Search Results

Search found 17593 results on 704 pages for 'wmi query'.

Page 230/704 | < Previous Page | 226 227 228 229 230 231 232 233 234 235 236 237  | Next Page >

  • How to query by recent date and value in SQL?

    - by wsb3383
    I have a table with three columns: patient_id, obs_date, and weight_val. patient_id stores patient identification #, weight_val stores a weight value, and obs_date stores the date when the weight reading was taken. So, a patient can have many different weight readings at different dates. How do you write a query for: select all patients whose last weight reading is 120?

    Read the article

  • MYSQL Insert: How to save Query in the database only one time - duplicate key doesn't work!

    - by elmaso
    hello, I want to save a query only one time in the database, this is my code: $querystat = mysql_real_escape_string($_GET['q']); $datetime = time(); if( ($querystat != $_SESSION['prev_search']) OR ( ($datetime - $_SESSION['datetime']) > 60) ) { $insertquery = "INSERT INTO `query` ( `searchquery` , `datetime`) VALUES ( '$querystat' , '$datetime') ON DUPLICATE KEY UPDATE searchquery='$querystat';"; mysql_query($insertquery, $db); } maybe something with == 0 ?

    Read the article

  • Is existed web markup languages with possibility insert sql query?

    - by MercurieVV
    Actually what I want - simple DB with simple User Interface. Like MS Access, but for web and it can be without Dragn n Drop, but described with markup language. For example if I want to create list report, then i need to write something like: <table query="SELECT * from mytable"></table> It needed for simple data applications. In that kind application no programming logic required. Just working with DB. Changing DB data and showing it.

    Read the article

  • How to check results of LINQ to SQL query?

    - by rem
    In a WPF app I'd like to check if a return of a LINQ to SQL query contains some records, but my approach doesn't work: TdbDataContext context = new TdbDataContext(); var sh = from p in context.Items where p.Selected == true select p; if (sh == null) { MessageBox.Show("There are no Selected Items"); } Where am I wrong?

    Read the article

  • MySQL VIEW vs. embedded query, which one is faster?

    - by Vincenzo
    I'm going to optimize a MySQL embedded query with a view, but I'm not sure whether it will give an effect: SELECT id FROM (SELECT * FROM t); I want to convert it to: CREATE VIEW v AS SELECT * FROM t; SELECT id FROM v; I've heard about "indexed views" in SQL Server, but I'm not sure about MySQL. Any help would be appreciated. Thanks!

    Read the article

  • methods of joining 2 tables without using JOIN or SELECT more than one distinct table in the query

    - by GB_J
    Is there a way of joining results from 2 tables without using JOIN or SELECT from more than one table? The reason being the database im working with requires queries that only contain SELECT, FROM, and WHERE clauses containing only one distinct table. I do, however, need information from other tables for the project i'm working on. More info: the querier returns the query results in a .csv format, is there something we can manipulate there?

    Read the article

  • LinqPad with Azure Table Storage

    - by Sarang
    LinqPad as we all know has been a wonderful tool for running ad-hoc queries. With Windows Azure Table storage in picture LinqPad was no longer in picture and we shifted focus to Cloud Storage Studio only to realize the limited and strange querying capabilities of CSS. With some tweaking to Linqpad we can get the comfortable old shoe of ad-hoc queries with LinqPad in the Windows Azure Table storage. Steps: 1. Start LinqPad 2. Right Click in the query window and select “Query Properties” 3. In The Additional References add reference to Microsoft.WindowsAzure.StorageClient, System.Data.Services.Client.dll and the assembly containing the implementation of the DataServiceContext class tied to the Windows Azure table storage. 4. In the additional namespace imports import the same three namespaces mentioned above. 5. Then we need to provide following details. a. Table storage account name and shared key. b. DataServiceContext implementing class in your code. c. A LINQ query. e.x.         var storageAccountName = "myStorageAccount";  // Enter valid storage account name         var storageSharedKey = "mysharedKey"; // Enter valid storage account shared key         var uri = new System.Uri("http://table.core.windows.net/");         var storageAccountInfo = new CloudStorageAccount(new StorageCredentialsAccountKey(storageAccountName, storageSharedKey), false);         var serviceContext = new TweetPollDataServiceContext(storageAccountInfo); // Specify the DataServiceContext implementation         // The query         var query = from row in serviceContext.Table                     select row;         query.Dump(); Thanks LinqPad! Technorati Tags: LinqPad,Azure Table Storage,Linq

    Read the article

  • Implementing a generic repository for WCF data services

    - by cibrax
    The repository implementation I am going to discuss here is not exactly what someone would call repository in terms of DDD, but it is an abstraction layer that becomes handy at the moment of unit testing the code around this repository. In other words, you can easily create a mock to replace the real repository implementation. The WCF Data Services update for .NET 3.5 introduced a nice feature to support two way data bindings, which is very helpful for developing WPF or Silverlight based application but also for implementing the repository I am going to talk about. As part of this feature, the WCF Data Services Client library introduced a new collection DataServiceCollection<T> that implements INotifyPropertyChanged to notify the data context (DataServiceContext) about any change in the association links. This means that it is not longer necessary to manually set or remove the links in the data context when an item is added or removed from a collection. Before having this new collection, you basically used the following code to add a new item to a collection. Order order = new Order {   Name = "Foo" }; OrderItem item = new OrderItem {   Name = "bar",   UnitPrice = 10,   Qty = 1 }; var context = new OrderContext(); context.AddToOrders(order); context.AddToOrderItems(item); context.SetLink(item, "Order", order); context.SaveChanges(); Now, thanks to this new collection, everything is much simpler and similar to what you have in other ORMs like Entity Framework or L2S. Order order = new Order {   Name = "Foo" }; OrderItem item = new OrderItem {   Name = "bar",   UnitPrice = 10,   Qty = 1 }; order.Items.Add(item); var context = new OrderContext(); context.AddToOrders(order); context.SaveChanges(); In order to use this new feature, you first need to enable V2 in the data service, and then use some specific arguments in the datasvcutil tool (You can find more information about this new feature and how to use it in this post). DataSvcUtil /uri:"http://localhost:3655/MyDataService.svc/" /out:Reference.cs /dataservicecollection /version:2.0 Once you use those two arguments, the generated proxy classes will use DataServiceCollection<T> rather than a simple ObjectCollection<T>, which was the default collection in V1. There are some aspects that you need to know to use this feature correctly. 1. All the entities retrieved directly from the data context with a query track the changes and report those to the data context automatically. 2. A entity created with “new” does not track any change in the properties or associations. In order to enable change tracking in this entity, you need to do the following trick. public Order CreateOrder() {   var collection = new DataServiceCollection<Order>(this.context);   var order = new Order();   collection.Add(order);   return order; } You basically need to create a collection, and add the entity to that collection with the “Add” method to enable change tracking on that entity. 3. If you need to attach an existing entity (For example, if you created the entity with the “new” operator rather than retrieving it from the data context with a query) to a data context for tracking changes, you can use the “Load” method in the DataServiceCollection. var order = new Order {   Id = 1 }; var collection = new DataServiceCollection<Order>(this.context); collection.Load(order); In this case, the order with Id = 1 must exist on the data source exposed by the Data service. Otherwise, you will get an error because the entity did not exist. These cool extensions methods discussed by Stuart Leeks in this post to replace all the magic strings in the “Expand” operation with Expression Trees represent another feature I am going to use to implement this generic repository. Thanks to these extension methods, you could replace the following query with magic strings by a piece of code that only uses expressions. Magic strings, var customers = dataContext.Customers .Expand("Orders")         .Expand("Orders/Items") Expressions, var customers = dataContext.Customers .Expand(c => c.Orders.SubExpand(o => o.Items)) That query basically returns all the customers with their orders and order items. Ok, now that we have the automatic change tracking support and the expression support for explicitly loading entity associations, we are ready to create the repository. The interface for this repository looks like this,public interface IRepository { T Create<T>() where T : new(); void Update<T>(T entity); void Delete<T>(T entity); IQueryable<T> RetrieveAll<T>(params Expression<Func<T, object>>[] eagerProperties); IQueryable<T> Retrieve<T>(Expression<Func<T, bool>> predicate, params Expression<Func<T, object>>[] eagerProperties); void Attach<T>(T entity); void SaveChanges(); } The Retrieve and RetrieveAll methods are used to execute queries against the data service context. While both methods receive an array of expressions to load associations explicitly, only the Retrieve method receives a predicate representing the “where” clause. The following code represents the final implementation of this repository.public class DataServiceRepository: IRepository { ResourceRepositoryContext context; public DataServiceRepository() : this (new DataServiceContext()) { } public DataServiceRepository(DataServiceContext context) { this.context = context; } private static string ResolveEntitySet(Type type) { var entitySetAttribute = (EntitySetAttribute)type.GetCustomAttributes(typeof(EntitySetAttribute), true).FirstOrDefault(); if (entitySetAttribute != null) return entitySetAttribute.EntitySet; return null; } public T Create<T>() where T : new() { var collection = new DataServiceCollection<T>(this.context); var entity = new T(); collection.Add(entity); return entity; } public void Update<T>(T entity) { this.context.UpdateObject(entity); } public void Delete<T>(T entity) { this.context.DeleteObject(entity); } public void Attach<T>(T entity) { var collection = new DataServiceCollection<T>(this.context); collection.Load(entity); } public IQueryable<T> Retrieve<T>(Expression<Func<T, bool>> predicate, params Expression<Func<T, object>>[] eagerProperties) { var entitySet = ResolveEntitySet(typeof(T)); var query = context.CreateQuery<T>(entitySet); foreach (var e in eagerProperties) { query = query.Expand(e); } return query.Where(predicate); } public IQueryable<T> RetrieveAll<T>(params Expression<Func<T, object>>[] eagerProperties) { var entitySet = ResolveEntitySet(typeof(T)); var query = context.CreateQuery<T>(entitySet); foreach (var e in eagerProperties) { query = query.Expand(e); } return query; } public void SaveChanges() { this.context.SaveChanges(SaveChangesOptions.Batch); } } For instance, you can use the following code to retrieve customers with First name equal to “John”, and all their orders in a single call. repository.Retrieve<Customer>(    c => c.FirstName == “John”, //Where    c => c.Orders.SubExpand(o => o.Items)); In case, you want to have some pre-defined queries that you are going to use across several places, you can put them in an specific class. public static class CustomerQueries {   public static Expression<Func<Customer, bool>> LastNameEqualsTo(string lastName)   {     return c => c.LastName == lastName;   } } And then, use it with the repository. repository.Retrieve<Customer>(    CustomerQueries.LastNameEqualsTo("foo"),    c => c.Orders.SubExpand(o => o.Items));

    Read the article

  • Linqpad with Table Storage

    - by kaleidoscope
    LinqPad as we all know has been a wonderful tool for running ad-hoc queries. With Azure Table storage in picture LinqPad was no longer in picture and we shifted focus to Cloud Storage Studio only to realize the limited and strange querying capabilities of CSS. With some tweaking to Linqpad we can get the comfortable old shoe of ad-hoc queries with LinqPad in the Azure Table storage. Steps: 1. Start LinqPad 2. Right Click in the query window and select “Query Properties” 3. In The Additional References add reference to Microsoft.WindowsAzure.StorageClient, System.Data.Services.Client.dll and the assembly containing the implementation of the DataServiceContext class tied to the Azure table storage. 4. In the additional namespace imports import the same three namespaces mentioned above. 5. Then we need to provide following details. a. Table storage account name and shared key. b. DataServiceContext implementing class in your code. c. A LINQ query. e.x. var storageAccountName = "myStorageAccount";  // Enter valid storage account name var storageSharedKey = "mysharedKey"; // Enter valid storage account shared key var uri = new System.Uri("http://table.core.windows.net/"); var storageAccountInfo = new CloudStorageAccount(new StorageCredentialsAccountKey(storageAccountName, storageSharedKey), false); var serviceContext = new TweetPollDataServiceContext(storageAccountInfo); // Specify the DataServiceContext implementation // The query var query = from row in serviceContext.Table select row;         query.Dump(); Sarang, K

    Read the article

  • Unused Indexes Gotcha

    - by DavidWimbush
    I'm currently looking into dropping unused indexes to reduce unnecessary overhead and I came across a very good point in the excellent SQL Server MVP Deep Dives book that I haven't seen highlighted anywhere else. I was thinking it was simply a case of dropping indexes that didn't show as being used in DMV sys.dm_db_index_usage_stats (assuming a solid representative workload had been run since the last service start). But Rob Farley points out that the DMV only shows indexes whose pages have been read or updated. An index that isn't listed in the DMV might still be useful by providing metadata to the Query Optimizer and thus streamlining query plans. For example, if you have a query like this: select  au.author_name         , count(*) as books from    books b         inner join authors au on au.author_id = b.author_id group by au.author_name If you have a unique index on authors.author_name the Query Optimizer will realise that each author_id will have a different author_name so it can produce a plan that just counts the books by author_id and then adds the author name to each row in that small table. If you delete that index the query will have to join all the books with their authors and then apply the GROUP BY - a much more expensive query. So be cautious about dropping apparently unused unique indexes.

    Read the article

  • SSMS Tools Pack 1.9.3 is out!

    - by Mladen Prajdic
    This release adds a great new feature and fixes a few bugs. The new feature called Window Content History saves the whole text in all all opened SQL windows every N minutes with the default being 30 minutes. This feature fixes the shortcoming of the Query Execution History which is saved only when the query is run. If you're working on a large script and never execute it, the existing Query Execution History wouldn't save it. By contrast the Window Content History saves everything in a .sql file so you can even open it in your SSMS. The Query Execution History and Window Content History files are correlated by the same directory and file name so when you search through the Query Execution History you get to see the whole saved Window Content History for that query. Because Window Content History saves data in simple searchable .sql files there isn't a special search editor built in. It is turned ON by default but despite the built in optimizations for space minimization, be careful to not let it fill your disk. You can see how it looks in the pictures in the feature list. The fixed bugs are: SSMS 2008 R2 slowness reported by few people. An object explorer context menu bug where it showed multiple SSMS Tools entries and showed wrong entries for a node. A datagrid bug in SQL snippets. Ability to read illegal XML characters from log files. Fixed the upper limit bug of a saved history text to 5 MB. A bug when searching through result sets prevents search. A bug with Text formatting erroring out for certain scripts. A bug with finding servers where it would return null even though servers existed. Run custom scripts objects had a bug where |SchemaName| didn't display the correct table schema for columns. This is fixed. Also |NodeName| and |ObjectName| values now show the same thing.   You can download the new version 1.9.3 here. Enjoy it!

    Read the article

  • Developing Schema Compare for Oracle (Part 2): Dependencies

    - by Simon Cooper
    In developing Schema Compare for Oracle, one of the issues we came across was the size of the databases. As detailed in my last blog post, we had to allow schema pre-filtering due to the number of objects in a standard Oracle database. Unfortunately, this leads to some quite tricky situations regarding object dependencies. This post explains how we deal with these dependencies. 1. Cross-schema dependencies Say, in the following database, you're populating SchemaA, and synchronizing SchemaA.Table1: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(Col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1(Col1)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); We need to do a rebuild of SchemaA.Table1 to change Col1 from a VARCHAR2(100) to a NUMBER. This consists of: Creating a table with the new schema Inserting data from the old table to the new table, with appropriate conversion functions (in this case, TO_NUMBER) Dropping the old table Rename new table to same name as old table Unfortunately, in this situation, the rebuild will fail at step 1, as we're trying to create a NUMBER column with a foreign key reference to a VARCHAR2(100) column. As we're only populating SchemaA, the naive implementation of the object population prefiltering (sticking a WHERE owner = 'SCHEMAA' on all the data dictionary queries) will generate an incorrect sync script. What we actually have to do is: Drop foreign key constraint on SchemaA.Table1 Rebuild SchemaB.Table1 Rebuild SchemaA.Table1, adding the foreign key constraint to the new table This means that in order to generate a correct synchronization script for SchemaA.Table1 we have to know what SchemaB.Table1 is, and that it also needs to be rebuilt to successfully rebuild SchemaA.Table1. SchemaB isn't the schema that the user wants to synchronize, but we still have to load the table and column information for SchemaB.Table1 the same way as any table in SchemaA. Fortunately, Oracle provides (mostly) complete dependency information in the dictionary views. Before we actually read the information on all the tables and columns in the database, we can get dependency information on all the objects that are either pointed at by objects in the schemas we’re populating, or point to objects in the schemas we’re populating (think about what would happen if SchemaB was being explicitly populated instead), with a suitable query on all_constraints (for foreign key relationships) and all_dependencies (for most other types of dependencies eg a function using another function). The extra objects found can then be included in the actual object population, and the sync wizard then has enough information to figure out the right thing to do when we get to actually synchronize the objects. Unfortunately, this isn’t enough. 2. Dependency chains The solution above will only get the immediate dependencies of objects in populated schemas. What if there’s a chain of dependencies? A.tbl1 -> B.tbl1 -> C.tbl1 -> D.tbl1 If we’re only populating SchemaA, the implementation above will only include B.tbl1 in the dependent objects list, whereas we might need to know about C.tbl1 and D.tbl1 as well, in order to ensure a modification on A.tbl1 can succeed. What we actually need is a graph traversal on the dependency graph that all_dependencies represents. Fortunately, we don’t have to read all the database dependency information from the server and run the graph traversal on the client computer, as Oracle provides a method of doing this in SQL – CONNECT BY. So, we can put all the dependencies we want to include together in big bag with UNION ALL, then run a SELECT ... CONNECT BY on it, starting with objects in the schema we’re populating. We should end up with all the objects that might be affected by modifications in the initial schema we’re populating. Good solution? Well, no. For one thing, it’s sloooooow. all_dependencies, on my test databases, has got over 110,000 rows in it, and the entire query, for which Oracle was creating a temporary table to hold the big bag of graph edges, was often taking upwards of two minutes. This is too long, and would only get worse for large databases. But it had some more fundamental problems than just performance. 3. Comparison dependencies Consider the following schema: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100)); What will happen if we used the dependency algorithm above on the source & target database? Well, SchemaA.Table1 has a foreign key reference to SchemaB.Table1, so that will be included in the source database population. On the target, SchemaA.Table1 has no such reference. Therefore SchemaB.Table1 will not be included in the target database population. In the resulting comparison of the two objects models, what you will end up with is: SOURCE  TARGET SchemaA.Table1 -> SchemaA.Table1 SchemaB.Table1 -> (no object exists) When this comparison is synchronized, we will see that SchemaB.Table1 does not exist, so we will try the following sequence of actions: Create SchemaB.Table1 Rebuild SchemaA.Table1, with foreign key to SchemaB.Table1 Oops. Because the dependencies are only followed within a single database, we’ve tried to create an object that already exists. To fix this we can include any objects found as dependencies in the source or target databases in the object population of both databases. SchemaB.Table1 will then be included in the target database population, and we won’t try and create objects that already exist. All good? Well, consider the following schema (again, only explicitly populating SchemaA, and synchronizing SchemaA.Table1): SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); CREATE TABLE SchemaC.Table1 ( Col1 NUMBER);   CREATE TABLE SchemaC.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1); Although we’re now including SchemaB.Table1 on both sides of the comparison, there’s a third table (SchemaC.Table1) that we don’t know about that will cause the rebuild of SchemaB.Table1 to fail if we try and synchronize SchemaA.Table1. That’s because we’re only running the dependency query on the schemas we’re explicitly populating; to solve this issue, we would have to run the dependency query again, but this time starting the graph traversal from the objects found in the other database. Furthermore, this dependency chain could be arbitrarily extended.This leads us to the following algorithm for finding all the dependencies of a comparison: Find initial dependencies of schemas the user has selected to compare on the source and target Include these objects in both the source and target object populations Run the dependency query on the source, starting with the objects found as dependents on the target, and vice versa Repeat 2 & 3 until no more objects are found For the schema above, this will result in the following sequence of actions: Find initial dependenciesSchemaA.Table1 -> SchemaB.Table1 found on sourceNo objects found on target Include objects in both source and targetSchemaB.Table1 included in source and target Run dependency query, starting with found objectsNo objects to start with on sourceSchemaB.Table1 -> SchemaC.Table1 found on target Include objects in both source and targetSchemaC.Table1 included in source and target Run dependency query on found objectsNo objects found in sourceNo objects to start with in target Stop This will ensure that we include all the necessary objects to make any synchronization work. However, there is still the issue of query performance; the CONNECT BY on the entire database dependency graph is still too slow. After much sitting down and drawing complicated diagrams, we decided to move the graph traversal algorithm from the server onto the client (which turned out to run much faster on the client than on the server); and to ensure we don’t read the entire dependency graph onto the client we also pull the graph across in bits – we start off with dependency edges involving schemas selected for explicit population, and whenever the graph traversal comes across a dependency reference to a schema we don’t yet know about a thunk is hit that pulls in the dependency information for that schema from the database. We continue passing more dependent objects back and forth between the source and target until no more dependency references are found. This gives us the list of all the extra objects to populate in the source and target, and object population can then proceed. 4. Object blacklists and fast dependencies When we tested this solution, we were puzzled in that in some of our databases most of the system schemas (WMSYS, ORDSYS, EXFSYS, XDB, etc) were being pulled in, and this was increasing the database registration and comparison time quite significantly. After debugging, we discovered that the culprits were database tables that used one of the Oracle PL/SQL types (eg the SDO_GEOMETRY spatial type). These were creating a dependency chain from the database tables we were populating to the system schemas, and hence pulling in most of the system objects in that schema. To solve this we introduced blacklists of objects we wouldn’t follow any dependency chain through. As well as the Oracle-supplied PL/SQL types (MDSYS.SDO_GEOMETRY, ORDSYS.SI_COLOR, among others) we also decided to blacklist the entire PUBLIC and SYS schemas, as any references to those would likely lead to a blow up in the dependency graph that would massively increase the database registration time, and could result in the client running out of memory. Even with these improvements, each dependency query was taking upwards of a minute. We discovered from Oracle execution plans that there were some columns, with dependency information we required, that were querying system tables with no indexes on them! To cut a long story short, running the following query: SELECT * FROM all_tab_cols WHERE data_type_owner = ‘XDB’; results in a full table scan of the SYS.COL$ system table! This single clause was responsible for over half the execution time of the dependency query. Hence, the ‘Ignore slow dependencies’ option was born – not querying this and a couple of similar clauses to drastically speed up the dependency query execution time, at the expense of producing incorrect sync scripts in rare edge cases. Needless to say, along with the sync script action ordering, the dependency code in the database registration is one of the most complicated and most rewritten parts of the Schema Compare for Oracle engine. The beta of Schema Compare for Oracle is out now; if you find a bug in it, please do tell us so we can get it fixed!

    Read the article

  • Oracle Flashback Technology - Webcast 9th June 2010

    - by Alex Blyth
    Hi All Here are the details for webcast on Oracle Flashback Technologies on Wednesday (9th June 2010) beginning at 1.30pm (Sydney, Australia Time). The Oracle Database architecture leverages the unique technological advances in the area of database recovery due to human errors. Oracle Flashback Technology provides a set of new features to view and rewind data back and forth in time. The Flashback features offer the capability to query historical data, perform change analysis, and perform self-service repair to recover from logical corruptions while the database is online. With Oracle Flashback Technology, you can indeed undo the past! Oracle9i introduced Flashback Query to provide a simple, powerful and completely non-disruptive mechanism for recovering from human errors. It allows users to view the state of data at a point in time in the past without requiring any structural changes to the database. Oracle Database 10g extended the Flashback Technology to provide fast and easy recovery at the database, table, row, and transaction level. Flashback Technology revolutionizes recovery by operating just on the changed data. The time it takes to recover the error is now equal to the same amount of time it took to make the mistake. Oracle 10g Flashback Technologies includes Flashback Database, Flashback Table, Flashback Drop, Flashback Versions Query, and Flashback Transaction Query. Flashback technology can just as easily be utilized for non-repair purposes, such as historical auditing with Flashback Query and undoing test changes with Flashback Database. Oracle Database 11g introduces an innovative method to manage and query long-term historical data with Flashback Data Archive. This release also provides an easy, one-step transaction backout operation, with the new Flashback Transaction capability. Webcast is at http://strtc.oracle.com (IE6, 7 & 8 supported only)Conference ID for the webcast is 6690835Conference Key: flashbackEnrollment is required. Please click here to enroll.Please use your real name in the name field (just makes it easier for us to help you out if we can't answer your questions on the call) Audio details: NZ Toll Free - 0800 888 157 orAU Toll Free - 1800420354 (or +61 2 8064 0613)Meeting ID: 7914841Meeting Passcode: 09062010 Talk to you all Wednesday 9th June Alex

    Read the article

  • Web Services and code lists

    - by 0x0me
    Our team heavily discuss the issues how to handle code list in a web service definition. The design goal is to describe a provider API to query a system using various values. Some of them are catalogs resp. code lists. A catalog or code list is a set of key value pairs. There are different systems (at least 3) maintaining possibly different code lists. Each system should implement the provider API, whereas each system might have different code list for the same business entity eg. think of colors. One system know [(1,'red'),(2,'green')] and another one knows [(1,'lightgreen'),(2,'darkgreen'),(3,'red')] etc. The access to the different provider API implementations will be encapsulated by a query service, but there is already one candidate which might use at least one provider API directly. The current options to design the API discussed are: use an abstract code list in the interface definition: the web service interface defines a well known set of code list which are expected to be used for querying and returning data. Each API provider implementation has to mapped the request and response values from those abstract codelist to the system specific one. let the query component handle the code list: the encapsulating query service knows the code list set of each provider API implementation and takes care of mapping the input and output to the system specific code lists of the queried system. do not use code lists in the query definition at all: Just query code lists by a plain string and let the provider API implementation figure out the right value. This might lead to a loose of information and possibly many false positives, due to the fact that the input string could not be canonical mapped to a code list value (eg. green - lightgreen or green - darkgreen or both) What are your experiences resp. solutions to such a problem? Could you give any recommendation?

    Read the article

  • DNS no longer works after server reboot

    - by Burning the Codeigniter
    Strangely enough, when I reboot my Ubuntu 12.04 server, the DNS no longer works, which makes the domain unavailable to access to my site. Normally the DNS should be working after a reboot, but this doesn't happen anymore. I use nginx to serve content, but nginx is already configured to work with my domains. What are the typical practises must I do after a reboot and how can I solve this issue I experience? I already have BIND, networking and resolvconf to boot when the server boots up. ; <<>> DiG 9.8.1-P1 <<>> mysite.com ;; global options: +cmd ;; connection timed out; no servers could be reached This is my output with dig $ttl 38400 mysite.com. IN SOA ns1.mysite.com. webmaster.mysite.com. ( 1055026205 6H 1H 5D 20M ) mysite.com. IN A xx.xx.xx.xx # Server IP *.mysite.com. IN A xx.xx.xx.xx # Server IP www.mysite.com. IN CNAME mysite.com. ns1.mysite.com. IN A xx.xx.xx.xx # Server 2nd IP ns2.mysite.com. IN A xx.xx.xx.xx # Server 3rd IP mysite.com. IN NS ns1.mysite.com. mysite.com. IN NS ns2.mysite.com. mail.mysite.com. IN MX 1 mysite.com. This is the contents of /etc/resolv.conf # Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8) # DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN nameserver 85.17.150.123 nameserver 85.17.96.69 nameserver 62.212.64.122 search localdomain After using more dig commands, outputs: ; <<>> DiG 9.7.3-P3 <<>> @85.17.150.123 mysite.com ; (1 server found) ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: REFUSED, id: 24847 ;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0 ;; WARNING: recursion requested but not available ;; QUESTION SECTION: ;mysite.com. IN A ;; Query time: 2145 msec ;; SERVER: 85.17.150.123#53(85.17.150.123) ;; WHEN: Mon Nov 5 16:31:32 2012 ;; MSG SIZE rcvd: 30 ; <<>> DiG 9.7.3-P3 <<>> @85.17.96.69 mysite.com ; (1 server found) ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: REFUSED, id: 27879 ;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0 ;; WARNING: recursion requested but not available ;; QUESTION SECTION: ;mysite.com. IN A ;; Query time: 949 msec ;; SERVER: 85.17.96.69#53(85.17.96.69) ;; WHEN: Mon Nov 5 16:32:59 2012 ;; MSG SIZE rcvd: 30 ; <<>> DiG 9.7.3-P3 <<>> @62.212.64.122 mysite.com ; (1 server found) ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: REFUSED, id: 29293 ;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0 ;; WARNING: recursion requested but not available ;; QUESTION SECTION: ;mysite.com. IN A ;; Query time: 825 msec ;; SERVER: 62.212.64.122#53(62.212.64.122) ;; WHEN: Mon Nov 5 16:33:39 2012 ;; MSG SIZE rcvd: 30 With Google DNS (8.8.8.8): ; <<>> DiG 9.7.3-P3 <<>> @8.8.8.8 mysite.com ; (1 server found) ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 38498 ;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0 ;; QUESTION SECTION: ;mysite.com. IN A ;; Query time: 3982 msec ;; SERVER: 8.8.8.8#53(8.8.8.8) ;; WHEN: Mon Nov 5 16:37:27 2012 ;; MSG SIZE rcvd: 30

    Read the article

  • Application crashing on getting updated information from database using timer and storing it on loca

    - by Amit Battan
    In our multi - user application we are continuously interacting with database. We have a common class through which we are sending POST queries to database and obtaining xml files in return. We are using delegates of NSXMLParser to parse the obtained file. The problem with us is we are facing many crashes in it generally when application is idle and changed data in database is being fetched in background through timer which is invoked after every few seconds. We have also dealt with error handling through try and catch but it proves to be of no use in this case and mostly application crashes with following error : Exception Type: EXC_BAD_ACCESS (SIGBUS) Exception Codes: KERN_PROTECTION_FAILURE at 0x0000000000000020 Strange thing is that many times the fetching of updated data at background works very fine, same methods being successfully executed under similar conditions but suddenly it crashes on one of them. The codes we are using is as follows: // we are using timer in this way: chkOnlineUser=[NSTimer scheduledTimerWithTimeInterval:15 target:mmObject selector:@selector(threadOnlineUser) userInfo:NULL repeats:YES]; // this method being called in timer -(void)threadOnlineUser{//HeartBeat in Thread [NSThread detachNewThreadSelector:@selector(onlineUserRefresh) toTarget:self withObject:nil]; } // this performs actual updation -(void)onlineUserRefresh{ NSAutoreleasePool *pool =[[NSAutoreleasePool alloc]init]; @try{ if(chkTimer==1){ return; } chkTimer=1; if([allUserArray count]==0){ [user parseXMLFileUser:@"all" andFlag:3]; [allUserArray removeAllObjects]; [allUserArray addObjectsFromArray:[user users]]; } [objHeartBeat parseXMLFile:[loginID intValue] timeOut:10]; NSMutableDictionary *tDictOL=[[NSMutableDictionary alloc] init]; tDictOL=[objHeartBeat onLineList]; NSArray *tArray=[[NSArray alloc] init]; tArray=[[tDictOL objectForKey:@"onlineuser"] componentsSeparatedByString:@","]; [loginUserArray removeAllObjects]; for(int l=0;l less than [tArray count] ;l++){ int t;//=[[tArray objectAtIndex:l] intValue]; if([[allUserArray valueForKey:@"Id"] containsObject:[tArray objectAtIndex:l]]){ t = [[allUserArray valueForKey:@"Id"] indexOfObject:[tArray objectAtIndex:l]]; [loginUserArray addObject:[allUserArray objectAtIndex:t]]; } } [onlineTable reloadData]; [logInUserPopUp removeAllItems]; if([loginUserArray count]==1){ [labelLoginUser setStringValue:@"Only you are online"]; [logInUserPopUp setEnabled:YES]; }else{ [labelLoginUser setStringValue:[NSString stringWithFormat:@" %d users online",[loginUserArray count]]]; [logInUserPopUp setEnabled:YES]; } NSMenu *menu = [[NSMenu alloc] initWithTitle:@"menu"]; NSMenuItem *itemOne = [[NSMenuItem alloc] initWithTitle:@"" action:NULL keyEquivalent:@""]; [menu addItem:itemOne]; for(int l=0;l less than [loginUserArray count];l++){ NSString *tempStr= [NSString stringWithFormat:@"%@ %@",[[[loginUserArray objectAtIndex:l] objectForKey:@"user_fname"] stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]],[[[loginUserArray objectAtIndex:l] objectForKey:@"user_lname"] stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]]]; if(![tempStr isEqualToString:@""]){ NSMenuItem *itemOne = [[NSMenuItem alloc] initWithTitle:tempStr action:NULL keyEquivalent:@""]; [menu addItem:itemOne]; }else if(l==0){ NSMenuItem *itemOne = [[NSMenuItem alloc] initWithTitle:tempStr action:NULL keyEquivalent:@""]; [menu addItem:itemOne]; } } [logInUserPopUp setMenu:menu]; if([lastUpdateTime isEqualToString:@""]){ }else { [self fetchUpdatedInfo:lastUpdateTime]; [self fetchUpdatedGroup:lastUpdateTime];// function same as fetchUpdatedInfo [avObject fetchUpdatedInfo:lastUpdateTime];// function same as fetchUpdatedInfo [esTVObject fetchUpdatedInfo:lastUpdateTime];// function same as fetchUpdatedInfo } lastUpdateTime=[[tDictOL objectForKey:@"lastServerTime"] copy]; } @catch (NSException * e) { [queryByPost insertException:@"MainModule" inFun:@"onlineUserRefresh" excp:[e description] userId:[loginID intValue]]; NSRunAlertPanel(@"Error Panel", @"Main Module- onlineUserRefresh....%@", @"OK", nil, nil,e); } @finally { NSLog(@"Internal Update Before Bye"); chkTimer=0; NSLog(@"Internal Update Bye");// Some time application crashes after this log // Some time application crahses after "Internal Update Bye" log } } // The method which we are using to obtain updated data is of following form: -(void)fetchUpdatedInfo:(NSString *)UpdTime{ @try { if(initAfterLoginComplete==0){ return; } [user parseXMLFileUser:UpdTime andFlag:[loginID intValue]]; [tempUserUpdatedArray removeAllObjects]; [tempUserUpdatedArray addObjectsFromArray:[user users]]; if([tempUserUpdatedArray count]0){ if([contactsView isHidden]){ [topContactImg setImage:[NSImage imageNamed:@"btn_contacts_off_red.png"]]; }else { [topContactImg setImage:[NSImage imageNamed:@"btn_contacts_red.png"]]; } }else { return; } int chkprof=0; for(int l=0;l less than [tempUserUpdatedArray count];l++){ NSArray *tempArr1 = [allUserArray valueForKey:@"Id"]; int s; if([[[tempUserUpdatedArray objectAtIndex:l] objectForKey:@"Id"] intValue]==profile_Id){ chkprof=1; } if([tempArr1 containsObject:[[tempUserUpdatedArray objectAtIndex:l] objectForKey:@"Id"]]){ s = [tempArr1 indexOfObject:[[tempUserUpdatedArray objectAtIndex:l] objectForKey:@"Id"]]; [allUserArray replaceObjectAtIndex:s withObject:[tempUserUpdatedArray objectAtIndex:l]]; }else { [allUserArray addObject:[tempUserUpdatedArray objectAtIndex:l]]; } NSArray *tempArr2 = [tempUser valueForKey:@"Id"]; if([tempArr2 containsObject:[[tempUserUpdatedArray objectAtIndex:l] objectForKey:@"Id"]]){ s = [tempArr2 indexOfObject:[[tempUserUpdatedArray objectAtIndex:l] objectForKey:@"Id"]]; [tempUser replaceObjectAtIndex:s withObject:[tempUserUpdatedArray objectAtIndex:l]]; }else { [tempUser addObject:[tempUserUpdatedArray objectAtIndex:l]]; } } NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"user_fname" ascending:YES]; [tempUser sortUsingDescriptors:[NSMutableArray arrayWithObject:sortDescriptor]]; [userListTableView reloadData]; [groupsArray removeAllObjects]; for(int z=0;z less than [tempGroups count];z++){ NSMutableArray *tempMArr=[[NSMutableArray alloc] init]; for(int l=0;l less than [allUserArray count];l++){ if([[[allUserArray objectAtIndex:l] objectForKey:@"GroupId"] intValue]==[[[tempGroups objectAtIndex:z] objectForKey:@"group_id"] intValue]){ [tempMArr addObject:[allUserArray objectAtIndex:l]]; } } [groupsArray insertObject:tempMArr atIndex:z]; [tempMArr release]; tempMArr= nil; } for(int n=0;n less than [tempGroups count];n++){ [[groupsArray objectAtIndex:n] addObject:[tempGroups objectAtIndex:n]]; } [groupsListOV reloadData]; if(chkprof==1){ [self profileShow:profile_Id]; }else { } [self selectUserInTable:0]; }@catch (NSException * e) { NSRunAlertPanel(@"Error Panel", @"%@", @"OK", nil, nil,e); } } // The method which we are using to frame select query and parse obtained data is: -(void)parseXMLForUser:(int)UId stringVar:(NSString*)stringVar{ @try{ if(queryByPost) [queryByPost release]; queryByPost=[QueryByPost new]; // common class used to invoke method to send request via POST method //obtaining data for xml parsing NSString *query=[NSString stringWithFormat:@"Select * from userinfo update_time = '%@' AND NOT owner_id ='%d' ",stringVar,UId]; NSData *obtainedData=[queryByPost executeQuery:query WithAction:@"query"]; // method invoked to perform post query if(obtainedData==nil){ // data not obtained so return return; } // initializing dictionary to be obtained after parsing if(obtainedDictionary) [obtainedDictionary release]; obtainedDictionary=[NSMutableDictionary new]; // xml parsing if (updatedDataParser) // airportsListParser is an NSXMLParser instance variable [updatedDataParser release]; updatedDataParser = [[NSXMLParser alloc] initWithData:obtainedData]; [updatedDataParser setDelegate:self]; [updatedDataParser setShouldResolveExternalEntities:YES]; BOOL success = [updatedDataParser parse]; } @catch (NSException *e) { NSLog(@"wtihin parseXMLForUser- parseXMLForUser:stringVar: - %@",[e description]); } } //The method which will attempt to interact 4 times with server if interaction with it is found to be unsuccessful , is of following form: -(NSData*)executeQuery:(NSString*)query WithAction:(NSString*)doAction{ NSLog(@"within ExecuteQuery:WithAction: Query is: %@ and Action is: %@",query,doAction); NSString *returnResult; @try { NSString *returnResult; NSMutableURLRequest *postRequest; NSError *error; NSData *searchData; NSHTTPURLResponse *response; postRequest=[self directMySQLQuery:query WithAction:doAction]; // this method sends actual POST request NSLog(@"after directMYSQL in QueryByPost- performQuery... ErrorLogMsg"); searchData = [NSURLConnection sendSynchronousRequest:postRequest returningResponse:&response error:&error]; returnResult = [[NSString alloc] initWithData:searchData encoding:NSASCIIStringEncoding]; NSString *resultToBeCompared=[returnResult stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]]; NSLog(@"result obtained - %@/ resultToBeCompared - %@",returnResult,resultToBeCompared); if(![resultToBeCompared isEqualToString:@""]){ }else { sleep(10); postRequest=[self directMySQLQuery:query WithAction:doAction]; searchData = [NSURLConnection sendSynchronousRequest:postRequest returningResponse:&response error:&error]; if(![resultToBeCompared isEqualToString:@""]){ }else { sleep(10); postRequest=[self directMySQLQuery:query WithAction:doAction]; searchData = [NSURLConnection sendSynchronousRequest:postRequest returningResponse:&response error:&error]; if(![resultToBeCompared isEqualToString:@""]){ }else { sleep(10); postRequest=[self directMySQLQuery:query WithAction:doAction]; searchData = [NSURLConnection sendSynchronousRequest:postRequest returningResponse:&response error:&error]; if(![resultToBeCompared isEqualToString:@""]){ }else { sleep(10); postRequest=[self directMySQLQuery:query WithAction:doAction]; searchData = [NSURLConnection sendSynchronousRequest:postRequest returningResponse:&response error:&error]; if(![resultToBeCompared isEqualToString:@""]){ }else { return nil; } } } } } returnResult = [[NSString alloc] initWithData:searchData encoding:NSASCIIStringEncoding]; return searchData; } @catch (NSException * e) { NSLog(@"within QueryByPost , execurteQuery:WithAction - %@",[e description]); return nil; } } // The method which sends POST request to server , is of following form: -(NSMutableURLRequest *)directMySQLQuery:(NSString*)query WithAction:(NSString*)doAction{ @try{ NSLog(@"Query is: %@ and Action is: %@",query,doAction); // some pre initialization NSString *stringBoundary,*contentType; NSURL *cgiUrl ; NSMutableURLRequest *postRequest; NSMutableData *postBody; NSString *ans=@"434"; cgiUrl = [NSURL URLWithString:@"http://keysoftwareservices.com/API.php"]; postRequest = [NSMutableURLRequest requestWithURL:cgiUrl]; [postRequest setHTTPMethod:@"POST"]; stringBoundary = [NSString stringWithString:@"0000ABCQueryxxxxxx"]; contentType = [NSString stringWithFormat:@"multipart/form-data; boundary=%@", stringBoundary]; [postRequest addValue:contentType forHTTPHeaderField: @"Content-Type"]; //setting up the body: postBody = [NSMutableData data]; [postBody appendData:[[NSString stringWithFormat:@"\r\n\r\n--%@\r\n",stringBoundary] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithString:@"Content-Disposition: form-data; name=\"code\"\r\n\r\n"] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithString:ans] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithFormat:@"\r\n--%@\r\n",stringBoundary] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithString:@"Content-Disposition: form-data; name=\"action\"\r\n\r\n"] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithString:doAction] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithFormat:@"\r\n--%@\r\n",stringBoundary] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithString:@"Content-Disposition: form-data; name=\"devmode\"\r\n\r\n"] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithString:[[[NSBundle mainBundle] infoDictionary] objectForKey:@"devmode"]] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithFormat:@"\r\n--%@\r\n",stringBoundary] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithString:@"Content-Disposition: form-data; name=\"q\"\r\n\r\n"] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithString:query] dataUsingEncoding:NSUTF8StringEncoding]]; [postBody appendData:[[NSString stringWithFormat:@"\r\n--%@--\r\n",stringBoundary] dataUsingEncoding:NSUTF8StringEncoding]]; [postRequest setHTTPBody:postBody]; NSLog(@"Direct My SQL ok");// Some time application crashes afte this log //Some time application crashes after "Direct My SQL ok" log return [postRequest mutableCopy]; }@catch (NSException * e) { NSLog(@"NSException %@",e); NSRunAlertPanel(@"Error Panel", @"Within QueryByPost- directMySQLQuery...%@", @"OK", nil, nil,e); return nil; } }

    Read the article

  • The Execute SQL Task

    In this article we are going to take you through the Execute SQL Task in SQL Server Integration Services for SQL Server 2005 (although it appies just as well to SQL Server 2008).  We will be covering all the essentials that you will need to know to effectively use this task and make it as flexible as possible. The things we will be looking at are as follows: A tour of the Task. The properties of the Task. After looking at these introductory topics we will then get into some examples. The examples will show different types of usage for the task: Returning a single value from a SQL query with two input parameters. Returning a rowset from a SQL query. Executing a stored procedure and retrieveing a rowset, a return value, an output parameter value and passing in an input parameter. Passing in the SQL Statement from a variable. Passing in the SQL Statement from a file. Tour Of The Task Before we can start to use the Execute SQL Task in our packages we are going to need to locate it in the toolbox. Let's do that now. Whilst in the Control Flow section of the package expand your toolbox and locate the Execute SQL Task. Below is how we found ours. Now drag the task onto the designer. As you can see from the following image we have a validation error appear telling us that no connection manager has been assigned to the task. This can be easily remedied by creating a connection manager. There are certain types of connection manager that are compatable with this task so we cannot just create any connection manager and these are detailed in a few graphics time. Double click on the task itself to take a look at the custom user interface provided to us for this task. The task will open on the general tab as shown below. Take a bit of time to have a look around here as throughout this article we will be revisting this page many times. Whilst on the general tab, drop down the combobox next to the ConnectionType property. In here you will see the types of connection manager which this task will accept. As with SQL Server 2000 DTS, SSIS allows you to output values from this task in a number of formats. Have a look at the combobox next to the Resultset property. The major difference here is the ability to output into XML. If you drop down the combobox next to the SQLSourceType property you will see the ways in which you can pass a SQL Statement into the task itself. We will have examples of each of these later on but certainly when we saw these for the first time we were very excited. Next to the SQLStatement property if you click in the empty box next to it you will see ellipses appear. Click on them and you will see the very basic query editor that becomes available to you. Alternatively after you have specified a connection manager for the task you can click on the Build Query button to bring up a completely different query editor. This is slightly inconsistent. Once you've finished looking around the general tab, move on to the next tab which is the parameter mapping tab. We shall, again, be visiting this tab throughout the article but to give you an initial heads up this is where you define the input, output and return values from your task. Note this is not where you specify the resultset. If however you now move on to the ResultSet tab this is where you define what variable will receive the output from your SQL Statement in whatever form that is. Property Expressions are one of the most amazing things to happen in SSIS and they will not be covered here as they deserve a whole article to themselves. Watch out for this as their usefulness will astound you. For a more detailed discussion of what should be the parameter markers in the SQL Statements on the General tab and how to map them to variables on the Parameter Mapping tab see Working with Parameters and Return Codes in the Execute SQL Task. Task Properties There are two places where you can specify the properties for your task. One is in the task UI itself and the other is in the property pane which will appear if you right click on your task and select Properties from the context menu. We will be doing plenty of property setting in the UI later so let's take a moment to have a look at the property pane. Below is a graphic showing our properties pane. Now we shall take you through all the properties and tell you exactly what they mean. A lot of these properties you will see across all tasks as well as the package because of everything's base structure The Container. BypassPrepare Should the statement be prepared before sending to the connection manager destination (True/False) Connection This is simply the name of the connection manager that the task will use. We can get this from the connection manager tray at the bottom of the package. DelayValidation Really interesting property and it tells the task to not validate until it actually executes. A usage for this may be that you are operating on table yet to be created but at runtime you know the table will be there. Description Very simply the description of your Task. Disable Should the task be enabled or not? You can also set this through a context menu by right clicking on the task itself. DisableEventHandlers As a result of events that happen in the task, should the event handlers for the container fire? ExecValueVariable The variable assigned here will get or set the execution value of the task. Expressions Expressions as we mentioned earlier are a really powerful tool in SSIS and this graphic below shows us a small peek of what you can do. We select a property on the left and assign an expression to the value of that property on the right causing the value to be dynamically changed at runtime. One of the most obvious uses of this is that the property value can be built dynamically from within the package allowing you a great deal of flexibility FailPackageOnFailure If this task fails does the package? FailParentOnFailure If this task fails does the parent container? A task can he hosted inside another container i.e. the For Each Loop Container and this would then be the parent. ForcedExecutionValue This property allows you to hard code an execution value for the task. ForcedExecutionValueType What is the datatype of the ForcedExecutionValue? ForceExecutionResult Force the task to return a certain execution result. This could then be used by the workflow constraints. Possible values are None, Success, Failure and Completion. ForceExecutionValue Should we force the execution result? IsolationLevel This is the transaction isolation level of the task. IsStoredProcedure Certain optimisations are made by the task if it knows that the query is a Stored Procedure invocation. The docs say this will always be false unless the connection is an ADO connection. LocaleID Gets or sets the LocaleID of the container. LoggingMode Should we log for this container and what settings should we use? The value choices are UseParentSetting, Enabled and Disabled. MaximumErrorCount How many times can the task fail before we call it a day? Name Very simply the name of the task. ResultSetType How do you want the results of your query returned? The choices are ResultSetType_None, ResultSetType_SingleRow, ResultSetType_Rowset and ResultSetType_XML. SqlStatementSource Your Query/SQL Statement. SqlStatementSourceType The method of specifying the query. Your choices here are DirectInput, FileConnection and Variables TimeOut How long should the task wait to receive results? TransactionOption How should the task handle being asked to join a transaction? Usage Examples As we move through the examples we will only cover in them what we think you must know and what we think you should see. This means that some of the more elementary steps like setting up variables will be covered in the early examples but skipped and simply referred to in later ones. All these examples used the AventureWorks database that comes with SQL Server 2005. Returning a Single Value, Passing in Two Input Parameters So the first thing we are going to do is add some variables to our package. The graphic below shows us those variables having been defined. Here the CountOfEmployees variable will be used as the output from the query and EndDate and StartDate will be used as input parameters. As you can see all these variables have been scoped to the package. Scoping allows us to have domains for variables. Each container has a scope and remember a package is a container as well. Variable values of the parent container can be seen in child containers but cannot be passed back up to the parent from a child. Our following graphic has had a number of changes made. The first of those changes is that we have created and assigned an OLEDB connection manager to this Task ExecuteSQL Task Connection. The next thing is we have made sure that the SQLSourceType property is set to Direct Input as we will be writing in our statement ourselves. We have also specified that only a single row will be returned from this query. The expressions we typed in was: SELECT COUNT(*) AS CountOfEmployees FROM HumanResources.Employee WHERE (HireDate BETWEEN ? AND ?) Moving on now to the Parameter Mapping tab this is where we are going to tell the task about our input paramaters. We Add them to the window specifying their direction and datatype. A quick word here about the structure of the variable name. As you can see SSIS has preceeded the variable with the word user. This is a default namespace for variables but you can create your own. When defining your variables if you look at the variables window title bar you will see some icons. If you hover over the last one on the right you will see it says "Choose Variable Columns". If you click the button you will see a list of checkbox options and one of them is namespace. after checking this you will see now where you can define your own namespace. The next tab, result set, is where we need to get back the value(s) returned from our statement and assign to a variable which in our case is CountOfEmployees so we can use it later perhaps. Because we are only returning a single value then if you remember from earlier we are allowed to assign a name to the resultset but it must be the name of the column (or alias) from the query. A really cool feature of Business Intelligence Studio being hosted by Visual Studio is that we get breakpoint support for free. In our package we set a Breakpoint so we can break the package and have a look in a watch window at the variable values as they appear to our task and what the variable value of our resultset is after the task has done the assignment. Here's that window now. As you can see the count of employess that matched the data range was 2. Returning a Rowset In this example we are going to return a resultset back to a variable after the task has executed not just a single row single value. There are no input parameters required so the variables window is nice and straight forward. One variable of type object. Here is the statement that will form the soure for our Resultset. select p.ProductNumber, p.name, pc.Name as ProductCategoryNameFROM Production.ProductCategory pcJOIN Production.ProductSubCategory pscON pc.ProductCategoryID = psc.ProductCategoryIDJOIN Production.Product pON psc.ProductSubCategoryID = p.ProductSubCategoryID We need to make sure that we have selected Full result set as the ResultSet as shown below on the task's General tab. Because there are no input parameters we can skip the parameter mapping tab and move straight to the Result Set tab. Here we need to Add our variable defined earlier and map it to the result name of 0 (remember we covered this earlier) Once we run the task we can again set a breakpoint and have a look at the values coming back from the task. In the following graphic you can see the result set returned to us as a COM object. We can do some pretty interesting things with this COM object and in later articles that is exactly what we shall be doing. Return Values, Input/Output Parameters and Returning a Rowset from a Stored Procedure This example is pretty much going to give us a taste of everything. We have already covered in the previous example how to specify the ResultSet to be a Full result set so we will not cover it again here. For this example we are going to need 4 variables. One for the return value, one for the input parameter, one for the output parameter and one for the result set. Here is the statement we want to execute. Note how much cleaner it is than if you wanted to do it using the current version of DTS. In the Parameter Mapping tab we are going to Add our variables and specify their direction and datatypes. In the Result Set tab we can now map our final variable to the rowset returned from the stored procedure. It really is as simple as that and we were amazed at how much easier it is than in DTS 2000. Passing in the SQL Statement from a Variable SSIS as we have mentioned is hugely more flexible than its predecessor and one of the things you will notice when moving around the tasks and the adapters is that a lot of them accept a variable as an input for something they need. The ExecuteSQL task is no different. It will allow us to pass in a string variable as the SQL Statement. This variable value could have been set earlier on from inside the package or it could have been populated from outside using a configuration. The ResultSet property is set to single row and we'll show you why in a second when we look at the variables. Note also the SQLSourceType property. Here's the General Tab again. Looking at the variable we have in this package you can see we have only two. One for the return value from the statement and one which is obviously for the statement itself. Again we need to map the Result name to our variable and this can be a named Result Name (The column name or alias returned by the query) and not 0. The expected result into our variable should be the amount of rows in the Person.Contact table and if we look in the watch window we see that it is.   Passing in the SQL Statement from a File The final example we are going to show is a really interesting one. We are going to pass in the SQL statement to the task by using a file connection manager. The file itself contains the statement to run. The first thing we are going to need to do is create our file connection mananger to point to our file. Click in the connections tray at the bottom of the designer, right click and choose "New File Connection" As you can see in the graphic below we have chosen to use an existing file and have passed in the name as well. Have a look around at the other "Usage Type" values available whilst you are here. Having set that up we can now see in the connection manager tray our file connection manager sitting alongside our OLE-DB connection we have been using for the rest of these examples. Now we can go back to the familiar General Tab to set up how the task will accept our file connection as the source. All the other properties in this task are set up exactly as we have been doing for other examples depending on the options chosen so we will not cover them again here.   We hope you will agree that the Execute SQL Task has changed considerably in this release from its DTS predecessor. It has a lot of options available but once you have configured it a few times you get to learn what needs to go where. We hope you have found this article useful.

    Read the article

< Previous Page | 226 227 228 229 230 231 232 233 234 235 236 237  | Next Page >