Search Results

Search found 2788 results on 112 pages for 'symantec endpoint protect'.

Page 23/112 | < Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >

  • WebSocket Applications using Java: JSR 356 Early Draft Now Available (TOTD #183)

    - by arungupta
    WebSocket provide a full-duplex and bi-directional communication protocol over a single TCP connection. JSR 356 is defining a standard API for creating WebSocket applications in the Java EE 7 Platform. This Tip Of The Day (TOTD) will provide an introduction to WebSocket and how the JSR is evolving to support the programming model. First, a little primer on WebSocket! WebSocket is a combination of IETF RFC 6455 Protocol and W3C JavaScript API (still a Candidate Recommendation). The protocol defines an opening handshake and data transfer. The API enables Web pages to use the WebSocket protocol for two-way communication with the remote host. Unlike HTTP, there is no need to create a new TCP connection and send a chock-full of headers for every message exchange between client and server. The WebSocket protocol defines basic message framing, layered over TCP. Once the initial handshake happens using HTTP Upgrade, the client and server can send messages to each other, independent from the other. There are no pre-defined message exchange patterns of request/response or one-way between client and and server. These need to be explicitly defined over the basic protocol. The communication between client and server is pretty symmetric but there are two differences: A client initiates a connection to a server that is listening for a WebSocket request. A client connects to one server using a URI. A server may listen to requests from multiple clients on the same URI. Other than these two difference, the client and server behave symmetrically after the opening handshake. In that sense, they are considered as "peers". After a successful handshake, clients and servers transfer data back and forth in conceptual units referred as "messages". On the wire, a message is composed of one or more frames. Application frames carry payload intended for the application and can be text or binary data. Control frames carry data intended for protocol-level signaling. Now lets talk about the JSR! The Java API for WebSocket is worked upon as JSR 356 in the Java Community Process. This will define a standard API for building WebSocket applications. This JSR will provide support for: Creating WebSocket Java components to handle bi-directional WebSocket conversations Initiating and intercepting WebSocket events Creation and consumption of WebSocket text and binary messages The ability to define WebSocket protocols and content models for an application Configuration and management of WebSocket sessions, like timeouts, retries, cookies, connection pooling Specification of how WebSocket application will work within the Java EE security model Tyrus is the Reference Implementation for JSR 356 and is already integrated in GlassFish 4.0 Promoted Builds. And finally some code! The API allows to create WebSocket endpoints using annotations and interface. This TOTD will show a simple sample using annotations. A subsequent blog will show more advanced samples. A POJO can be converted to a WebSocket endpoint by specifying @WebSocketEndpoint and @WebSocketMessage. @WebSocketEndpoint(path="/hello")public class HelloBean {     @WebSocketMessage    public String sayHello(String name) {         return "Hello " + name + "!";     }} @WebSocketEndpoint marks this class as a WebSocket endpoint listening at URI defined by the path attribute. The @WebSocketMessage identifies the method that will receive the incoming WebSocket message. This first method parameter is injected with payload of the incoming message. In this case it is assumed that the payload is text-based. It can also be of the type byte[] in case the payload is binary. A custom object may be specified if decoders attribute is specified in the @WebSocketEndpoint. This attribute will provide a list of classes that define how a custom object can be decoded. This method can also take an optional Session parameter. This is injected by the runtime and capture a conversation between two endpoints. The return type of the method can be String, byte[] or a custom object. The encoders attribute on @WebSocketEndpoint need to define how a custom object can be encoded. The client side is an index.jsp with embedded JavaScript. The JSP body looks like: <div style="text-align: center;"> <form action="">     <input onclick="say_hello()" value="Say Hello" type="button">         <input id="nameField" name="name" value="WebSocket" type="text"><br>    </form> </div> <div id="output"></div> The code is relatively straight forward. It has an HTML form with a button that invokes say_hello() method and a text field named nameField. A div placeholder is available for displaying the output. Now, lets take a look at some JavaScript code: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/HelloWebSocket/hello";     var websocket = new WebSocket(wsUri);     websocket.onopen = function(evt) { onOpen(evt) };     websocket.onmessage = function(evt) { onMessage(evt) };     websocket.onerror = function(evt) { onError(evt) };     function init() {         output = document.getElementById("output");     }     function say_hello() {      websocket.send(nameField.value);         writeToScreen("SENT: " + nameField.value);     } This application is deployed as "HelloWebSocket.war" (download here) on GlassFish 4.0 promoted build 57. So the WebSocket endpoint is listening at "ws://localhost:8080/HelloWebSocket/hello". A new WebSocket connection is initiated by specifying the URI to connect to. The JavaScript API defines callback methods that are invoked when the connection is opened (onOpen), closed (onClose), error received (onError), or a message from the endpoint is received (onMessage). The client API has several send methods that transmit data over the connection. This particular script sends text data in the say_hello method using nameField's value from the HTML shown earlier. Each click on the button sends the textbox content to the endpoint over a WebSocket connection and receives a response based upon implementation in the sayHello method shown above. How to test this out ? Download the entire source project here or just the WAR file. Download GlassFish4.0 build 57 or later and unzip. Start GlassFish as "asadmin start-domain". Deploy the WAR file as "asadmin deploy HelloWebSocket.war". Access the application at http://localhost:8080/HelloWebSocket/index.jsp. After clicking on "Say Hello" button, the output would look like: Here are some references for you: WebSocket - Protocol and JavaScript API JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Binary data as payload Custom payloads using encoder/decoder Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API Capturing WebSocket on-the-wire messages

    Read the article

  • Windows driver signing

    - by Artem Smolny
    My company is developing driver for our hardware. Now I need to sign my driver for 32 and 64 bit platforms. Please tell, now I need to buy Authenticode certificate, right? What CA to use? DigiCert? GlobalSign? ( http://www.sslshopper.com/microsoft-authenticode-certificates.html ) Symantec? ( http://www.symantec.com/verisign/code-signing/microsoft-authenticode ) What is the difference between this CA offers? I need to use tools from WDK?

    Read the article

  • Credentials Not Passed From SharePoint WebPart to WCF Service

    - by Jacob L. Adams
    I have spent several hours trying to resolve this problem, so I wanted to share my findings in case someone else might have the same problem. I had a web part which was calling out to a WCF service on another server to get some data. The code I had was essentially using System.ServiceModel; using System.ServiceModel.Channels; ... var binding = new CustomBinding( new HttpTransportBindingElement { AuthenticationScheme = System.Net.AuthenticationSchemes.Negotiate } ); var endpoint = new EndpointAddress(new Uri("http://someotherserver/someotherservice.svc")); var someOtherService = new SomeOtherServiceClient(binding, endpoint); string result = someOtherService.SomeServiceMethod(); This code would run fine on my local instance of SharePoint 2010 (Windows 7 64-bit). However, when I would deploy it to the testing environment, I would get a yellow screen of death  with the following message: The HTTP request is unauthorized with client authentication scheme 'Negotiate'. The authentication header received from the server was 'Negotiate,NTLM'. I then went through the usual checklist of Windows Authentication problems: Check WCF bindings to make sure authentication is set correctly Check IIS to make sure Windows Authentication is enabled and anonymous authentication was disabled. Check to make sure the SharePoint server trusted the server hosting the WCF service Verify that the account that the IIS application pool is running under has access to the other server I then spend lot of time digging into really obscure IIS, machine.config, and trust settings (as well of lots of time on Google and StackOverflow). Eventually I stumbled upon a blog post by Todd Bleeker describing how to run code under the application pool identity. Wait, what? The code is not already running under application pool identity? Another quick Google search led me to an MSDN page that imply that SharePoint indeed does not run under the app pool credentials by default. Instead SPSecurity.RunWithElevatedPrivileges is needed to run code under the app pool identity. Therefore, changing my code to the following worked seamlessly using System.ServiceModel; using System.ServiceModel.Channels; using Microsoft.SharePoint; ... var binding = new CustomBinding( new HttpTransportBindingElement { AuthenticationScheme = System.Net.AuthenticationSchemes.Negotiate } ); var endpoint = new EndpointAddress(new Uri("http://someotherserver/someotherservice.svc")); var someOtherService = new SomeOtherServiceClient(binding, endpoint); string result; SPSecurity.RunWithElevatedPrivileges(()=> { result = someOtherService.SomeServiceMethod(); });

    Read the article

  • Running Built-In Test Simulator with SOA Suite Healthcare 11g in PS4 and PS5

    - by Shub Lahiri, A-Team
    Background SOA Suite for Healthcare Integration pack comes with a pre-installed simulator that can be used as an external endpoint to generate inbound and outbound HL7 traffic on specified MLLP ports. This is a command-line utility that can be very handy when trying to build a complete end-to-end demo within a standalone, closed environment. The ant-based utility accepts the name of a configuration file as the command-line input argument. The format of this configuration file has changed between PS4 and PS5. In PS4, the configuration file was XML based and in PS5, it is name-value property based. The rest of this note highlights these differences and provides samples that can be used to run the first scenario from the product samples set. PS4 - Configuration File The sample configuration file for PS4 is shown below. The configuration file contains information about the following items: Directory for incoming and outgoing files for the host running SOA Suite Healthcare Polling Interval for the directory External Endpoint Logical Names External Endpoint Server Host Name and Ports Message throughput to be simulated for generating outbound messages Documents to be handled by different endpoints A copy of this file can be downloaded from here. PS5 - Configuration File The corresponding sample configuration file for PS5 is shown below. The configuration file contains similar information about the sample scenario but is not in XML format. It has name-value pairs specified in the form of a properties file. This sample file can be downloaded from here. Simulator Configuration Before running the simulator, the environment has to be set by defining the proper ANT_HOME and JAVA_HOME. The following extract is taken from a working sample shell script to set the environment: Also, as a part of setting the environment, template jndi.properties and logging.properties can be generated by using the following ant command: ant -f ant-b2bsimulator-util.xml b2bsimulator-prop Sample jndi.properties and logging.properties are shown below and can be modified, as needed. The jndi.properties contains information about connectivity to the local Weblogic Managed Server instance and the logging.properties file controls the amount of logging that can be generated from the running simulator process. Simulator Usage - Start and Stop The command syntax to launch the simulator via ant is the same in PS4 and PS5. Only the appropriate configuration file has to be supplied as the command-line argument, for example: ant -f ant-b2bsimulator-util.xml b2bsimulatorstart -Dargs="simulator1.hl7-config.xml" This will start the simulator and will keep running to provide an active external endpoint for SOA Healthcare Integration engine. To stop the simulator, a similar ant command can be used, for example: ant -f ant-b2bsimulator-util.xml b2bsimulatorstop

    Read the article

  • Les ordinateurs sous Linux enverraient proportionnellement plus de spams que les autres, d'après Sym

    Les ordinateurs sous Linux enverraient proportionnellement plus de spams que les autres, d'après Symantec Malgré le peu de parts de marché détenues par Linux, les ordinateurs équipés par ce système serait les plus gros expéditeurs de spam. Symantec et ses chercheurs experts en sécurité informatique ont scrupuleusement étudié les spams envoyés entre novembre 2009 et mars 2010 afin d'identifier le système d'exploitation installé sur l'ordinateur propulsant les pourriels. Cela a été possible en utilisant la méthode dite du fingerprint passif, qui consiste à analyser le trafic réseau d'un hôte à distance, ce qui révèle l'OS de cet hôte. Comme Windows se taille toujours la part du lion sur ce marché (avec p...

    Read the article

  • Protecting Data from Users

    What is the best way to prevent unintended updates or deletes in a table? The small changes may not be so hard to recover from, but what if every record in the table underwent a change? How can you protect users from themselves and how do you protect yourself from you?

    Read the article

  • Ubuntu stopped recognizing my iPod

    - by flashnode
    Rythmbox on Ubuntu 10.10 used to recognize my 3rd gen Nano and transfer mp3s. Now I plug it in and Ubuntu doesn't pop-up that box that asks what you want to do anymore. It is only recognized if I reboot and the thing is plugged in. Here is the output to 'lsusb -v -s bus:device' Bus 001 Device 008: ID 05ac:1262 Apple, Inc. iPod Nano 3.Gen Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 idVendor 0x05ac Apple, Inc. idProduct 0x1262 iPod Nano 3.Gen bcdDevice 0.01 iManufacturer 1 Apple Inc. iProduct 2 iPod iSerial 3 000A27001A670128 bNumConfigurations 2 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 32 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xc0 Self Powered MaxPower 500mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 8 Mass Storage bInterfaceSubClass 6 SCSI bInterfaceProtocol 80 Bulk (Zip) iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x83 EP 3 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x02 EP 2 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 149 bNumInterfaces 3 bConfigurationValue 2 iConfiguration 4 iPod USB Interface bmAttributes 0xc0 Self Powered MaxPower 500mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 0 bInterfaceClass 1 Audio bInterfaceSubClass 1 Control Device bInterfaceProtocol 0 iInterface 0 AudioControl Interface Descriptor: bLength 9 bDescriptorType 36 bDescriptorSubtype 1 (HEADER) bcdADC 1.00 wTotalLength 30 bInCollection 1 baInterfaceNr( 0) 1 AudioControl Interface Descriptor: bLength 12 bDescriptorType 36 bDescriptorSubtype 2 (INPUT_TERMINAL) bTerminalID 1 wTerminalType 0x0201 Microphone bAssocTerminal 2 bNrChannels 2 wChannelConfig 0x0003 Left Front (L) Right Front (R) iChannelNames 0 iTerminal 0 AudioControl Interface Descriptor: bLength 9 bDescriptorType 36 bDescriptorSubtype 3 (OUTPUT_TERMINAL) bTerminalID 2 wTerminalType 0x0101 USB Streaming bAssocTerminal 1 bSourceID 1 iTerminal 0 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 0 bInterfaceClass 1 Audio bInterfaceSubClass 2 Streaming bInterfaceProtocol 0 iInterface 0 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 1 bNumEndpoints 1 bInterfaceClass 1 Audio bInterfaceSubClass 2 Streaming bInterfaceProtocol 0 iInterface 0 AudioStreaming Interface Descriptor: bLength 7 bDescriptorType 36 bDescriptorSubtype 1 (AS_GENERAL) bTerminalLink 2 bDelay 1 frames wFormatTag 1 PCM AudioStreaming Interface Descriptor: bLength 35 bDescriptorType 36 bDescriptorSubtype 2 (FORMAT_TYPE) bFormatType 1 (FORMAT_TYPE_I) bNrChannels 2 bSubframeSize 2 bBitResolution 16 bSamFreqType 9 Discrete tSamFreq[ 0] 8000 tSamFreq[ 1] 11025 tSamFreq[ 2] 12000 tSamFreq[ 3] 16000 tSamFreq[ 4] 22050 tSamFreq[ 5] 24000 tSamFreq[ 6] 32000 tSamFreq[ 7] 44100 tSamFreq[ 8] 48000 Endpoint Descriptor: bLength 9 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 1 Transfer Type Isochronous Synch Type None Usage Type Data wMaxPacketSize 0x00c0 1x 192 bytes bInterval 4 bRefresh 0 bSynchAddress 0 AudioControl Endpoint Descriptor: bLength 7 bDescriptorType 37 bDescriptorSubtype 1 (EP_GENERAL) bmAttributes 0x01 Sampling Frequency bLockDelayUnits 0 Undefined wLockDelay 0 Undefined Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 2 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 0 No Subclass bInterfaceProtocol 0 None iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.01 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 208 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x83 EP 3 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 1 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 bNumConfigurations 2 Device Status: 0x0000 (Bus Powered) This ubuntu forum told me to check the automount settings under /apps/nautilus/preferences/media_automount_open in gconf-editor. And I did that. Any clues?

    Read the article

  • TransportWithMessageCredential & Service Bus – Introduction

    - by Michael Stephenson
    Recently we have been working on a project using the Windows Azure Service Bus to expose line of business applications. One of the topics we discussed a lot was around the security aspects of the solution. Most of the samples you see for Windows Azure Service Bus often use the shared secret with the Access Control Service to protect the service bus endpoint but one of the problems we found was that with this scenario any claims resulting from credentials supplied by the client are not passed through to the service listening to the service bus endpoint. As an example of this we originally were hoping that we could give two different clients their own shared secret key and the issuer for each would indicate which client it was. If the claims had flown to the listening service then we could check that the message sent by client one was a type they are allowed to send. Unfortunately this claim isn't flown to the listening service so we were unable to implement this scenario. We had also seen samples that talk about changing the relayClientAuthenticationType attribute would allow you to authenticate the client within the service itself rather than with ACS. While this was interesting it wasn't exactly what we wanted. By removing the step where access to the Relay endpoint is protected by authentication against ACS it means that anyone could send messages via the service bus to the on-premise listening service which would then authenticate clients. In our scenario we certainly didn't want to allow clients to skip the ACS authentication step because this could open up two attack opportunities for an attacker. The first of these would allow an attacker to send messages through to our on-premise servers and potentially cause a denial of service situation. The second case would be with the same kind of attack by running lots of messages through service bus which were then rejected the attacker would be causing us to incur charges per message on our Windows Azure account. The correct way to implement our desired scenario is to combine one of the common options for authenticating against ACS so the service bus endpoint cannot be accessed by an unauthenticated caller with the normal WCF security features using the TransportWithMessageCredential security option. Looking around I could not find any guidance on how to implement this correctly so on the back of setting this up I decided to write a couple of articles to walk through a couple of the common scenarios you may be interested in. These are available on the following links: Walkthrough - Combining shared secret and username token Walkthrough – Combining shared secret and certificates

    Read the article

  • PORT FORWARDING TO PUT MY WEB SERVER ON THE INTERNET

    - by Chadworthington
    I went to http://canyouseeme.org/ to check to see what my external IP address. Regardless of what port I enter, it tells me that the port is blocked. I have a LinkSys router that basically has the default settings with the exception that I have WEP encrptin setup and I have forwarded a few ports, including 80 and 69. I forwarded them to the 192.x.x.103 IP address of the PC which is running IIS. That PC runs Symantec Endpoint Protection, which I right mouse clicked in the tray to Disable. These steps used to make my PC visible so I could host my own web site in IIS on port 80, or some other port, like 69. Yet, the Open Port tool cannot see my IP when it checks eiether port and when I navigate to http://my external ip/ I get "page cant be displayed" At first I was thinking that maybe Comcast is blocking port 80, but 69 doesnt work eiether. I do not see any other blockking set up in my router and, as I mentioned, I went with teh defaults except where discussed. This is a corporate PC and Symantec End Point Protecion is new to it (this previously worked on teh same PC with Symantec Protection Agent), but I thought that disabling Sym End Pt from the tray, that that would effectively neutralize it. I do not have the rights to kill the program itself. Any suggestions on what else to try to make my PC externally visible?

    Read the article

  • Windows SBS 2008 problem

    - by MadBoy
    I was today on clients site that has Windows 2008 SBS installed with Symantec EndPoint Protection. Problem is that after I logged in tried multiple commands like services.msc, msconfig typed in "Run" but nothing was started. For the first 5 minutes i can click around Start Menu, choose some applications (non microsoft works, even control panel works). But then something happens that I can't click where I want.. i can click on Start Menu and get it active but i cant choose anything from there, everything is like blocked, i can right click on Desktop i can do many things but most of the left clicks is blocked. Even when i start TaskMgr i am able to see it but I cannot click it, can't activate it or anything. It acts very very weird. It's newly installed system, with less then a month of when it was installed and it wasn't really used (been down most of the time). I suspect Symantec EndPoint protection might be faulty so when I go back there (Wednesday) I will uninstall it but maybe someone else have some ideas what may be happening. I doubt there's any virus or anything, symantec was installed right after setting everything up and running.

    Read the article

  • TCP: Address already in use exception - possible causes for client port? NO PORT EXHAUSTION

    - by TomTom
    Hello, stupid problem. I get those from a client connecting to a server. Sadly, the setup is complicated making debugging complex - and we run out of options. The environment: *Client/Server system, both running on the same machine. The client is actually a service doing some database manipulation at specific times. * The cnonection comes from C# going through OleDb to an EasySoft JDBC driver to a custom written JDBC server that then hosts logic in C++. Yeah, compelx - but the third party supplier decided to expose the extension mechanisms for their server through a JDBC interface. Not a lot can be done here ;) The Symptom: At (ir)regular intervals we get a "Address already in use: connect" told from the JDBC driver. They seem to come from one particular service we run. Now, I did read all the stuff about port exhaustion. This is why we have a little tool running now that counts ports and their states every minute. Last time this happened, we had an astonishing 370 ports in use, with the count rising to about 900 AFTER the error. We aleady patched the registry (it is a windows machine) to allow more than the 5000 client ports standard, but even then, we are far far from that limit to start with. Which is why I am asking here. Ayneone an ide what ELSE could cause this? It is a Windows 2003 Server machine, 64 bit. The only other thing I can see that may cause it (but this functionality is supposedly disabled) is Symantec Endpoint Protection that is installed on the server - and being capable of actinc as a firewall, it could possibly intercept network traffic. I dont want to open a can of worms by pointing to Symantec prematurely (if pointing to Symantec can ever be seen as such). So, anyone an idea what else may be the cause? Thanks

    Read the article

  • Port Forwarding to put my web server on The Internet

    - by Chadworthington
    I went to http://canyouseeme.org/ to check to see what my external IP address. Regardless of what port I enter, it tells me that the port is blocked. I have a LinkSys router that basically has the default settings with the exception that I have WEP encrptin setup and I have forwarded a few ports, including 80 and 69. I forwarded them to the 192.x.x.103 IP address of the PC which is running IIS. That PC runs Symantec Endpoint Protection, which I right mouse clicked in the tray to Disable. These steps used to make my PC visible so I could host my own web site in IIS on port 80, or some other port, like 69. Yet, the Open Port tool cannot see my IP when it checks eiether port and when I navigate to http://my external ip/ I get "page cant be displayed" At first I was thinking that maybe Comcast is blocking port 80, but 69 doesnt work eiether. I do not see any other blockking set up in my router and, as I mentioned, I went with teh defaults except where discussed. This is a corporate PC and Symantec End Point Protecion is new to it (this previously worked on teh same PC with Symantec Protection Agent), but I thought that disabling Sym End Pt from the tray, that that would effectively neutralize it. I do not have the rights to kill the program itself. Any suggestions on what else to try to make my PC externally visible?

    Read the article

  • Network Security Device/Software

    - by Campo
    We currently run Symantec Antivirus Corporate 10.2. The software is really easy to manage on a network but the actual virus detection isn't bad but the malware detection is crap. We recently were infected with a email bot that got us put on some block lists. This has been resolved. I cannot have that happen again. I would like to find a program as easy to manage as symantec that I can install on all the user's workstations as well as the servers. We run a windows 2003 domain. We have a couple 2008 test servers in the environment. Most of the workstations are xp though I am using windows 7 and symantect is not compatible with this OS... So we need a solution that would cover all those operating systems. If it could be installed on macs too that would be a bonus though not necessary at all. This software must detect: Viruses AND Malware I am looking for something that combines the features in anti-malware programs like malwarebytes or spybot with an antivirus program like symantec or AVG. Alternatively if there is a piece of hardware that is a firewall, router, and packet inspection for virus/spam that would be the most ideal solution. I then could supplement with a piece of software that could pickup what the hardware misses. Thank you for your suggestions.

    Read the article

  • C# WCF Server retrieves 'List<T>' with 1 entry, but client doesn't receive it?! Please help Urgentl

    - by Neville
    Hi Everyone, I've been battling and trying to research this issue for over 2 days now with absolutely no luck. I am trying to retrieve a list of clients from the server (server using fluentNHibernate). The client object is as follow: [DataContract] //[KnownType(typeof(System.Collections.Generic.List<ContactPerson>))] //[KnownType(typeof(System.Collections.Generic.List<Address>))] //[KnownType(typeof(System.Collections.Generic.List<BatchRequest>))] //[KnownType(typeof(System.Collections.Generic.List<Discount>))] [KnownType(typeof(EClientType))] [KnownType(typeof(EComType))] public class Client { #region Properties [DataMember] public virtual int ClientID { get; set; } [DataMember] public virtual EClientType ClientType { get; set; } [DataMember] public virtual string RegisterID {get; set;} [DataMember] public virtual string HerdCode { get; set; } [DataMember] public virtual string CompanyName { get; set; } [DataMember] public virtual bool InvoicePerBatch { get; set; } [DataMember] public virtual EComType ResultsComType { get; set; } [DataMember] public virtual EComType InvoiceComType { get; set; } //[DataMember] //public virtual IList<ContactPerson> Contacts { get; set; } //[DataMember] //public virtual IList<Address> Addresses { get; set; } //[DataMember] //public virtual IList<BatchRequest> Batches { get; set; } //[DataMember] //public virtual IList<Discount> Discounts { get; set; } #endregion #region Overrides public override bool Equals(object obj) { var other = obj as Client; if (other == null) return false; return other.GetHashCode() == this.GetHashCode(); } public override int GetHashCode() { return ClientID.GetHashCode() | ClientType.GetHashCode() | RegisterID.GetHashCode() | HerdCode.GetHashCode() | CompanyName.GetHashCode() | InvoicePerBatch.GetHashCode() | ResultsComType.GetHashCode() | InvoiceComType.GetHashCode();// | Contacts.GetHashCode() | //Addresses.GetHashCode() | Batches.GetHashCode() | Discounts.GetHashCode(); } #endregion } As you can see, I have allready tried to remove the sub-lists, though even with this simplified version of the client I still run into the propblem. my fluent mapping is: public class ClientMap : ClassMap<Client> { public ClientMap() { Table("Clients"); Id(p => p.ClientID); Map(p => p.ClientType).CustomType<EClientType>(); ; Map(p => p.RegisterID); Map(p => p.HerdCode); Map(p => p.CompanyName); Map(p => p.InvoicePerBatch); Map(p => p.ResultsComType).CustomType<EComType>(); Map(p => p.InvoiceComType).CustomType<EComType>(); //HasMany<ContactPerson>(p => p.Contacts) // .KeyColumns.Add("ContactPersonID") // .Inverse() // .Cascade.All(); //HasMany<Address>(p => p.Addresses) // .KeyColumns.Add("AddressID") // .Inverse() // .Cascade.All(); //HasMany<BatchRequest>(p => p.Batches) // .KeyColumns.Add("BatchID") // .Inverse() // .Cascade.All(); //HasMany<Discount>(p => p.Discounts) // .KeyColumns.Add("DiscountID") // .Inverse() // .Cascade.All(); } The client method, seen below, connects to the server. The server retrieves the list, and everything looks right in the object, still, when it returns, the client doesn't receive anything (it receive a List object, but with nothing in it. Herewith the calling method: public List<s.Client> GetClientList() { try { s.DataServiceClient svcClient = new s.DataServiceClient(); svcClient.Open(); List<s.Client> clients = new List<s.Client>(); clients = svcClient.GetClientList().ToList<s.Client>(); svcClient.Close(); //when receiving focus from server, the clients object has a count of 0 return clients; } catch (Exception e) { MessageBox.Show(e.Message); } return null; } and the server method: public IList<Client> GetClientList() { var clients = new List<Client>(); try { using (var session = SessionHelper.OpenSession()) { clients = session.Linq<Client>().Where(p => p.ClientID > 0).ToList<Client>(); } } catch (Exception e) { EventLog.WriteEntry("eCOWS.Data", e.Message); } return clients; //returns a list with 1 client in it } the server method interface is: [UseNetDataContractSerializer] [OperationContract] IList<Client> GetClientList(); for final references, here is my client app.config entries: <system.serviceModel> <bindings> <netTcpBinding> <binding name="NetTcpBinding_IDataService" listenBacklog="10" maxConnections="10" transferMode="Buffered" transactionProtocol="OleTransactions" maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" receiveTimeout="00:10:00" sendTimeout="00:10:00"> <readerQuotas maxDepth="51200000" maxStringContentLength="51200000" maxArrayLength="51200000" maxBytesPerRead="51200000" maxNameTableCharCount="51200000" /> <security mode="Transport"/> </binding> </netTcpBinding> </bindings> <client> <endpoint address="net.tcp://localhost:9000/eCOWS/DataService" binding="netTcpBinding" bindingConfiguration="NetTcpBinding_IDataService" contract="eCowsDataService.IDataService" name="NetTcpBinding_IDataService" behaviorConfiguration="eCowsEndpointBehavior"> </endpoint> <endpoint address="MEX" binding="mexHttpBinding" contract="IMetadataExchange" /> </client> <behaviors> <endpointBehaviors> <behavior name="eCowsEndpointBehavior"> <dataContractSerializer maxItemsInObjectGraph="2147483647"/> </behavior> </endpointBehaviors> </behaviors> </system.serviceModel> and my server app.config: <system.serviceModel> <bindings> <netTcpBinding> <binding name="netTcpBinding" maxConnections="10" listenBacklog="10" transferMode="Buffered" transactionProtocol="OleTransactions" maxBufferSize="2147483647" maxReceivedMessageSize="2147483647" sendTimeout="00:10:00" receiveTimeout="00:10:00"> <readerQuotas maxDepth="51200000" maxStringContentLength="51200000" maxArrayLength="51200000" maxBytesPerRead="51200000" maxNameTableCharCount="51200000" /> <security mode="Transport"/> </binding> </netTcpBinding> </bindings> <services> <service name="eCows.Data.Services.DataService" behaviorConfiguration="eCowsServiceBehavior"> <host> <baseAddresses> <add baseAddress="http://localhost:9001/eCOWS/" /> <add baseAddress="net.tcp://localhost:9000/eCOWS/" /> </baseAddresses> </host> <endpoint address="DataService" binding="netTcpBinding" contract="eCows.Data.Services.IDataService" behaviorConfiguration="eCowsEndpointBehaviour"> </endpoint> <endpoint address="MEX" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services> <behaviors> <endpointBehaviors> <behavior name="eCowsEndpointBehaviour"> <dataContractSerializer maxItemsInObjectGraph="2147483647" /> </behavior> </endpointBehaviors> <serviceBehaviors> <behavior name="eCowsServiceBehavior"> <serviceMetadata httpGetEnabled="True"/> <serviceThrottling maxConcurrentCalls="10" maxConcurrentSessions="10"/> <serviceDebug includeExceptionDetailInFaults="False" /> </behavior> <behavior name="MexBehaviour"> <serviceMetadata /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> I use to run into "socket closed / network or timeout" errors, and the trace showed clearly that on the callback it was looking for a listening endpoint, but couldn't find one. Anyway, after adding the UseNetSerializer that error went away, yet now I'm just not getting anything. Oh PS. if I add all the commented out List items, I still retrieve an entry from the DB, but also still not receive anything on the client. if I remove the [UseNetDataContractSerializer] I get the following error(s) in the svclog : WARNING: Description Faulted System.ServiceModel.Channels.ServerSessionPreambleConnectionReader+ServerFramingDuplexSessionChannel WARNING: Description Faulted System.ServiceModel.Channels.ServiceChannel ERROR: Initializing[eCows.Data.Models.Client#3]-failed to lazily initialize a collection of role: eCows.Data.Models.Client.Addresses, no session or session was closed ... ERROR: Could not find default endpoint element that references contract 'ILogbookManager' in the ServiceModel client configuration section. This might be because no configuration file was found for your application, or because no endpoint element matching this contract could be found in the client element. If I add a .Not.LazyLoad to the List mapping items, I'm back at not receiving errors, but also not receiving any client information.. Sigh! Please, if anyone can help with this I'd be extremely grateful. I'm probably just missing something small.. but... what is it :) hehe. Thanks in advance! Neville

    Read the article

  • Getting WCF Bindings and Behaviors from any config source

    - by cibrax
    The need of loading WCF bindings or behaviors from different sources such as files in a disk or databases is a common requirement when dealing with configuration either on the client side or the service side. The traditional way to accomplish this in WCF is loading everything from the standard configuration section (serviceModel section) or creating all the bindings and behaviors by hand in code. However, there is a solution in the middle that becomes handy when more flexibility is needed. This solution involves getting the configuration from any place, and use that configuration to automatically configure any existing binding or behavior instance created with code.  In order to configure a binding instance (System.ServiceModel.Channels.Binding) that you later inject in any endpoint on the client channel or the service host, you first need to get a binding configuration section from any configuration file (you can generate a temp file on the fly if you are using any other source for storing the configuration).  private BindingsSection GetBindingsSection(string path) { System.Configuration.Configuration config = System.Configuration.ConfigurationManager.OpenMappedExeConfiguration( new System.Configuration.ExeConfigurationFileMap() { ExeConfigFilename = path }, System.Configuration.ConfigurationUserLevel.None); var serviceModel = ServiceModelSectionGroup.GetSectionGroup(config); return serviceModel.Bindings; }   The BindingsSection contains a list of all the configured bindings in the serviceModel configuration section, so you can iterate through all the configured binding that get the one you need (You don’t need to have a complete serviceModel section, a section with the bindings only works).  public Binding ResolveBinding(string name) { BindingsSection section = GetBindingsSection(path); foreach (var bindingCollection in section.BindingCollections) { if (bindingCollection.ConfiguredBindings.Count > 0 && bindingCollection.ConfiguredBindings[0].Name == name) { var bindingElement = bindingCollection.ConfiguredBindings[0]; var binding = (Binding)Activator.CreateInstance(bindingCollection.BindingType); binding.Name = bindingElement.Name; bindingElement.ApplyConfiguration(binding); return binding; } } return null; }   The code above does just that, and also instantiates and configures the Binding object (System.ServiceModel.Channels.Binding) you are looking for. As you can see, the binding configuration element contains a method “ApplyConfiguration” that receives the binding instance that needs to be configured. A similar thing can be done for instance with the “Endpoint” behaviors. You first get the BehaviorsSection, and then, the behavior you want to use.  private BehaviorsSection GetBehaviorsSection(string path) { System.Configuration.Configuration config = System.Configuration.ConfigurationManager.OpenMappedExeConfiguration( new System.Configuration.ExeConfigurationFileMap() { ExeConfigFilename = path }, System.Configuration.ConfigurationUserLevel.None); var serviceModel = ServiceModelSectionGroup.GetSectionGroup(config); return serviceModel.Behaviors; }public List<IEndpointBehavior> ResolveEndpointBehavior(string name) { BehaviorsSection section = GetBehaviorsSection(path); List<IEndpointBehavior> endpointBehaviors = new List<IEndpointBehavior>(); if (section.EndpointBehaviors.Count > 0 && section.EndpointBehaviors[0].Name == name) { var behaviorCollectionElement = section.EndpointBehaviors[0]; foreach (BehaviorExtensionElement behaviorExtension in behaviorCollectionElement) { object extension = behaviorExtension.GetType().InvokeMember("CreateBehavior", BindingFlags.InvokeMethod | BindingFlags.NonPublic | BindingFlags.Instance, null, behaviorExtension, null); endpointBehaviors.Add((IEndpointBehavior)extension); } return endpointBehaviors; } return null; }   In this case, the code for creating the behavior instance is more tricky. First of all, a behavior in the configuration section actually represents a set of “IEndpoint” behaviors, and the behavior element you get from the configuration does not have any public method to configure an existing behavior instance. This last one only contains a protected method “CreateBehavior” that you can use for that purpose. Once you get this code implemented, a client channel can be easily configured as follows  var binding = resolver.ResolveBinding("MyBinding"); var behaviors = resolver.ResolveEndpointBehavior("MyBehavior"); SampleServiceClient client = new SampleServiceClient(binding, new EndpointAddress(new Uri("http://localhost:13749/SampleService.svc"), new DnsEndpointIdentity("localhost"))); foreach (var behavior in behaviors) { if(client.Endpoint.Behaviors.Contains(behavior.GetType())) { client.Endpoint.Behaviors.Remove(behavior.GetType()); } client.Endpoint.Behaviors.Add(behavior); }   The code above assumes that a configuration file (in any place) with a binding “MyBinding” and a behavior “MyBehavior” exists. That file can look like this,  <system.serviceModel> <bindings> <basicHttpBinding> <binding name="MyBinding"> <security mode="Transport"></security> </binding> </basicHttpBinding> </bindings> <behaviors> <endpointBehaviors> <behavior name="MyBehavior"> <clientCredentials> <windows/> </clientCredentials> </behavior> </endpointBehaviors> </behaviors> </system.serviceModel>   The same thing can be done of course in the service host if you want to manually configure the bindings and behaviors.  

    Read the article

  • The remote server returned an unexpected response: (400) Bad Request while streaming

    - by phenevo
    Hi, I have problem with streaming. When I send small file like 1kb txt everything is ok, but when I send larger file like 100 kb jpg or 2gb psd I get: The remote server returned an unexpected response: (400) Bad Request. I'm using windows 7, VS 2010 and .net 3.5 and WCF Service library I lost all my weekend on this and I still see this error :/ Please help me Client: var client = new WpfApplication1.ServiceReference1.Service1Client("WSHttpBinding_IService1"); client.GetString("test"); string filename = @"d:\test.jpg"; FileStream fs = new FileStream(filename, FileMode.Open); try { client.ProcessStreamFromClient(fs); } catch (Exception exception) { Console.WriteLine(exception); } app.config: <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.serviceModel> <bindings> <basicHttpBinding> <binding name="StreamedHttp" closeTimeout="10:01:00" openTimeout="10:01:00" receiveTimeout="10:10:00" sendTimeout="10:01:00" allowCookies="false" bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard" maxBufferSize="65536000" maxBufferPoolSize="524288000" maxReceivedMessageSize="65536000" messageEncoding="Text" textEncoding="utf-8" transferMode="Streamed" useDefaultWebProxy="true"> <readerQuotas maxDepth="0" maxStringContentLength="0" maxArrayLength="0" maxBytesPerRead="0" maxNameTableCharCount="0" /> <security mode="None"> <transport clientCredentialType="None" proxyCredentialType="None" realm="" /> <message clientCredentialType="UserName" algorithmSuite="Default" /> </security> </binding> </basicHttpBinding> </bindings> <client> <endpoint address="http://localhost:8732/Design_Time_Addresses/WcfServiceLibrary2/Service1/" binding="basicHttpBinding" bindingConfiguration="StreamedHttp" contract="ServiceReference1.IService1" name="WSHttpBinding_IService1" /> </client> </system.serviceModel> </configuration> And Wcf ServiceLibrary: public void ProcessStreamFromClient(Stream str) { using (var outStream = new FileStream(@"e:\test.jpg", FileMode.Create)) { var buffer = new byte[4096]; int count; while ((count = str.Read(buffer, 0, buffer.Length)) > 0) { outStream.Write(buffer, 0, count); } } } App.config <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.web> <compilation debug="true" /> </system.web> <!-- When deploying the service library project, the content of the config file must be added to the host's app.config file. System.Configuration does not support config files for libraries. --> <system.serviceModel> <bindings> <basicHttpBinding> <binding name="Binding1" hostNameComparisonMode="StrongWildcard" maxBufferSize="65536000" transferMode="Streamed" bypassProxyOnLocal="false" closeTimeout="10:01:00" openTimeout="10:01:00" receiveTimeout="10:10:00" sendTimeout="10:01:00" maxBufferPoolSize="524288000" maxReceivedMessageSize="65536000" messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <security mode="None" /> </binding> </basicHttpBinding> </bindings> <client /> <services> <service name="WcfServiceLibrary2.Service1"> <host> <baseAddresses> <add baseAddress="http://localhost:8732/Design_Time_Addresses/WcfServiceLibrary2/Service1/" /> </baseAddresses> </host> <!-- Service Endpoints --> <!-- Unless fully qualified, address is relative to base address supplied above --> <endpoint address="" binding="basicHttpBinding" contract="WcfServiceLibrary2.IService1"> <!-- Upon deployment, the following identity element should be removed or replaced to reflect the identity under which the deployed service runs. If removed, WCF will infer an appropriate identity automatically. --> <identity> <dns value="localhost"/> </identity> </endpoint> <!-- Metadata Endpoints --> <!-- The Metadata Exchange endpoint is used by the service to describe itself to clients. --> <!-- This endpoint does not use a secure binding and should be secured or removed before deployment --> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpGetEnabled="True"/> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <dataContractSerializer maxItemsInObjectGraph="2147483647"/> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration>

    Read the article

  • 405: Method Not Allowed WCF

    - by luiscarlosch
    I can perfectly call a WCF web method from localhost. I published to this server: http://luiscarlosch.com/WebFormClean.aspx (only firefox or chrome) with the Visual Studio publishing tool and it works fine. The problem is when a try to access it from another computer. I get the 405: Method Not Allowed. But It doest make sense because It works fine when i access it remotely from the publisher computer as I said. Any idea? [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class ContactProxy { [WebGet()] [OperationContract] public Contact getByID(int IDContact) { Contact contact = new Contact(IDContact); return contact; } [OperationContract] public EntityData insertEntityData(int IDEntityDataFieldType, int IDContact, String value) { //Contact contact = new Contact(); // contact.insertEntityData(IDEntityDataFieldType, IDContact, value); EntityData entityData = new EntityData(); entityData.save(IDEntityDataFieldType, IDContact, value); return entityData; } } Neither method seems to work. I just noticed some user were able to access http://luiscarlosch.com/WebFormClean.aspx because they change the values. So. some clients can read the methods but some cant. This should be happening. Web Config <?xml version="1.0"?> <configuration> <configSections> </configSections> <connectionStrings> <add name="ApplicationServices" connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|\aspnetdb.mdf;User Instance=true" providerName="System.Data.SqlClient" /> </connectionStrings> <system.web> <compilation debug="true" targetFramework="4.0" /> <customErrors mode="Off"/> <authentication mode="Forms"> <forms loginUrl="~/Account/Login.aspx" timeout="2880" /> </authentication> <membership> <providers> <clear/> <add name="AspNetSqlMembershipProvider" type="System.Web.Security.SqlMembershipProvider" connectionStringName="ApplicationServices" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="false" requiresUniqueEmail="false" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10" applicationName="/" /> </providers> </membership> <profile> <providers> <clear/> <add name="AspNetSqlProfileProvider" type="System.Web.Profile.SqlProfileProvider" connectionStringName="ApplicationServices" applicationName="/"/> </providers> </profile> <roleManager enabled="false"> <providers> <clear/> <add name="AspNetSqlRoleProvider" type="System.Web.Security.SqlRoleProvider" connectionStringName="ApplicationServices" applicationName="/" /> <add name="AspNetWindowsTokenRoleProvider" type="System.Web.Security.WindowsTokenRoleProvider" applicationName="/" /> </providers> </roleManager> </system.web> <system.webServer> <modules runAllManagedModulesForAllRequests="true"/> </system.webServer> <system.serviceModel> <behaviors> <serviceBehaviors> <behavior name="MyServiceTypeBehaviors" > <serviceMetadata httpGetEnabled="true" /> </behavior> </serviceBehaviors> <endpointBehaviors> <behavior name="WebApplicationTest.WCFProxy.EmployeeProxyAspNetAjaxBehavior"> <enableWebScript /> </behavior> <behavior name="WebApplicationTest.WCFProxy.EntityDataFieldCollectionProxyAspNetAjaxBehavior"> <enableWebScript /> </behavior> <behavior name="WebApplicationTest.WCFProxy.Service1AspNetAjaxBehavior"> <enableWebScript /> </behavior> <behavior name="WebApplicationTest.WCFProxy.ContactProxyAspNetAjaxBehavior"> <enableWebScript /> </behavior> </endpointBehaviors> </behaviors> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" /> <services> <service name="WebApplicationTest.WCFProxy.EmployeeProxy" behaviorConfiguration="MyServiceTypeBehaviors" > <endpoint address="" behaviorConfiguration="WebApplicationTest.WCFProxy.EmployeeProxyAspNetAjaxBehavior" binding="webHttpBinding" contract="WebApplicationTest.WCFProxy.EmployeeProxy" /> <endpoint contract="IMetadataExchange" binding="mexHttpBinding" address="mex" /> </service> <service name="WebApplicationTest.WCFProxy.EntityDataFieldCollectionProxy" behaviorConfiguration="MyServiceTypeBehaviors" > <endpoint address="" behaviorConfiguration="WebApplicationTest.WCFProxy.EntityDataFieldCollectionProxyAspNetAjaxBehavior" binding="webHttpBinding" contract="WebApplicationTest.WCFProxy.EntityDataFieldCollectionProxy" /> <endpoint contract="IMetadataExchange" binding="mexHttpBinding" address="mex" /> </service> <service name="WebApplicationTest.WCFProxy.Service1"> <endpoint address="" behaviorConfiguration="WebApplicationTest.WCFProxy.Service1AspNetAjaxBehavior" binding="webHttpBinding" contract="WebApplicationTest.WCFProxy.Service1" /> </service> <service name="WebApplicationTest.WCFProxy.ContactProxy" behaviorConfiguration="MyServiceTypeBehaviors" ><!--new--> <endpoint address="" behaviorConfiguration="WebApplicationTest.WCFProxy.ContactProxyAspNetAjaxBehavior" binding="webHttpBinding" contract="WebApplicationTest.WCFProxy.ContactProxy" /> <endpoint contract="IMetadataExchange" binding="mexHttpBinding" address="mex" /> </service> </services> <bindings /> <client /> </system.serviceModel> </configuration>

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

< Previous Page | 19 20 21 22 23 24 25 26 27 28 29 30  | Next Page >