Search Results

Search found 59420 results on 2377 pages for 'net (general)'.

Page 23/2377 | < Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >

  • Visual Studio 2010 RC with .net 4 beta 2

    - by aip.cd.aish
    Does anyone know if it is possible to use Visual Studio 2010 RC with the beta 2 version of the .NET 4 framework? The reason I need to use the beta 2 version and not the RC is that there isn't an Expression Blend that can support the .NET 4 RC. I uninstalled the .NET 4 framework that installed with Visual Studio 2010, then I reinstalled the .NET 4 version Beta 2. But now when I launch Visual Studio, I get an error message saying "The operation could not be completed" and it shuts down. How can I make this work? Thanks!

    Read the article

  • ASP.NET MVC, Spring.NET, NHibernate initial setup/example/tutorial.

    - by Bubba88
    Hello! Have you been doing some ASP.NET MVC developement involving Spring.NET and NHibernate both? I would like to see an informative example of such setup, so I could build my own project off that. I tried googling, found some pretty things like S#arp Architecture, an article about regular ASP.NET (WebForms) integrated with the frameworks and so on. Still, I'm missing a good tutorial on ASP.NET MVC & the subj. P.S.: I do know how Spring and Hibernate works, I just need to plug them into an MVC application. Don't want to use S#arp Architecture by now. P.P.S: I'll update the links later, including this one:

    Read the article

  • ASP.Net MVC 2 - Need To Add A Default Property To A Strongly Typed Html.Textbox Helper In Asp.Net MV

    - by Sara
    I'm having a problem with something that I'm sure is very simple. I have been using Asp.Net MVC and I decided to start using Asp.Net MVC 2. Something has changed and now I need a little help. The strongly typed helpers are now written like this - <%= Html.TextBoxFor(model => model.State) %> I need to add a default value to a textbox. In the prior version of Asp.Net MVC it was easy to assign a default value. I thought doing the following would work in MVC 2- <%= Html.TextBoxFor(model => model.CountyId, new{ value = 840 })%> This, however, does not work for me in Asp.Net MVC 2. The value is still blank for the textbox. I want to make sure that this isn't some random error that I am having. Has anyone else encountered the same problem? I have searched and searched to find more information on the default property for the html helpers in MVC 2, but I can't find anything. Does anyone out there know how to correctly assign a default value to a textbox in Asp.Net MVC 2?

    Read the article

  • HtmlForm.Action and .Net Framework 2.0/3.5 Query

    - by Brian
    Disappointingly, the members page for HtmlForm 2.0 is missing... My research seems to indicate that HtmlForm.Action is a property that was added in .Net Framework 3.5. However, I'm using VS2005 and my reference to System.Web (the namespace HtmlForm is under) is to a .Net Framework 2.0 runtime version. Further, my IIS status information also indicates I am using .Net Framework 2.0, when I force an error on my local IIS and read it. Despite this, I am able to use form1.Action successfully...but only on my local IIS. When I try it on vms and external servers, I get [MissingMethodException: Method not found: 'System.String System.Web.UI.HtmlControls.HtmlForm.get_Action()'.] errors. So, my question: 1) Why does it work on my local IIS? Does the fact that I have the 3.5 framework installed make a difference, here? 2) Why does it not work on other IIS? (I think this is because it's not part of .Net 2.0). I guess I just figure that if something is running on .Net Framework 2.0, the presence of 3.5 should not make a difference. Or maybe there's some other cause for these results.

    Read the article

  • ASP.NET custom templates, still ASP.NET controls possible?

    - by Sha Le
    Hello: we currently do not use asp.net controls (no web forms). The way we do is: 1 Read HTML file from disk 2 lookup database, parse tags and populate data finally, Response.Write(page.ToString()); here there is no possibility of using asp.net controls. What I am wondering is, if we use asp.net controls in those HTML files, is there way to process them during step 2? Thanks and appreciate your response.

    Read the article

  • Using ExtJS with ASP.NET, Webforms or MVC?

    - by TigrouMeow
    Hello, For a scenario using 0 ASP.NET controls at all but rather an 100% extJS interface, what would be the advantages of using ASP.NET MVC or ASP.NET WebForms? And the disadvantages? Is there a OBVIOUS way to do it properly? I would love to have feedback's on your experiences. Thank you!

    Read the article

  • Recommend ASP.NET 3.5 SP1 Hosting Providers

    - by tyndall
    Would like to see a list of affordable ASP.NET 3.5 SP1 Hosting providers build up. Along with your review of the service, lacking features, special features, etc... Discount ASP.NET MochaHost At last update MochaHost does not offer SP1  they now offer SP1 CrystalTech Gearhost HostMySite please add more update: Anybody see a better deal for shared hosting ASP.NET than ASP.NETpro From GearHost? I would like to see more SQL storage, but I need keep the multiple domain capabilities. For about the same price.

    Read the article

  • asp.net application install folder

    - by Maximilian Csuk
    Disclaimer: this is not a question about how to install asp.net or an application using it! Hi! I am pretty sure many of you have once installed some kind of forum, blog or CMS (mostly PHP powered applications). All of these contain a folder mostly named "install" where (after you copied the files to the webserver) point your browser to to complete the installation by entering for example database information (servername, username, password, ...). After that, most applications suggest that you delete this folder or at least change the permissions so nobody from the outside can access it anymore. Now to my question: how would you go about that in the asp.net world? I don't really like the "install folder"-approach and I thought there might be a different mechanism for .net/IIS. The person installing my application should be able to enter his database information as painless as possible, which should ultimatively be stored in the web.config file. If it makes a difference, I am using asp.net MVC. Thanks for your help!

    Read the article

  • Linq To Sql or classic ADO.net?

    - by Spyros
    I am asking my self many times before start writting a new app or data access library , should I use LinqToSql or classic ADO.net , I have used both and the development time I spend on building an app with Linq To sql is like the 1/3 compared to ADO.net. The only think I like using Linq to sql is that I dont have to design the domain objects Linq does that for me and saves me from spend my time on boring things :P But is Linq to sql suitable for large scale projects , is there an overhead that we can avoid when using ADO.net ?

    Read the article

  • Membership with Mysql, EF 1 and ASP.NET 3.5

    - by sanfra1983
    Hi, I created a web application with asp.net 3.5 and ado.net entity framework WebForms 1, but have not yet succeeded in creating a memebrship and roles. When I go on ASP.NET Configuration and click the Security Tab I get the following error: Keyword not supported. Parameter name: metadata Someone has already created an application with these same features to help me understand where is the problem? P.S.: I'm going crazy Thanks to all

    Read the article

  • Parallelism in .NET – Part 12, More on Task Decomposition

    - by Reed
    Many tasks can be decomposed using a Data Decomposition approach, but often, this is not appropriate.  Frequently, decomposing the problem into distinctive tasks that must be performed is a more natural abstraction. However, as I mentioned in Part 1, Task Decomposition tends to be a bit more difficult than data decomposition, and can require a bit more effort.  Before we being parallelizing our algorithm based on the tasks being performed, we need to decompose our problem, and take special care of certain considerations such as ordering and grouping of tasks. Up to this point in this series, I’ve focused on parallelization techniques which are most appropriate when a problem space can be decomposed by data.  Using PLINQ and the Parallel class, I’ve shown how problem spaces where there is a collection of data, and each element needs to be processed, can potentially be parallelized. However, there are many other routines where this is not appropriate.  Often, instead of working on a collection of data, there is a single piece of data which must be processed using an algorithm or series of algorithms.  Here, there is no collection of data, but there may still be opportunities for parallelism. As I mentioned before, in cases like this, the approach is to look at your overall routine, and decompose your problem space based on tasks.  The idea here is to look for discrete “tasks,” individual pieces of work which can be conceptually thought of as a single operation. Let’s revisit the example I used in Part 1, an application startup path.  Say we want our program, at startup, to do a bunch of individual actions, or “tasks”.  The following is our list of duties we must perform right at startup: Display a splash screen Request a license from our license manager Check for an update to the software from our web server If an update is available, download it Setup our menu structure based on our current license Open and display our main, welcome Window Hide the splash screen The first step in Task Decomposition is breaking up the problem space into discrete tasks. This, naturally, can be abstracted as seven discrete tasks.  In the serial version of our program, if we were to diagram this, the general process would appear as: These tasks, obviously, provide some opportunities for parallelism.  Before we can parallelize this routine, we need to analyze these tasks, and find any dependencies between tasks.  In this case, our dependencies include: The splash screen must be displayed first, and as quickly as possible. We can’t download an update before we see whether one exists. Our menu structure depends on our license, so we must check for the license before setting up the menus. Since our welcome screen will notify the user of an update, we can’t show it until we’ve downloaded the update. Since our welcome screen includes menus that are customized based off the licensing, we can’t display it until we’ve received a license. We can’t hide the splash until our welcome screen is displayed. By listing our dependencies, we start to see the natural ordering that must occur for the tasks to be processed correctly. The second step in Task Decomposition is determining the dependencies between tasks, and ordering tasks based on their dependencies. Looking at these tasks, and looking at all the dependencies, we quickly see that even a simple decomposition such as this one can get quite complicated.  In order to simplify the problem of defining the dependencies, it’s often a useful practice to group our tasks into larger, discrete tasks.  The goal when grouping tasks is that you want to make each task “group” have as few dependencies as possible to other tasks or groups, and then work out the dependencies within that group.  Typically, this works best when any external dependency is based on the “last” task within the group when it’s ordered, although that is not a firm requirement.  This process is often called Grouping Tasks.  In our case, we can easily group together tasks, effectively turning this into four discrete task groups: 1. Show our splash screen – This needs to be left as its own task.  First, multiple things depend on this task, mainly because we want this to start before any other action, and start as quickly as possible. 2. Check for Update and Download the Update if it Exists - These two tasks logically group together.  We know we only download an update if the update exists, so that naturally follows.  This task has one dependency as an input, and other tasks only rely on the final task within this group. 3. Request a License, and then Setup the Menus – Here, we can group these two tasks together.  Although we mentioned that our welcome screen depends on the license returned, it also depends on setting up the menu, which is the final task here.  Setting up our menus cannot happen until after our license is requested.  By grouping these together, we further reduce our problem space. 4. Display welcome and hide splash - Finally, we can display our welcome window and hide our splash screen.  This task group depends on all three previous task groups – it cannot happen until all three of the previous groups have completed. By grouping the tasks together, we reduce our problem space, and can naturally see a pattern for how this process can be parallelized.  The diagram below shows one approach: The orange boxes show each task group, with each task represented within.  We can, now, effectively take these tasks, and run a large portion of this process in parallel, including the portions which may be the most time consuming.  We’ve now created two parallel paths which our process execution can follow, hopefully speeding up the application startup time dramatically. The main point to remember here is that, when decomposing your problem space by tasks, you need to: Define each discrete action as an individual Task Discover dependencies between your tasks Group tasks based on their dependencies Order the tasks and groups of tasks

    Read the article

  • Using ASP.NET C# and Javascript

    - by ctck
    I'm looking for the most efficient / standardized way of passing data between client javascript code and C# code behind in an ASP.NET application. Currently ive been using the following methods to achieve this but they all feel a bit like a fudge. The way i pass data from javascript to the C# code behind is by setting hidden asp variables and triggering a postback <asp:HiddenField ID="RandomList" runat="server" /> function SetDataField(data) { document.getElementById('<%=RandomList.ClientID%>').value = data; } Then in C# code i collect the list protected void GetData(object sender, EventArgs e) { var _list = RandomList.value; } Going back the other way i often use either scriptmanager to register a function and pass it data during Page_Load: ScriptManager.RegisterStartupScript(this.GetType(), "Set","get("Test();",true); or i add attributes to controls before a post back or during Initialization / pre rendering stages: Btn.Attributes.Add("onclick", "DisplayMessage("Hello");"); These methods have served me well and do the job. However they just dont feel complete. Is there a more standardized way of passing data between client side markup / javascript and backend code. Ive seen some posts like this one: Injecting JavaScrip : StackOverflow that describe HtmlElement class. Is this something is should look into? Thanks everyone for your time.

    Read the article

  • ASP.NET ViewState Tips and Tricks #2

    - by João Angelo
    If you need to store complex types in ViewState DO implement IStateManager to control view state persistence and reduce its size. By default a serializable object will be fully stored in view state using BinaryFormatter. A quick comparison for a complex type with two integers and one string property produces the following results measured using ASP.NET tracing: BinaryFormatter: 328 bytes in view state IStateManager: 28 bytes in view state BinaryFormatter sample code: // DO NOT [Serializable] public class Info { public int Id { get; set; } public string Name { get; set; } public int Age { get; set; } } public class ExampleControl : WebControl { protected override void OnLoad(EventArgs e) { base.OnLoad(e); if (!this.Page.IsPostBack) { this.User = new Info { Id = 1, Name = "John Doe", Age = 27 }; } } public Info User { get { object o = this.ViewState["Example_User"]; if (o == null) return null; return (Info)o; } set { this.ViewState["Example_User"] = value; } } } IStateManager sample code: // DO public class Info : IStateManager { public int Id { get; set; } public string Name { get; set; } public int Age { get; set; } private bool isTrackingViewState; bool IStateManager.IsTrackingViewState { get { return this.isTrackingViewState; } } void IStateManager.LoadViewState(object state) { var triplet = (Triplet)state; this.Id = (int)triplet.First; this.Name = (string)triplet.Second; this.Age = (int)triplet.Third; } object IStateManager.SaveViewState() { return new Triplet(this.Id, this.Name, this.Age); } void IStateManager.TrackViewState() { this.isTrackingViewState = true; } } public class ExampleControl : WebControl { protected override void OnLoad(EventArgs e) { base.OnLoad(e); if (!this.Page.IsPostBack) { this.User = new Info { Id = 1, Name = "John Doe", Age = 27 }; } } public Info User { get; set; } protected override object SaveViewState() { return new Pair( ((IStateManager)this.User).SaveViewState(), base.SaveViewState()); } protected override void LoadViewState(object savedState) { if (savedState != null) { var pair = (Pair)savedState; this.User = new Info(); ((IStateManager)this.User).LoadViewState(pair.First); base.LoadViewState(pair.Second); } } }

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by Mohammad Ashraful Alam
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves most of the major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • Parallelism in .NET – Part 2, Simple Imperative Data Parallelism

    - by Reed
    In my discussion of Decomposition of the problem space, I mentioned that Data Decomposition is often the simplest abstraction to use when trying to parallelize a routine.  If a problem can be decomposed based off the data, we will often want to use what MSDN refers to as Data Parallelism as our strategy for implementing our routine.  The Task Parallel Library in .NET 4 makes implementing Data Parallelism, for most cases, very simple. Data Parallelism is the main technique we use to parallelize a routine which can be decomposed based off data.  Data Parallelism refers to taking a single collection of data, and having a single operation be performed concurrently on elements in the collection.  One side note here: Data Parallelism is also sometimes referred to as the Loop Parallelism Pattern or Loop-level Parallelism.  In general, for this series, I will try to use the terminology used in the MSDN Documentation for the Task Parallel Library.  This should make it easier to investigate these topics in more detail. Once we’ve determined we have a problem that, potentially, can be decomposed based on data, implementation using Data Parallelism in the TPL is quite simple.  Let’s take our example from the Data Decomposition discussion – a simple contrast stretching filter.  Here, we have a collection of data (pixels), and we need to run a simple operation on each element of the pixel.  Once we know the minimum and maximum values, we most likely would have some simple code like the following: for (int row=0; row < pixelData.GetUpperBound(0); ++row) { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This simple routine loops through a two dimensional array of pixelData, and calls the AdjustContrast routine on each pixel. As I mentioned, when you’re decomposing a problem space, most iteration statements are potentially candidates for data decomposition.  Here, we’re using two for loops – one looping through rows in the image, and a second nested loop iterating through the columns.  We then perform one, independent operation on each element based on those loop positions. This is a prime candidate – we have no shared data, no dependencies on anything but the pixel which we want to change.  Since we’re using a for loop, we can easily parallelize this using the Parallel.For method in the TPL: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Here, by simply changing our first for loop to a call to Parallel.For, we can parallelize this portion of our routine.  Parallel.For works, as do many methods in the TPL, by creating a delegate and using it as an argument to a method.  In this case, our for loop iteration block becomes a delegate creating via a lambda expression.  This lets you write code that, superficially, looks similar to the familiar for loop, but functions quite differently at runtime. We could easily do this to our second for loop as well, but that may not be a good idea.  There is a balance to be struck when writing parallel code.  We want to have enough work items to keep all of our processors busy, but the more we partition our data, the more overhead we introduce.  In this case, we have an image of data – most likely hundreds of pixels in both dimensions.  By just parallelizing our first loop, each row of pixels can be run as a single task.  With hundreds of rows of data, we are providing fine enough granularity to keep all of our processors busy. If we parallelize both loops, we’re potentially creating millions of independent tasks.  This introduces extra overhead with no extra gain, and will actually reduce our overall performance.  This leads to my first guideline when writing parallel code: Partition your problem into enough tasks to keep each processor busy throughout the operation, but not more than necessary to keep each processor busy. Also note that I parallelized the outer loop.  I could have just as easily partitioned the inner loop.  However, partitioning the inner loop would have led to many more discrete work items, each with a smaller amount of work (operate on one pixel instead of one row of pixels).  My second guideline when writing parallel code reflects this: Partition your problem in a way to place the most work possible into each task. This typically means, in practice, that you will want to parallelize the routine at the “highest” point possible in the routine, typically the outermost loop.  If you’re looking at parallelizing methods which call other methods, you’ll want to try to partition your work high up in the stack – as you get into lower level methods, the performance impact of parallelizing your routines may not overcome the overhead introduced. Parallel.For works great for situations where we know the number of elements we’re going to process in advance.  If we’re iterating through an IList<T> or an array, this is a typical approach.  However, there are other iteration statements common in C#.  In many situations, we’ll use foreach instead of a for loop.  This can be more understandable and easier to read, but also has the advantage of working with collections which only implement IEnumerable<T>, where we do not know the number of elements involved in advance. As an example, lets take the following situation.  Say we have a collection of Customers, and we want to iterate through each customer, check some information about the customer, and if a certain case is met, send an email to the customer and update our instance to reflect this change.  Normally, this might look something like: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } } Here, we’re doing a fair amount of work for each customer in our collection, but we don’t know how many customers exist.  If we assume that theStore.GetLastContact(customer) and theStore.EmailCustomer(customer) are both side-effect free, thread safe operations, we could parallelize this using Parallel.ForEach: Parallel.ForEach(customers, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); Just like Parallel.For, we rework our loop into a method call accepting a delegate created via a lambda expression.  This keeps our new code very similar to our original iteration statement, however, this will now execute in parallel.  The same guidelines apply with Parallel.ForEach as with Parallel.For. The other iteration statements, do and while, do not have direct equivalents in the Task Parallel Library.  These, however, are very easy to implement using Parallel.ForEach and the yield keyword. Most applications can benefit from implementing some form of Data Parallelism.  Iterating through collections and performing “work” is a very common pattern in nearly every application.  When the problem can be decomposed by data, we often can parallelize the workload by merely changing foreach statements to Parallel.ForEach method calls, and for loops to Parallel.For method calls.  Any time your program operates on a collection, and does a set of work on each item in the collection where that work is not dependent on other information, you very likely have an opportunity to parallelize your routine.

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • Parallelism in .NET – Part 11, Divide and Conquer via Parallel.Invoke

    - by Reed
    Many algorithms are easily written to work via recursion.  For example, most data-oriented tasks where a tree of data must be processed are much more easily handled by starting at the root, and recursively “walking” the tree.  Some algorithms work this way on flat data structures, such as arrays, as well.  This is a form of divide and conquer: an algorithm design which is based around breaking up a set of work recursively, “dividing” the total work in each recursive step, and “conquering” the work when the remaining work is small enough to be solved easily. Recursive algorithms, especially ones based on a form of divide and conquer, are often a very good candidate for parallelization. This is apparent from a common sense standpoint.  Since we’re dividing up the total work in the algorithm, we have an obvious, built-in partitioning scheme.  Once partitioned, the data can be worked upon independently, so there is good, clean isolation of data. Implementing this type of algorithm is fairly simple.  The Parallel class in .NET 4 includes a method suited for this type of operation: Parallel.Invoke.  This method works by taking any number of delegates defined as an Action, and operating them all in parallel.  The method returns when every delegate has completed: Parallel.Invoke( () => { Console.WriteLine("Action 1 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 2 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 3 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); } ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Running this simple example demonstrates the ease of using this method.  For example, on my system, I get three separate thread IDs when running the above code.  By allowing any number of delegates to be executed directly, concurrently, the Parallel.Invoke method provides us an easy way to parallelize any algorithm based on divide and conquer.  We can divide our work in each step, and execute each task in parallel, recursively. For example, suppose we wanted to implement our own quicksort routine.  The quicksort algorithm can be designed based on divide and conquer.  In each iteration, we pick a pivot point, and use that to partition the total array.  We swap the elements around the pivot, then recursively sort the lists on each side of the pivot.  For example, let’s look at this simple, sequential implementation of quicksort: public static void QuickSort<T>(T[] array) where T : IComparable<T> { QuickSortInternal(array, 0, array.Length - 1); } private static void QuickSortInternal<T>(T[] array, int left, int right) where T : IComparable<T> { if (left >= right) { return; } SwapElements(array, left, (left + right) / 2); int last = left; for (int current = left + 1; current <= right; ++current) { if (array[current].CompareTo(array[left]) < 0) { ++last; SwapElements(array, last, current); } } SwapElements(array, left, last); QuickSortInternal(array, left, last - 1); QuickSortInternal(array, last + 1, right); } static void SwapElements<T>(T[] array, int i, int j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; } Here, we implement the quicksort algorithm in a very common, divide and conquer approach.  Running this against the built-in Array.Sort routine shows that we get the exact same answers (although the framework’s sort routine is slightly faster).  On my system, for example, I can use framework’s sort to sort ten million random doubles in about 7.3s, and this implementation takes about 9.3s on average. Looking at this routine, though, there is a clear opportunity to parallelize.  At the end of QuickSortInternal, we recursively call into QuickSortInternal with each partition of the array after the pivot is chosen.  This can be rewritten to use Parallel.Invoke by simply changing it to: // Code above is unchanged... SwapElements(array, left, last); Parallel.Invoke( () => QuickSortInternal(array, left, last - 1), () => QuickSortInternal(array, last + 1, right) ); } This routine will now run in parallel.  When executing, we now see the CPU usage across all cores spike while it executes.  However, there is a significant problem here – by parallelizing this routine, we took it from an execution time of 9.3s to an execution time of approximately 14 seconds!  We’re using more resources as seen in the CPU usage, but the overall result is a dramatic slowdown in overall processing time. This occurs because parallelization adds overhead.  Each time we split this array, we spawn two new tasks to parallelize this algorithm!  This is far, far too many tasks for our cores to operate upon at a single time.  In effect, we’re “over-parallelizing” this routine.  This is a common problem when working with divide and conquer algorithms, and leads to an important observation: When parallelizing a recursive routine, take special care not to add more tasks than necessary to fully utilize your system. This can be done with a few different approaches, in this case.  Typically, the way to handle this is to stop parallelizing the routine at a certain point, and revert back to the serial approach.  Since the first few recursions will all still be parallelized, our “deeper” recursive tasks will be running in parallel, and can take full advantage of the machine.  This also dramatically reduces the overhead added by parallelizing, since we’re only adding overhead for the first few recursive calls.  There are two basic approaches we can take here.  The first approach would be to look at the total work size, and if it’s smaller than a specific threshold, revert to our serial implementation.  In this case, we could just check right-left, and if it’s under a threshold, call the methods directly instead of using Parallel.Invoke. The second approach is to track how “deep” in the “tree” we are currently at, and if we are below some number of levels, stop parallelizing.  This approach is a more general-purpose approach, since it works on routines which parse trees as well as routines working off of a single array, but may not work as well if a poor partitioning strategy is chosen or the tree is not balanced evenly. This can be written very easily.  If we pass a maxDepth parameter into our internal routine, we can restrict the amount of times we parallelize by changing the recursive call to: // Code above is unchanged... SwapElements(array, left, last); if (maxDepth < 1) { QuickSortInternal(array, left, last - 1, maxDepth); QuickSortInternal(array, last + 1, right, maxDepth); } else { --maxDepth; Parallel.Invoke( () => QuickSortInternal(array, left, last - 1, maxDepth), () => QuickSortInternal(array, last + 1, right, maxDepth)); } We no longer allow this to parallelize indefinitely – only to a specific depth, at which time we revert to a serial implementation.  By starting the routine with a maxDepth equal to Environment.ProcessorCount, we can restrict the total amount of parallel operations significantly, but still provide adequate work for each processing core. With this final change, my timings are much better.  On average, I get the following timings: Framework via Array.Sort: 7.3 seconds Serial Quicksort Implementation: 9.3 seconds Naive Parallel Implementation: 14 seconds Parallel Implementation Restricting Depth: 4.7 seconds Finally, we are now faster than the framework’s Array.Sort implementation.

    Read the article

  • Adding page title to each page while creating a PDF file using itextsharp in VB.NET

    - by Snowy
    I have recently started using itextsharp and gradually learning it. So far I created a PDF file and it seems great. I have added a table and some subtables as the first table cells to hold data. It is done using two for loops. The first one loops through all data and the second one is each individual data displayed in columns. The html outcome looks like the following: <table> <tr> <td>Page title in center</td> </tr> <tr> <td> <table> <tr> <td>FirstPersonName</td> <td>Rank1</td> <td>info1a</td> <td>infob</td> <td>infoc</td> </tr> </table> </td> <td> <table> <tr> <td>SecondPersonName</td> <td>Rank2</td> <td>info1a</td> <td>infob</td> <td>infoc</td> <td>infod</td> <td>infoe</td> </tr> </table> </td> <td> <table> <tr> <td>ThirdPersonName</td> <td>Rank2</td> <td>info1a</td> <td>infob</td> <td>infoc</td> <td>infod</td> <td>infoe</td> <td>infof</td> <td>infog</td> </tr> </table> </td> </tr> </table> For page headings, I added a cell at the top before any other cells. I need to add this heading to all pages. Depending on the size of data, some pages have two rows and some pages have three rows of data. So I can not tell exactly when the new page starts to add the heading/title. My question is how to add the heading/title to all pages. I use VB.net. I searched for answer online and had no success. Your help would be greatly appreciated.

    Read the article

  • Issues integrating NCover with CC.NET, .NET framework 4.0 and MsTest

    - by Nikhil
    I'm implementing continuous integration with CruiseControl.NET, .NET 4.0, NCover and MsTest. On the build server I'm unable to run code coverage from the Ncover explorer or NCover console. When I run where vstesthost.exe from the Ncover console it returns the Visual Studio 9.0 path and does not seem to pick up .net framework 4.0. I've followed instructions from this MSTest: Measuring Test Quality With NCover post with slight modifications for .net framework 4.0, without any success. My CC.NET script looks like this <exec> <executable>C:\Program Files (x86)\NCover\NCover.Console.exe</executable> <baseDirectory>$(project_root)\</baseDirectory> <buildArgs>"C:\Program Files (x86)\**Microsoft Visual Studio 10.0**\Common7\IDE\MSTest.exe" /testcontainer:...\...\UnitTests.dll /resultsfile:TestResults.trx //xml D:\_Projects\....\Temp_Coverage.xml //pm vstesthost.exe</buildArgs> <buildTimeoutSeconds>$(ncover.timeout)</buildTimeoutSeconds> </exec> Has anyone come across similar issue. Any help would be much appreciated.

    Read the article

  • Parallelism in .NET – Part 16, Creating Tasks via a TaskFactory

    - by Reed
    The Task class in the Task Parallel Library supplies a large set of features.  However, when creating the task, and assigning it to a TaskScheduler, and starting the Task, there are quite a few steps involved.  This gets even more cumbersome when multiple tasks are involved.  Each task must be constructed, duplicating any options required, then started individually, potentially on a specific scheduler.  At first glance, this makes the new Task class seem like more work than ThreadPool.QueueUserWorkItem in .NET 3.5. In order to simplify this process, and make Tasks simple to use in simple cases, without sacrificing their power and flexibility, the Task Parallel Library added a new class: TaskFactory. The TaskFactory class is intended to “Provide support for creating and scheduling Task objects.”  Its entire purpose is to simplify development when working with Task instances.  The Task class provides access to the default TaskFactory via the Task.Factory static property.  By default, TaskFactory uses the default TaskScheduler to schedule tasks on a ThreadPool thread.  By using Task.Factory, we can automatically create and start a task in a single “fire and forget” manner, similar to how we did with ThreadPool.QueueUserWorkItem: Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides us with the same level of simplicity we had with ThreadPool.QueueUserWorkItem, but even more power.  For example, we can now easily wait on the task: // Start our task on a background thread var task = Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); // Do other work on the main thread, // while the task above executes in the background this.ExecuteWorkSynchronously(); // Wait for the background task to finish task.Wait(); TaskFactory simplifies creation and startup of simple background tasks dramatically. In addition to using the default TaskFactory, it’s often useful to construct a custom TaskFactory.  The TaskFactory class includes an entire set of constructors which allow you to specify the default configuration for every Task instance created by that factory.  This is particularly useful when using a custom TaskScheduler.  For example, look at the sample code for starting a task on the UI thread in Part 15: // Given the following, constructed on the UI thread // TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // When inside a background task, we can do string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); This is actually quite a bit more complicated than necessary.  When we create the uiScheduler instance, we can use that to construct a TaskFactory that will automatically schedule tasks on the UI thread.  To do that, we’d create the following on our main thread, prior to constructing our background tasks: // Construct a task scheduler from the current SynchronizationContext (UI thread) var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Construct a new TaskFactory using our UI scheduler var uiTaskFactory = new TaskFactory(uiScheduler); If we do this, when we’re on a background thread, we can use this new TaskFactory to marshal a Task back onto the UI thread.  Our previous code simplifies to: // When inside a background task, we can do string status = GetUpdatedStatus(); // Update our UI uiTaskFactory.StartNew( () => statusLabel.Text = status); Notice how much simpler this becomes!  By taking advantage of the convenience provided by a custom TaskFactory, we can now marshal to set data on the UI thread in a single, clear line of code!

    Read the article

  • Parallelism in .NET – Part 8, PLINQ’s ForAll Method

    - by Reed
    Parallel LINQ extends LINQ to Objects, and is typically very similar.  However, as I previously discussed, there are some differences.  Although the standard way to handle simple Data Parellelism is via Parallel.ForEach, it’s possible to do the same thing via PLINQ. PLINQ adds a new method unavailable in standard LINQ which provides new functionality… LINQ is designed to provide a much simpler way of handling querying, including filtering, ordering, grouping, and many other benefits.  Reading the description in LINQ to Objects on MSDN, it becomes clear that the thinking behind LINQ deals with retrieval of data.  LINQ works by adding a functional programming style on top of .NET, allowing us to express filters in terms of predicate functions, for example. PLINQ is, generally, very similar.  Typically, when using PLINQ, we write declarative statements to filter a dataset or perform an aggregation.  However, PLINQ adds one new method, which provides a very different purpose: ForAll. The ForAll method is defined on ParallelEnumerable, and will work upon any ParallelQuery<T>.  Unlike the sequence operators in LINQ and PLINQ, ForAll is intended to cause side effects.  It does not filter a collection, but rather invokes an action on each element of the collection. At first glance, this seems like a bad idea.  For example, Eric Lippert clearly explained two philosophical objections to providing an IEnumerable<T>.ForEach extension method, one of which still applies when parallelized.  The sole purpose of this method is to cause side effects, and as such, I agree that the ForAll method “violates the functional programming principles that all the other sequence operators are based upon”, in exactly the same manner an IEnumerable<T>.ForEach extension method would violate these principles.  Eric Lippert’s second reason for disliking a ForEach extension method does not necessarily apply to ForAll – replacing ForAll with a call to Parallel.ForEach has the same closure semantics, so there is no loss there. Although ForAll may have philosophical issues, there is a pragmatic reason to include this method.  Without ForAll, we would take a fairly serious performance hit in many situations.  Often, we need to perform some filtering or grouping, then perform an action using the results of our filter.  Using a standard foreach statement to perform our action would avoid this philosophical issue: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action foreach (var item in filteredItems) { // These will now run serially item.DoSomething(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This would cause a loss in performance, since we lose any parallelism in place, and cause all of our actions to be run serially. We could easily use a Parallel.ForEach instead, which adds parallelism to the actions: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action once the filter completes Parallel.ForEach(filteredItems, item => { // These will now run in parallel item.DoSomething(); }); This is a noticeable improvement, since both our filtering and our actions run parallelized.  However, there is still a large bottleneck in place here.  The problem lies with my comment “perform an action once the filter completes”.  Here, we’re parallelizing the filter, then collecting all of the results, blocking until the filter completes.  Once the filtering of every element is completed, we then repartition the results of the filter, reschedule into multiple threads, and perform the action on each element.  By moving this into two separate statements, we potentially double our parallelization overhead, since we’re forcing the work to be partitioned and scheduled twice as many times. This is where the pragmatism comes into play.  By violating our functional principles, we gain the ability to avoid the overhead and cost of rescheduling the work: // Perform an action on the results of our filter collection .AsParallel() .Where( i => i.SomePredicate() ) .ForAll( i => i.DoSomething() ); The ability to avoid the scheduling overhead is a compelling reason to use ForAll.  This really goes back to one of the key points I discussed in data parallelism: Partition your problem in a way to place the most work possible into each task.  Here, this means leaving the statement attached to the expression, even though it causes side effects and is not standard usage for LINQ. This leads to my one guideline for using ForAll: The ForAll extension method should only be used to process the results of a parallel query, as returned by a PLINQ expression. Any other usage scenario should use Parallel.ForEach, instead.

    Read the article

  • Parallelism in .NET – Part 17, Think Continuations, not Callbacks

    - by Reed
    In traditional asynchronous programming, we’d often use a callback to handle notification of a background task’s completion.  The Task class in the Task Parallel Library introduces a cleaner alternative to the traditional callback: continuation tasks. Asynchronous programming methods typically required callback functions.  For example, MSDN’s Asynchronous Delegates Programming Sample shows a class that factorizes a number.  The original method in the example has the following signature: public static bool Factorize(int number, ref int primefactor1, ref int primefactor2) { //... .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, calling this is quite “tricky”, even if we modernize the sample to use lambda expressions via C# 3.0.  Normally, we could call this method like so: int primeFactor1 = 0; int primeFactor2 = 0; bool answer = Factorize(10298312, ref primeFactor1, ref primeFactor2); Console.WriteLine("{0}/{1} [Succeeded {2}]", primeFactor1, primeFactor2, answer); If we want to make this operation run in the background, and report to the console via a callback, things get tricker.  First, we need a delegate definition: public delegate bool AsyncFactorCaller( int number, ref int primefactor1, ref int primefactor2); Then we need to use BeginInvoke to run this method asynchronously: int primeFactor1 = 0; int primeFactor2 = 0; AsyncFactorCaller caller = new AsyncFactorCaller(Factorize); caller.BeginInvoke(10298312, ref primeFactor1, ref primeFactor2, result => { int factor1 = 0; int factor2 = 0; bool answer = caller.EndInvoke(ref factor1, ref factor2, result); Console.WriteLine("{0}/{1} [Succeeded {2}]", factor1, factor2, answer); }, null); This works, but is quite difficult to understand from a conceptual standpoint.  To combat this, the framework added the Event-based Asynchronous Pattern, but it isn’t much easier to understand or author. Using .NET 4’s new Task<T> class and a continuation, we can dramatically simplify the implementation of the above code, as well as make it much more understandable.  We do this via the Task.ContinueWith method.  This method will schedule a new Task upon completion of the original task, and provide the original Task (including its Result if it’s a Task<T>) as an argument.  Using Task, we can eliminate the delegate, and rewrite this code like so: var background = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); background.ContinueWith(task => Console.WriteLine("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result)); This is much simpler to understand, in my opinion.  Here, we’re explicitly asking to start a new task, then continue the task with a resulting task.  In our case, our method used ref parameters (this was from the MSDN Sample), so there is a little bit of extra boiler plate involved, but the code is at least easy to understand. That being said, this isn’t dramatically shorter when compared with our C# 3 port of the MSDN code above.  However, if we were to extend our requirements a bit, we can start to see more advantages to the Task based approach.  For example, supposed we need to report the results in a user interface control instead of reporting it to the Console.  This would be a common operation, but now, we have to think about marshaling our calls back to the user interface.  This is probably going to require calling Control.Invoke or Dispatcher.Invoke within our callback, forcing us to specify a delegate within the delegate.  The maintainability and ease of understanding drops.  However, just as a standard Task can be created with a TaskScheduler that uses the UI synchronization context, so too can we continue a task with a specific context.  There are Task.ContinueWith method overloads which allow you to provide a TaskScheduler.  This means you can schedule the continuation to run on the UI thread, by simply doing: Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }).ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), TaskScheduler.FromCurrentSynchronizationContext()); This is far more understandable than the alternative.  By using Task.ContinueWith in conjunction with TaskScheduler.FromCurrentSynchronizationContext(), we get a simple way to push any work onto a background thread, and update the user interface on the proper UI thread.  This technique works with Windows Presentation Foundation as well as Windows Forms, with no change in methodology.

    Read the article

< Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >