendResult result = NotificationSendUtils.Send( new Uri(pushNotificationJob.ChannelUrl),                         pushNotificationJob.AccessTokenProvider,                         pushNotificationJob.Payload,                         pushNotificationJob.NotificationType,                         pushNotificationJob.NotificationSendOptions); this.ProcessSendResult(pushNotificationJob, result);                 }             } else             { Trace.WriteLine("Could not deserialize the notification job", "Error");             } this.queue.DeleteMessage(notificationJobMessageRequest);         } Investigation of NotificationSendUtils class - This is the engine – it exposes Send and a SendAsyncronously overloads that take the following params from the NotificationJobRequest: Channel Uri AccessTokenProvider Payload NotificationType NotificationSendOptions WebRole WebRole is a large MVC project – it references WatWindows.Notifications as well as the following WNS DLL: \AzureToolkits\WATWindows8\Samples\PNWorker\packages\WnsRecipe.0.0.3.0\lib\net40\NotificationsExtensions.dll Controllers\PushNotificationController.cs Notification related namespaces:     using Notifications;     using NotificationsExtensions;     using NotificationsExtensions.BadgeContent;     using NotificationsExtensions.RawContent;     using NotificationsExtensions.TileContent;     using NotificationsExtensions.ToastContent;     using Windows.Samples.Notifications; TokenProvider – initialized from the Azure RoleEnvironment:   IAccessTokenProvider tokenProvider = new WnsAccessTokenProvider(         RoleEnvironment.GetConfigurationSettingValue("WNSPackageSID"),         RoleEnvironment.GetConfigurationSettingValue("WNSClientSecret")); SendNotification method – calls QueuePushMessage method to create and serialize a NotificationJobRequest and enqueue it in a CloudQueue [HttpPost]         public ActionResult SendNotification(             [ModelBinder(typeof(NotificationTemplateModelBinder))] INotificationContent notification,             string channelUrl,             NotificationPriority priority = NotificationPriority.Normal)         {             var payload = notification.GetContent();             var options = new NotificationSendOptions()             {                 Priority = priority             };             var notificationType =                 notification is IBadgeNotificationContent ? NotificationType.Badge :                 notification is IRawNotificationContent ? NotificationType.Raw :                 notification is ITileNotificationContent ? NotificationType.Tile :                 NotificationType.Toast;             this.QueuePushMessage(payload, channelUrl, notificationType, options);             object response = new             {                 Status = "Queued for delivery to WNS"             };             return this.Json(response);         } GetSendTemplate method: Create the cshtml partial rendering based on the notification type     [HttpPost]         public ActionResult GetSendTemplate(NotificationTemplateViewModel templateOptions)         {             PartialViewResult result = null;             switch (templateOptions.NotificationType)             {                 case "Badge":                     templateOptions.BadgeGlyphValueContent = Enum.GetNames(typeof( GlyphValue));                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;                 case "Raw":                     ViewBag.ViewData = templateOptions;                     result = PartialView("_Raw");                     break;                 case "Toast":                     templateOptions.TileImages = this.blobClient.GetAllBlobsInContainer(ConfigReader.GetConfigValue("TileImagesContainer")).OrderBy(i => i.FileName).ToList();                     templateOptions.ToastAudioContent = Enum.GetNames(typeof( ToastAudioContent));                     templateOptions.Priorities = Enum.GetNames(typeof( NotificationPriority));                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;                 case "Tile":                     templateOptions.TileImages = this.blobClient.GetAllBlobsInContainer(ConfigReader.GetConfigValue("TileImagesContainer")).OrderBy(i => i.FileName).ToList();                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;             }             return result;         } Investigated these types: ToastAudioContent – an enum of different Win8 sound effects for toast notifications GlyphValue – an enum of different Win8 icons for badge notifications · Infrastructure\NotificationTemplateModelBinder.cs WNS Namespace references     using NotificationsExtensions.BadgeContent;     using NotificationsExtensions.RawContent;     using NotificationsExtensions.TileContent;     using NotificationsExtensions.ToastContent; Various NotificationFactory derived types can server as bindable models in MVC for creating INotificationContent types. Default values are also set for IWideTileNotificationContent & IToastNotificationContent. Type factoryType = null;             switch (notificationType)             {                 case "Badge":                     factoryType = typeof(BadgeContentFactory);                     break;                 case "Tile":                     factoryType = typeof(TileContentFactory);                     break;                 case "Toast":                     factoryType = typeof(ToastContentFactory);                     break;                 case "Raw":                     factoryType = typeof(RawContentFactory);                     break;             } Investigated these types: BadgeContentFactory – CreateBadgeGlyph, CreateBadgeNumeric (???) TileContentFactory – many notification content creation methods , apparently one for every tile layout type ToastContentFactory – many notification content creation methods , apparently one for every toast layout type RawContentFactory – passing strings WorkerRole WNS Namespace references using Notifications; using Notifications.WNS; using Windows.Samples.Notifications; OnStart() Method – on Worker Role startup, initialize the NotificationJobSerializer, the CloudQueue, and the WNSNotificationJobProcessor _notificationJobSerializer = new NotificationJobSerializer(); _cloudQueueClient = this.account.CreateCloudQueueClient(); _pushNotificationRequestsQueue = _cloudQueueClient.GetQueueReference(ConfigReader.GetConfigValue("RequestQueueName")); _processor = new WNSNotificationJobProcessor(_notificationJobSerializer, _pushNotificationRequestsQueue); Run() Method – poll the Azure Queue for NotificationJobRequest messages & process them:   while (true)             { Trace.WriteLine("Checking for Messages", "Information"); try                 { Parallel.ForEach( this.pushNotificationRequestsQueue.GetMessages(this.batchSize), this.processor.ProcessJobMessageRequest);                 } catch (Exception e)                 { Trace.WriteLine(e.ToString(), "Error");                 } Trace.WriteLine(string.Format("Sleeping for {0} seconds", this.pollIntervalMiliseconds / 1000)); Thread.Sleep(this.pollIntervalMiliseconds);                                            } How I learned to appreciate Win8 There is really only one application architecture for Windows 8 apps: Metro client side and Azure backend – and that is a good thing. With WNS, tier integration is so automated that you don’t even have to leverage a HTTP push API such as SignalR. This is a pretty powerful development paradigm, and has changed the way I look at Windows 8 for RAD business apps. When I originally looked at Win8 and the WinRT API, my first opinion on Win8 dev was as follows – GOOD:WinRT, WRL, C++/CX, WinJS, XAML (& ease of Direct3D integration); BAD: low projected market penetration,.NET lobotomized (Only 8% of .NET 4.5 classes can be used in Win8 non-desktop apps - http://bit.ly/HRuJr7); UGLY:Metro pascal tiles! Perhaps my 80s teenage years gave me a punk reactionary sense of revulsion towards the Partridge Family 70s style that Metro UX seems to have appropriated: On second thought though, it simplifies UI dev to a single paradigm (although UX guys will need to change career) – you will not find an easier app dev environment. Speculation: If LightSwitch is going to support HTML5 client app generation, then its a safe guess to say that vnext will support Win8 Metro XAML - a much easier port from Silverlight XAML. Given the VS2012 LightSwitch integration as a thumbs up from the powers that be at MS, and given that Win8 C#/XAML Metro apps tend towards a streamlined 'golden straight-jacket' cookie cutter app dev style with an Azure back-end supporting Win8 push notifications... --> its easy to extrapolate than LightSwitch vnext could well be the Win8 Metro XAML to Azure RAD tool of choice! The hook is already there - :) Why else have the space next to the HTML Client box? This high level of application development abstraction will facilitate rapid app cookie-cutter architecture-infrastructure frameworks for wrapping any app. This will allow me to avoid too much XAML code-monkeying around & focus on my area of interest: Technical Computing.

    Read the article

  • MySQL Privileges required to GRANT EVENT, EXECUTE, LOCK TABLES, and TRIGGER

    - by Brad
    I have an account, user_a, and I would like to grant all available permissions on some_db to user_b. I have tried the following query: GRANT ALTER, ALTER ROUTINE, CREATE, CREATE ROUTINE, CREATE TEMPORARY TABLES, CREATE VIEW, DELETE, DROP, EVENT, EXECUTE, INDEX, INSERT, LOCK TABLES, REFERENCES, SELECT, SHOW VIEW, TRIGGER, UPDATE ON `some_db`.* TO 'user_b'@'%' WITH GRANT OPTION The result: Access denied for user 'user_a'@'%' to database 'some_db' Some experimentation has shown me that the only permissions my account (user_a) is unable to grant are EVENT, EXECUTE, LOCK TABLES, and TRIGGER. What privileges are required for my account to GRANT these privileges to another user? If I run SHOW GRANTS, I get this output: "GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, REFERENCES, INDEX, ALTER, SHOW DATABASES, SUPER, CREATE TEMPORARY TABLES, REPLICATION SLAVE, REPLICATION CLIENT, CREATE VIEW, SHOW VIEW, CREATE ROUTINE, ALTER ROUTINE, CREATE USER ON *.* TO 'user_a'@'%' IDENTIFIED BY PASSWORD '1234567890abcdef' WITH GRANT OPTION" "GRANT SELECT, INSERT, UPDATE, DELETE, EXECUTE ON `some_other_unrelated_db`.* TO 'user_a'@'%'" "GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, REFERENCES, INDEX, ALTER, CREATE TEMPORARY TABLES, LOCK TABLES, EXECUTE, CREATE ROUTINE, ALTER ROUTINE ON `another_unrelated_db`.* TO 'user_a'@'%' WITH GRANT OPTION"

    Read the article

  • Problem creating a database with PHP PDO

    - by Leandro Alonso
    Hello guys, I'm having a problem with a SQL query in my PHP Application. When the user access it for the first time, the app executes this query to create all the database: CREATE TABLE `databases` ( `id` bigint(20) NOT NULL auto_increment, `driver` varchar(45) NOT NULL, `server` text NOT NULL, `user` text NOT NULL, `password` text NOT NULL, `database` varchar(200) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=2 ; -- -------------------------------------------------------- -- -- Table structure for table `modules` -- CREATE TABLE `modules` ( `id` bigint(20) unsigned NOT NULL auto_increment, `title` varchar(100) NOT NULL, `type` varchar(150) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=29 ; -- -------------------------------------------------------- -- -- Table structure for table `modules_data` -- CREATE TABLE `modules_data` ( `id` bigint(20) NOT NULL auto_increment, `module_id` bigint(20) unsigned NOT NULL, `key` varchar(150) NOT NULL, `value` tinytext, PRIMARY KEY (`id`), KEY `fk_modules_data_modules` (`module_id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=184 ; -- -------------------------------------------------------- -- -- Table structure for table `modules_position` -- CREATE TABLE `modules_position` ( `user_id` bigint(20) unsigned NOT NULL, `tab_id` bigint(20) unsigned NOT NULL, `module_id` bigint(20) unsigned NOT NULL, `column` smallint(1) default NULL, `line` smallint(1) default NULL, PRIMARY KEY (`user_id`,`tab_id`,`module_id`), KEY `fk_modules_order_users` (`user_id`), KEY `fk_modules_order_tabs` (`tab_id`), KEY `fk_modules_order_modules` (`module_id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; -- -------------------------------------------------------- -- -- Table structure for table `tabs` -- CREATE TABLE `tabs` ( `id` bigint(20) unsigned NOT NULL auto_increment, `title` varchar(60) NOT NULL, `columns` smallint(1) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=12 ; -- -------------------------------------------------------- -- -- Table structure for table `tabs_has_modules` -- CREATE TABLE `tabs_has_modules` ( `tab_id` bigint(20) unsigned NOT NULL, `module_id` bigint(20) unsigned NOT NULL, PRIMARY KEY (`tab_id`,`module_id`), KEY `fk_tabs_has_modules_tabs` (`tab_id`), KEY `fk_tabs_has_modules_modules` (`module_id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; -- -------------------------------------------------------- -- -- Table structure for table `users` -- CREATE TABLE `users` ( `id` bigint(20) unsigned NOT NULL auto_increment, `login` varchar(60) NOT NULL, `password` varchar(64) NOT NULL, `email` varchar(100) NOT NULL, `name` varchar(250) default NULL, `user_level` bigint(20) unsigned NOT NULL, PRIMARY KEY (`id`), KEY `fk_users_user_levels` (`user_level`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=4 ; -- -------------------------------------------------------- -- -- Table structure for table `users_has_tabs` -- CREATE TABLE `users_has_tabs` ( `user_id` bigint(20) unsigned NOT NULL, `tab_id` bigint(20) unsigned NOT NULL, `order` smallint(2) NOT NULL, `columns_width` varchar(255) default NULL, PRIMARY KEY (`user_id`,`tab_id`), KEY `fk_users_has_tabs_users` (`user_id`), KEY `fk_users_has_tabs_tabs` (`tab_id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; -- -------------------------------------------------------- -- -- Table structure for table `user_levels` -- CREATE TABLE `user_levels` ( `id` bigint(20) unsigned NOT NULL auto_increment, `level` smallint(2) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3 ; -- -------------------------------------------------------- -- -- Table structure for table `user_meta` -- CREATE TABLE `user_meta` ( `id` bigint(20) unsigned NOT NULL auto_increment, `user_id` bigint(20) unsigned default NULL, `key` varchar(150) NOT NULL, `value` longtext NOT NULL, PRIMARY KEY (`id`), KEY `fk_user_meta_users` (`user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=4 ; -- -- Constraints for dumped tables -- -- -- Constraints for table `modules_data` -- ALTER TABLE `modules_data` ADD CONSTRAINT `fk_modules_data_modules` FOREIGN KEY (`module_id`) REFERENCES `modules` (`id`) ON DELETE CASCADE ON UPDATE NO ACTION; -- -- Constraints for table `modules_position` -- ALTER TABLE `modules_position` ADD CONSTRAINT `fk_modules_order_modules` FOREIGN KEY (`module_id`) REFERENCES `modules` (`id`) ON DELETE CASCADE ON UPDATE NO ACTION, ADD CONSTRAINT `fk_modules_order_tabs` FOREIGN KEY (`tab_id`) REFERENCES `tabs` (`id`) ON DELETE CASCADE ON UPDATE NO ACTION, ADD CONSTRAINT `fk_modules_order_users` FOREIGN KEY (`user_id`) REFERENCES `users` (`id`) ON DELETE CASCADE ON UPDATE NO ACTION; -- -- Constraints for table `users` -- ALTER TABLE `users` ADD CONSTRAINT `fk_users_user_levels` FOREIGN KEY (`user_level`) REFERENCES `user_levels` (`id`) ON DELETE NO ACTION ON UPDATE NO ACTION; -- -- Constraints for table `user_meta` -- ALTER TABLE `user_meta` ADD CONSTRAINT `fk_user_meta_users` FOREIGN KEY (`user_id`) REFERENCES `users` (`id`) ON DELETE CASCADE ON UPDATE NO ACTION; INSERT INTO `user_levels` VALUES(1, 10); INSERT INTO `user_levels` VALUES(2, 1); INSERT INTO `users` VALUES(1, 'admin', 'password', '[email protected]', NULL, 1); INSERT INTO `user_meta` VALUES (NULL, 1, 'last_tab', 1); In some environments i get this error: SQLSTATE[HY000]: General error: 1005 Can't create table 'dms.databases' (errno: 150) I tried everything that I could find on Google but nothing works. The strange part is that if I run this query in PhpMyAdmin he creates my database, without any error.

    Read the article

  • Shorewall SHOW DYNAMIC command doesn't work

    - by Andrew Burns
    Setting up shorewall dynamic zones, http://shorewall.net/Dynamic.html shows the command shorewall show dynamic zone where zone is one of your zones. I can get the add and delete commands to work, but not the show dynamic command. Here is a shell session, with output from ipset list that proves that the items are indeed there. $ ipset list CPREM_br0 Name: CPREM_br0 Type: hash:ip Header: family inet hashsize 1024 maxelem 65536 Size in memory: 16520 References: 66 Members: 192.168.85.153 $ shorewall add br0:192.168.85.200 CPREM Host br0:192.168.85.200 added to zone CPREM $ shorewall show dynamic CPREM $ ipset list CPREM_br0 Name: CPREM_br0 Type: hash:ip Header: family inet hashsize 1024 maxelem 65536 Size in memory: 16536 References: 66 Members: 192.168.85.153 192.168.85.200 $ shorewall delete br0:192.168.85.200 CPREM Host br0:192.168.85.200 deleted from zone CPREM $ ipset list CPREM_br0 Name: CPREM_br0 Type: hash:ip Header: family inet hashsize 1024 maxelem 65536 Size in memory: 16536 References: 66 Members: 192.168.85.153 I am using the packaged version from Ubuntu 12.04 (4.4.26.1-1)

    Read the article

  • Visual Studio 2010 Extension Manager (and the new VS 2010 PowerCommands Extension)

    - by ScottGu
    This is the twenty-third in a series of blog posts I’m doing on the VS 2010 and .NET 4 release. Today’s blog post covers some of the extensibility improvements made in VS 2010 – as well as a cool new "PowerCommands for Visual Studio 2010” extension that Microsoft just released (and which can be downloaded and used for free). [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Extensibility in VS 2010 VS 2010 provides a much richer extensibility model than previous releases.  Anyone can build extensions that add, customize, and light-up the Visual Studio 2010 IDE, Code Editors, Project System and associated Designers. VS 2010 Extensions can be created using the new MEF (Managed Extensibility Framework) which is built-into .NET 4.  You can learn more about how to create VS 2010 extensions from this this blog post from the Visual Studio Team Blog. VS 2010 Extension Manager Developers building extensions can distribute them on their own (via their own web-sites or by selling them).  Visual Studio 2010 also now includes a built-in “Extension Manager” within the IDE that makes it much easier for developers to find, download, and enable extensions online.  You can launch the “Extension Manager” by selecting the Tools->Extension Manager menu option: This loads an “Extension Manager” dialog which accesses an “online gallery” at Microsoft, and then populates a list of available extensions that you can optionally download and enable within your copy of Visual Studio: There are already hundreds of cool extensions populated within the online gallery.  You can browse them by category (use the tree-view on the top-left to filter them).  Clicking “download” on any of the extensions will download, install, and enable it. PowerCommands for Visual Studio 2010 This weekend Microsoft released the free PowerCommands for Visual Studio 2010 extension to the online gallery.  You can learn more about it here, and download and install it via the “Extension Manager” above (search for PowerCommands to find it). The PowerCommands download adds dozens of useful commands to Visual Studio 2010.  Below is a screen-shot of just a few of the useful commands that it adds to the Solution Explorer context menus: Below is a list of all the commands included with this weekend’s PowerCommands for Visual Studio 2010 release: Enable/Disable PowerCommands in Options dialog This feature allows you to select which commands to enable in the Visual Studio IDE. Point to the Tools menu, then click Options. Expand the PowerCommands options, then click Commands. Check the commands you would like to enable. Note: All power commands are initially defaulted Enabled. Format document on save / Remove and Sort Usings on save The Format document on save option formats the tabs, spaces, and so on of the document being saved. It is equivalent to pointing to the Edit menu, clicking Advanced, and then clicking Format Document. The Remove and sort usings option removes unused using statements and sorts the remaining using statements in the document being saved. Note: The Remove and sort usings option is only available for C# documents. Format document on save and Remove and sort usings both are initially defaulted OFF. Clear All Panes This command clears all output panes. It can be executed from the button on the toolbar of the Output window. Copy Path This command copies the full path of the currently selected item to the clipboard. It can be executed by right-clicking one of these nodes in the Solution Explorer: The solution node; A project node; Any project item node; Any folder. Email CodeSnippet To email the lines of text you select in the code editor, right-click anywhere in the editor and then click Email CodeSnippet. Insert Guid Attribute This command adds a Guid attribute to a selected class. From the code editor, right-click anywhere within the class definition, then click Insert Guid Attribute. Show All Files This command shows the hidden files in all projects displayed in the Solution Explorer when the solution node is selected. It enhances the Show All Files button, which normally shows only the hidden files in the selected project node. Undo Close This command reopens a closed document , returning the cursor to its last position. To reopen the most recently closed document, point to the Edit menu, then click Undo Close. Alternately, you can use the CtrlShiftZ shortcut. To reopen any other recently closed document, point to the View menu, click Other Windows, and then click Undo Close Window. The Undo Close window appears, typically next to the Output window. Double-click any document in the list to reopen it. Collapse Projects This command collapses a project or projects in the Solution Explorer starting from the root selected node. Collapsing a project can increase the readability of the solution. This command can be executed from three different places: solution, solution folders and project nodes respectively. Copy Class This command copies a selected class entire content to the clipboard, renaming the class. This command is normally followed by a Paste Class command, which renames the class to avoid a compilation error. It can be executed from a single project item or a project item with dependent sub items. Paste Class This command pastes a class entire content from the clipboard, renaming the class to avoid a compilation error. This command is normally preceded by a Copy Class command. It can be executed from a project or folder node. Copy References This command copies a reference or set of references to the clipboard. It can be executed from the references node, a single reference node or set of reference nodes. Paste References This command pastes a reference or set of references from the clipboard. It can be executed from different places depending on the type of project. For CSharp projects it can be executed from the references node. For Visual Basic and Website projects it can be executed from the project node. Copy As Project Reference This command copies a project as a project reference to the clipboard. It can be executed from a project node. Edit Project File This command opens the MSBuild project file for a selected project inside Visual Studio. It combines the existing Unload Project and Edit Project commands. Open Containing Folder This command opens a Windows Explorer window pointing to the physical path of a selected item. It can be executed from a project item node Open Command Prompt This command opens a Visual Studio command prompt pointing to the physical path of a selected item. It can be executed from four different places: solution, project, folder and project item nodes respectively. Unload Projects This command unloads all projects in a solution. This can be useful in MSBuild scenarios when multiple projects are being edited. This command can be executed from the solution node. Reload Projects This command reloads all unloaded projects in a solution. It can be executed from the solution node. Remove and Sort Usings This command removes and sort using statements for all classes given a project. It is useful, for example, in removing or organizing the using statements generated by a wizard. This command can be executed from a solution node or a single project node. Extract Constant This command creates a constant definition statement for a selected text. Extracting a constant effectively names a literal value, which can improve readability. This command can be executed from the code editor by right-clicking selected text. Clear Recent File List This command clears the Visual Studio recent file list. The Clear Recent File List command brings up a Clear File dialog which allows any or all recent files to be selected. Clear Recent Project List This command clears the Visual Studio recent project list. The Clear Recent Project List command brings up a Clear File dialog which allows any or all recent projects to be selected. Transform Templates This command executes a custom tool with associated text templates items. It can be executed from a DSL project node or a DSL folder node. Close All This command closes all documents. It can be executed from a document tab. How to temporarily disable extensions Extensions provide a great way to make Visual Studio even more powerful, and can help improve your overall productivity.  One thing to keep in mind, though, is that extensions run within the Visual Studio process (DevEnv.exe) and so a bug within an extension can impact both the stability and performance of Visual Studio.  If you ever run into a situation where things seem slower than they should, or if you crash repeatedly, please temporarily disable any installed extensions and see if that fixes the problem.  You can do this for extensions that were installed via the online gallery by re-running the extension manager (using the Tools->Extension Manager menu option) and by selecting the “Installed Extensions” node on the top-left of the dialog – and then by clicking “Disable” on any of the extensions within your installed list: Hope this helps, Scott

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Deployable dependencies in Visual Studio 2010 SP1 Beta

    - by DigiMortal
    One new feature that comes with Visual Studio 2010 SP1 Beta is support for deployment references. Deployment reference means that you can include all necessary DLL-s to deployment package so your application has all assemblies it needs to run with it in deployment package. In this posting I will show you how to use deployment dependencies. When I open my ASP.NET web application I have new option for references when I right-click on my web project: Add Deployable Dependencies… If you select it you will see dialog where you can select dependencies you want to add to your project package. When packages you need are selected click OK. Visual Studio adds new folder to your project called _bin_DeployableAssemblies. Screenshot on right shows the list of assemblies added for ASP.NET Pages and Razor. All DLL-s required to run ASP.NET MVC 3 with Razor view engine are here. I am not sure if NuGet.Core.dll is required in production but if it is added then let it be there. Deploy to Azure I tried to deploy my ASP.NET MVC project that uses Razor to Windows Azure after adding deployable references to my project. Deployment went fine and web role instance started without any problems. The only DLL reference I made as local was the one for System.Web.Mvc. All Razor stuff came with deployable dependencies. Conclusion Visual Studio support for deployable dependencies is great because this way component providers can build definitions for their components so also assemblies that are loaded dynamically at runtime will be in deployment package.

    Read the article

  • SOA &amp; Application Grid Specialization &ndash; 6 steps to success &ndash; part 1 OMM

    - by Jürgen Kress
    SOA Specialization – Oracle Open Market Model (OMM) Dear Application Grid SOA Partners, Or goal is to SOA Specialize you, in the next weeks we will inform you in a series how you can achieve SOA Specialization. Specialization is key the be recognized by Oracle and to be preferred by our Customers. The first step to become SOA Specialized is to proof 2 transactions. You can either resell, co-sell or referral – as a proof point we do use our Open Market Model (OMM). To create your account go to our new Partner Portal: go to login of your OPN-Homepage: http://oraclepartnernetwork.oracle.com click on: "Sales" "Create a PRM User Account" Enter your User ID: Enter Company Identifier: ((please ask your OPN IC)) Finish Wait for a Confirmation Email If you need OMM support please contact out dedicated team: Nordics  please ask: [email protected] Portugal, Spain please ask: [email protected] Austria, Belgium, Germany, Luxembourg, Netherlands, Switzerland, United Arab Emirates, United Kingdom please ask: [email protected] For more information about OMM watch our on-demand webcast “Recognising the Value of Partners: Register Oracle Deals through the Open Market Model (OMM)”. Become SOA Specialized today SOA Specialized & Application Grid Specialized Create your references, create your OMM Entry, take the SOA Sales assessment, take the SOA Pre-Sales assessment, take the Support assessment and register for the SOA Implementation assessment. For more information on Specialization please visit our OPN Specialized Webcast Series To get support on Specialization please contact the Partner Business Centers.   SOA Specialized Application Grid Specialized Proof 2 transactions with OMM Proof 2 transactions with OMM Create your 2 references Create your 2 references SOA Sales assessment 3, Oracle Application Grid Sales Specialist  SOA Pre-Sales assessment 3 Oracle Application Grid PreSales Specialist Support assessment 1 Support assessment 2 SOA Implementation assessment 4 Application Grid Implementation assessment 4

    Read the article

  • The UIManager Pattern

    - by Duncan Mills
    One of the most common mistakes that I see when reviewing ADF application code, is the sin of storing UI component references, most commonly things like table or tree components in Session or PageFlow scope. The reasons why this is bad are simple; firstly, these UI object references are not serializable so would not survive a session migration between servers and secondly there is no guarantee that the framework will re-use the same component tree from request to request, although in practice it generally does do so. So there danger here is, that at best you end up with an NPE after you session has migrated, and at worse, you end up pinning old generations of the component tree happily eating up your precious memory. So that's clear, we should never. ever, be storing references to components anywhere other than request scope (or maybe backing bean scope). So double check the scope of those binding attributes that map component references into a managed bean in your applications.  Why is it Such a Common Mistake?  At this point I want to examine why there is this urge to hold onto these references anyway? After all, JSF will obligingly populate your backing beans with the fresh and correct reference when needed.   In most cases, it seems that the rational is down to a lack of distinction within the application between what is data and what is presentation. I think perhaps, a cause of this is the logical separation between business data behind the ADF data binding (#{bindings}) façade and the UI components themselves. Developers tend to think, OK this is my data layer behind the bindings object and everything else is just UI.  Of course that's not the case.  The UI layer itself will have state which is intrinsically linked to the UI presentation rather than the business model, but at the same time should not be tighly bound to a specific instance of any single UI component. So here's the problem.  I think developers try and use the UI components as state-holders for this kind of data, rather than using them to represent that state. An example of this might be something like the selection state of a tabset (panelTabbed), you might be interested in knowing what the currently disclosed tab is. The temptation that leads to the component reference sin is to go and ask the tabset what the selection is.  That of course is fine in context - e.g. a handler within the same request scoped bean that's got the binding to the tabset. However, it leads to problems when you subsequently want the same information outside of the immediate scope.  The simple solution seems to be to chuck that component reference into session scope and then you can simply re-check in the same way, leading of course to this mistake. Turn it on its Head  So the correct solution to this is to turn the problem on its head. If you are going to be interested in the value or state of some component outside of the immediate request context then it becomes persistent state (persistent in the sense that it extends beyond the lifespan of a single request). So you need to externalize that state outside of the component and have the component reference and manipulate that state as needed rather than owning it. This is what I call the UIManager pattern.  Defining the Pattern The  UIManager pattern really is very simple. The premise is that every application should define a session scoped managed bean, appropriately named UIManger, which is specifically responsible for holding this persistent UI component related state.  The actual makeup of the UIManger class varies depending on a needs of the application and the amount of state that needs to be stored. Generally I'll start off with a Map in which individual flags can be created as required, although you could opt for a more formal set of typed member variables with getters and setters, or indeed a mix. This UIManager class is defined as a session scoped managed bean (#{uiManager}) in the faces-config.xml.  The pattern is to then inject this instance of the class into any other managed bean (usually request scope) that needs it using a managed property.  So typically you'll have something like this:   <managed-bean>     <managed-bean-name>uiManager</managed-bean-name>     <managed-bean-class>oracle.demo.view.state.UIManager</managed-bean-class>     <managed-bean-scope>session</managed-bean-scope>   </managed-bean>  When is then injected into any backing bean that needs it:    <managed-bean>     <managed-bean-name>mainPageBB</managed-bean-name>     <managed-bean-class>oracle.demo.view.MainBacking</managed-bean-class>     <managed-bean-scope>request</managed-bean-scope>     <managed-property>       <property-name>uiManager</property-name>       <property-class>oracle.demo.view.state.UIManager</property-class>       <value>#{uiManager}</value>     </managed-property>   </managed-bean> In this case the backing bean in question needs a member variable to hold and reference the UIManager: private UIManager _uiManager;  Which should be exposed via a getter and setter pair with names that match the managed property name (e.g. setUiManager(UIManager _uiManager), getUiManager()).  This will then give your code within the backing bean full access to the UI state. UI components in the page can, of course, directly reference the uiManager bean in their properties, for example, going back to the tab-set example you might have something like this: <af:paneltabbed>   <af:showDetailItem text="First"                disclosed="#{uiManager.settings['MAIN_TABSET_STATE'].['FIRST']}"> ...   </af:showDetailItem>   <af:showDetailItem text="Second"                      disclosed="#{uiManager.settings['MAIN_TABSET_STATE'].['SECOND']}">     ...   </af:showDetailItem>   ... </af:panelTabbed> Where in this case the settings member within the UI Manger is a Map which contains a Map of Booleans for each tab under the MAIN_TABSET_STATE key. (Just an example you could choose to store just an identifier for the selected tab or whatever, how you choose to store the state within UI Manger is up to you.) Get into the Habit So we can see that the UIManager pattern is not great strain to implement for an application and can even be retrofitted to an existing application with ease. The point is, however, that you should always take this approach rather than committing the sin of persistent component references which will bite you in the future or shotgun scattered UI flags on the session which are hard to maintain.  If you take the approach of always accessing all UI state via the uiManager, or perhaps a pageScope focused variant of it, you'll find your applications much easier to understand and maintain. Do it today!

    Read the article

  • XNA extending the existing Content type

    - by Maarten
    We are doing a game in XNA that reacts to music. We need to do some offline processing of the music data and therefore we need a custom type containing the Song and some additional data: // Project AudioGameLibrary namespace AudioGameLibrary { public class GameTrack { public Song Song; public string Extra; } } We've added a Content Pipeline extension: // Project GameTrackProcessor namespace GameTrackProcessor { [ContentSerializerRuntimeType("AudioGameLibrary.GameTrack, AudioGameLibrary")] public class GameTrackContent { public SongContent SongContent; public string Extra; } [ContentProcessor(DisplayName = "GameTrack Processor")] public class GameTrackProcessor : ContentProcessor<AudioContent, GameTrackContent> { public GameTrackProcessor(){} public override GameTrackContent Process(AudioContent input, ContentProcessorContext context) { return new GameTrackContent() { SongContent = new SongProcessor().Process(input, context), Extra = "Some extra data" // Here we can do our processing on 'input' }; } } } Both the Library and the Pipeline extension are added to the Game Solution and references are also added. When trying to use this extension to load "gametrack.mp3" we run into problems however: // Project AudioGame protected override void LoadContent() { AudioGameLibrary.GameTrack gameTrack = Content.Load<AudioGameLibrary.GameTrack>("gametrack"); MediaPlayer.Play(gameTrack.Song); } The error message: Error loading "gametrack". File contains Microsoft.Xna.Framework.Media.Song but trying to load as AudioGameLibrary.GameTrack. AudioGame contains references to both AudioGameLibrary and GameTrackProcessor. Are we maybe missing other references?

    Read the article

  • Server Firewall preventing sending of email [migrated]

    - by Jo Fitzgerald
    The firewall on my VPS appears to be preventing my site from sending email. It was working fine until the end of last month. My hosting provider (Webfusion) has been next to useless. I am able to send email if I open INPUT ports 32768-65535, but not if these ports are closed. Why would this be? I have the following rules in my firewall: # sudo iptables -L Chain INPUT (policy DROP) target prot opt source destination VZ_INPUT all -- anywhere anywhere Chain FORWARD (policy DROP) target prot opt source destination VZ_FORWARD all -- anywhere anywhere Chain OUTPUT (policy DROP) target prot opt source destination VZ_OUTPUT all -- anywhere anywhere Chain VZ_FORWARD (1 references) target prot opt source destination Chain VZ_INPUT (1 references) target prot opt source destination ACCEPT tcp -- anywhere anywhere tcp dpt:www ACCEPT tcp -- anywhere anywhere tcp dpt:https ACCEPT tcp -- anywhere anywhere tcp dpt:smtp ACCEPT tcp -- anywhere anywhere tcp dpt:ssmtp ACCEPT tcp -- anywhere anywhere tcp dpt:pop3 ACCEPT tcp -- anywhere anywhere tcp dpt:domain ACCEPT udp -- anywhere anywhere udp dpt:domain ACCEPT tcp -- anywhere anywhere tcp dpts:32768:65535 ACCEPT udp -- anywhere anywhere udp dpts:32768:65535 ACCEPT tcp -- localhost.localdomain localhost.localdomain ACCEPT udp -- localhost.localdomain localhost.localdomain Chain VZ_OUTPUT (1 references) target prot opt source destination ACCEPT tcp -- anywhere anywhere ACCEPT udp -- anywhere anywhere The VPS is running Plesk 10.4.4 (please ask if you require further technical information to help me)

    Read the article

  • Which reference provides your definition of "elegant" or "beautiful" code?

    - by Donnied
    This question is phrased in a very specific way - it asks for references. There was a similar question posted which was closed because it was considered a duplicate to a good code question. The Programmers FAQ points out that answers should have references - or its just an unproductive sharing of (seemingly) baseless opinions. There is a difference between shortest code and most elegant code. This becomes clear in several seminal texts: Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM, 15(10), 859–866. Kernighan, B. W., & Plauger, P. J. (1974). Programming style: Examples and counterexamples. ACM Comput. Surv., 6(4), 303–319. Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111. doi:10.1093/comjnl/27.2.97 They all note the importance of clarity over brevity. Kernighan & Plauger (1974) provide descriptions of "good" code, but "good code" is certainly not synonymous with "elegant". Knuth (1984) describes the impo rtance of exposition and "excellence of style" to elegant programs. He cites Hoare - who describes that code should be self documenting. Dijkstra (1972) indicates that beautiful programs optimize efficiency but are not opaque. This sort of conversation is qulaitatively different than a random sharing of opinions. Therefore, the question - Which reference provides your definition of "elegant" or "beautiful" code? "Which *reference*" is not subjective - anything else will most likely shut the thread down, so please supply *references* not opinions.

    Read the article

  • What is an effective way to convert a shared memory-mapped system to another data access model?

    - by Rob Jones
    I have a code base that is designed around shared memory. Each process that needs to access the memory maps it into its own address space. The data structures in the shared memory are directly accessed, that is, there is no API. For example: Assume the following: typedef struct { int x; int y; struct { int a; int b; } z; } myStruct; myStruct s; Then a process might access this structure as: myStruct *s = mapGlobalMem(); And use it as: int tmpX = s->x; The majority of the information in the global structure is configuration information that is set once and read many times. I would like to store this information in a database and develop an API to access the database. The problem is, these references are sprinkled throughout the code. I need a way to parse the code and identify global structure references that will need to be refactored. I've looked into using ANTLR to create a parser that will identify references to a small set of structures and enter them into a custom symbol table. I could then use this symbol table to identify which source files need to be refactored. It looks like a promising approach. What other approaches are there? Of course, I'm looking for a programmatic approach. There are far too many source files to examine each one visually. This is all ordinary ANSI C. Nothing else.

    Read the article

  • C# Threading Background Process - Programming - How to?

    - by Magic
    Hello...I have been given the horrible task of doing this. Launch the website Take a screenshot Fill in the form details, click on Next Take a screenshot ... ... ... Rinse. Repeat. Now, with various combinations, this comes up to 300 screenshots. And I have to do this for 4 different browsers. Chrome, Firefox, IE 6 and IE 7. I cannot use tools which will capture the screenshot and store them, such as, SnagIT. I need to take a screenshot, copy it to a Word Document and take the second screenshot and take it to a Word Document. I thought, I will write a tiny utility which will help me do this. Here is the requirement spec that I put up for it - An executable which once launched seats itself in the System Tray. While it is active, all instances of Key Press (Print Scrn), it should write the contents to a Word Document as defined (either a default path or a user defined one). Save the document periodically. Now, my question is - if I am going to develop this using C# (Winforms application), how do I go about doing this. I can do a fair bit of C# programming and I am willing to learn. But I am not able to locate the references for how to do a background process so that it runs in the background. And while it runs, it has to capture the Print Scrn command. Can you folks point me to the right material where I can learn this? Theoretical references should suffice. But if there are practical references, then nothing like it. Thanks!

    Read the article

  • Minimizing use of paper

    - by Abody97
    I've recently faced this problem in a dynamic programming curriculum, and I honestly have no idea about how to determine the appropriate state. You're given N (1 <= N <= 70) paragraphs and M (1 <= M <= N) figures. Each paragraph i requires PL_i (1 <= PL_i <= 100) lines and references at most one figure. Each figure is referenced exactly once (i.e., no two paragraphs can reference the same figure, and for each figure there's a paragraph that references it.) Each figure requires PF_i (1 <= PF_i <= 100) lines. The task is to distribute those figures and paragraphs on paper in the order they're given, where one paper fits for L lines at most. No paragraph or figure is too large to fit on one paper. If a paragraph x placed on paper x_p references a figure y then y must be placed on either the paper x_p - 1 or x_p or x_p + 1. We have to find the minimum number of lines (and thus pages) to allocate in order to distribute all the figures and paragraphs. Any help would be extremely appreciated. Thanks in advance!

    Read the article

  • What does this WCF error mean: "Custom tool warning: Cannot import wsdl:portType"

    - by stiank81
    I created a WCF service library project in my solution, and have service references to this. I use the services from a class library, so I have references from my WPF application project in addition to the class library. Services are set up straight forward - only changed to get async service functions. Everything was working fine - until I wanted to update my service references. It failed, so I eventually rolled back and retried, but it failed even then! So - updating the service references fails without doing any changes to it. Why?! The error I get is this one: Custom tool error: Failed to generate code for the service reference 'MyServiceReference'. Please check other error and warning messages for details. The warning gives more information: Custom tool warning: Cannot import wsdl:portType Detail: An exception was thrown while running a WSDL import extension: System.ServiceModel.Description.DataContractSerializerMessageContractImporter Error: List of referenced types contains more than one type with data contract name 'Patient' in namespace 'http://schemas.datacontract.org/2004/07/MyApp.Model'. Need to exclude all but one of the following types. Only matching types can be valid references: "MyApp.Dashboard.MyServiceReference.Patient, Medski.Dashboard, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" (matching) "MyApp.Model.Patient, MyApp.Model, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" (matching) XPath to Error Source: //wsdl:definitions[@targetNamespace='http://tempuri.org/']/wsdl:portType[@name='ISomeService'] There are two similar warnings too saying: Custom tool warning: Cannot import wsdl:binding Detail: There was an error importing a wsdl:portType that the wsdl:binding is dependent on. XPath to wsdl:portType: //wsdl:definitions[@targetNamespace='http://tempuri.org/']/wsdl:portType[@name='ISomeService'] XPath to Error Source: //wsdl:definitions[@targetNamespace='http://tempuri.org/']/wsdl:binding[@name='WSHttpBinding_ISomeService'] And the same for: Custom tool warning: Cannot import wsdl:port .. I find this all confusing.. I don't have a Patient class on the client side Dashboard except the one I got through the service reference. So what does it mean? And why does it suddenly show? Remember: I didn't even change anything! Now, the solution to this was found here, but without an explanation to what this means. So; in the "Configure service reference" for the service I uncheck the "Reuse types in the referenced assemblies" checkbox. Rebuilding now it all works fine without problems. But what did I really change? Will this make an impact on my application? And when should one uncheck this? I do want to reuse the types I've set up DataContract on, but no more. Will I still get access to those without this checked?

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Having Fun with Coding4Fun&rsquo;s Windows Phone 7 Controls

    - by mbcrump
    I’m a big believer in having a hobby project as you can probably tell from the first sentence in my “personal webpage using Silverlight” article. One of my current hobby projects is to re-do my current WP7 application in the marketplace. I knew up front that I needed a “Loading” animation and a better “About” box. After starting to develop my own, I noticed a great set of WP7 controls by Coding4Fun and decided to use them in my new application. Before I go any further they are FREE and Open-Source. It is really simple to get started, just go to the CodePlex site and click the download button. After you have downloaded it then extract it to a Folder and you will have 4 DLL files. They are listed below: Now create a Windows Phone 7 Project and add references to the DLL’s by right clicking on the References folder and clicking “Add references”.   After adding the references, we can get started. I needed a ProgressOverlay animation or “Loading Screen” while my RSS feed is downloading. Basically, you just need to add the following namespace to whatever page you want the control on: xmlns:Controls="clr-namespace:Coding4Fun.Phone.Controls;assembly=Coding4Fun.Phone.Controls" And then the code inside your Grid or wherever you want the Loading screen placed. <Controls:ProgressOverlay Name="progressOverlay" > <Controls:ProgressOverlay.Content> <TextBlock>Loading</TextBlock> </Controls:ProgressOverlay.Content> </Controls:ProgressOverlay> Bam, you now have a great looking loading screen. Of course inside the ProgressOverlay, you may want to add a Visibility property to turn it off after your data loads if you are using MVVM or similar pattern.   Next up, I needed a nice clean “About Box” that looks good but is also functional. Meaning, if they click on my twitter name, web or email to launch the appropriate task. Again, this is only a few lines of code: var p = new AboutPrompt(); p.VersionNumber = "2.0"; p.Show("Michael Crump", "@mbcrump", "[email protected]", @"http://michaelcrump.net"); A nice clean “About” box with just a few lines of code! I’m all for code that I don’t have to write. It also comes with a pretty sweet InputPrompt for grabbing info from a user: The code for this is also very simple: InputPrompt input = new InputPrompt(); input.Completed += (s, e) => { MessageBox.Show(e.Result.ToString()); }; input.Title = "Input Box"; input.Message = "What does a \"Developer Large\" T-Shirt Mean? "; input.Show(); I also enjoyed the PhoneHelper that allows you to get data out of the WMAppManifest File very easy. So for example if I wanted the Version info from the WMAppManifest file. I could write one line and get it. PhoneHelper.GetAppAttribute("Version") Of course you would want to make sure you add the following using statement: using Coding4Fun.Phone.Controls.Data; You can’t have all these cool controls without a great set of Converters. The included BooleanToVisibility converter will convert a Boolean to and from a Visibility value. This is excellent when using something like a CheckBox to display a TextBox when its checked. See the example below: The code is below: <phone:PhoneApplicationPage.Resources> <Converters:BooleanToVisibilityConverter x:Key="BooleanToVisibilityConverter"/> </phone:PhoneApplicationPage.Resources> <CheckBox x:Name="checkBox"/> <TextBlock Text="Display Text" Visibility="{Binding ElementName=checkBox, Path=IsChecked, Converter={StaticResource BooleanToVisibilityConverter} }"/> That’s not all the goodies included. They also provide a RoundedButton, TimePicker and several other converters. The documentation is great and I would recommend you give them a shot if you need any of this functionality. Btw, thank Brian Peek for his awesome work on Coding4Fun!  Subscribe to my feed

    Read the article

  • F# WPF Form &ndash; the basics

    - by MarkPearl
    I was listening to Dot Net Rocks show #560 about F# and during the podcast Richard Campbell brought up a good point with regards to F# and a GUI. In essence what I understood his point to be was that until one could write an end to end application in F#, it would be a hard sell to developers to take it on. In part I agree with him, while I am beginning to really enjoy learning F#, I can’t but help feel that I would be a lot further into the language if I could do my Windows Forms like I do in C# or VB.NET for the simple reason that in “playing” applications I spend the majority of the time in the UI layer… So I have been keeping my eye out for some examples of creating a WPF form in a F# project and came across Tim’s F# Twitter Stream Sample, which had exactly this…. of course he actually had a bit more than a basic form… but it was enough for me to scrap the insides and glean what I needed. So today I am going to make just the very basic WPF form with all the goodness of a XAML window. Getting Started First thing we need to do is create a new solution with a blank F# application project – I have made mine called FSharpWPF. Once you have the project created you will need to change the project type from a Console Application to a Windows Application. You do this by right clicking on the project file and going to its properties… Once that is done you will need to add the appropriate references. You do this by right clicking on the References in the Solution Explorer and clicking “Add Reference'”. You should add the appropriate .Net references below for WPF & XAMl to work. Once these references are added you then need to add your XAML file to the project. You can do this by adding a new item to the project of type xml and simply changing the file extension from xml to xaml. Once the xaml file has been added to the project you will need to add valid window XAML. Example of a very basic xaml file is shown below… <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="F# WPF WPF Form" Height="350" Width="525"> <Grid> </Grid> </Window> Once your xaml file is done… you need to set the build action of the xaml file from “None” to “Resource” as depicted in the picture below. If you do not set this you will get an IOException error when running the completed project with a message along the lines of “Cannot locate resource ‘window.xaml’ You then need to tie everything up by putting the correct F# code in the Program.fs to load the xaml window. In the Program.fs put the following code… module Program open System open System.Collections.ObjectModel open System.IO open System.Windows open System.Windows.Controls open System.Windows.Markup [<STAThread>] [<EntryPoint>] let main(_) = let w = Application.LoadComponent(new System.Uri("/FSharpWPF;component/Window.xaml", System.UriKind.Relative)) :?> Window (new Application()).Run(w) Once all this is done you should be able to build and run your project. What you have done is created a WPF based window inside a FSharp project. It should look something like below…   Nothing to exciting, but sufficient to illustrate the very basic WPF form in F#. Hopefully in future posts I will build on this to expose button events etc.

    Read the article

< Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >