Search Results

Search found 63386 results on 2536 pages for 'data structure'.

Page 24/2536 | < Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >

  • Database structure - is mySQL the right choice?

    - by Industrial
    Hi everyone, We are currently planning the database structure of a quite complex e-commerce web app that has flexibility as it's main cornerstone. Our app features a large amount of data (products) and we have run into a slight headache trying to keep performance high without compromizing normalization rules in the database, or leaving our highly beloved flexibility concept behind when integrating product options (also widely known as product attributes or parameters). Based on various references and sources available, we have made up lists on pros and cons of all major and well known database patterns to solve this. After comparing these, we have come up with two final alternatives: EAV (Entity-attribute-value model) : Pros: Database is used for all sorting. Cons: All related queries will include a number of joins between multiple tables in order to complete the collection of data. SLOB (Serialized LOB, also known as Facade?) : Pros: Very flexible. Keeping the number of necessary joins low compared to a EAV design pattern. Easy to update/add/remove data from each product. Cons: All sorting will be done by the application instead of the database. Will use lots of performance (memory?) when big datasets is processed by a large number of users. Our main questions: Which pattern/structure would you use, or maybe even a different solution? Is there better databases besides mySQL available nowadays to accomplish what we want? Thanks a lot! Reference: http://stackoverflow.com/questions/695752/product-table-many-kinds-of-product-each-product-has-many-parameters

    Read the article

  • Making Spring Data JPA work with DataNucleus (GAE) (Spring Boot)

    - by xybrek
    There are several hints that Spring Data works with Google App Engine like: http://tommysiu.blogspot.com/2014/01/spring-data-on-gae-part-1.html http://blog.eisele.net/2009/07/spring-300m3-on-google-appengine-with.html Much of the examples are not "Spring Boot" so I've been trying to retrofit things with it. However, I've been stuck with this error for days and days: [INFO] Caused by: java.lang.NullPointerException [INFO] at org.datanucleus.api.jpa.metamodel.SingularAttributeImpl.isVersion(SingularAttributeImpl.java:79) [INFO] at org.springframework.data.jpa.repository.support.JpaMetamodelEntityInformation.findVersionAttribute(JpaMetamodelEntityInformation.java:102) [INFO] at org.springframework.data.jpa.repository.support.JpaMetamodelEntityInformation.<init>(JpaMetamodelEntityInformation.java:79) [INFO] at org.springframework.data.jpa.repository.support.JpaEntityInformationSupport.getMetadata(JpaEntityInformationSupport.java:65) [INFO] at org.springframework.data.jpa.repository.support.JpaRepositoryFactory.getEntityInformation(JpaRepositoryFactory.java:149) [INFO] at org.springframework.data.jpa.repository.support.JpaRepositoryFactory.getTargetRepository(JpaRepositoryFactory.java:88) [INFO] at org.springframework.data.jpa.repository.support.JpaRepositoryFactory.getTargetRepository(JpaRepositoryFactory.java:68) [INFO] at org.springframework.data.repository.core.support.RepositoryFactorySupport.getRepository(RepositoryFactorySupport.java:158) [INFO] at org.springframework.data.repository.core.support.RepositoryFactoryBeanSupport.initAndReturn(RepositoryFactoryBeanSupport.java:224) [INFO] at org.springframework.data.repository.core.support.RepositoryFactoryBeanSupport.afterPropertiesSet(RepositoryFactoryBeanSupport.java:210) [INFO] at org.springframework.data.jpa.repository.support.JpaRepositoryFactoryBean.afterPropertiesSet(JpaRepositoryFactoryBean.java:92) [INFO] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$6.run(AbstractAutowireCapableBeanFactory.java:1602) [INFO] at java.security.AccessController.doPrivileged(Native Method) [INFO] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1599) [INFO] at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1549) [INFO] ... 40 more Where, I'm trying to use Spring Data JPA with DataNucleus/AppEngine: @Configuration @ComponentScan @EnableJpaRepositories @EnableTransactionManagement class JpaApplicationConfig { private static final Logger logger = Logger .getLogger(JpaApplicationConfig.class.getName()); @Bean public EntityManagerFactory entityManagerFactory() { logger.info("Loading Entity Manager..."); return Persistence .createEntityManagerFactory("transactions-optional"); } @Bean public PlatformTransactionManager transactionManager() { logger.info("Loading Transaction Manager..."); final JpaTransactionManager txManager = new JpaTransactionManager(); txManager.setEntityManagerFactory(entityManagerFactory()); return txManager; } } I've tested Persistence.createEntityManagerFactory("transactions-optional"); to see if the app can persist using this EMF, well, it does, so I am sure that this EMF works fine. The problem is the "wiring" up with the Spring Data JPA, can anybody help?

    Read the article

  • haskell: a data structure for storing ascending integers with a very fast lookup

    - by valya
    Hello! (This question is related to my previous question, or rather to my answer to it.) I want to store all qubes of natural numbers in a structure and look up specific integers to see if they are perfect cubes. For example, cubes = map (\x -> x*x*x) [1..] is_cube n = n == (head $ dropWhile (<n) cubes) It is much faster than calculating the cube root, but It has complexity of O(n^(1/3)) (am I right?). I think, using a more complex data structure would be better. For example, in C I could store a length of an already generated array (not list - for faster indexing) and do a binary search. It would be O(log n) with lower ?oefficient than in another answer to that question. The problem is, I can't express it in Haskell (and I don't think I should). Or I can use a hash function (like mod). But I think it would be much more memory consuming to have several lists (or a list of lists), and it won't lower the complexity of lookup (still O(n^(1/3))), only a coefficient. I thought about a kind of a tree, but without any clever ideas (sadly I've never studied CS). I think, the fact that all integers are ascending will make my tree ill-balanced for lookups. And I'm pretty sure this fact about ascending integers can be a great advantage for lookups, but I don't know how to use it properly (see my first solution which I can't express in Haskell).

    Read the article

  • Parse and read data frame in C?

    - by user253656
    I am writing a program that reads the data from the serial port on Linux. The data are sent by another device with the following frame format: |start | Command | Data | CRC | End | |0x02 | 0x41 | (0-127 octets) | | 0x03| ---------------------------------------------------- The Data field contains 127 octets as shown and octet 1,2 contains one type of data; octet 3,4 contains another data. I need to get these data I know how to write and read data to and from a serial port in Linux, but it is just to write and read a simple string (like "ABD") My issue is that I do not know how to parse the data frame formatted as above so that I can: get the data in octet 1,2 in the Data field get the data in octet 3,4 in the Data field get the value in CRC field to check the consistency of the data Here the sample snip code that read and write a simple string from and to a serial port in Linux: int writeport(int fd, char *chars) { int len = strlen(chars); chars[len] = 0x0d; // stick a <CR> after the command chars[len+1] = 0x00; // terminate the string properly int n = write(fd, chars, strlen(chars)); if (n < 0) { fputs("write failed!\n", stderr); return 0; } return 1; } int readport(int fd, char *result) { int iIn = read(fd, result, 254); result[iIn-1] = 0x00; if (iIn < 0) { if (errno == EAGAIN) { printf("SERIAL EAGAIN ERROR\n"); return 0; } else { printf("SERIAL read error %d %s\n", errno, strerror(errno)); return 0; } } return 1; } Does anyone please have some ideas? Thanks all.

    Read the article

  • Good data structure for efficient insert/querying on arbitrary properties

    - by Juliet
    I'm working on a project where Arrays are the default data structure for everything, and every query is a linear search in the form of: Need a customer with a particular name? customer.Find(x => x.Name == name) Need a customer with a particular unique id? customer.Find(x => x.Id == id) Need a customer of a particular type and age? customer.Find(x => x is PreferredCustomer && x.Age >= age) Need a customer of a particular name and age? customer.Find(x => x.Name == name && x.Age == age) In almost all instances, the criteria for lookups is well-defined. For example, we only search for customers by one or more of the properties Id, Type, Name, or Age. We rarely search by anything else. Is a good data structure to support arbitrary queries of these types with lookup better than O(n)? Any out-of-the-box implementations for .NET?

    Read the article

  • How to Populate a 'Tree' structure 'Declaratively'

    - by mackenir
    I want to define a 'node' class/struct and then declare a tree of these nodes in code in such a way that the way the code is formatted reflects the tree structure, and there's not 'too much' boiler plate in the way. Note that this isn't a question about data structures, but rather about what features of C++ I could use to arrive at a similar style of declarative code to the example below. Possibly with C++0X this would be easier as it has more capabilities in the area of constructing objects and collections, but I'm using Visual Studio 2008. Example tree node type: struct node { string name; node* children; node(const char* name, node* children); node(const char* name); }; What I want to do: Declare a tree so its structure is reflected in the source code node root = node("foo", [ node("child1"), node("child2", [ node("grand_child1"), node("grand_child2"), node("grand_child3" ]), node("child3") ]); NB: what I don't want to do: Declare a whole bunch of temporary objects/colls and construct the tree 'backwards' node grandkids[] = node[3] { node("grand_child1"), node("grand_child2"), node("grand_child3" }; node kids[] = node[3] { node("child1"), node("child2", grandkids) node("child3") }; node root = node("foo", kids);

    Read the article

  • A specific data structure

    - by user550413
    Well, this question is a bit specific but I think there is some general idea in it that I can't get it. Lets say I got K servers (which is a constant that I know its size). I have a program that get requests and every request has an id and server id that will handle it. I have n requests - unknown size and can be any number. I need a data structure to support the next operations within the given complexity: GetServer - the function gets the request ID and returns the server id that is supposed to handle this request at the current situation and not necessarily the original server (see below). Complexity: O(log K) at average. KillServer - the function gets as input a server id that should be removed and another server id that all the requests of the removed server should be passed to. Complexity: O(1) at the worst case. -- Place complexity for all the structure is O(K+n) -- The KillServer function made me think using a Union-Find as I can do the union in O(1) as requested but my problem is the first operation. Why it's LogK? Actually, no matter how I "save" the requests if I want to access to any request (lets say it's an AVL tree) so the complexity will be O(log n) at the worst case and said that I can't assume Kn (and probably K Tried thinking about it a couple of hours but I can't find any solution. Known structures that can be used are: B+ tree, AVL tree, skip list, hash table, Union-Find, rank tree and of course all the basics like arrays and such.

    Read the article

  • Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 1

    - by rajbk
    The Open Data Protocol, referred to as OData, is a new data-sharing standard that breaks down silos and fosters an interoperative ecosystem for data consumers (clients) and producers (services) that is far more powerful than currently possible. It enables more applications to make sense of a broader set of data, and helps every data service and client add value to the whole ecosystem. WCF Data Services (previously known as ADO.NET Data Services), then, was the first Microsoft technology to support the Open Data Protocol in Visual Studio 2008 SP1. It provides developers with client libraries for .NET, Silverlight, AJAX, PHP and Java. Microsoft now also supports OData in SQL Server 2008 R2, Windows Azure Storage, Excel 2010 (through PowerPivot), and SharePoint 2010. Many other other applications in the works. * This post walks you through how to create an OData feed, define a shape for the data and pre-filter the data using Visual Studio 2010, WCF Data Services and the Entity Framework. A sample project is attached at the bottom of Part 2 of this post. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Create the Web Application File –› New –› Project, Select “ASP.NET Empty Web Application” Add the Entity Data Model Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “ADO.NET Entity Data Model” under "Data”. Name the Model “Northwind” and click “Add”.   In the “Choose Model Contents”, select “Generate Model From Database” and click “Next”   Define a connection to your database containing the Northwind database in the next screen. We are going to expose the Products table through our OData feed. Select “Products” in the “Choose your Database Object” screen.   Click “Finish”. We are done creating our Entity Data Model. Save the Northwind.edmx file created. Add the WCF Data Service Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “WCF Data Service” from the list and call the service “DataService” (creative, huh?). Click “Add”.   Enable Access to the Data Service Open the DataService.svc.cs class. The class is well commented and instructs us on the next steps. public class DataService : DataService< /* TODO: put your data source class name here */ > { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc. // Examples: // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead); // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } Replace the comment that starts with “/* TODO:” with “NorthwindEntities” (the entity container name of the Model we created earlier).  WCF Data Services is initially locked down by default, FTW! No data is exposed without you explicitly setting it. You have explicitly specify which Entity sets you wish to expose and what rights are allowed by using the SetEntitySetAccessRule. The SetServiceOperationAccessRule on the other hand sets rules for a specified operation. Let us define an access rule to expose the Products Entity we created earlier. We use the EnititySetRights.AllRead since we want to give read only access. Our modified code is shown below. public class DataService : DataService<NorthwindEntities> { public static void InitializeService(DataServiceConfiguration config) { config.SetEntitySetAccessRule("Products", EntitySetRights.AllRead); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } We are done setting up our ODataFeed! Compile your project. Right click on DataService.svc and select “View in Browser” to see the OData feed. To view the feed in IE, you must make sure that "Feed Reading View" is turned off. You set this under Tools -› Internet Options -› Content tab.   If you navigate to “Products”, you should see the Products feed. Note also that URIs are case sensitive. ie. Products work but products doesn’t.   Filtering our data OData has a set of system query operations you can use to perform common operations against data exposed by the model. For example, to see only Products in CategoryID 2, we can use the following request: /DataService.svc/Products?$filter=CategoryID eq 2 At the time of this writing, supported operations are $orderby, $top, $skip, $filter, $expand, $format†, $select, $inlinecount. Pre-filtering our data using Query Interceptors The Product feed currently returns all Products. We want to change that so that it contains only Products that have not been discontinued. WCF introduces the concept of interceptors which allows us to inject custom validation/policy logic into the request/response pipeline of a WCF data service. We will use a QueryInterceptor to pre-filter the data so that it returns only Products that are not discontinued. To create a QueryInterceptor, write a method that returns an Expression<Func<T, bool>> and mark it with the QueryInterceptor attribute as shown below. [QueryInterceptor("Products")] public Expression<Func<Product, bool>> OnReadProducts() { return o => o.Discontinued == false; } Viewing the feed after compilation will only show products that have not been discontinued. We also confirm this by looking at the WHERE clause in the SQL generated by the entity framework. SELECT [Extent1].[ProductID] AS [ProductID], ... ... [Extent1].[Discontinued] AS [Discontinued] FROM [dbo].[Products] AS [Extent1] WHERE 0 = [Extent1].[Discontinued] Other examples of Query/Change interceptors can be seen here including an example to filter data based on the identity of the authenticated user. We are done pre-filtering our data. In the next part of this post, we will see how to shape our data. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Foot Notes * http://msdn.microsoft.com/en-us/data/aa937697.aspx † $format did not work for me. The way to get a Json response is to include the following in the  request header “Accept: application/json, text/javascript, */*” when making the request. This is easily done with most JavaScript libraries.

    Read the article

  • Big Data Matters with ODI12c

    - by Madhu Nair
    contributed by Mike Eisterer On October 17th, 2013, Oracle announced the release of Oracle Data Integrator 12c (ODI12c).  This release signifies improvements to Oracle’s Data Integration portfolio of solutions, particularly Big Data integration. Why Big Data = Big Business Organizations are gaining greater insights and actionability through increased storage, processing and analytical benefits offered by Big Data solutions.  New technologies and frameworks like HDFS, NoSQL, Hive and MapReduce support these benefits now. As further data is collected, analytical requirements increase and the complexity of managing transformations and aggregations of data compounds and organizations are in need for scalable Data Integration solutions. ODI12c provides enterprise solutions for the movement, translation and transformation of information and data heterogeneously and in Big Data Environments through: The ability for existing ODI and SQL developers to leverage new Big Data technologies. A metadata focused approach for cataloging, defining and reusing Big Data technologies, mappings and process executions. Integration between many heterogeneous environments and technologies such as HDFS and Hive. Generation of Hive Query Language. Working with Big Data using Knowledge Modules  ODI12c provides developers with the ability to define sources and targets and visually develop mappings to effect the movement and transformation of data.  As the mappings are created, ODI12c leverages a rich library of prebuilt integrations, known as Knowledge Modules (KMs).  These KMs are contextual to the technologies and platforms to be integrated.  Steps and actions needed to manage the data integration are pre-built and configured within the KMs.  The Oracle Data Integrator Application Adapter for Hadoop provides a series of KMs, specifically designed to integrate with Big Data Technologies.  The Big Data KMs include: Check Knowledge Module Reverse Engineer Knowledge Module Hive Transform Knowledge Module Hive Control Append Knowledge Module File to Hive (LOAD DATA) Knowledge Module File-Hive to Oracle (OLH-OSCH) Knowledge Module  Nothing to beat an Example: To demonstrate the use of the KMs which are part of the ODI Application Adapter for Hadoop, a mapping may be defined to move data between files and Hive targets.  The mapping is defined by dragging the source and target into the mapping, performing the attribute (column) mapping (see Figure 1) and then selecting the KM which will govern the process.  In this mapping example, movie data is being moved from an HDFS source into a Hive table.  Some of the attributes, such as “CUSTID to custid”, have been mapped over. Figure 1  Defining the Mapping Before the proper KM can be assigned to define the technology for the mapping, it needs to be added to the ODI project.  The Big Data KMs have been made available to the project through the KM import process.   Generally, this is done prior to defining the mapping. Figure 2  Importing the Big Data Knowledge Modules Following the import, the KMs are available in the Designer Navigator. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Figure 3  The Project View in Designer, Showing Installed IKMs Once the KM is imported, it may be assigned to the mapping target.  This is done by selecting the Physical View of the mapping and examining the Properties of the Target.  In this case MOVIAPP_LOG_STAGE is the target of our mapping. Figure 4  Physical View of the Mapping and Assigning the Big Data Knowledge Module to the Target Alternative KMs may have been selected as well, providing flexibility and abstracting the logical mapping from the physical implementation.  Our mapping may be applied to other technologies as well. The mapping is now complete and is ready to run.  We will see more in a future blog about running a mapping to load Hive. To complete the quick ODI for Big Data Overview, let us take a closer look at what the IKM File to Hive is doing for us.  ODI provides differentiated capabilities by defining the process and steps which normally would have to be manually developed, tested and implemented into the KM.  As shown in figure 5, the KM is preparing the Hive session, managing the Hive tables, performing the initial load from HDFS and then performing the insert into Hive.  HDFS and Hive options are selected graphically, as shown in the properties in Figure 4. Figure 5  Process and Steps Managed by the KM What’s Next Big Data being the shape shifting business challenge it is is fast evolving into the deciding factor between market leaders and others. Now that an introduction to ODI and Big Data has been provided, look for additional blogs coming soon using the Knowledge Modules which make up the Oracle Data Integrator Application Adapter for Hadoop: Importing Big Data Metadata into ODI, Testing Data Stores and Loading Hive Targets Generating Transformations using Hive Query language Loading Oracle from Hadoop Sources For more information now, please visit the Oracle Data Integrator Application Adapter for Hadoop web site, http://www.oracle.com/us/products/middleware/data-integration/hadoop/overview/index.html Do not forget to tune in to the ODI12c Executive Launch webcast on the 12th to hear more about ODI12c and GG12c. Normal 0 false false false EN-US ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";}

    Read the article

  • JavaScript Data Binding Frameworks

    - by dwahlin
    Data binding is where it’s at now days when it comes to building client-centric Web applications. Developers experienced with desktop frameworks like WPF or web frameworks like ASP.NET, Silverlight, or others are used to being able to take model objects containing data and bind them to UI controls quickly and easily. When moving to client-side Web development the data binding story hasn’t been great since neither HTML nor JavaScript natively support data binding. This means that you have to write code to place data in a control and write code to extract it. Although it’s certainly feasible to do it from scratch (many of us have done it this way for years), it’s definitely tedious and not exactly the best solution when it comes to maintenance and re-use. Over the last few years several different script libraries have been released to simply the process of binding data to HTML controls. In fact, the subject of data binding is becoming so popular that it seems like a new script library is being released nearly every week. Many of the libraries provide MVC/MVVM pattern support in client-side JavaScript apps and some even integrate directly with server frameworks like Node.js. Here’s a quick list of a few of the available libraries that support data binding (if you like any others please add a comment and I’ll try to keep the list updated): AngularJS MVC framework for data binding (although closely follows the MVVM pattern). Backbone.js MVC framework with support for models, key/value binding, custom events, and more. Derby Provides a real-time environment that runs in the browser an in Node.js. The library supports data binding and templates. Ember Provides support for templates that automatically update as data changes. JsViews Data binding framework that provides “interactive data-driven views built on top of JsRender templates”. jQXB Expression Binder Lightweight jQuery plugin that supports bi-directional data binding support. KnockoutJS MVVM framework with robust support for data binding. For an excellent look at using KnockoutJS check out John Papa’s course on Pluralsight. Meteor End to end framework that uses Node.js on the server and provides support for data binding on  the client. Simpli5 JavaScript framework that provides support for two-way data binding. WinRT with HTML5/JavaScript If you’re building Windows 8 applications using HTML5 and JavaScript there’s built-in support for data binding in the WinJS library.   I won’t have time to write about each of these frameworks, but in the next post I’m going to talk about my (current) favorite when it comes to client-side JavaScript data binding libraries which is AngularJS. AngularJS provides an extremely clean way – in my opinion - to extend HTML syntax to support data binding while keeping model objects (the objects that hold the data) free from custom framework method calls or other weirdness. While I’m writing up the next post, feel free to visit the AngularJS developer guide if you’d like additional details about the API and want to get started using it.

    Read the article

  • Protect Data and Save Money? Learn How Best-in-Class Organizations do Both

    - by roxana.bradescu
    Databases contain nearly two-thirds of the sensitive information that must be protected as part of any organization's overall approach to security, risk management, and compliance. Solutions for protecting data housed in databases vary from encrypting data at the application level to defense-in-depth protection of the database itself. So is there a difference? Absolutely! According to new research from the Aberdeen Group, Best-in-Class organizations experience fewer data breaches and audit deficiencies - at lower cost -- by deploying database security solutions. And the results are dramatic: Aberdeen found that organizations encrypting data within their databases achieved 30% fewer data breaches and 15% greater audit efficiency with 34% less total cost when compared to organizations encrypting data within applications. Join us for a live webcast with Derek Brink, Vice President and Research Fellow at the Aberdeen Group, next week to learn how your organization can become Best-in-Class.

    Read the article

  • Bad Data is Really the Monster

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Bad Data is really the monster – is an article written by Bikram Sinha who I borrowed the title and the inspiration for this blog. Sinha writes: “Bad or missing data makes application systems fail when they process order-level data. One of the key items in the supply-chain industry is the product (aka SKU). Therefore, it becomes the most important data element to tie up multiple merchandising processes including purchase order allocation, stock movement, shipping notifications, and inventory details… Bad data can cause huge operational failures and cost millions of dollars in terms of time, resources, and money to clean up and validate data across multiple participating systems. Yes bad data really is the monster, so what do we do about it? Close our eyes and hope it stays in the closet? We’ve tacked this problem for some years now at Oracle, and with our latest introduction of Oracle Enterprise Data Quality along with our integrated Oracle Master Data Management products provides a complete, best-in-class answer to the bad data monster. What’s unique about it? Oracle Enterprise Data Quality also combines powerful data profiling, cleansing, matching, and monitoring capabilities while offering unparalleled ease of use. What makes it unique is that it has dedicated capabilities to address the distinct challenges of both customer and product data quality – [different monsters have different needs of course!]. And the ability to profile data is just as important to identify and measure poor quality data and identify new rules and requirements. Included are semantic and pattern-based recognition to accurately parse and standardize data that is poorly structured. Finally all of the data quality components are integrated with Oracle Master Data Management, including Oracle Customer Hub and Oracle Product Hub, as well as Oracle Data Integrator Enterprise Edition and Oracle CRM. Want to learn more? On Tuesday Nov 15th, I invite you to listen to our webcast on Reduce ERP consolidation risks with Oracle Master Data Management I’ll be joined by our partner iGate Patni and be talking about one specific way to deal with the bad data monster specifically around ERP consolidation. Look forward to seeing you there!

    Read the article

  • Class Design and Structure Online Web Store

    - by Phorce
    I hope I have asked this in the right forum. Basically, we're designing an Online Store and I am designing the class structure for ordering a product and want some clarification on what I have so far: So a customer comes, selects their product, chooses the quantity and selects 'Purchase' (I am using the Facade Pattern - So subsystems execute when this action is performed). My class structure: < Order > < Product > <Customer > There is no inheritance, more Association < Order has < Product , < Customer has < Order . Does this structure look ok? I've noticed that I don't handle the "Quantity" separately, I was just going to add this into the "Product" class, but, do you think it should be a class of it's own? Hope someone can help.

    Read the article

  • URL structure for content that is updated daily

    - by Brendon
    A small, simple site I am working on displays a single page with the day's best offers on it. The user is able to move back and forth between previous days. Which of the following URL structures works best? Structure 1 /index.html -- today's best offers /2013-06-29.html -- yesterday's best offers, etc. Structure 2 /index.html -- 302 redirects to /2013-06-30.html (or whatever today is) /2013-06-30.html -- today's best offers /2013-06-29.html -- yesterday's best offers, etc. I quite like structure 2 from the user's point of view (they can share content easily), but I am a bit concerned about updating the redirect from /index.html every single day -- would this perhaps have unintended SEO consequences?

    Read the article

  • Where can I locate business data to use in my application?

    - by Aaron McIver
    This question talks about any and all free public raw data which appeared to have valuable pieces but nothing that really provides what I am looking for. Instead of using a socially defined listing of businesses (foursquare), I would like a business listing data set of registered businesses and associated addresses that could then be searchable based on location (coordinates). The critical need is that the data set should be filterable based on varying criteria (give me all restaurants, coffee shops, etc...). If the data is free that is great but anywhere that sells this type of data would also suffice. Infochimps looked like a possibility but perhaps something a bit more extensive exists. Where can I find a free or for fee data set of registered business that is filterable based on type of business and location?

    Read the article

  • What is the most complicated data structure you have used in a practical situation?

    - by Fanatic23
    The germ for this question came up from a discussion I was having with couple of fellow developers from the industry. Turns out that in a lot of places project managers are wary about complex data structures, and generally insist on whatever exists out-of-the-box from standard library/packages. The general idea seems to be like use a combination of whats already available unless performance is seriously impeded. This helps keeping the code base simple, which to the non-diplomatic would mean "we have high attrition, and newer ones we hire may not be that good". So no bloom filter or skip-lists or splay trees for you CS junkies. So here's the question (again): Whats the most complicated data structure you did or used in office? Helps get a sense of how good/sophisticated real world software are.

    Read the article

  • Is there a data structure for this type of list/map?

    - by Nick
    Perhaps there's a name for what I want, but I'm not aware of it. I need something similar to a LinkedHashMap in Java, but where it returns the 'previous' value if there's no value at the specified key. That is, I have a list of objects stored by an integer key (which is in units of time in my case): ; key->value 10->A 15->B 20->C So, if I were to query for a value for key 0-9, it would return null. The special part is if I queried for something 10 <= i <= 14 it would return A. Or, for i = 20, it would return C. Is there a data structure for this?

    Read the article

  • How do I do a game loop in c99?

    - by linitbuff
    I'm having trouble with how to structure a game using c99. I've seen a few tutorials on making a game loop, but they are all done with c++ and classes. My main problem seems to be moving data around between the functions without creating a mess, and what stuff to put in what header files etc. Do I just do something similar to the c++ loops, and create a class-like header with a structure containing all items needed by more than one of the functions, along with the prototypes of said functions, and include the header in each function's header file? Then, in the main function, instantiate the structure and pass a pointer to it to every function in the loop? Is this ok, or is there a better way to do it, and are there any good 'c' specific tutorials available? Cheers

    Read the article

  • SubSonic 2.x now supports TVP's - SqlDbType.Structure / DataTables for SQL Server 2008

    - by ElHaix
    For those interested, I have now modified the SubSonic 2.x code to recognize and support DataTable parameter types. You can read more about SQL Server 2008 features here: http://download.microsoft.com/download/4/9/0/4906f81b-eb1a-49c3-bb05-ff3bcbb5d5ae/SQL%20SERVER%202008-RDBMS/T-SQL%20Enhancements%20with%20SQL%20Server%202008%20-%20Praveen%20Srivatsav.pdf What this enhancement will now allow you to do is to create a partial StoredProcedures.cs class, with a method that overrides the stored procedure wrapper method. A bit about good form: My DAL has no direct table access, and my DB only has execute permissions for that user to my sprocs. As such, SubSonic only generates the AllStructs and StoredProcedures classes. The SPROC: ALTER PROCEDURE [dbo].[testInsertToTestTVP] @UserDetails TestTVP READONLY, @Result INT OUT AS BEGIN SET NOCOUNT ON; SET @Result = -1 --SET IDENTITY_INSERT [dbo].[tbl_TestTVP] ON INSERT INTO [dbo].[tbl_TestTVP] ( [GroupInsertID], [FirstName], [LastName] ) SELECT [GroupInsertID], [FirstName], [LastName] FROM @UserDetails IF @@ROWCOUNT > 0 BEGIN SET @Result = 1 SELECT @Result RETURN @Result END --SET IDENTITY_INSERT [dbo].[tbl_TestTVP] OFF END The TVP: CREATE TYPE [dbo].[TestTVP] AS TABLE( [GroupInsertID] [varchar](50) NOT NULL, [FirstName] [varchar](50) NOT NULL, [LastName] [varchar](50) NOT NULL ) GO The the auto gen tool runs, it creates the following erroneous method: /// <summary> /// Creates an object wrapper for the testInsertToTestTVP Procedure /// </summary> public static StoredProcedure TestInsertToTestTVP(string UserDetails, int? Result) { SubSonic.StoredProcedure sp = new SubSonic.StoredProcedure("testInsertToTestTVP", DataService.GetInstance("MyDAL"), "dbo"); sp.Command.AddParameter("@UserDetails", UserDetails, DbType.AnsiString, null, null); sp.Command.AddOutputParameter("@Result", DbType.Int32, 0, 10); return sp; } It sets UserDetails as type string. As it's good form to have two folders for a SubSonic DAL - Custom and Generated, I created a StoredProcedures.cs partial class in Custom that looks like this: /// <summary> /// Creates an object wrapper for the testInsertToTestTVP Procedure /// </summary> public static StoredProcedure TestInsertToTestTVP(DataTable dt, int? Result) { DataSet ds = new DataSet(); SubSonic.StoredProcedure sp = new SubSonic.StoredProcedure("testInsertToTestTVP", DataService.GetInstance("MyDAL"), "dbo"); // TODO: Modify the SubSonic code base in sp.Command.AddParameter to accept // a parameter type of System.Data.SqlDbType.Structured, as it currently only accepts // System.Data.DbType. //sp.Command.AddParameter("@UserDetails", dt, System.Data.SqlDbType.Structured null, null); sp.Command.AddParameter("@UserDetails", dt, SqlDbType.Structured); sp.Command.AddOutputParameter("@Result", DbType.Int32, 0, 10); return sp; } As you can see, the method signature now contains a DataTable, and with my modification to the SubSonic framework, this now works perfectly. I'm wondering if the SubSonic guys can modify the auto-gen to recognize a TVP in a sproc signature, as to avoid having to re-write the warpper? Does SubSonic 3.x support Structured data types? Also, I'm sure many will be interested in using this code, so where can I upload the new code? Thanks.

    Read the article

  • Parsing a file with hierarchical structure in Python

    - by Kevin Stargel
    I'm trying to parse the output from a tool into a data structure but I'm having some difficulty getting things right. The file looks like this: Fruits Apple Auxiliary Core Extras Banana Something Coconut Vegetables Eggplant Rutabaga You can see that top-level items are indented by one space, and items beneath that are indented by two spaces for each level. The items are also in alphabetical order. How do I turn the file into a Python list that's something like ["Fruits", "Fruits/Apple", "Fruits/Banana", ..., "Vegetables", "Vegetables/Eggplant", "Vegetables/Rutabaga"]?

    Read the article

  • Java Data Structure

    - by Joe
    Hi there, I'm looking for a data structure that will act like a Queue so that I can hava First In First Out behaviour, but ideally I would also be able to see if an element exists in that Queue in constant time as you can do with a HashMap, rather than the linear time that you get with a LinkedList. I thought a LinkedHashMap might do the job, but although I could make an iterator and just take and then remove the first element of the iteration to produce a sort of poll() method, I'm wondering if there is a better way. Many thanks in advance

    Read the article

< Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >