Search Results

Search found 14213 results on 569 pages for 'distributed programming'.

Page 233/569 | < Previous Page | 229 230 231 232 233 234 235 236 237 238 239 240  | Next Page >

  • T-SQL in SQL Azure

    - by kaleidoscope
    The following table summarizes the Transact-SQL support provided by SQL Azure Database at PDC 2009: Transact-SQL Features Supported Transact-SQL Features Unsupported Constants Constraints Cursors Index management and rebuilding indexes Local temporary tables Reserved keywords Stored procedures Statistics management Transactions Triggers Tables, joins, and table variables Transact-SQL language elements such as Create/drop databases Create/alter/drop tables Create/alter/drop users and logins User-defined functions Views, including sys.synonyms view Common Language Runtime (CLR) Database file placement Database mirroring Distributed queries Distributed transactions Filegroup management Global temporary tables Spatial data and indexes SQL Server configuration options SQL Server Service Broker System tables Trace Flags   Amit, S

    Read the article

  • New Podcast Available - Fusion DOO for Multi-Channel Retail

    - by Pam Petropoulos
    Oracle Fusion Distributed Order Orchestration can help retailers standardize their order and fulfillment processes across all channels.  Listen to the latest podcast entitled “Unify Sales and Fulfillment in Multi-Channel Retail with Fusion DOO” and discover how Fusion Distributed Order Orchestration can deliver value to retail customers and also hear real world examples of how customers are using it today.  Click here to listen to the podcast.

    Read the article

  • Making Sense of DNS

    <b>Begin Linux:</b> "Domain Name Service (DNS) was created in 1983 out of the necessity to convert IP Addresses like 192.168.9.2 to domain names like example.com. DNS is a distributed database, what this means is that no one computer is used to maintain a complete database of all of the domains on the Internet. Instead this information is distributed across many computers."

    Read the article

  • Programming logic to group a users activities like facebook. E.g. Chris is now friends with A, B and C

    - by Chris Dowdeswell
    So I am trying to develop an activity feed for my site, Basically If I UNION a bunch of activities into a feed I would end up with something like the following. Chris is now friends with Mark Chris is now friends with Dave What I want though is a neater way of grouping these similar posts so the feed doesn't give information overload... E.g. Chris is now friends with Mark, Dave and 4 Others Any ideas on how I can approach this logically? I am using Classic ASP on SQL server. Here is the UNION statement I have so far... SELECT U.UserID As UserID, L.UN As UN,Left(U.UID,13) As ProfilePic,U.Fname + ' ' + U.Sname As FullName, 'said ' + WP.Post AS Activity, WP.Ctime FROM Users AS U LEFT JOIN Logins L ON L.userID = U.UserID LEFT OUTER JOIN WallPosts AS WP ON WP.userID = U.userID WHERE WP.Ctime IS NOT NULL UNION SELECT U.UserID As UserID, L.UN As UN,Left(U.UID,13) As ProfilePic,U.Fname + ' ' + U.Sname As FullName, 'commented ' + C.Comment AS Activity, C.Ctime FROM Users AS U LEFT JOIN Logins L ON L.userID = U.UserID LEFT OUTER JOIN Comments AS C ON C.UserID = U.userID WHERE C.Ctime IS NOT NULL UNION SELECT U.UserID As UserID, L.UN As UN,Left(U.UID,13) As ProfilePic, U.Fname + ' ' + U.Sname As FullName, 'connected with <a href="/profile.asp?un='+(SELECT Logins.un FROM Logins WHERE Logins.userID = Cn.ToUserID)+'">' + (SELECT Users.Fname + ' ' + Users.Sname FROM Users WHERE userID = Cn.ToUserID) + '</a>' AS Activity, Cn.Ctime FROM Users AS U LEFT JOIN Logins L ON L.userID = U.UserID LEFT OUTER JOIN Connections AS Cn ON Cn.UserID = U.userID WHERE CN.Ctime IS NOT NULL

    Read the article

  • The correct way to Fire-and-Forget an asynchronous delegate

    - by Programming Hero
    Consider me rusty on the subject of asynchronous delegates. If I want to call a method asynchronously, in a fire-and-forget style, is this an appropriate way to do it? Action action = DoSomething; action.BeginInvoke(action.EndInvoke, null); The DoSomething() method catches all exceptions and deals with them internally. Is the call to EndInvoke appropriate? Required? Is there a clearer way to achieve the same behaviour?

    Read the article

  • Map NHibernate entity to multiple tables based on parent

    - by Programming Hero
    I'm creating a domain model where entities often (but not always) have a member of type ActionLog. ActionLog is a simple class which allows for an audit trail of actions being performed on an instance. Each action is recorded as an ActionLogEntry instance. ActionLog is implemented (approximately) as follows: public class ActionLog { public IEnumerable<ActionLogEntry> Entries { get { return EntriesCollection; } } protected ICollection<ActionLogEntry> EntriesCollection { get; set; } public void AddAction(string action) { // Append to entries collection. } } What I would like is to re-use this class amongst my entities and have the entries map to different tables based on which class they are logged against. For example: public class Customer { public ActionLog Actions { get; protected set; } } public class Order { public ActionLog Actions { get; protected set; } } This design is suitable for me in the application, however I can't see a clear way to map this scenario to a database with NHibernate. I typically use Fluent NHibernate for my configuration, but I'm happy to accept answers in more general HBM xml.

    Read the article

  • WCF Message Debugging on Custom Binding

    - by Programming Hero
    I've created a custom binding in WCF for a custom MessageEncoder to allow messages to be written as XML using a wider range of encodings than WCF supports out of the box. The encoder appears to be working and I am able to send and receive messages, but I want to verify that the XML message being written is exactly as required by the service I am trying to consume. I've turned on message logging for WCF using the diagnostic trace listeners to output the messages sent and received over the wire to a log file. Unfortunately, for calls using my encoder, the message is displayed as ... stream ... EDIT: I don't think it's anything to do with my custom encoding. I have experimented with my custom binding a little, switching to using the built-in text encoding and http transport. I still don't get a message body logged in the message trace. Is there anything that needs to be specified within a custom binding to enable message logging?

    Read the article

  • sharing build artifacts between jobs in hudson

    - by programming panda
    Hi I'm trying to set up our build process in hudson. Job 1 will be a super fast (hopefully) continuous integration build job that will be built frequently. Job 2, will be responsible for running a comprehensive test suite, at a regular interval or triggered manually. Job 3 will be responsible for running analysis tools across the codebase (much like Job 2). I tried using the "Advanced Projects Options use custom workspace" feature so that code compiled in Job 1 can be used in Job 2 and 3. However, it seems that all build artifacts remain inside that Job 1 workspace. I'm I doing this right? Is there a better way of doing this? I guess I'm looking for something similar to a build pipeline setup...so that things can be shared and the appropriate jobs can be executed in stages. (I also considered using 'batch tasks'...but it seems like those can't be scheduled? only triggered manually?) Any suggestions are welcomed. Thanks!

    Read the article

  • WCF Message Debugging on WebHttpBehavior

    - by Programming Hero
    I've created a custom binding in WCF for a custom MessageEncoder to allow messages to be written as XML using a wider range of encodings than WCF supports out of the box. The encoder appears to be working and I am able to send and receive messages, but I want to verify that the XML message being written is exactly as required by the service I am trying to consume. I've turned on message logging for WCF using the diagnostic trace listeners to output the messages sent and received over the wire to a log file. Unfortunately, for calls using my encoder, the message is displayed as ... stream ... EDIT: I don't think it's anything to do with my custom encoding. I have experimented with my custom binding a little, switching to using the built-in text encoding and http transport. I still don't get a message body logged in the message trace. EDIT2: Having done further investigation, the issue looks to be related not to the custom binding, but the custom behaviour. I'm apply the <webHttp/> behaviour. Once this is specified (along with manual addressing), the tracing behaviour shows up. Is this a known issue with WebHttpBehavior? Am I still barking up the wrong tree?

    Read the article

  • High level vs. low level programming. Do I really have to choose?

    - by EpsilonVector
    Every once in a while I'm asked in interviews which I like the best- low level or high level. It seems to me that the implicit message is that they are both a specialty and they want to know which direction I'm heading. The trouble is, I seem to like both. Low level is extremely challenging and often requires a great deal of esoteric knowledge. High level is where all the sexy things happen: applications that people use directly, results that can be easily demonstrated (showed off) in a way that is accessible to everybody, and you get to work with really advanced tools and interact with new technologies. I would really love to do both, even if it means alternating between them (I doubt there are jobs that will let me do both simultaneously), but I'm guessing that the industry rewards specialists more than generalists. Will it really be problematic career wise if I never choose one over the other? Is it practical to alternate between the two in the sense that if I were to leave a job doing one of them, I should experience no "friction" trying to get a job doing the other (assuming I'm reasonably in the loop)? Are there career opportunities where you get to do both? Do I really have to choose one over the other?

    Read the article

  • I've been hired on as a entry-level game developer at a company and have little/no experience in API programming, what should I expect?

    - by Mr. Geneth
    So, I've been hired on as an entry level game developer with little/no experience working with any API other than Win32. This will be an overall learning experience for me as a person and I have gone over this multiple times with the boss and he has no problem with my inexperience. He says that if I'm not worth it now, I will be later. This gives me confidence, but I still feel that I should know a lot more before tackling this position. I would be stupid to pass it up. This is one of my favorite places to come for advice and help and have tried to just accept this, but it just keeps bothering that I can't go in knowing how to at least do the basics. I want to give the company its money's worth. Ya know? My questions are: What should I expect from the other programmers in this project (In terms of patience with me and working together, and being taught)? Is this normal? Any other advice on this sort of thing would be wonderful. I just want to feel comfortable with it.

    Read the article

  • Storing website hierarchy in Sql Server 2008

    - by Mika Kolari
    I want to store website page hierarchy in a table. What I would like to achieve is efficiently 1) resolve (last valid) item by path (e.g. "/blogs/programming/tags/asp.net,sql-server", "/blogs/programming/hello-world" ) 2) get ancestor items for breadcrump 3) edit an item without updating the whole tree of children, grand children etc. Because of the 3rd point I thought the table could be like ITEM id type slug title parentId 1 area blogs Blogs 2 blog programming Programming blog 1 3 tagsearch tags 2 4 post hello-world Hello World! 2 Could I use Sql Server's hierarchyid type somehow (especially point 1, "/blogs/programming/tags" is the last valid item)? Tree depth would usually be around 3-4. What would be the best way to achieve all this?

    Read the article

  • Routing redirection decision

    - by programming late night
    I have really no idea why I'm asking this as this a really completely irrelevant question for which I should have figured out an answer within milliseconds, yet I'm doing it. So in my project I have a Router class which splits up the request and selects the right page to be loaded. Fine so far. Now I have a page displayed when the user requests a page that doesn't exist, you know, 404. So theoretically, if the user entered mydomain.com/404 (I use mod_rewrite with a requests collector via index.php?req=*) the 404 error would be shown to him, but in fact there was no error - the 404 page would be displayed as a perfectly normal page. So if someone would try out requesting the 404 page via /404, he would be shown the page but he can't tell if the 404 page he requested doesn't exist and he is actually getting a, you guessed it, 404 error or if he actually found some flaw in the system that makes him able to see an error page when there is no error. I don't know how dumb this whole thing here is but I'm sure some of you have in fact ran into this problem already. Short version: If the user enters mydomain.com/404 the 404 page is shown even though there is no 404 error. I know this is a completely irrelevant question, please don't tell me, but I just spontaneously wanted to hear your thoughts on it. Strange eh? Should I redirect direct access to my 404-page to the home page? Should I do nothing? Should I just go to bed and stop asking irrelevant stuff?

    Read the article

  • In China. Want to set up my own private proxy. Already have website/webhosting. Help please! n00b with respect to coding/programming, go easy on me [closed]

    - by user1725461
    I am in China and have used freegate in the past -- http://en.wikipedia.org/wiki/Freegate Recently I've been having too many problems with that and some other web-based proxies I usually use. I have a website that is hosted in the US which I can access from China. Is there an easy way for me to setup my own secure private proxy? I'm sick of all my internet problems and looking for a new workable solution. Thank you! PS: and I really hope this is the right place for such a question...

    Read the article

  • Iphone memory leak with malloc

    - by Icky
    Hello. I have memory leak, found by instruments and it is supposed to be in this line of code: indices = malloc( sizeof(indices[0]) * totalQuads * 6); This is actually a code snippet from a tutorial, something which i think is leak-free so to say. Now I reckon, the error is somewhere else, but I do not know, where. These are the last trackbacks: 5 ColorRun -[EAGLView initWithCoder:] /Users/thomaskopinski/programming/colorrun_3.26/Classes/EAGLView.m:98 4 ColorRun -[EAGLView initGame] /Users/thomaskopinski/programming/colorrun_3.26/Classes/EAGLView.m:201 3 ColorRun -[SpriteSheet initWithImageNamed:spriteWidth:spriteHeight:spacing:imageScale:] /Users/thomaskopinski/programming/colorrun_3.26/SpriteSheet.m:68 2 ColorRun -[Image initWithImage:scale:] /Users/thomaskopinski/programming/colorrun_3.26/Image.m:122 1 ColorRun -[Image initImpl] /Users/thomaskopinski/programming/colorrun_3.26/Image.m:158 0 libSystem.B.dylib malloc Does anyone know how to approach this?

    Read the article

  • What is the benefits and drawbacks of using header files?

    - by vodkhang
    I had some experience on programming languages like Java, C#, Scala as well as some lower level programming language like C, C++, Objective - C. My observation is that low level languages separate out header files and implementation files while other higher level programming language never separate it out. They use some identifiers like public, private, protected to do the jobs of header files. I saw one benefit of using header file (in some book like Code Complete), they talk about that using header files, people can never look at our implementation file and it helps with encapsulation. A drawback is that it creates too many files for me. Sometimes, it looks like verbose. It is just my thought and I don't know if there are any other benefits and drawbacks that people ever see and work with header file This question may not relate directly to programming but I think that if I can understand better about programming to interface, design software.

    Read the article

  • LINQ to SQL - database relationships won't update after submit

    - by Quantic Programming
    I have a Database with the tables Users and Uploads. The important columns are: Users -> UserID Uploads -> UploadID, UserID The primary key in the relationship is Users -> UserID and the foreign key is Uploads -> UserID. In LINQ to SQL, I do the following operations: Retrieve files var upload = new Upload(); upload.UserID = user.UserID; upload.UploadID = XXX; db.Uploads.InsertOnSubmit(upload) db.SubmitChanges(); If I do that and rerun the application (and the db object is re-built, of course) - if do something like this: foreach(var upload in user.Uploads) I get all the uploads with that user's ID. (like added in the previous example) The problem is, that my application, after adding an upload an submitting changes, doesn't update the user.Uploads collection. i.e - I don't get the newly added uploads. The user object is stored in the Session object. At first, I though that the LINQ to SQL Framework doesn't update the reference of the object, therefore I should simply "reset" the user object from a new SQL request. I mean this: Session["user"] = db.Users.Where(u => u.UserID == user.UserID).SingleOrDefault(); (Where user is the previous user) But it didn't help. Please note: After rerunning the application, user.Uploads does have the new upload! Did anyone experience this type of problem, or is it normal behavior? I am a newbie to this framework. I would gladly take any advice. Thank you!

    Read the article

  • GPGPU

    WhatGPU obviously stands for Graphics Processing Unit (the silicon powering the display you are using to read this blog post). The extra GP in front of that stands for General Purpose computing.So, altogether GPGPU refers to computing we can perform on GPU for purposes beyond just drawing on the screen. In effect, we can use a GPGPU a bit like we already use a CPU: to perform some calculation (that doesn’t have to have any visual element to it). The attraction is that a GPGPU can be orders of magnitude faster than a CPU.WhyWhen I was at the SuperComputing conference in Portland last November, GPGPUs were all the rage. A quick online search reveals many articles introducing the GPGPU topic. I'll just share 3 here: pcper (ignoring all pages except the first, it is a good consumer perspective), gizmodo (nice take using mostly layman terms) and vizworld (answering the question on "what's the big deal").The GPGPU programming paradigm (from a high level) is simple: in your CPU program you define functions (aka kernels) that take some input, can perform the costly operation and return the output. The kernels are the things that execute on the GPGPU leveraging its power (and hence execute faster than what they could on the CPU) while the host CPU program waits for the results or asynchronously performs other tasks.However, GPGPUs have different characteristics to CPUs which means they are suitable only for certain classes of problem (i.e. data parallel algorithms) and not for others (e.g. algorithms with branching or recursion or other complex flow control). You also pay a high cost for transferring the input data from the CPU to the GPU (and vice versa the results back to the CPU), so the computation itself has to be long enough to justify the overhead transfer costs. If your problem space fits the criteria then you probably want to check out this technology.HowSo where can you get a graphics card to start playing with all this? At the time of writing, the two main vendors ATI (owned by AMD) and NVIDIA are the obvious players in this industry. You can read about GPGPU on this AMD page and also on this NVIDIA page. NVIDIA's website also has a free chapter on the topic from the "GPU Gems" book: A Toolkit for Computation on GPUs.If you followed the links above, then you've already come across some of the choices of programming models that are available today. Essentially, AMD is offering their ATI Stream technology accessible via a language they call Brook+; NVIDIA offers their CUDA platform which is accessible from CUDA C. Choosing either of those locks you into the GPU vendor and hence your code cannot run on systems with cards from the other vendor (e.g. imagine if your CPU code would run on Intel chips but not AMD chips). Having said that, both vendors plan to support a new emerging standard called OpenCL, which theoretically means your kernels can execute on any GPU that supports it. To learn more about all of these there is a website: gpgpu.org. The caveat about that site is that (currently) it completely ignores the Microsoft approach, which I touch on next.On Windows, there is already a cross-GPU-vendor way of programming GPUs and that is the DirectX API. Specifically, on Windows Vista and Windows 7, the DirectX 11 API offers a dedicated subset of the API for GPGPU programming: DirectCompute. You use this API on the CPU side, to set up and execute the kernels that run on the GPU. The kernels are written in a language called HLSL (High Level Shader Language). You can use DirectCompute with HLSL to write a "compute shader", which is the term DirectX uses for what I've been referring to in this post as a "kernel". For a comprehensive collection of links about this (including tutorials, videos and samples) please see my blog post: DirectCompute.Note that there are many efforts to build even higher level languages on top of DirectX that aim to expose GPGPU programming to a wider audience by making it as easy as today's mainstream programming models. I'll mention here just two of those efforts: Accelerator from MSR and Brahma by Ananth. Comments about this post welcome at the original blog.

    Read the article

  • The long road to bug-free software

    - by Tony Davis
    The past decade has seen a burgeoning interest in functional programming languages such as Haskell or, in the Microsoft world, F#. Though still on the periphery of mainstream programming, functional programming concepts are gradually seeping into the imperative C# language (for example, Lambda expressions have their root in functional programming). One of the more interesting concepts from functional programming languages is the use of formal methods, the lofty ideal behind which is bug-free software. The idea is that we write a specification that describes exactly how our function (say) should behave. We then prove that our function conforms to it, and in doing so have proved beyond any doubt that it is free from bugs. All programmers already use one form of specification, specifically their programming language's type system. If a value has a specific type then, in a type-safe language, the compiler guarantees that value cannot be an instance of a different type. Many extensions to existing type systems, such as generics in Java and .NET, extend the range of programs that can be type-checked. Unfortunately, type systems can only prevent some bugs. To take a classic problem of retrieving an index value from an array, since the type system doesn't specify the length of the array, the compiler has no way of knowing that a request for the "value of index 4" from an array of only two elements is "unsafe". We restore safety via exception handling, but the ideal type system will prevent us from doing anything that is unsafe in the first place and this is where we start to borrow ideas from a language such as Haskell, with its concept of "dependent types". If the type of an array includes its length, we can ensure that any index accesses into the array are valid. The problem is that we now need to carry around the length of arrays and the values of indices throughout our code so that it can be type-checked. In general, writing the specification to prove a positive property, even for a problem very amenable to specification, such as a simple sorting algorithm, turns out to be very hard and the specification will be different for every program. Extend this to writing a specification for, say, Microsoft Word and we can see that the specification would end up being no simpler, and therefore no less buggy, than the implementation. Fortunately, it is easier to write a specification that proves that a program doesn't have certain, specific and undesirable properties, such as infinite loops or accesses to the wrong bit of memory. If we can write the specifications to prove that a program is immune to such problems, we could reuse them in many places. The problem is the lack of specification "provers" that can do this without a lot of manual intervention (i.e. hints from the programmer). All this might feel a very long way off, but computing power and our understanding of the theory of "provers" advances quickly, and Microsoft is doing some of it already. Via their Terminator research project they have started to prove that their device drivers will always terminate, and in so doing have suddenly eliminated a vast range of possible bugs. This is a huge step forward from saying, "we've tested it lots and it seems fine". What do you think? What might be good targets for specification and verification? SQL could be one: the cost of a bug in SQL Server is quite high given how many important systems rely on it, so there's a good incentive to eliminate bugs, even at high initial cost. [Many thanks to Mike Williamson for guidance and useful conversations during the writing of this piece] Cheers, Tony.

    Read the article

  • The long road to bug-free software

    - by Tony Davis
    The past decade has seen a burgeoning interest in functional programming languages such as Haskell or, in the Microsoft world, F#. Though still on the periphery of mainstream programming, functional programming concepts are gradually seeping into the imperative C# language (for example, Lambda expressions have their root in functional programming). One of the more interesting concepts from functional programming languages is the use of formal methods, the lofty ideal behind which is bug-free software. The idea is that we write a specification that describes exactly how our function (say) should behave. We then prove that our function conforms to it, and in doing so have proved beyond any doubt that it is free from bugs. All programmers already use one form of specification, specifically their programming language's type system. If a value has a specific type then, in a type-safe language, the compiler guarantees that value cannot be an instance of a different type. Many extensions to existing type systems, such as generics in Java and .NET, extend the range of programs that can be type-checked. Unfortunately, type systems can only prevent some bugs. To take a classic problem of retrieving an index value from an array, since the type system doesn't specify the length of the array, the compiler has no way of knowing that a request for the "value of index 4" from an array of only two elements is "unsafe". We restore safety via exception handling, but the ideal type system will prevent us from doing anything that is unsafe in the first place and this is where we start to borrow ideas from a language such as Haskell, with its concept of "dependent types". If the type of an array includes its length, we can ensure that any index accesses into the array are valid. The problem is that we now need to carry around the length of arrays and the values of indices throughout our code so that it can be type-checked. In general, writing the specification to prove a positive property, even for a problem very amenable to specification, such as a simple sorting algorithm, turns out to be very hard and the specification will be different for every program. Extend this to writing a specification for, say, Microsoft Word and we can see that the specification would end up being no simpler, and therefore no less buggy, than the implementation. Fortunately, it is easier to write a specification that proves that a program doesn't have certain, specific and undesirable properties, such as infinite loops or accesses to the wrong bit of memory. If we can write the specifications to prove that a program is immune to such problems, we could reuse them in many places. The problem is the lack of specification "provers" that can do this without a lot of manual intervention (i.e. hints from the programmer). All this might feel a very long way off, but computing power and our understanding of the theory of "provers" advances quickly, and Microsoft is doing some of it already. Via their Terminator research project they have started to prove that their device drivers will always terminate, and in so doing have suddenly eliminated a vast range of possible bugs. This is a huge step forward from saying, "we've tested it lots and it seems fine". What do you think? What might be good targets for specification and verification? SQL could be one: the cost of a bug in SQL Server is quite high given how many important systems rely on it, so there's a good incentive to eliminate bugs, even at high initial cost. [Many thanks to Mike Williamson for guidance and useful conversations during the writing of this piece] Cheers, Tony.

    Read the article

  • More CPU cores may not always lead to better performance – MAXDOP and query memory distribution in spotlight

    - by sqlworkshops
    More hardware normally delivers better performance, but there are exceptions where it can hinder performance. Understanding these exceptions and working around it is a major part of SQL Server performance tuning.   When a memory allocating query executes in parallel, SQL Server distributes memory to each task that is executing part of the query in parallel. In our example the sort operator that executes in parallel divides the memory across all tasks assuming even distribution of rows. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union.   In reality, how often are column values evenly distributed, think about an example; are employees working for your company distributed evenly across all the Zip codes or mainly concentrated in the headquarters? What happens when you sort result set based on Zip codes? Do all products in the catalog sell equally or are few products hot selling items?   One of my customers tested the below example on a 24 core server with various MAXDOP settings and here are the results:MAXDOP 1: CPU time = 1185 ms, elapsed time = 1188 msMAXDOP 4: CPU time = 1981 ms, elapsed time = 1568 msMAXDOP 8: CPU time = 1918 ms, elapsed time = 1619 msMAXDOP 12: CPU time = 2367 ms, elapsed time = 2258 msMAXDOP 16: CPU time = 2540 ms, elapsed time = 2579 msMAXDOP 20: CPU time = 2470 ms, elapsed time = 2534 msMAXDOP 0: CPU time = 2809 ms, elapsed time = 2721 ms - all 24 cores.In the above test, when the data was evenly distributed, the elapsed time of parallel query was always lower than serial query.   Why does the query get slower and slower with more CPU cores / higher MAXDOP? Maybe you can answer this question after reading the article; let me know: [email protected].   Well you get the point, let’s see an example.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go   Let’s create the temporary table #FireDrill with all possible Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip from Employees update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --First serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) goThe query took 1011 ms to complete.   The execution plan shows the 77816 KB of memory was granted while the estimated rows were 799624.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1912 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 799624.  The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead. Sort properties shows the rows are unevenly distributed over the 4 threads.   Sort Warnings in SQL Server Profiler.   Intermediate Summary: The reason for the higher duration with parallel plan was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001. Now let’s update the Employees table and distribute employees evenly across all Zip codes.   update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go   The query took 751 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.   Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 661 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 784707.  Sort properties shows the rows are evenly distributed over the 4 threads. No Sort Warnings in SQL Server Profiler.    Intermediate Summary: When employees were distributed unevenly, concentrated on 1 Zip code, parallel sort spilled while serial sort performed well without spilling to tempdb. When the employees were distributed evenly across all Zip codes, parallel sort and serial sort did not spill to tempdb. This shows uneven data distribution may affect the performance of some parallel queries negatively. For detailed discussion of memory allocation, refer to webcasts available at www.sqlworkshops.com/webcasts.     Some of you might conclude from the above execution times that parallel query is not faster even when there is no spill. Below you can see when we are joining limited amount of Zip codes, parallel query will be fasted since it can use Bitmap Filtering.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go  Let’s create the temporary table #FireDrill with limited Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip       from Employees where Zip between 1800 and 2001 update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 989 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 785594. No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1799 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 785594.  Sort Warnings in SQL Server Profiler.    The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead.  Intermediate Summary: The reason for the higher duration with parallel plan even with limited amount of Zip codes was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001.   Now let’s update the Employees table and distribute employees evenly across all Zip codes. update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 250  ms to complete.  The execution plan shows the 9016 KB of memory was granted while the estimated rows were 79973.8.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0.  --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 85 ms to complete.  The execution plan shows the 13152 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.    Here you see, parallel query is much faster than serial query since SQL Server is using Bitmap Filtering to eliminate rows before the hash join.   Parallel queries are very good for performance, but in some cases it can hinder performance. If one identifies the reason for these hindrances, then it is possible to get the best out of parallelism. I covered many aspects of monitoring and tuning parallel queries in webcasts (www.sqlworkshops.com/webcasts) and articles (www.sqlworkshops.com/articles). I suggest you to watch the webcasts and read the articles to better understand how to identify and tune parallel query performance issues.   Summary: One has to avoid sort spill over tempdb and the chances of spills are higher when a query executes in parallel with uneven data distribution. Parallel query brings its own advantage, reduced elapsed time and reduced work with Bitmap Filtering. So it is important to understand how to avoid spills over tempdb and when to execute a query in parallel.   I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan  

    Read the article

  • Windows Azure Evolution &ndash; Caching (Preview)

    - by Shaun
    Caching is a popular topic when we are building a high performance and high scalable system not only on top of the cloud platform but the on-premise environment as well. On March 2011 the Windows Azure AppFabric Caching had been production launched. It provides an in-memory, distributed caching service over the cloud. And now, in this June 2012 update, the cache team announce a grand new caching solution on Windows Azure, which is called Windows Azure Caching (Preview). And the original Windows Azure AppFabric Caching was renamed to Windows Azure Shared Caching.   What’s Caching (Preview) If you had been using the Shared Caching you should know that it is constructed by a bunch of cache servers. And when you want to use you should firstly create a cache account from the developer portal and specify the size you want to use, which means how much memory you can use to store your data that wanted to be cached. Then you can add, get and remove them through your code through the cache URL. The Shared Caching is a multi-tenancy system which host all cached items across all users. So you don’t know which server your data was located. This caching mode works well and can take most of the cases. But it has some problems. The first one is the performance. Since the Shared Caching is a multi-tenancy system, which means all cache operations should go through the Shared Caching gateway and then routed to the server which have the data your are looking for. Even though there are some caches in the Shared Caching system it also takes time from your cloud services to the cache service. Secondary, the Shared Caching service works as a block box to the developer. The only thing we know is my cache endpoint, and that’s all. Someone may satisfied since they don’t want to care about anything underlying. But if you need to know more and want more control that’s impossible in the Shared Caching. The last problem would be the price and cost-efficiency. You pay the bill based on how much cache you requested per month. But when we host a web role or worker role, it seldom consumes all of the memory and CPU in the virtual machine (service instance). If using Shared Caching we have to pay for the cache service while waste of some of our memory and CPU locally. Since the issues above Microsoft offered a new caching mode over to us, which is the Caching (Preview). Instead of having a separated cache service, the Caching (Preview) leverage the memory and CPU in our cloud services (web role and worker role) as the cache clusters. Hence the Caching (Preview) runs on the virtual machines which hosted or near our cloud applications. Without any gateway and routing, since it located in the same data center and same racks, it provides really high performance than the Shared Caching. The Caching (Preview) works side-by-side to our application, initialized and worked as a Windows Service running in the virtual machines invoked by the startup tasks from our roles, we could get more information and control to them. And since the Caching (Preview) utilizes the memory and CPU from our existing cloud services, so it’s free. What we need to pay is the original computing price. And the resource on each machines could be used more efficiently.   Enable Caching (Preview) It’s very simple to enable the Caching (Preview) in a cloud service. Let’s create a new windows azure cloud project from Visual Studio and added an ASP.NET Web Role. Then open the role setting and select the Caching page. This is where we enable and configure the Caching (Preview) on a role. To enable the Caching (Preview) just open the “Enable Caching (Preview Release)” check box. And then we need to specify which mode of the caching clusters we want to use. There are two kinds of caching mode, co-located and dedicate. The co-located mode means we use the memory in the instances we run our cloud services (web role or worker role). By using this mode we must specify how many percentage of the memory will be used as the cache. The default value is 30%. So make sure it will not affect the role business execution. The dedicate mode will use all memory in the virtual machine as the cache. In fact it will reserve some for operation system, azure hosting etc.. But it will try to use as much as the available memory to be the cache. As you can see, the Caching (Preview) was defined based on roles, which means all instances of this role will apply the same setting and play as a whole cache pool, and you can consume it by specifying the name of the role, which I will demonstrate later. And in a windows azure project we can have more than one role have the Caching (Preview) enabled. Then we will have more caches. For example, let’s say I have a web role and worker role. The web role I specified 30% co-located caching and the worker role I specified dedicated caching. If I have 3 instances of my web role and 2 instances of my worker role, then I will have two caches. As the figure above, cache 1 was contributed by three web role instances while cache 2 was contributed by 2 worker role instances. Then we can add items into cache 1 and retrieve it from web role code and worker role code. But the items stored in cache 1 cannot be retrieved from cache 2 since they are isolated. Back to our Visual Studio we specify 30% of co-located cache and use the local storage emulator to store the cache cluster runtime status. Then at the bottom we can specify the named caches. Now we just use the default one. Now we had enabled the Caching (Preview) in our web role settings. Next, let’s have a look on how to consume our cache.   Consume Caching (Preview) The Caching (Preview) can only be consumed by the roles in the same cloud services. As I mentioned earlier, a cache contributed by web role can be connected from a worker role if they are in the same cloud service. But you cannot consume a Caching (Preview) from other cloud services. This is different from the Shared Caching. The Shared Caching is opened to all services if it has the connection URL and authentication token. To consume the Caching (Preview) we need to add some references into our project as well as some configuration in the Web.config. NuGet makes our life easy. Right click on our web role project and select “Manage NuGet packages”, and then search the package named “WindowsAzure.Caching”. In the package list install the “Windows Azure Caching Preview”. It will download all necessary references from the NuGet repository and update our Web.config as well. Open the Web.config of our web role and find the “dataCacheClients” node. Under this node we can specify the cache clients we are going to use. For each cache client it will use the role name to identity and find the cache. Since we only have this web role with the Caching (Preview) enabled so I pasted the current role name in the configuration. Then, in the default page I will add some code to show how to use the cache. I will have a textbox on the page where user can input his or her name, then press a button to generate the email address for him/her. And in backend code I will check if this name had been added in cache. If yes I will return the email back immediately. Otherwise, I will sleep the tread for 2 seconds to simulate the latency, then add it into cache and return back to the page. 1: protected void btnGenerate_Click(object sender, EventArgs e) 2: { 3: // check if name is specified 4: var name = txtName.Text; 5: if (string.IsNullOrWhiteSpace(name)) 6: { 7: lblResult.Text = "Error. Please specify name."; 8: return; 9: } 10:  11: bool cached; 12: var sw = new Stopwatch(); 13: sw.Start(); 14:  15: // create the cache factory and cache 16: var factory = new DataCacheFactory(); 17: var cache = factory.GetDefaultCache(); 18:  19: // check if the name specified is in cache 20: var email = cache.Get(name) as string; 21: if (email != null) 22: { 23: cached = true; 24: sw.Stop(); 25: } 26: else 27: { 28: cached = false; 29: // simulate the letancy 30: Thread.Sleep(2000); 31: email = string.Format("{0}@igt.com", name); 32: // add to cache 33: cache.Add(name, email); 34: } 35:  36: sw.Stop(); 37: lblResult.Text = string.Format( 38: "Cached = {0}. Duration: {1}s. {2} => {3}", 39: cached, sw.Elapsed.TotalSeconds.ToString("0.00"), name, email); 40: } The Caching (Preview) can be used on the local emulator so we just F5. The first time I entered my name it will take about 2 seconds to get the email back to me since it was not in the cache. But if we re-enter my name it will be back at once from the cache. Since the Caching (Preview) is distributed across all instances of the role, so we can scaling-out it by scaling-out our web role. Just use 2 instances and tweak some code to show the current instance ID in the page, and have another try. Then we can see the cache can be retrieved even though it was added by another instance.   Consume Caching (Preview) Across Roles As I mentioned, the Caching (Preview) can be consumed by all other roles within the same cloud service. For example, let’s add another web role in our cloud solution and add the same code in its default page. In the Web.config we add the cache client to one enabled in the last role, by specifying its role name here. Then we start the solution locally and go to web role 1, specify the name and let it generate the email to us. Since there’s no cache for this name so it will take about 2 seconds but will save the email into cache. And then we go to web role 2 and specify the same name. Then you can see it retrieve the email saved by the web role 1 and returned back very quickly. Finally then we can upload our application to Windows Azure and test again. Make sure you had changed the cache cluster status storage account to the real azure account.   More Awesome Features As a in-memory distributed caching solution, the Caching (Preview) has some fancy features I would like to highlight here. The first one is the high availability support. This is the first time I have heard that a distributed cache support high availability. In the distributed cache world if a cache cluster was failed, the data it stored will be lost. This behavior was introduced by Memcached and is followed by almost all distributed cache productions. But Caching (Preview) provides high availability, which means you can specify if the named cache will be backup automatically. If yes then the data belongs to this named cache will be replicated on another role instance of this role. Then if one of the instance was failed the data can be retrieved from its backup instance. To enable the backup just open the Caching page in Visual Studio. In the named cache you want to enable backup, change the Backup Copies value from 0 to 1. The value of Backup Copies only for 0 and 1. “0” means no backup and no high availability while “1” means enabled high availability with backup the data into another instance. But by using the high availability feature there are something we need to make sure. Firstly the high availability does NOT means the data in cache will never be lost for any kind of failure. For example, if we have a role with cache enabled that has 10 instances, and 9 of them was failed, then most of the cached data will be lost since the primary and backup instance may failed together. But normally is will not be happened since MS guarantees that it will use the instance in the different fault domain for backup cache. Another one is that, enabling the backup means you store two copies of your data. For example if you think 100MB memory is OK for cache, but you need at least 200MB if you enabled backup. Besides the high availability, the Caching (Preview) support more features introduced in Windows Server AppFabric Caching than the Windows Azure Shared Caching. It supports local cache with notification. It also support absolute and slide window expiration types as well. And the Caching (Preview) also support the Memcached protocol as well. This means if you have an application based on Memcached, you can use Caching (Preview) without any code changes. What you need to do is to change the configuration of how you connect to the cache. Similar as the Windows Azure Shared Caching, MS also offers the out-of-box ASP.NET session provider and output cache provide on top of the Caching (Preview).   Summary Caching is very important component when we building a cloud-based application. In the June 2012 update MS provides a new cache solution named Caching (Preview). Different from the existing Windows Azure Shared Caching, Caching (Preview) runs the cache cluster within the role instances we have deployed to the cloud. It gives more control, more performance and more cost-effect. So now we have two caching solutions in Windows Azure, the Shared Caching and Caching (Preview). If you need a central cache service which can be used by many cloud services and web sites, then you have to use the Shared Caching. But if you only need a fast, near distributed cache, then you’d better use Caching (Preview).   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Which Stroustrup book should I use?

    - by Chris Simmons
    I'm a C# programmer that is looking to branch out. I'm bored of writing business software and want to start getting into graphics programming and games/simulators. So I figured, although writing that stuff isn't impossible in managed code, the "right" way to do that would be to look to C++, of course focussing on the language first, then getting into OpenGL or DirectX (or whatever). Way way back ('98? '99?) I had tried and failed to really grasp Stroustrup's The C++ Programming Language. I know that this book is often not recommended for the beginner. Anyway, I picked it back up (in a much more recent printing) and I'm actually getting it and enjoying it. I also have a copy of his textbook, Programming: Principles and Practice Using C++, which, as I understand it, is really geared toward teaching programming, not necessarily C++. I'm certainly not arrogant enough to claim I don't have anything more to learn about programming, data structures, algoriths, etc., however I'm not a novice there either. So my question is, with the goal of gaining the broader and more real-world-useful understanding of C++ and given my background, on which should I focus? The denser (as I perceive it) TCPPPL or the gentler Programming? EDIT: I thank everyone for the responses. However, I've got a personal choice here to make between these two books. Granted there are other very good books out there, but I'm already a good length into both of the books I mention and I'd like to finish one. So, can anyone respond on which would be the better and why? Time is not an issue; I'm not looking (at this point) at an "accelerated" read.

    Read the article

< Previous Page | 229 230 231 232 233 234 235 236 237 238 239 240  | Next Page >