Search Results

Search found 34696 results on 1388 pages for 'language javascript'.

Page 233/1388 | < Previous Page | 229 230 231 232 233 234 235 236 237 238 239 240  | Next Page >

  • How can Swift be so much faster than Objective-C in these comparisons?

    - by Yellow
    Apple launched its new programming language Swift at WWDC14. In the presentation, they made some performance comparisons between Objective-C and Python. The following is a picture of one of their slides, of a comparison of those three languages performing some complex object sort: There was an even more incredible graph about a performance comparison using the RC4 encryption algorithm. Obviously this is a marketing talk, and they didn't go into detail on how this was implemented in each. I leaves me wondering though: How can a new programming language be so much faster? Are the Objective-C results caused by a bad compiler or is there something less efficient in Objective-C than Swift? How would you explain a 40% performance increase? I understand that garbage collection/automated reference control might produce some additional overhead, but this much?

    Read the article

  • Programmaticaly finding the Landau notation (Big O or Theta notation) of an algorithm?

    - by Julien L
    I'm used to search for the Landau (Big O, Theta...) notation of my algorithms by hand to make sure they are as optimized as they can be, but when the functions are getting really big and complex, it's taking way too much time to do it by hand. it's also prone to human errors. I spent some time on Codility (coding/algo exercises), and noticed they will give you the Landau notation for your submitted solution (both in Time and Memory usage). I was wondering how they do that... How would you do it? Is there another way besides Lexical Analysis or parsing of the code? PS: This question concerns mainly PHP and or JavaScript, but I'm opened to any language and theory.

    Read the article

  • Mathematica Programming Language&ndash;An Introduction

    - by JoshReuben
    The Mathematica http://www.wolfram.com/mathematica/ programming model consists of a kernel computation engine (or grid of such engines) and a front-end of notebook instances that communicate with the kernel throughout a session. The programming model of Mathematica is incredibly rich & powerful – besides numeric calculations, it supports symbols (eg Pi, I, E) and control flow logic.   obviously I could use this as a simple calculator: 5 * 10 --> 50 but this language is much more than that!   for example, I could use control flow logic & setup a simple infinite loop: x=1; While [x>0, x=x,x+1] Different brackets have different purposes: square brackets for function arguments:  Cos[x] round brackets for grouping: (1+2)*3 curly brackets for lists: {1,2,3,4} The power of Mathematica (as opposed to say Matlab) is that it gives exact symbolic answers instead of a rounded numeric approximation (unless you request it):   Mathematica lets you define scoped variables (symbols): a=1; b=2; c=a+b --> 5 these variables can contain symbolic values – you can think of these as partially computed functions:   use Clear[x] or Remove[x] to zero or dereference a variable.   To compute a numerical approximation to n significant digits (default n=6), use N[x,n] or the //N prefix: Pi //N -->3.14159 N[Pi,50] --> 3.1415926535897932384626433832795028841971693993751 The kernel uses % to reference the lastcalculation result, %% the 2nd last, %%% the 3rd last etc –> clearer statements: eg instead of: Sqrt[Pi+Sqrt[Sqrt[Pi+Sqrt[Pi]]] do: Sqrt[Pi]; Sqrt[Pi+%]; Sqrt[Pi+%] The help system supports wildcards, so I can search for functions like so: ?Inv* Mathematica supports some very powerful programming constructs and a rich function library that allow you to do things that you would have to write allot of code for in a language like C++.   the Factor function – factorization: Factor[x^3 – 6*x^2 +11x – 6] --> (-3+x) (-2+x) (-1+x)   the Solve function – find the roots of an equation: Solve[x^3 – 2x + 1 == 0] -->   the Expand function – express (1+x)^10 in polynomial form: Expand[(1+x)^10] --> 1+10x+45x^2+120x^3+210x^4+252x^5+210x^6+120x^7+45x^8+10x^9+x^10 the Prime function – what is the 1000th prime? Prime[1000] -->7919 Mathematica also has some powerful graphics capabilities:   the Plot function – plot the graph of y=Sin x in a single period: Plot[Sin[x], {x,0,2*Pi}] you can also plot 3D surfaces of functions using Plot3D function

    Read the article

  • Tutorial: Getting Started with the NoSQL JavaScript / Node.js API for MySQL Cluster

    - by Mat Keep
    Tutorial authored by Craig Russell and JD Duncan  The MySQL Cluster team are working on a new NoSQL JavaScript connector for MySQL. The objectives are simplicity and high performance for JavaScript users: - allows end-to-end JavaScript development, from the browser to the server and now to the world's most popular open source database - native "NoSQL" access to the storage layer without going first through SQL transformations and parsing. Node.js is a complete web platform built around JavaScript designed to deliver millions of client connections on commodity hardware. With the MySQL NoSQL Connector for JavaScript, Node.js users can easily add data access and persistence to their web, cloud, social and mobile applications. While the initial implementation is designed to plug and play with Node.js, the actual implementation doesn't depend heavily on Node, potentially enabling wider platform support in the future. Implementation The architecture and user interface of this connector are very different from other MySQL connectors in a major way: it is an asynchronous interface that follows the event model built into Node.js. To make it as easy as possible, we decided to use a domain object model to store the data. This allows for users to query data from the database and have a fully-instantiated object to work with, instead of having to deal with rows and columns of the database. The domain object model can have any user behavior that is desired, with the NoSQL connector providing the data from the database. To make it as fast as possible, we use a direct connection from the user's address space to the database. This approach means that no SQL (pun intended) is needed to get to the data, and no SQL server is between the user and the data. The connector is being developed to be extensible to multiple underlying database technologies, including direct, native access to both the MySQL Cluster "ndb" and InnoDB storage engines. The connector integrates the MySQL Cluster native API library directly within the Node.js platform itself, enabling developers to seamlessly couple their high performance, distributed applications with a high performance, distributed, persistence layer delivering 99.999% availability. The following sections take you through how to connect to MySQL, query the data and how to get started. Connecting to the database A Session is the main user access path to the database. You can get a Session object directly from the connector using the openSession function: var nosql = require("mysql-js"); var dbProperties = {     "implementation" : "ndb",     "database" : "test" }; nosql.openSession(dbProperties, null, onSession); The openSession function calls back into the application upon creating a Session. The Session is then used to create, delete, update, and read objects. Reading data The Session can read data from the database in a number of ways. If you simply want the data from the database, you provide a table name and the key of the row that you want. For example, consider this schema: create table employee (   id int not null primary key,   name varchar(32),   salary float ) ENGINE=ndbcluster; Since the primary key is a number, you can provide the key as a number to the find function. function onSession = function(err, session) {   if (err) {     console.log(err);     ... error handling   }   session.find('employee', 0, onData); }; function onData = function(err, data) {   if (err) {     console.log(err);     ... error handling   }   console.log('Found: ', JSON.stringify(data));   ... use data in application }; If you want to have the data stored in your own domain model, you tell the connector which table your domain model uses, by specifying an annotation, and pass your domain model to the find function. var annotations = new nosql.Annotations(); function Employee = function(id, name, salary) {   this.id = id;   this.name = name;   this.salary = salary;   this.giveRaise = function(percent) {     this.salary *= percent;   } }; annotations.mapClass(Employee, {'table' : 'employee'}); function onSession = function(err, session) {   if (err) {     console.log(err);     ... error handling   }   session.find(Employee, 0, onData); }; Updating data You can update the emp instance in memory, but to make the raise persistent, you need to write it back to the database, using the update function. function onData = function(err, emp) {   if (err) {     console.log(err);     ... error handling   }   console.log('Found: ', JSON.stringify(emp));   emp.giveRaise(0.12); // gee, thanks!   session.update(emp); // oops, session is out of scope here }; Using JavaScript can be tricky because it does not have the concept of block scope for variables. You can create a closure to handle these variables, or use a feature of the connector to remember your variables. The connector api takes a fixed number of parameters and returns a fixed number of result parameters to the callback function. But the connector will keep track of variables for you and return them to the callback. So in the above example, change the onSession function to remember the session variable, and you can refer to it in the onData function: function onSession = function(err, session) {   if (err) {     console.log(err);     ... error handling   }   session.find(Employee, 0, onData, session); }; function onData = function(err, emp, session) {   if (err) {     console.log(err);     ... error handling   }   console.log('Found: ', JSON.stringify(emp));   emp.giveRaise(0.12); // gee, thanks!   session.update(emp, onUpdate); // session is now in scope }; function onUpdate = function(err, emp) {   if (err) {     console.log(err);     ... error handling   } Inserting data Inserting data requires a mapped JavaScript user function (constructor) and a session. Create a variable and persist it: function onSession = function(err, session) {   var data = new Employee(999, 'Mat Keep', 20000000);   session.persist(data, onInsert);   } }; Deleting data To remove data from the database, use the session remove function. You use an instance of the domain object to identify the row you want to remove. Only the key field is relevant. function onSession = function(err, session) {   var key = new Employee(999);   session.remove(Employee, onDelete);   } }; More extensive queries We are working on the implementation of more extensive queries along the lines of the criteria query api. Stay tuned. How to evaluate The MySQL Connector for JavaScript is available for download from labs.mysql.com. Select the build: MySQL-Cluster-NoSQL-Connector-for-Node-js You can also clone the project on GitHub Since it is still early in development, feedback is especially valuable (so don't hesitate to leave comments on this blog, or head to the MySQL Cluster forum). Try it out and see how easy (and fast) it is to integrate MySQL Cluster into your Node.js platforms. You can learn more about other previewed functionality of MySQL Cluster 7.3 here

    Read the article

  • ISO - the language of this installation package is not supported by your system

    - by Rodney Vinyard
    Problem: When attempting to install the extracted ISO image the following error appears: "the language of this installation package is not supported by your system", and exits.  The install does not start.   Solution: Within ISO buster , choose Fileà<ExtractedFileName>à”Extract Raw, but convert to User data”, then rerun the setup.exe that is extracted.   Might save you some time in the future…

    Read the article

  • What programming languages have you taught your children?

    - by Dubmun
    I'm a C# developer by trade but have had exposure to many languages (including Java, C++, and multiple scripting languages) over the course of my education and career. Since I code in the MS world for work I am most familiar with their stack and so I was excited when Small Basic was announced. I immediately started teaching my oldest to program in it but felt that something was missing from the experience. Being able to look up every command with the IDE's intellisense seemed to take something from the experience. Sure, it was easy to grasp but I found myself thinking that a little more challenge might be in order. I'm looking for something better and I would like to hear your experiences with teaching your children to program in whatever language you have chosen to do so in. What did you like and dislike? How fast did they pick it up? Were they challenged? Frustrated? Thank you very much!

    Read the article

  • Does syntax really matter in a programming language?

    - by Saif al Harthi
    One of my professors says "the Syntax is the UI of a programming language", languages like ruby have great readability & its growing but we see alot of programmers productive with C\C++, so as programmers does it really matter that the syntax should be acceptable? I would love to know your opinion on that. Disclaimer: I'm not trying to start an argument I thought this is a good topic of discussion. Update : this turns out to be a good topic i'm glad you are all participating it , there will be more good questions to come

    Read the article

  • Ideal programming language learning sequence?

    - by Gulshan
    What do you think? What is the ideal programming language learning sequence which will cover most of the heavily used languages and paradigms today as well as help to grasp common programming basics, ideas and practices? You can even suggest learning sequence for paradigms rather than languages. N.B. : This is port of the question I asked in stackoverflow and was closed for being subjective and argumentative.

    Read the article

  • What source code organization approach helps improve modularity and API/Implementation separation?

    - by Berin Loritsch
    Few languages are as restrictive as Java with file naming standards and project structure. In that language, the file name must match the public class declared in the file, and the file must live in a directory structure matching the class package. I have mixed feelings about that approach. While I never have to guess where a file lives, there's still a lot of empty directories and artificial constraints. There's several languages that define everything about a class in one file, at least by convention. C#, Python (I think), Ruby, Erlang, etc. The commonality in most these languages is that they are object oriented, although that statement can probably be rebuffed (there is one non-OO language in the list already). Finally, there's quite a few languages mostly in the C family that have a separate header and implementation file. For C I think this makes sense, because it is one of the few ways to separate the API interface from implementations. With C it seems that feature is used to promote modularity. Yet, with C++ the way header and implementation files are split seems rather forced. You don't get the same clean API separation that you do with C, and you are forced to include some private details in the header you would rather keep only in the implementation. There's quite a few languages that have a concept that overlaps with interfaces like Java, C#, Go, etc. Some languages use what feels like a hack to provide the same concept like C# using pure virtual abstract classes. Still others don't really have an interface concept and rely on "duck" typing--for example Ruby. Ruby has modules, but those are more along the lines of mixing in behaviors to a class than they are for defining how to interact with a class. In OO terms, interfaces are a powerful way to provide separation between an API client and an API implementation. So to hurry up and ask the question, from a personal experience point of view: Does separation of header and implementation help you write more modular code, or does it get in the way? (it helps to specify the language you are referring to) Does the strict file name to class name scheme of Java help maintainability, or is it unnecessary structure for structure's sake? What would you propose to promote good API/Implementation separation and project maintenance, how would you prefer to do it?

    Read the article

  • Best practise for meta tags in various languages

    - by Jack Lockyer
    We have a global site, all hosted on one .com domain (www.website.com/en www.website.com/es www.website.com/pt www.website.com/ru etc) each language sub directory is identical to one another (apart from being in different languages) My question is, should I translate each meta keyword for each page or just use the english versions? e.g. English page about private jets : keyword "private jet" French version of exactly the same page : keyword "private jet" or "jet privé" If anyone knows whether language specific keywords carry any weight in search engines when the actual website is a .com and not a country specific domain, that would be really helpful! Thanks in advance!

    Read the article

  • Privacy policy and terms of use language

    - by L. De Leo
    I have a Czech registered business with which I'm serving a web app mostly (but not exclusively) targeted to Italian customers. The server is in Amsterdam. The site will be multilingual (with 4 languages supported) but for now it's Italian only. What language should the privacy policy and terms and conditions be? What law should they refer to? Could I just offer these two docs in English? (Easier to write and to maintain)

    Read the article

  • How to learn programming in Kindergarten?

    - by Kinder
    Last time I asked for peer review on a new language called KinderScript, which its Code Division Multiple Access succinct style looked like white noise that saturated two police reviewer's narrow band. The question has only 1 hour life with 38 views shortly after the shouting of shut-up-leave-now. Ok, That's totally off topic. That is not the question. I'm asking a peer review on the design of KinderScript [1], within the context of an intriguing: "How to learn programming in kindergarten?" [1] http://code.google.com/p/ac-me/downloads/detail?name=kinder.pdf&can=2&q= Thanks for any feedback. No police please. I choose this forum to ask because here has not only many professional but also many new leaners. Both views are appreciated.

    Read the article

  • Recent programming language for AI?

    - by Eduard Florinescu
    For a few decades the programming language of choice for AI was either Prolog or LISP, and a few more others that are not so well known. Most of them were designed before the 70's. Changes happens a lot on many other domains specific languages, but in the AI domain it hadn't surfaced so much as in the web specific languages or scripting etc. Are there recent programming languages that were intended to change the game in the AI and learn from the insufficiencies of former languages?

    Read the article

  • Ideal programming language learning sequence? [closed]

    - by Gulshan
    What do you think? What is the ideal programming language learning sequence which will cover most of the heavily used languages and paradigms today as well as help to grasp common programming basics, ideas and practices? You can even suggest learning sequence for paradigms rather than languages. N.B. : This is port of the question I asked in stackoverflow and was closed for being subjective and argumentative.

    Read the article

  • Google I/O 2012 - Dart - A Modern Web Language

    Google I/O 2012 - Dart - A Modern Web Language Lars Bak, Kasper Lund The two creators of Dart will discuss the rationale behind Dart's design and its impact on web scalability and performance. They'll also present how Dart helps developers innovate by increasing their productivity without breaking backwards compatibility. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 2066 36 ratings Time: 01:03:40 More in Science & Technology

    Read the article

  • Namespaces are obsolete

    - by Bertrand Le Roy
    To those of us who have been around for a while, namespaces have been part of the landscape. One could even say that they have been defining the large-scale features of the landscape in question. However, something happened fairly recently that I think makes this venerable structure obsolete. Before I explain this development and why it’s a superior concept to namespaces, let me recapitulate what namespaces are and why they’ve been so good to us over the years… Namespaces are used for a few different things: Scope: a namespace delimits the portion of code where a name (for a class, sub-namespace, etc.) has the specified meaning. Namespaces are usually the highest-level scoping structures in a software package. Collision prevention: name collisions are a universal problem. Some systems, such as jQuery, wave it away, but the problem remains. Namespaces provide a reasonable approach to global uniqueness (and in some implementations such as XML, enforce it). In .NET, there are ways to relocate a namespace to avoid those rare collision cases. Hierarchy: programmers like neat little boxes, and especially boxes within boxes within boxes. For some reason. Regular human beings on the other hand, tend to think linearly, which is why the Windows explorer for example has tried in a few different ways to flatten the file system hierarchy for the user. 1 is clearly useful because we need to protect our code from bleeding effects from the rest of the application (and vice versa). A language with only global constructs may be what some of us started programming on, but it’s not desirable in any way today. 2 may not be always reasonably worth the trouble (jQuery is doing fine with its global plug-in namespace), but we still need it in many cases. One should note however that globally unique names are not the only possible implementation. In fact, they are a rather extreme solution. What we really care about is collision prevention within our application. What happens outside is irrelevant. 3 is, more than anything, an aesthetical choice. A common convention has been to encode the whole pedigree of the code into the namespace. Come to think about it, we never think we need to import “Microsoft.SqlServer.Management.Smo.Agent” and that would be very hard to remember. What we want to do is bring nHibernate into our app. And this is precisely what you’ll do with modern package managers and module loaders. I want to take the specific example of RequireJS, which is commonly used with Node. Here is how you import a module with RequireJS: var http = require("http"); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This is of course importing a HTTP stack module into the code. There is no noise here. Let’s break this down. Scope (1) is provided by the one scoping mechanism in JavaScript: the closure surrounding the module’s code. Whatever scoping mechanism is provided by the language would be fine here. Collision prevention (2) is very elegantly handled. Whereas relocating is an afterthought, and an exceptional measure with namespaces, it is here on the frontline. You always relocate, using an extremely familiar pattern: variable assignment. We are very much used to managing our local variable names and any possible collision will get solved very easily by picking a different name. Wait a minute, I hear some of you say. This is only taking care of collisions on the client-side, on the left of that assignment. What if I have two libraries with the name “http”? Well, You can better qualify the path to the module, which is what the require parameter really is. As for hierarchical organization, you don’t really want that, do you? RequireJS’ module pattern does elegantly cover the bases that namespaces used to cover, but it also promotes additional good practices. First, it promotes usage of self-contained, single responsibility units of code through the closure-based, stricter scoping mechanism. Namespaces are somewhat more porous, as using/import statements can be used bi-directionally, which leads us to my second point… Sane dependency graphs are easier to achieve and sustain with such a structure. With namespaces, it is easy to construct dependency cycles (that’s bad, mmkay?). With this pattern, the equivalent would be to build mega-components, which are an easier problem to spot than a decay into inter-dependent namespaces, for which you need specialized tools. I really like this pattern very much, and I would like to see more environments implement it. One could argue that dependency injection has some commonalities with this for example. What do you think? This is the half-baked result of some morning shower reflections, and I’d love to read your thoughts about it. What am I missing?

    Read the article

  • General solution to solve different sports results in different languages

    - by sq2
    I currently have some code that checks if squash and tennis scores are valid, both in javascript and PHP. This results in 4 blocks of code existing, 2 languages * 2 sports, which does not scale well should any extra sports come around, or extra languages... How can one describe the valid scores of games via a settings/text file, so that each language can parse them and apply these rules. I'm stumped with the strange tie break situations in tennis should it reach 6-6 in a set, and also infinite play off in the final set should it reach 2 sets all. ie: tennis = { "format": [ { "name": "sets" "min": 3, "max": 5, "winby": 1 }, { "name": "games" "min": 6, "max": 7, "winby": 2 } ] } squash = { "format": [ { "name": "games" "min": 3, "max": 5, "winby": 1 }, { "name": "points" "min": 15, "max": 0, "winby": 2 } ] }

    Read the article

  • Is there any officially recognized, specific determinants that make a language programming/scripting?

    - by Dan
    I remember when I was first learning web-based programming everyone was intent on JavaScript not being a "programming language," but rather a scripting language; I have not heard that argument in quite a while now. I hear a lot of languages, like perl for example, referred to at different times as both a scripting and programming language. I know that a scripting language is less capable than a programming language, but where exactly does the line lie? Citation would be appreciated.

    Read the article

  • Which numeral systems are useful in computer science?

    - by authchir
    I am wondering which numeral system different programmers are using, or would use if their language has support for them. As an example, in C++ we can use: Octal by prefixing with 0 (e.g. 0377) Decimal by default (e.g. 255) Hexadecimal by prefixing with 0x (e.g. 0xff) When working with bitmask, I am using hexadecimal but would sometimes want to be able to express binary numbers directly. I know some programming language support it with 0b syntax (e.g. 0b11111111). Is there any other numeric system useful in some computer science domain (e.g. cryptography, codecs, 3D graphics, etc)?

    Read the article

< Previous Page | 229 230 231 232 233 234 235 236 237 238 239 240  | Next Page >