Search Results

Search found 14169 results on 567 pages for 'parallel programming'.

Page 239/567 | < Previous Page | 235 236 237 238 239 240 241 242 243 244 245 246  | Next Page >

  • Ways to break the "Syndrome of the perfect programmer"

    - by Rushino
    I am probably not the only one that feel that way. But I have what I tend to call "The syndrome of the perfect programmer" which many might say is the same as being perfectionist but in this case it's in the domain of programming. However, the domain of programming is a bit problematic for such a syndrome. Have you ever felt that when you are programming you're not confident or never confident enought that your code is clean and good code that follows most of the best practices ? There so many rules to follow that I feel like being overwhelmed somehow. Not that I don't like to follow the rules of course I am a programmer and I love programming, I see this as an art and I must follow the rules. But I love it too, I mean I want and I love to follow the rules in order to have a good feeling of what im doing is going the right way.. but I only wish I could have everything a bit more in "control" regarding best practices and good code. Maybe it's a lack of organization? Maybe it's a lack of experience? Maybe a lack of practice? Maybe it's a lack of something else someone could point out? Is there any way to get rid of that syndrome somehow ?

    Read the article

  • Looking for suggestions: becoming a hireable, young programmer [closed]

    - by Dan
    I am a 17 year old Java programmer that has filled the last year with learning all of the ins and outs of Java - Using Eclipse, and the help of a friend of the family (a Java programming architect for some company), I have learned everything from serializing objects, basic networking, generics, reflection, multi-threading, code optimization and efficiency & some concurrency safety - built my own proxy class, and nowadays, I answer questions on Project Euler. I am seeking some suggestions though on where I go next, or where I go from here to get a job in programming. I dedicate at least an hour every day to coding, sometimes literally, the entire day, and I really have come to love the process. I just started reading Effective Java (v2), and learning Scala (as I see often, possibly the Java replacement) I will be going to college for Computer Science next year - and taking AP computer science this year (however, I took a practice exam and got an 87, only need a 60to70 to pass, so no need to study for it too much) -- I was wondering if getting the SE 7 OCA and OCP would help me in trying to get a programming job. I looked around and most people have said online that an OCA/OCP are practically useless, but, at my age do they make me any more credible? More or less, what would you recommend to get a job in programming these days - or distinguish yourself from the crowd? I have enough time and dedication to learn another language, or anything really. Thank you very much.

    Read the article

  • Pros and Cons between learning to program on Windows and Linux and Macs

    - by Amumu
    I have been studying IT for 2 years and I'm going to graduate soon in this year (if everything goes well). I think it's time for me to choose a path to specialized into some fields of this large industry. Personally, I want to be a game programmer. But to be a game programmer, surely I have to invest my time to study Windows Programming, then DirectX and other programming techniques related to game. On the other hand, Linux seems promising as well. I am not sure about Game Programming on for it, but it seems become an expert for this OS, and by expert it's not about using the OS to become an administrator, but can do further than that, such as understand the OS to its essence and can produce applications for it. However, there's some obstacles in my view for this development path. Many of my friends think that Linux is based on free and open source, and if you follow it, as its name suggested: Free and Open Source, it means we also give away our software free. Otherwise, we will have to find a second job to make living. Currently, I think a viable way to make money on Linux is doing works related to client-server. Another way to developer my career is to become expert in developing business applications for companies. This is more on business, not on specialized IT fields so I am not really interested. Another alternative is programming on mobile devices, such as iPhone, Android and it seems very promising and easier to approach. Another way is to become a computer scientist and research on academic subjects such as AI, human-computer interaction, but this is far beyond my reach, so I won't invest my time on it until I feel I am experienced enough. That's all I can think of for now. I may miss a lot of things, so I need more opinions as input to get the big picture of the industry for my career path.

    Read the article

  • where to start and lack of motivation

    - by anoguy
    I have a few questions that have been bothering me for quite a while, maybe you guys can give me some tips. So let me give a very brief explanation about what I am doing at the moment (like someone cares lol). At the moment I am a last year student on computer science. And like most of you already know is that you won't learn deep programming there, you need to learn it yourself. So at the moment I know like the basics of c++, java, html, php. But it's all bits of this and bits of that. I seriously want to dive deeper in the programming world but there are so many programming languages on the web and there is so much information that i don't know where to start any more.. And that's not the biggest issue, I also lost a bit of my motivation for programming and I like to get more motivation for it so that I love what I do (I am also a very lazy person btw, that's also a problem playing here). So can you guys give me some tips for helping me, because I really want to get pumped up and make cool stuff. (sry for my bad english XD)

    Read the article

  • How do you make people accept code review?

    - by user7197
    All programmers have their style of programming. But some of the styles are let’s say... let’s not say. So you have code review to try to impose certain rules for good design and good programming techniques. But most of the programmers don’t like code review. They don’t like other people criticizing their work. Who do they think they are to consider themselves better than me and tell me that this is bad design, this could be done in another way. It works right? What is the problem? This is something they might say (or think but not say which is just as bad if not worse). So how do you make people accept code review without starting a war? How can you convince them this is a good thing; that will only improve their programming skills and avoid a lot of work later to fix and patch a zillion times a thing that hey... "it works"? People will tell you how to make code review (peer-programming, formal inspections etc) what to look for in a code review, studies have been made to show the number of defects that can be discovered before the software hits production etc. But how do you convince programmers to accept a code review?

    Read the article

  • How would you react if someone told you your code is a mess?

    - by newbie
    I am a good programmer, or so I thought before. I always love to program. And I want to learn many things about programming to make me a better programmer. I studied programming for 1 year and now I am working as a programmer for almost 2 years. So in short, I have almost 3 years programming experience. Our team is composed of 5 programmers, and 4 of us are new, 1 has more than 3 year experience. We've been working for a program for almost a year now and nobody ever review my code and I was given a page to work with. We never had a code review and we are all new so we don't know what is a clean code looks like. I think programmers learn by themselves? We deployed our program to the program without thorough testing. Now it is tight and we need an approval and code review first before we make changes with the code. For the first time, someone reviews my code and he says it is a mess. I feel so sad and hurt. I really love programming and making them say something like that really hurts me. I really want to improve myself. But it seems like I'm not a genius programmer like in the movies. Can you give me advise on how to be better? Have you ever experience something criticizing your code and you feel really hurt? What do you do on those events.. Thank you

    Read the article

  • GLES2.0 3D Android game performance and multi threading the update?

    - by Ofer
    I have profiled my mixed Java\C++ Android game and I got the following result: https://dl.dropbox.com/u/8025882/PompiDev/AndroidProfile.png As you can see, the pink think is a C++ functions that updates the game. It does things like updating the logic but it mostly it generates a "request list" for rendering. The thing is, I generate DrawLists on C++ and then send them to Java to process and draw using GLES2.0. Since then I was able to improve update from 9ms down to about 7ms, but I would like to ask if I would benefit from multi threading the update? As I understand from that diagram is that the function that takes the most time is the one you see it's color on the timeline. So the pink area is taken mostly by update. The other area has MainOpenGL.Handle as it's main contributor(whch is my java function), but since it's not drawn to the top of the diagram I can conclude other things are happening at the same time that use the CPU? Or even GPU stuff that isn't shown in this diagram. I am not sure how the GPU works on this. Does it calculate stuff in parallel to the CPU? Or is it part of the CPU usage as in SoC? I am not sure. Anyway, in case GPU things DO happen in parallel to CPU, then I would guess that if I do this C++ Update in parallel to the thread that makes the OpenGL calls, I might make use of "dead CPU time" due to GPU stalling or maybe have the GPU calls getting processed earlier because it won't have to wait for Update to finish? How do you suggest to improve performance based on that? Thanks.

    Read the article

  • Java and what to do with it

    - by SterAllures
    I've been browsing through several websites and several topics on this website. Now I'm just a starting programmer and I want to make a good decision. From what I understand is that Java is used alot for server stuff, and web applets but not really for computer applications running on a client, it's also used for Android programming and several other mobiles. I'm really interested in Android programming, I really love to program for mobile devices, in this case Android because I really think it has a lot of potential and I don't like the iPhone. If I want to program on Android I have to learn Java (aside from Mono). but if my decision changes over the next couple of years I don't think Java is the right language to get a job that programs computer applications. I think I get a job where I have to program server stuff, rather than computer applications. That's why I think C# is a good choice. I can program for Windows Phone 7 (I hope that will get big). and I have the feeling C# is more widely used for computer applications. so I think C# is more versatile looking at Mobile programming and computer programming. Or am I totally wrong thinking this?

    Read the article

  • When is the right time to join open source project for programmer?

    - by Mahesh
    Most of the newcomers in programming start with basic projects to start with programming. Most of the C++ progammers spend some time with puzzles and contests but this is not always helpful. Sometimes you've to spend some time on real projects. Starting your own open source project could be a problem in self-learning for newbie cause of lack of mentors and peers who can't look at your code and give suggestions. Open source projects can solve this problem, some projects could be best suited for new programmers. Besides everybody is newbie at some point. So i'll try and make this question a bit from beginners perspective. I tried few questions on stack overflow before asking this like How do i join & Bare minimum you need and how to get involved with open source and what level of programming etc. But this is not helping me when it comes to self-evaluating with skills. How to find that out ? How can i check what it takes to join open source project and am i really that comfortable with huge source code etc. My question is when to consider yourself comfortable joining open source programming ? I mean how will you test yourself that you're ready to take burden of big/small projects of open source ? how will you test yourself to see if you could work with version control/other programmers/tight schedule etc ?

    Read the article

  • c# vocabulary

    - by foxjazz
    I have probably seen and used the word Encapsulation 4 times in my 20 years of programming.I now know what it is again, after an interview for a c# job. Even though I have used the public, private, and protected key words in classes for as long as c# was invented. I can sill remember coming across the string.IndexOf function and thinking, why didn't they call it IndexAt.Now with all the new items like Lambda and Rx, Linq, map and pmap etc, etc. I think the more choices there is to do 1 or 2 things 10 or 15 differing ways, the more programmers think to stay with what works and try and leverage the new stuff only when it really becomes beneficial.For many, the new stuff is harder to read, because programmers aren't use to seeing declarative notation.I mean I have probably used yield break, twice in my project where it may have been possible to use it many more times. Or the using statement ( not the declaration of namespace references) but inline using. I never really saw a big advantage to this, other than confusion. It is another form of local encapsulation (oh there 5 times used in my programming career) but who's counting?  THE COMPUTERS ARE COUNTING!In business logic most programming is about displaying lists, selecting items in a list, and sending those choices to some other system or database to keep track of those selections. What makes this difficult is how these items relate to one, each other, and two externally listed items.Well I probably need to go back to school and learn c# certification so I can say I am an expert in c#. Apparently using all aspects of c# (even unsafe code) in my programming life, doesn't make me certified, just certifiable.This is a good time to sign off:Fox-jazzy

    Read the article

  • I am not the most logically-organized person. Do I have any chance at being a good 'low-level' programmer?

    - by user217902
    Background: I am entering college next year. I really enjoy making stuff and solving logical problems, so I'm thinking of majoring in compsci and working in software development. I hope to have the kind of job where I can work with implementing / improving algorithms and data structures on a regular basis.. as opposed to, say, a job that's purely concerned with mashing different libraries together, or 'finding the right APIs for the job'. (Hence the word 'low-level' in the title. No, I don't wish to write assembly all day.) Thing is, I've never been the most logically-sharp person. Thus far I have only worked on hobby projects, but I find that I make the silliest of errors ever so often, and it can take me ages to find it. Like anywhere between three hours to a day to locate a simple segfault, off-by-one error, or other logical mistake. (Of course, I do other things in the meantime, like browsing SO, reddit, and the like..) It's not like I'm 'new' to programming either; I first tried C++ maybe five years ago. My question is: is this normal? Should a programmer with any talent solve it in less time? Having read Spolsky's Smart and gets things done, where he talks about the large variance in programming speed, am I near the bottom of the curve, and therefore destined to work in companies that cannot afford to hire quality programmers? I'd like to think that conceptually I'm okay -- I can grasp algorithms and concepts pretty well, I do fine in math and science, although I probably drop signs in my equations more often than the next guy. Still, grokking concepts makes me happy, and is the reason why I want to work with algorithms. I'm hoping to hear from those of you with real-world programming experience. TL;DR: I make many careless mistakes, should I not consider programming as a career?

    Read the article

  • Limiting my heavy thinking to my job [closed]

    - by Robin Castlin
    This might be a weird problem which is only to a half relevant to actual programming, but hopefully there are people here that knows what I'm talking about. Basicly I'm proud of how I can deal with coding problems and fix them in short notice and many other aspects like building new systems and such. I'm fast on finding solutions and I often think about the impact my changes does to existing systems and so on, therefor preventing problem from arising at all and such. I am simply happy with how my mind operates when it comes to programming and I wouldn't want to change it at all. The problem, however is when I'm not programming. I find myself rather limited in social situations. I can't determine if it is through programming, but I sometimes think way to much about the consequences when it comes to being social. I know from own experience that most times you earn by not thinking about consequences, but it's hard for me not to. Often my friends tells me "I think too much" and even though I agree, I can't seem to change this behavior. My brain wants to think, and it likes to overthink simple stuff. Does anyone recognize the bad habit of not leaving advanced thinking at work, and in what way do you deal with it? If this isn't a suitable place to ask this question, I apologize and hope you may point me to the right site.

    Read the article

  • Please recommend the best tools to build a test plan management tool

    - by fzkl
    I have mostly worked on hardware testing in my professional career and would like to get onto the software development side. I thought working on a practically usable project will help motivate me and help acquire some skills. I have decided to build a test plan management tool for the QA team I work in (We use excel sheets!). The test plan management tool should be browser based and should support this: There would be many test plans, each test plan having test sets, test sets having test cases and test cases having instructions, attachments and Pass/fail status marking and bug info in case of failure. It should also have an export to excel option. I have a visual picture of the tool I am looking to build but I don't have enough experience to figure our where to start. My current programming skills are limited to C and shell programming and I want to pick up python. What tools (programming language, database and anything else?) would you recommend for me to get this done? Also what are the key concepts in the recommended programming language that I should focus on to build a browser based tool like this?

    Read the article

  • Need Directions to become a programmer [closed]

    - by Omin
    Before youguys go on about how there are many types of programmers, please read through the post. Long term goal: Develop my own software (company) Short term goal: Get a job that involves coding/programming Current status: Support Analyst (at a software company but does not involve any programming) with 40k salary, 3rd year computer engineering student I had everything figured out. I'm going to develop a 2D scrolling game for iphone or android, publish the app, sell a bunch, and then apply at a studios as a software developer. And then something hit me. I think I need to get a job that involes programming to learn as much as I can in the shortest time possible. So I got a phone interview at a fast growing start up software company, passed that no problem, but then had to take an online technical assessment. That failed miserably. I thought that if I could just present myself, show that I am hard working, positive attitude, eager to make self improvements, type of a guy, I could get the job. I was wrong. And now, I am lost. Im thinking of staying with my job until I find a new one as a programmer. I will be working, self studying, and trying to make this happen without finishing university. I forgot to mention that the online technical assessment was based on data structures/algorithms, OO design, runtime complexity. I was hoping that I could get some guidence. Should I be focusing on app development or study computer science fundamentals? I have a list of books I can be going through: Learning C# O'Reilly (I got interested in C# because of Unity3D and Mono), C# 5.0 in a Nutshell, Head First Design Patterns, Code Complete, Introduction to Algorithms, Programming Interviews Exposed, Cracking the Coding Interview, The Google Resume.

    Read the article

  • Information I need to know as a Java Developer [on hold]

    - by Woy
    I'm a java developer. I'm trying to get more knowledge to become a better programmer. I've listed a number of technologies to learn. Instead of what I've listed, what technologies would you suggest to learn as well for a Junior Java Developer? I realize, there's a lot of things to study. Java: - how a garbage collector works - resource management - network programming - TCP/IP HTTP - transactions, - consistency: interfaces, classes collections, hash codes, algorithms, comp. complexity concurrent programming: synchronizing, semafores steam management metability: thread-safety byte code manipulations, reflections, Aspect-Oriented Programming as base to understand frameworks such as Spring etc. Web stack: servlets, filters, socket programming Libraries: JDK, GWT, Apache Commons, Joda-Time, Dependency Injections: Spring, Nano Tools: IDE: very good knowledge - debugger - profiler - web analyzers: Wireshark, firebugs - unit testing SQL/Databases: Basics SELECTing columns from a table Aggregates Part 1: COUNT, SUM, MAX/MIN Aggregates Part 2: DISTINCT, GROUP BY, HAVING + Intermediate JOINs, ANSI-89 and ANSI-92 syntax + UNION vs UNION ALL x NULL handling: COALESCE & Native NULL handling Subqueries: IN, EXISTS, and inline views Subqueries: Correlated ITH syntax: Subquery Factoring/CTE Views Advanced Topics Functions, Stored Procedures, Packages Pivoting data: CASE & PIVOT syntax Hierarchical Queries Cursors: Implicit and Explicit Triggers Dynamic SQL Materialized Views Query Optimization: Indexes Query Optimization: Explain Plans Query Optimization: Profiling Data Modelling: Normal Forms, 1 through 3 Data Modelling: Primary & Foreign Keys Data Modelling: Table Constraints Data Modelling: Link/Corrollary Tables Full Text Searching XML Isolation Levels Entity Relationship Diagrams (ERDs), Logical and Physical Transactions: COMMIT, ROLLBACK, Error Handling

    Read the article

  • How to progress far enough in a year [on hold]

    - by xCasper
    So I came to a realization the other day, I graduate in a year. I will have completed my four year degree in about two and a half (I went to a school that goes full time year round). Anyway, I want to get a job, as a programmer, when I graduate. The problem is, I feel like I am no where near ready. In the last year I cant say I have made any spectacular projects. I know that my advanced programming courses are coming up, but by the time I take them, I will be graduating in 6 months. Not nearly enough time to really take what I learn, apply it, and create something to show for myself. I want to push myself ahead of the game; mainly because my major is Computer Information Systems, so the focus is not programming. In fact, I only get, 4 programming classes. Before anyone says anything, CIS is the closest to a programming major at my school that I am able to do. So the questions come down to this: 1) What can I do to really step up the speed at which I progress (on my own) 2) Should I be aiming for a certain amount of projects in my "Portfolio." 2a) Should they be big projects? P.S: The language we have used in school in c++, I do take a Java class in the spring, and .net over Summer; if any of that matters for anything.

    Read the article

  • regex to break a string into "key" / "value" pairs when # of pairs is variable?

    - by user141146
    Hi, I'm using Ruby 1.9 and I'm wondering if there's a simple regex way to do this. I have many strings that look like some variation of this: str = "Allocation: Random, Control: Active Control, Endpoint Classification: Safety Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor), Primary Purpose: Treatment" The idea is that I'd like to break this string into its functional components Allocation: Random Control: Active Control Endpoint Classification: Safety Study Intervention Model: Parallel Assignment Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes, Assessor) Primary Purpose: Treatment The "syntax" of the string is that there is a "key" which consists of one or more "words or other characters" (e.g. Intervention Model) followed by a colon (:). Each key has a corresponding "value" (e.g., Parallel Assignment) that immediately follows the colon (:)…The "value" consists of words, commas (whatever), but the end of the "value" is signaled by a comma. The # of key/value pairs is variable. I'm also assuming that colons (:) aren't allowed to be part of the "value" and that commas (,) aren't allowed to be part of the "key". One would think that there is a "regexy" way to break this into its component pieces, but my attempt at making an appropriate matching regex only picks up the first key/value pair and I'm not sure how to capture the others. Any thoughts on how to capture the other matches? regex = /(([^,]+?): ([^:]+?,))+?/ => /(([^,]+?): ([^:]+?,))+?/ irb(main):139:0> str = "Allocation: Random, Control: Active Control, Endpoint Classification: Safety Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor), Primary Purpose: Treatment" => "Allocation: Random, Control: Active Control, Endpoint Classification: Safety Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor), Primary Purpose: Treatment" irb(main):140:0> str.match regex => #<MatchData "Allocation: Random," 1:"Allocation: Random," 2:"Allocation" 3:" Random,"> irb(main):141:0> $1 => "Allocation: Random," irb(main):142:0> $2 => "Allocation" irb(main):143:0> $3 => " Random," irb(main):144:0> $4 => nil

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Big Data – Buzz Words: What is MapReduce – Day 7 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is Hadoop. In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – MapReduce. What is MapReduce? MapReduce was designed by Google as a programming model for processing large data sets with a parallel, distributed algorithm on a cluster. Though, MapReduce was originally Google proprietary technology, it has been quite a generalized term in the recent time. MapReduce comprises a Map() and Reduce() procedures. Procedure Map() performance filtering and sorting operation on data where as procedure Reduce() performs a summary operation of the data. This model is based on modified concepts of the map and reduce functions commonly available in functional programing. The library where procedure Map() and Reduce() belongs is written in many different languages. The most popular free implementation of MapReduce is Apache Hadoop which we will explore tomorrow. Advantages of MapReduce Procedures The MapReduce Framework usually contains distributed servers and it runs various tasks in parallel to each other. There are various components which manages the communications between various nodes of the data and provides the high availability and fault tolerance. Programs written in MapReduce functional styles are automatically parallelized and executed on commodity machines. The MapReduce Framework takes care of the details of partitioning the data and executing the processes on distributed server on run time. During this process if there is any disaster the framework provides high availability and other available modes take care of the responsibility of the failed node. As you can clearly see more this entire MapReduce Frameworks provides much more than just Map() and Reduce() procedures; it provides scalability and fault tolerance as well. A typical implementation of the MapReduce Framework processes many petabytes of data and thousands of the processing machines. How do MapReduce Framework Works? A typical MapReduce Framework contains petabytes of the data and thousands of the nodes. Here is the basic explanation of the MapReduce Procedures which uses this massive commodity of the servers. Map() Procedure There is always a master node in this infrastructure which takes an input. Right after taking input master node divides it into smaller sub-inputs or sub-problems. These sub-problems are distributed to worker nodes. A worker node later processes them and does necessary analysis. Once the worker node completes the process with this sub-problem it returns it back to master node. Reduce() Procedure All the worker nodes return the answer to the sub-problem assigned to them to master node. The master node collects the answer and once again aggregate that in the form of the answer to the original big problem which was assigned master node. The MapReduce Framework does the above Map () and Reduce () procedure in the parallel and independent to each other. All the Map() procedures can run parallel to each other and once each worker node had completed their task they can send it back to master code to compile it with a single answer. This particular procedure can be very effective when it is implemented on a very large amount of data (Big Data). The MapReduce Framework has five different steps: Preparing Map() Input Executing User Provided Map() Code Shuffle Map Output to Reduce Processor Executing User Provided Reduce Code Producing the Final Output Here is the Dataflow of MapReduce Framework: Input Reader Map Function Partition Function Compare Function Reduce Function Output Writer In a future blog post of this 31 day series we will explore various components of MapReduce in Detail. MapReduce in a Single Statement MapReduce is equivalent to SELECT and GROUP BY of a relational database for a very large database. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – HDFS. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL SERVER – Partition Parallelism Support in expressor 3.6

    - by pinaldave
    I am very excited to learn that there is a new version of expressor’s data integration platform coming out in March of this year.  It will be version 3.6, and I look forward to using it and telling everyone about it.  Let me describe a little bit more about what will be so great in expressor 3.6: Greatly enhanced user interface Parallel Processing Bulk Artifact Upgrading The User Interface First let me cover the most obvious enhancements. The expressor Studio user interface (UI) has had some significant work done. Kudos to the expressor Engineering team; the entire UI is a visual masterpiece that is very responsive and intuitive. The improvements are more than just eye candy; they provide significant productivity gains when developing expressor Dataflows. Operator shape icons now include a description that identifies the function of each operator, instead of having to guess at the function by the icon. Operator shapes and highlighting depict the current function and status: Disabled, enabled, complete, incomplete, and error. Each status displays an appropriate message in the message panel with correction suggestions. Floating or docking property panels provide descriptive tool tips for each property as well as auto resize when adjusting the canvas, without having to search Help or the need to scroll around to get access to the property. Progress and status indicators let you know when an operation is working. “No limit” canvas with snap-to-grid allows automatic sizing and accurate positioning when you have numerous operators in the Dataflow. The inline tool bar offers quick access to pan, zoom, fit and overview functions. Selecting multiple artifacts with a right click context allows you to easily manage your workspace more efficiently. Partitioning and Parallel Processing Partitioning allows each operator to process multiple subsets of records in parallel as opposed to processing all records that flow through that operator in a single sequential set. This capability allows the user to configure the expressor Dataflow to run in a way that most efficiently utilizes the resources of the hardware where the Dataflow is running. Partitions can exist in most individual operators. Using partitions increases the speed of an expressor data integration application, therefore improving performance and load times. With the expressor 3.6 Enterprise Edition, expressor simplifies enabling parallel processing by adding intuitive partition settings that are easy to configure. Bulk Artifact Upgrading Bulk Artifact Upgrading sounds a bit intimidating, but it actually is not and it is a welcome addition to expressor Studio. In past releases, users were prompted to confirm that they wanted to upgrade their individual artifacts only when opened. This was a cumbersome and repetitive process. Now with bulk artifact upgrading, a user can easily select what artifact or group of artifacts to upgrade all at once. As you can see, there are many new features and upgrade options that will prove to make expressor Studio quicker and more efficient.  I hope I’m not the only one who is excited about all these new upgrades, and that I you try expressor and share your experience with me. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Efficiently separating Read/Compute/Write steps for concurrent processing of entities in Entity/Component systems

    - by TravisG
    Setup I have an entity-component architecture where Entities can have a set of attributes (which are pure data with no behavior) and there exist systems that run the entity logic which act on that data. Essentially, in somewhat pseudo-code: Entity { id; map<id_type, Attribute> attributes; } System { update(); vector<Entity> entities; } A system that just moves along all entities at a constant rate might be MovementSystem extends System { update() { for each entity in entities position = entity.attributes["position"]; position += vec3(1,1,1); } } Essentially, I'm trying to parallelise update() as efficiently as possible. This can be done by running entire systems in parallel, or by giving each update() of one system a couple of components so different threads can execute the update of the same system, but for a different subset of entities registered with that system. Problem In reality, these systems sometimes require that entities interact(/read/write data from/to) each other, sometimes within the same system (e.g. an AI system that reads state from other entities surrounding the current processed entity), but sometimes between different systems that depend on each other (i.e. a movement system that requires data from a system that processes user input). Now, when trying to parallelize the update phases of entity/component systems, the phases in which data (components/attributes) from Entities are read and used to compute something, and the phase where the modified data is written back to entities need to be separated in order to avoid data races. Otherwise the only way (not taking into account just "critical section"ing everything) to avoid them is to serialize parts of the update process that depend on other parts. This seems ugly. To me it would seem more elegant to be able to (ideally) have all processing running in parallel, where a system may read data from all entities as it wishes, but doesn't write modifications to that data back until some later point. The fact that this is even possible is based on the assumption that modification write-backs are usually very small in complexity, and don't require much performance, whereas computations are very expensive (relatively). So the overhead added by a delayed-write phase might be evened out by more efficient updating of entities (by having threads work more % of the time instead of waiting). A concrete example of this might be a system that updates physics. The system needs to both read and write a lot of data to and from entities. Optimally, there would be a system in place where all available threads update a subset of all entities registered with the physics system. In the case of the physics system this isn't trivially possible because of race conditions. So without a workaround, we would have to find other systems to run in parallel (which don't modify the same data as the physics system), other wise the remaining threads are waiting and wasting time. However, that has disadvantages Practically, the L3 cache is pretty much always better utilized when updating a large system with multiple threads, as opposed to multiple systems at once, which all act on different sets of data. Finding and assembling other systems to run in parallel can be extremely time consuming to design well enough to optimize performance. Sometimes, it might even not be possible at all because a system just depends on data that is touched by all other systems. Solution? In my thinking, a possible solution would be a system where reading/updating and writing of data is separated, so that in one expensive phase, systems only read data and compute what they need to compute, and then in a separate, performance-wise cheap, write phase, attributes of entities that needed to be modified are finally written back to the entities. The Question How might such a system be implemented to achieve optimal performance, as well as making programmer life easier? What are the implementation details of such a system and what might have to be changed in the existing EC-architecture to accommodate this solution?

    Read the article

  • Asynchrony in C# 5 (Part II)

    - by javarg
    This article is a continuation of the series of asynchronous features included in the new Async CTP preview for next versions of C# and VB. Check out Part I for more information. So, let’s continue with TPL Dataflow: Asynchronous functions TPL Dataflow Task based asynchronous Pattern Part II: TPL Dataflow Definition (by quote of Async CTP doc): “TPL Dataflow (TDF) is a new .NET library for building concurrent applications. It promotes actor/agent-oriented designs through primitives for in-process message passing, dataflow, and pipelining. TDF builds upon the APIs and scheduling infrastructure provided by the Task Parallel Library (TPL) in .NET 4, and integrates with the language support for asynchrony provided by C#, Visual Basic, and F#.” This means: data manipulation processed asynchronously. “TPL Dataflow is focused on providing building blocks for message passing and parallelizing CPU- and I/O-intensive applications”. Data manipulation is another hot area when designing asynchronous and parallel applications: how do you sync data access in a parallel environment? how do you avoid concurrency issues? how do you notify when data is available? how do you control how much data is waiting to be consumed? etc.  Dataflow Blocks TDF provides data and action processing blocks. Imagine having preconfigured data processing pipelines to choose from, depending on the type of behavior you want. The most basic block is the BufferBlock<T>, which provides an storage for some kind of data (instances of <T>). So, let’s review data processing blocks available. Blocks a categorized into three groups: Buffering Blocks Executor Blocks Joining Blocks Think of them as electronic circuitry components :).. 1. BufferBlock<T>: it is a FIFO (First in First Out) queue. You can Post data to it and then Receive it synchronously or asynchronously. It synchronizes data consumption for only one receiver at a time (you can have many receivers but only one will actually process it). 2. BroadcastBlock<T>: same FIFO queue for messages (instances of <T>) but link the receiving event to all consumers (it makes the data available for consumption to N number of consumers). The developer can provide a function to make a copy of the data if necessary. 3. WriteOnceBlock<T>: it stores only one value and once it’s been set, it can never be replaced or overwritten again (immutable after being set). As with BroadcastBlock<T>, all consumers can obtain a copy of the value. 4. ActionBlock<TInput>: this executor block allows us to define an operation to be executed when posting data to the queue. Thus, we must pass in a delegate/lambda when creating the block. Posting data will result in an execution of the delegate for each data in the queue. You could also specify how many parallel executions to allow (degree of parallelism). 5. TransformBlock<TInput, TOutput>: this is an executor block designed to transform each input, that is way it defines an output parameter. It ensures messages are processed and delivered in order. 6. TransformManyBlock<TInput, TOutput>: similar to TransformBlock but produces one or more outputs from each input. 7. BatchBlock<T>: combines N single items into one batch item (it buffers and batches inputs). 8. JoinBlock<T1, T2, …>: it generates tuples from all inputs (it aggregates inputs). Inputs could be of any type you want (T1, T2, etc.). 9. BatchJoinBlock<T1, T2, …>: aggregates tuples of collections. It generates collections for each type of input and then creates a tuple to contain each collection (Tuple<IList<T1>, IList<T2>>). Next time I will show some examples of usage for each TDF block. * Images taken from Microsoft’s Async CTP documentation.

    Read the article

  • How do you share your craft with non programmers?

    - by EpsilonVector
    Sometimes I feel like a musician who can't play live shows. Programming is a pretty cool skill, and a very broad world, but a lot of it happens "off camera"- in your head, in your office, away from spectators. You can of course talk about programming with other programmers, and there is peer programming, and you do get to create something that you can show to people, but when it comes to explaining to non programmers what is it that you do, or how was your day at work, it's sort of tricky. How do you get the non programmers in your life to understand what is it that you do? NOTE: this is not a repeat of Getting non-programmers to understand the development process, because that question was about managing client expectations.

    Read the article

  • How do you share your craft with non programmers?

    - by EpsilonVector
    Sometimes I feel like a musician who can't play live shows. Programming is a pretty cool skill, and a very broad world, but a lot of it happens "off camera"- in your head, in your office, away from spectators. You can of course talk about programming with other programmers, and there is peer programming, and you do get to create something that you can show to people, but when it comes to explaining to non programmers what is it that you do, or how was your day at work, it's sort of tricky. How do you get the non programmers in your life to understand what is it that you do? NOTE: this is not a repeat of Getting non-programmers to understand the development process, because that question was about managing client expectations.

    Read the article

  • If you had to reinvent a new syntax for regular expressions, what would it look like?

    - by Timwi
    Regular expressions as they are today are pretty much as concise and compact as they can be. Consequently, they are often criticised for being unreadable and hard to debug. If you had to reinvent a new syntax for regular expressions, what would it look like? Do you prefer the concise syntax they already have (or a different but similarly concise syntax)? If so, please justify why you think regular expressions deserve to be this concise, but your favourite programming language doesn’t (unless it’s Perl). Or do you think regular expressions should have a slightly more spaced-out syntax and look a bit more like operators and syntax elements normally do in programming languages? If so, provide examples of what you think the syntax should look like, and justify why it is better than the current syntax. Or do you think there shouldn’t even be a special syntax for regular expressions, and instead they should be constructed from syntax elements already present in the programming language? If so, give examples of a syntax that might be used to construct such regular expressions.

    Read the article

< Previous Page | 235 236 237 238 239 240 241 242 243 244 245 246  | Next Page >