Search Results

Search found 9494 results on 380 pages for 'least squares'.

Page 24/380 | < Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >

  • Extreme Optimization Numerical Libraries for .NET – Part 1 of n

    - by JoshReuben
    While many of my colleagues are fascinated in constructing the ultimate ViewModel or ServiceBus, I feel that this kind of plumbing code is re-invented far too many times – at some point in the near future, it will be out of the box standard infra. How many times have you been to a customer site and built a different variation of the same kind of code frameworks? How many times can you abstract Prism or reliable and discoverable WCF communication? As the bar is raised for whats bundled with the framework and more tasks become declarative, automated and configurable, Information Systems will expose a higher level of abstraction, forcing software engineers to focus on more advanced computer science and algorithmic tasks. I've spent the better half of the past decade building skills in .NET and expanding my mathematical horizons by working through the Schaums guides. In this series I am going to examine how these skillsets come together in the implementation provided by ExtremeOptimization. Download the trial version here: http://www.extremeoptimization.com/downloads.aspx Overview The library implements a set of algorithms for: linear algebra, complex numbers, numerical integration and differentiation, solving equations, optimization, random numbers, regression, ANOVA, statistical distributions, hypothesis tests. EONumLib combines three libraries in one - organized in a consistent namespace hierarchy. Mathematics Library - Extreme.Mathematics namespace Vector and Matrix Library - Extreme.Mathematics.LinearAlgebra namespace Statistics Library - Extreme.Statistics namespace System Requirements -.NET framework 4.0  Mathematics Library The classes are organized into the following namespace hierarchy: Extreme.Mathematics – common data types, exception types, and delegates. Extreme.Mathematics.Calculus - numerical integration and differentiation of functions. Extreme.Mathematics.Curves - points, lines and curves, including polynomials and Chebyshev approximations. curve fitting and interpolation. Extreme.Mathematics.Generic - generic arithmetic & linear algebra. Extreme.Mathematics.EquationSolvers - root finding algorithms. Extreme.Mathematics.LinearAlgebra - vectors , matrices , matrix decompositions, solvers for simultaneous linear equations and least squares. Extreme.Mathematics.Optimization – multi-d function optimization + linear programming. Extreme.Mathematics.SignalProcessing - one and two-dimensional discrete Fourier transforms. Extreme.Mathematics.SpecialFunctions

    Read the article

  • Keeping game model and graphics/animation separate but in sync

    - by AJM
    Suppose I'm building a chess game where I want to have animations. Pieces glide to their new squares when moved. Pieces perform attack animations when capturing other pieces. I'm not sure how to effectively separate the data and logic needed for these animations and the actual game model (in the MVC sense). The pieces themselves should ideally not have to worry about their pixel coordinates or current animation frame. At the same time, many changes to the model are effectively driven by animations. A moved piece changes its position after (before?) its sprite is done gliding. A piece is removed from the board after the capturing piece is finished its attack animation. How would you suggest I manage the game model, the graphics and animations, and their relationships? For example, where would the animations "live"? How would animations be created and managed in response to player moves? How would animations drive updates to the game model, or how would the game model drive animations?

    Read the article

  • Rendering Text with the HTML5 Canvas

    - by dwahlin
    In a previous post I walked through the fundamentals of rendering shapes such as squares and circles using the HTML5 Canvas API. In this post I’ll provide a simple example of rendering and rotating text. To render text you can use the fillText() or strokeText() functions which take the text to render as well as the x and y coordinates of where to render it. To rotate text you can use the transform functions available with the HTML5 Canvas such as save(), rotate(), and restore(). To run the live demos that follow click the Result tab in the blue bar of each demo.   Rendering Text This example provides a simple look at how text can be rendered using the HTML5 Canvas. It iterates through a loop, updates the text and font size dynamically, measures the width of the text using the measureText() function, and then calls fillText() to render the text with the desired font size to the screen.   Here’s what the code above renders:   Rotating Text This example shows how text can be rendered and even rotated by using transform functions built into the HTML5 Canvas. The code starts by rendering text the standard way using fillText(). It then saves the state of the canvas performs an x,y coordinate transform (moves to 100, 300 respectively) and then rotates the canvas –90 degrees using the rotate() function. After the text is rendered, the canvas is reverted back to it’s existing state (saved by calling the save() function) by calling the restore() function. An additional line of text is then rendered.   Here’s what the code above renders:   If you’re interested in learning more about the HTML5 Canvas and how it can be used in your Web or Windows 8 applications, check out my HTML5 Canvas Fundamentals course from Pluralsight.

    Read the article

  • Detecting Units on a Grid

    - by hammythepig
    I am making a little turn based strategy game in pygame, that uses a grid system as the main map to hold all the characters and the map layout. (Similar to Fire Emblem, or Advance Wars) I am trying to determine a way to quickly and efficiently (i.e. without too much of a slow down) check if there are any characters within a given range of the currently selected character. So to illustrate: O = currently selected character X = squares within range Range of 1: X X O X X Range of 2: X X X X X X O X X X X X X Range of 3: X X X X X X X X X X X X O X X X X X X X X X X X X Now I have to tell the user who is in range, and I have to let the user choose who to attack if there are multiple enemies in range. If I have a 5x5 grid, filled with " " for empty and numbers for the characters: [ ][ ][ ][ ][4] [ ][1][ ][ ][ ] [ ][ ][ ][ ][ ] [ ][ ][2][3][ ] [ ][ ][ ][ ][ ] Depending on which character the user selects, I would like to show the user which other characters are in range. So if they all had a range of 3: 1 can hit 2 2 can hit 1 or 3 3 can hit 2 4 cannot hit anyone. So, How do I quickly and/or efficiently run though my grid and tell the user where the enemies are? PS- As a bonus, if someone could give an answer that could also work for a minimum distance type range, I would give them a pat on the back and a high five, should they ever travel to Canada and we ever meet in life. For example: Range of 3 to 5: (- is out of range) X X X X X X X X X X X X - X X X X X X - - - X X X X X X - - O - - X X X X X X - - - X X X X X X - X X X X X X X X X X X X

    Read the article

  • Logic that can traverse all possible layouts, but not checking every combination of identical pieces?

    - by George Bailey
    Suppose we have a grid of arbitrary size, which is filled by blocks of various widths and heights. There are many 2x2 blocks (meaning they take a total of 4 cells in the grid) and many 3x3 blocks, as well as some 5x4, 4x5, 2x3, etc. I was hoping I could set up a program that would look at all possible layouts, and rank them, and find the best one. Simply it would look at all possible positions of these blocks, and see what setup is the best rank. (the rank based on how many of these can be connected by a roadway system of 1x1 road blocks, and how many squares can be left empty after this is done. - wanting to fit the most blocks as possible with the least roads.) My question, is how should I traverse all the possibilities? I could take all the blocks and try them one at a time, but since all 2x2 blocks are equal, and there are a couple dozen of them, there is no point in trying every combination there, as in the following AA BBB AA BBB CCBBB CCEEE DD EEE DD EEE is exactly the same as CC EEE CC EEE AAEEE AABBB DD BBB DD BBB You notice that there are 2 3x3 blocks and 3 2x2 blocks in my two examples. Based on the model I have now, the computer would try both of these combinations, as well as many others. The problem is that it is going to try every single possible variation of my couple dozen 2x2 blocks. And that is sorely inefficient. Is there a reasonable way to take out this duplicated work, somehow getting the computer program to treat all 2x2 blocks as equal/identical, instead of one requiring rearranging/swapping of these identical blocks? Can this be done?

    Read the article

  • Is this technique for stat tracking without a database workable?

    - by baptzmoffire
    If I wanted to create a chess game, for iOS, that tracked both player moves (for retracing the progression of a game and for player stats), what would be the simplest route to take? To clarify, I want to track not only the moves a player has made in a particular game, but how often that player has made that move in past games. For example I want to be able to track: How many times a given player has opened by moving the king pawn up two squares (e4) as white, on move number one. What is the percentage of time the player responds to white's e4 opening move, with moving his own king pawn to e5? What percentage of time does he respond by moving his queenside bishop pawn to c5? And so on. If it's not clear, the stat tracking system should also be able to report how many times this player, as black, move his queen to h1, on move number 30. I'm using Parse.com for my back-end as a server (BaaS) service. If I were to create a class that writes strings that identify move number, player color, moved piece, algebraic notation of the square (e.g. "d8") to a file, locally in the file system saves the file to Parse, and deletes the temporary file from file system upon opening the same game in my tableview (a la a "With Friends" game), download this file from Parse, parse through it and retrieve all stats/history, assign all relevant values to variables Is this plan viable, or is there an easier way?

    Read the article

  • Termite colony simulator using java

    - by ashii
    hi everyone, i hve to design a simulator that will maintain an environment, which consists of a collection of patches arranged in a rectangular grid of arbitrary size. Each patch contains zero or more wood chips. A patch may be occupied by one or more termites or predators, which are mobile entities that live within the world and behave according to simple rules. A TERMITE can pick up a wood chip from the patch that it is currently on, or drop a wood chip that it is carrying. Termites travel around the grid by moving randomly from their current patch to a neighbouring patch, in one of four possible directions. New termites may hatch from eggs, and this is simulated by the appearance of a new termite at a random patch within the environment. A PREDATOR moves in a similar way to termites, and if a predator moves onto a patch that is occupied by a termite, then the predator eats the termite. At initialization, the termites, predators, and wood chips are distributed randomly in the environment. Simulation then proceeds in a loop, and the new state of the environment is obtained at each iteration. i have designed the arena using jpanel but im not able to randomnly place wood,termite and predator in that arena. can any one help me out?? my code for the arena is as following: 01 import java.awt.*; 02 import javax.swing.*; 03 04 public class Arena extends JPanel 05 { 06 private static final int Rows = 8; 07 private static final int Cols = 8; 08 public void paint(Graphics g) 09 { 10 Dimension d = this.getSize(); 11 // don't draw both sets of squares, when you can draw one 12 // fill in the entire thing with one color 13 g.setColor(Color.WHITE); 14 // make the background 15 g.fillRect(0,0,d.width,d.height); 16 // draw only black 17 g.setColor(Color.BLACK); 18 // pick a square size based on the smallest dimension 19 int sqsize = ((d.width<d.height) ? d.width/Cols : d.height/Rows); 20 // loop for rows 21 for (int row=0; row<Rows; row++) 22 { 23 int y = row*sqsize; // y stays same for entire row, set here 24 int x = (row%2)*sqsize; // x starts at 0 or one square in 25 for (int i=0; i<Cols/2; i++) 26 { 27 // you will only be drawing half the squares per row 28 // draw square 29 g.fillRect(x,y,sqsize,sqsize); 30 // move two square sizes over 31 x += sqsize*2; 32 } 33 } 34 35 } 36 37 38 39 public void update(Graphics g) { paint(g); } 40 41 42 43 public static void main (String[] args) 44 { 45 46 JFrame frame = new JFrame("Arena"); 47 frame.setSize(600,400); 48 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 49 frame.setContentPane(new Arena()); 50 frame.setVisible(true); 51 } 52 53 }

    Read the article

  • Is white the best base color to start with when planning to shade sprites within Unity?

    - by SpartanDonut
    I'm looking into prototyping a game in Unity which will consist of solid square sprites / tiles. I figure I can represent different types of objects with different colors for each of the tiles in the game. I figure that I can import a single square sprite and shade it appropriately in Unity as opposed to imported squares of many different colors. My experience with adjusting the hue and saturation within Photoshop shows that white is not an easy color to change as things that are white often stay white. My testing in Unity shows that I can change the "color" of a sprite to anything other than white and the sprite is seemingly shaded appropriately, despite what I would have thought given my Photoshop experience. Since white objects do seem to take on the appropriate color shading when changed within Unity my gut tells me that this is the best base color to begin with, meaning that I can import a single white square sprite and simply adjust the color to represent different objects and object states. Is a white sprite actually the best color sprite to begin with and why does something like this work in Unity as opposed to adjusting the hue and saturation within Photoshop?

    Read the article

  • PC always boots into Command Line

    - by Neptun1337
    My current Problem is, that when I try to install Ubuntu 12.04 Desktop, neither unity nor gnome are installed. During the installation, I am prompted with the message that only the core is installed, and which additional packages I would like to have installed. When I select ubuntu-desktop, the installer grabs some packages and installs them, but after completing the installation and booting into my Ubuntu, i dont get any GUI, but instead I have the command line interface. When I try to start a new Unity session, i get an error saying that Unity is not installed, so I tried to install it. However this changes nothing, my PC still boots into the Command Line. Are there any solutions to my problem? Any help would be greatly appreciated. Thanks in advance. EDIT: I tried to fix it with the following commands: $ sudo apt-get install ubuntu-desktop $ sudo apt-get install gdm $ sudo /etc/init.d/gdm start When I try to boot, I get the Ubuntu splash screen, but then the screen mainly shows white squares, with a few black ones at the top.

    Read the article

  • Modular building technique with angles? (A roof)

    - by Mungoid
    Ive been spending a bit of time lately studying the modular buildings of many games and reading/viewing several tutorials about it as well, but almost every example I see uses a plain square building that does not have any angled roof or similar. In all my applications (CS6, Blender/Max, UDK) I adhere to the same grid spacing and I get pretty good results, but trying to make modular angled pieces is confusing me as I'm not sure the best way to approach it. Below is some shots of my template sheet and workflow I have been doing. Should I do the roof separately or is it possible for me to keep it in the same texture sheet? The main issue is below. I have made a couple modular roof pieces but when i try to use them, i end up needing to model multiple other parts to fill gaps based on what roof shape i want. I then model those 'filler' pieces and now i have that much less space left in my texture sheet and those pieces are usually not that reusable for anything else. This is where im not sure how to proceed. If anyone has any links to documents or papers talking about this or advice, I would greatly appreciate it! =-) My main roof pieces with the gaps My power of 2 texture sheet, with 16x16 grid squares. The texture sheet loaded into blender on a 16x16 plane and starting to separate and extrude.

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • VS 2012 Code Review &ndash; Before Check In OR After Check In?

    - by Tarun Arora
    “Is Code Review Important and Effective?” There is a consensus across the industry that code review is an effective and practical way to collar code inconsistency and possible defects early in the software development life cycle. Among others some of the advantages of code reviews are, Bugs are found faster Forces developers to write readable code (code that can be read without explanation or introduction!) Optimization methods/tricks/productive programs spread faster Programmers as specialists "evolve" faster It's fun “Code review is systematic examination (often known as peer review) of computer source code. It is intended to find and fix mistakes overlooked in the initial development phase, improving both the overall quality of software and the developers' skills. Reviews are done in various forms such as pair programming, informal walkthroughs, and formal inspections.” Wikipedia No where does the definition mention whether its better to review code before the code has been committed to version control or after the commit has been performed. No matter which side you favour, Visual Studio 2012 allows you to request for a code review both before check in and also request for a review after check in. Let’s weigh the pros and cons of the approaches independently. Code Review Before Check In or Code Review After Check In? Approach 1 – Code Review before Check in Developer completes the code and feels the code quality is appropriate for check in to TFS. The developer raises a code review request to have a second pair of eyes validate if the code abides to the recommended best practices, will not result in any defects due to common coding mistakes and whether any optimizations can be made to improve the code quality.                                             Image 1 – code review before check in Pros Everything that gets committed to source control is reviewed. Minimizes the chances of smelly code making its way into the code base. Decreases the cost of fixing bugs, remember, the earlier you find them, the lesser the pain in fixing them. Cons Development Code Freeze – Since the changes aren’t in the source control yet. Further development can only be done off-line. The changes have not been through a CI build, hard to say whether the code abides to all build quality standards. Inconsistent! Cumbersome to track the actual code review process.  Not every change to the code base is worth reviewing, a lot of effort is invested for very little gain. Approach 2 – Code Review after Check in Developer checks in, random code reviews are performed on the checked in code.                                                      Image 2 – Code review after check in Pros The code has already passed the CI build and run through any code analysis plug ins you may have running on the build server. Instruct the developer to ensure ZERO fx cop, style cop and static code analysis before check in. Code is cleaner and smell free even before the code review. No Offline development, developers can continue to develop against the source control. Cons Bad code can easily make its way into the code base. Since the review take place much later in the cycle, the cost of fixing issues can prove to be much higher. Approach 3 – Hybrid Approach The community advocates a more hybrid approach, a blend of tooling and human accountability quotient.                                                               Image 3 – Hybrid Approach 1. Code review high impact check ins. It is not possible to review everything, by setting up code review check in policies you can end up slowing your team. More over, the code that you are reviewing before check in hasn't even been through a green CI build either. 2. Tooling. Let the tooling work for you. By running static analysis, fx cop, style cop and other plug ins on the build agent, you can identify the real issues that in my opinion can't possibly be identified using human reviews. Configure the tooling to report back top 10 issues every day. Mandate the manual code review of individuals who keep making it to this list of shame more often. 3. During Merge. I would prefer eliminating some of the other code issues during merge from Main branch to the release branch. In a scrum project this is still easier because cheery picking the merges is a possibility and the size of code being reviewed is still limited. Let the tooling work for you, if some one breaks the CI build often, put them on a gated check in build course until you see improvement. If some one appears on the top 10 list of shame generated via the build then ensure that all their code is reviewed till you see improvement. At the end of the day, the goal is to ensure that the code being delivered is top quality. By enforcing a code review before any check in, you force the developer to work offline or stay put till the review is complete. What do the experts say? So I asked a few expects what they thought of “Code Review quality gate before Checking in code?" Terje Sandstrom | Microsoft ALM MVP You mean a review quality gate BEFORE checking in code????? That would mean a lot of code staying either local or in shelvesets, and not even been through a CI build, and a green CI build being the main criteria for going further, f.e. to the review state. I would not like code laying around with no checkin’s. Having a requirement that code is checked in small pieces, 4-8 hours work max, and AT LEAST daily checkins, a manual code review comes second down the lane. I would expect review quality gates to happen before merging back to main, or before merging to release.  But that would all be on checked-in code.  Branching is absolutely one way to ease the pain.   Another way we are using is automatic quality builds, running metrics, coverage, static code analysis.  Unfortunately it takes some time, would be great to be on CI’s – but…., so it’s done scheduled every night. Based on this we get, among other stuff,  top 10 lists of suspicious code, which is then subjected to reviews.  If a person seems to be very popular on these top 10 lists, we subject every check in from that person to a review for a period. That normally helps.   None of the clients I have can afford to have every checkin reviewed, so we need to find ways around it. I don’t disagree with the nicety of having all the code reviewed, but I find it hard to find those resources in today’s enterprises. David V. Corbin | Visual Studio ALM Ranger I tend to agree with both sides. I hate having code that is not checked in, but at the same time hate having “bad” code in the repository. I have found that branching is one approach to solving this dilemma. Code is checked into the private/feature branch before the review, but is not merged over to the “official” branch until after the review. I advocate both, depending on circumstance (especially team dynamics)   - The “pre-checkin” is usually for elements that may impact the project as a whole. Think of it as another “gate” along with passing unit tests. - The “post-checkin” may very well not be at the changeset level, but correlates to a review at the “user story” level.   Again, this depends on team dynamics in play…. Robert MacLean | Microsoft ALM MVP I do not think there is no right answer for the industry as a whole. In short the question is why do you do reviews? Your question implies risk mitigation, so in low risk areas you can get away with it after check in while in high risk you need to do it before check in. An example is those new to a team or juniors need it much earlier (maybe that is before checkin, maybe that is soon after) than seniors who have shipped twenty sprints on the team. Abhimanyu Singhal | Visual Studio ALM Ranger Depends on per scenario basis. We recommend post check-in reviews when: 1. We don't want to block other checks and processes on manual code reviews. Manual reviews take time, and some pieces may not require manual reviews at all. 2. We need to trace all changes and track history. 3. We have a code promotion strategy/process in place. For risk mitigation, post checkin code can be promoted to Accepted branches. Or can be rejected. Pre Checkin Reviews are used when 1. There is a high risk factor associated 2. Reviewers are generally (most of times) have immediate availability. 3. Team does not have strict tracking needs. Simply speaking, no single process fits all scenarios. You need to select what works best for your team/project. Thomas Schissler | Visual Studio ALM Ranger This is an interesting discussion, I’m right now discussing details about executing code reviews with my teams. I see and understand the aspects you brought in, but there is another side as well, I’d like to point out. 1.) If you do reviews per check in this is not very practical as a hard rule because this will disturb the flow of the team very often or it will lead to reduce the checkin frequency of the devs which I would not accept. 2.) If you do later reviews, for example if you review PBIs, it is not easy to find out which code you should review. Either you review all changesets associate with the PBI, but then you might review code which has been changed with a later checkin and the dev maybe has already fixed the issue. Or you review the diff of the latest changeset of the PBI with the first but then you might also review changes of other PBIs. Jakob Leander | Sr. Director, Avanade In my experience, manual code review: 1. Does not get done and at the very least does not get redone after changes (regardless of intentions at start of project) 2. When a project actually do it, they often do not do it right away = errors pile up 3. Requires a lot of time discussing/defining the standard and for the team to learn it However code review is very important since e.g. even small memory leaks in a high volume web solution have big consequences In the last years I have advocated following approach for code review - Architects up front do “at least one best practice example” of each type of component and tell the team. Copy from this one. This should include error handling, logging, security etc. - Dev lead on project continuously browse code to validate that the best practices are used. Especially that patterns etc. are not broken. You can do this formally after each sprint/iteration if you want. Once this is validated it is unlikely to “go bad” even during later code changes Agree with customer to rely on static code analysis from Visual Studio as the one and only coding standard. This has HUUGE benefits - You can easily tweak to reach the level you desire together with customer - It is easy to measure for both developers/management - It is 100% consistent across code base - It gets validated all the time so you never end up getting hammered by a customer review in the end - It is easy to tell the developer that you do not want code back unless it has zero errors = minimize communication You need to track this at least during nightly builds and make sure team sees total # issues. Do not allow #issues it to grow uncontrolled. On the project I run I require code analysis to have run on code before checkin (checkin rule). This means -  You have to have clean compile (or CA wont run) so this is extra benefit = very few broken builds - You can change a few of the rules to compile as errors instead of warnings. I often do this for “missing dispose” issues which you REALLY do not want in your app Tip: Place your custom CA rules files as part of solution. That  way it works when you do branching etc. (path to CA file is relative in VS) Some may argue that CA is not as good as manual inspection. But since manual inspection in reality suffers from the 3 issues in start it is IMO a MUCH better (and much cheaper) approach from helicopter perspective Tirthankar Dutta | Director, Avanade I think code review should be run both before and after check ins. There are some code metrics that are meant to be run on the entire codebase … Also, especially on multi-site projects, one should strive to architect in a way that lets men manage the framework while boys write the repetitive code… scales very well with the need to review less by containment and imposing architectural restrictions to emphasise the design. Bruno Capuano | Microsoft ALM MVP For code reviews (means peer reviews) in distributed team I use http://www.vsanywhere.com/default.aspx  David Jobling | Global Sr. Director, Avanade Peer review is the only way to scale and its a great practice for all in the team to learn to perform and accept. In my experience you soon learn who's code to watch more than others and tune the attention. Mikkel Toudal Kristiansen | Manager, Avanade If you have several branches in your code base, you will need to merge often. This requires manual merging, when a file has been changed in both branches. It offers a good opportunity to actually review to changed code. So my advice is: Merging between branches should be done as often as possible, it should be done by a senior developer, and he/she should perform a full code review of the code being merged. As for detecting architectural smells and code smells creeping into the code base, one really good third party tools exist: Ndepend (http://www.ndepend.com/, for static code analysis of the current state of the code base). You could also consider adding StyleCop to the solution. Jesse Houwing | Visual Studio ALM Ranger I gave a presentation on this subject on the TechDays conference in NL last year. See my presentation and slides here (talk in Dutch, but English presentation): http://blog.jessehouwing.nl/2012/03/did-you-miss-my-techdaysnl-talk-on-code.html  I’d like to add a few more points: - Before/After checking is mostly a trust issue. If you have a team that does diligent peer reviews and regularly talk/sit together or peer review, there’s no need to enforce a before-checkin policy. The peer peer-programming and regular feedback during development can take care of most of the review requirements as long as the team isn’t under stress. - Under stress, enforce pre-checkin reviews, it might sound strange, if you’re already under time or budgetary constraints, but it is under such conditions most real issues start to be created or pile up. - Use tools to catch most common errors, Code Analysis/FxCop was already mentioned. HP Fortify, Resharper, Coderush etc can help you there. There are also a lot of 3rd party rules you can add to Code Analysis. I’ve written a few myself (http://fccopcontrib.codeplex.com) and various teams from Microsoft have added their own rules (MSOCAF for SharePoint, WSSF for WCF). For common errors that keep cropping up, see if you can define a rule. It’s much easier. But more importantly make sure you have a good help page explaining *WHY* it's wrong. If you have small feature or developer branches/shelvesets, you might want to review pre-merge. It’s still better to do peer reviews and peer programming, but the most important thing is that bad quality code doesn’t make it into the important branch. So my philosophy: - Use tooling as much as possible. - Make sure the team understands the tooling and the importance of the things it flags. It’s too easy to just click suppress all to ignore the warnings. - Under stress, tighten process, it’s under stress that the problems of late reviews will really surface - Most importantly if you do reviews do them as early as possible, but never later than needed. In other words, pre-checkin/post checking doesn’t really matter, as long as the review is done before the code is released. It’ll just be much more expensive to fix any review outcomes the later you find them. --- I would love to hear what you think!

    Read the article

  • The Incremental Architect&acute;s Napkin - #2 - Balancing the forces

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/02/the-incremental-architectacutes-napkin---2---balancing-the-forces.aspxCategorizing requirements is the prerequisite for ecconomic architectural decisions. Not all requirements are created equal. However, to truely understand and describe the requirement forces pulling on software development, I think further examination of the requirements aspects is varranted. Aspects of Functionality There are two sides to Functionality requirements. It´s about what a software should do. I call that the Operations it implements. Operations are defined by expressions and control structures or calls to frameworks of some sort, i.e. (business) logic statements. Operations calculate, transform, aggregate, validate, send, receive, load, store etc. Operations are about behavior; they take input and produce output by considering state. I´m not using the term “function” here, because functions - or methods or sub-programs - are not necessary to implement Operations. Functions belong to a different sub-aspect of requirements (see below). Operations alone are not enough, though, to make a customer happy with regard to his/her Functionality requirements. Only correctly implemented Operations provide full value. This should make clear, why testing is so important. And not just manual tests during development of some operational feature, but automated tests. Because only automated tests scale when over time the number of operations increases. Without automated tests there is no guarantee formerly correct operations are still correct after more got added. To retest all previous operations manually is infeasible. So whoever relies just on manual tests is not really balancing the two forces Operations and Correctness. With manual tests more weight is put on the side of the scale of Operations. That might be ok for a short period of time - but in the long run it will bite you. You need to plan for Correctness in the long run from the first day of your project on. Aspects of Quality As important as Functionality is, it´s not the driver for software development. No software has ever been written to just implement some operation in code. We don´t need computers just to do something. All computers can do with software we can do without them. Well, at least given enough time and resources. We could calculate the most complex formulas without computers. We could do auctions with millions of people without computers. The only reason we want computers to help us with this and a million other Operations is… We don´t want to wait for the results very long. Or we want less errors. Or we want easier accessability to complicated solutions. So the main reason for customers to buy/order software is some Quality. They want some Functionality with a higher Quality (e.g. performance, scalability, usability, security…) than without the software. But Qualities come in at least two flavors: Most important are Primary Qualities. That´s the Qualities software truely is written for. Take an online auction website for example. Its Primary Qualities are performance, scalability, and usability, I´d say. Auctions should come within reach of millions of people; setting up an auction should be very easy; finding a suitable auction and bidding on it should be as fast as possible. Only if those Qualities have been implemented does security become relevant. A secure auction website is important - but not as important as a fast auction website. Nobody would want to use the most secure auction website if it was unbearably slow. But there would be people willing to use the fastest auction website even it was lacking security. That´s why security - with regard to online auction software - is not a Primary Quality, but just a Secondary Quality. It´s a supporting quality, so to speak. It does not deliver value by itself. With a password manager software this might be different. There security might be a Primary Quality. Please get me right: I don´t want to denigrate any Quality. There´s a long list of non-functional requirements at Wikipedia. They are all created equal - but that does not mean they are equally important for all software projects. When confronted with Quality requirements check with the customer which are primary and which are secondary. That will help to make good economical decisions when in a crunch. Resources are always limited - but requirements are a bottomless ocean. Aspects of Security of Investment Functionality and Quality are traditionally the requirement aspects cared for most - by customers and developers alike. Even today, when pressure rises in a project, tunnel vision will focus on them. Any measures to create and hold up Security of Investment (SoI) will be out of the window pretty quickly. Resistance to customers and/or management is futile. As long as SoI is not placed on equal footing with Functionality and Quality it´s bound to suffer under pressure. To look closer at what SoI means will help to become more conscious about it and make customers and management aware of the risks of neglecting it. SoI to me has two facets: Production Efficiency (PE) is about speed of delivering value. Customers like short response times. Short response times mean less money spent. So whatever makes software development faster supports this requirement. This must not lead to duct tape programming and banging out features by the dozen, though. Because customers don´t just want Operations and Quality, but also Correctness. So if Correctness gets compromised by focussing too much on Production Efficiency it will fire back. Customers want PE not just today, but over the whole course of a software´s lifecycle. That means, it´s not just about coding speed, but equally about code quality. If code quality leads to rework the PE is on an unsatisfactory level. Also if code production leads to waste it´s unsatisfactory. Because the effort which went into waste could have been used to produce value. Rework and waste cost money. Rework and waste abound, however, as long as PE is not addressed explicitly with management and customers. Thanks to the Agile and Lean movements that´s increasingly the case. Nevertheless more could and should be done in many teams. Each and every developer should keep in mind that Production Efficiency is as important to the customer as Functionality and Quality - whether he/she states it or not. Making software development more efficient is important - but still sooner or later even agile projects are going to hit a glas ceiling. At least as long as they neglect the second SoI facet: Evolvability. Delivering correct high quality functionality in short cycles today is good. But not just any software structure will allow this to happen for an indefinite amount of time.[1] The less explicitly software was designed the sooner it´s going to get stuck. Big ball of mud, monolith, brownfield, legacy code, technical debt… there are many names for software structures that have lost the ability to evolve, to be easily changed to accomodate new requirements. An evolvable code base is the opposite of a brownfield. It´s code which can be easily understood (by developers with sufficient domain expertise) and then easily changed to accomodate new requirements. Ideally the costs of adding feature X to an evolvable code base is independent of when it is requested - or at least the costs should only increase linearly, not exponentially.[2] Clean Code, Agile Architecture, and even traditional Software Engineering are concerned with Evolvability. However, it seems no systematic way of achieving it has been layed out yet. TDD + SOLID help - but still… When I look at the design ability reality in teams I see much room for improvement. As stated previously, SoI - or to be more precise: Evolvability - can hardly be measured. Plus the customer rarely states an explicit expectation with regard to it. That´s why I think, special care must be taken to not neglect it. Postponing it to some large refactorings should not be an option. Rather Evolvability needs to be a core concern for every single developer day. This should not mean Evolvability is more important than any of the other requirement aspects. But neither is it less important. That´s why more effort needs to be invested into it, to bring it on par with the other aspects, which usually are much more in focus. In closing As you see, requirements are of quite different kinds. To not take that into account will make it harder to understand the customer, and to make economic decisions. Those sub-aspects of requirements are forces pulling in different directions. To improve performance might have an impact on Evolvability. To increase Production Efficiency might have an impact on security etc. No requirement aspect should go unchecked when deciding how to allocate resources. Balancing should be explicit. And it should be possible to trace back each decision to a requirement. Why is there a null-check on parameters at the start of the method? Why are there 5000 LOC in this method? Why are there interfaces on those classes? Why is this functionality running on the threadpool? Why is this function defined on that class? Why is this class depending on three other classes? These and a thousand more questions are not to mean anything should be different in a code base. But it´s important to know the reason behind all of these decisions. Because not knowing the reason possibly means waste and having decided suboptimally. And how do we ensure to balance all requirement aspects? That needs practices and transparency. Practices means doing things a certain way and not another, even though that might be possible. We´re dealing with dangerous tools here. Like a knife is a dangerous tool. Harm can be done if we use our tools in just any way at the whim of the moment. Over the centuries rules and practices have been established how to use knifes. You don´t put them in peoples´ legs just because you´re feeling like it. You hand over a knife with the handle towards the receiver. You might not even be allowed to cut round food like potatos or eggs with it. The same should be the case for dangerous tools like object-orientation, remote communication, threads etc. We need practices to use them in a way so requirements are balanced almost automatically. In addition, to be able to work on software as a team we need transparency. We need means to share our thoughts, to work jointly on mental models. So far our tools are focused on working with code. Testing frameworks, build servers, DI containers, intellisense, refactoring support… That´s all nice and well. I don´t want to miss any of that. But I think it´s not enough. We´re missing mental tools, tools for making thinking and talking about software (independently of code) easier. You might think, enough of such tools already exist like all those UML diagram types or Flow Charts. But then, isn´t it strange, hardly any team is using them to design software? Or is that just due to a lack of education? I don´t think so. It´s a matter value/weight ratio: the current mental tools are too heavy weight compared to the value they deliver. So my conclusion is, we need lightweight tools to really be able to balance requirements. Software development is complex. We need guidance not to forget important aspects. That´s like with flying an airplane. Pilots don´t just jump in and take off for their destination. Yes, there are times when they are “flying by the seats of their pants”, when they are just experts doing thing intuitively. But most of the time they are going through honed practices called checklist. See “The Checklist Manifesto” for very enlightening details on this. Maybe then I should say it like this: We need more checklists for the complex businss of software development.[3] But that´s what software development mostly is about: changing software over an unknown period of time. It needs to be corrected in order to finally provide promised operations. It needs to be enhanced to provide ever more operations and qualities. All this without knowing when it´s going to stop. Probably never - until “maintainability” hits a wall when the technical debt is too large, the brownfield too deep. Software development is not a sprint, is not a marathon, not even an ultra marathon. Because to all this there is a foreseeable end. Software development is like continuously and foreever running… ? And sometimes I dare to think that costs could even decrease over time. Think of it: With each feature a software becomes richer in functionality. So with each additional feature the chance of there being already functionality helping its implementation increases. That should lead to less costs of feature X if it´s requested later than sooner. X requested later could stand on the shoulders of previous features. Alas, reality seems to be far from this despite 20+ years of admonishing developers to think in terms of reusability.[1] ? Please don´t get me wrong: I don´t want to bog down the “art” of software development with heavyweight practices and heaps of rules to follow. The framework we need should be lightweight. It should not stand in the way of delivering value to the customer. It´s purpose is even to make that easier by helping us to focus and decreasing waste and rework. ?

    Read the article

  • Oracle Solaris: Zones on Shared Storage

    - by Jeff Victor
    Oracle Solaris 11.1 has several new features. At oracle.com you can find a detailed list. One of the significant new features, and the most significant new feature releated to Oracle Solaris Zones, is casually called "Zones on Shared Storage" or simply ZOSS (rhymes with "moss"). ZOSS offers much more flexibility because you can store Solaris Zones on shared storage (surprise!) so that you can perform quick and easy migration of a zone from one system to another. This blog entry describes and demonstrates the use of ZOSS. ZOSS provides complete support for a Solaris Zone that is stored on "shared storage." In this case, "shared storage" refers to fiber channel (FC) or iSCSI devices, although there is one lone exception that I will demonstrate soon. The primary intent is to enable you to store a zone on FC or iSCSI storage so that it can be migrated from one host computer to another much more easily and safely than in the past. With this blog entry, I wanted to make it easy for you to try this yourself. I couldn't assume that you have a SAN available - which is a good thing, because neither do I! What could I use, instead? [There he goes, foreshadowing again... -Ed.] Developing this entry reinforced the lesson that the solution to every lab problem is VirtualBox. Oracle VM VirtualBox (its formal name) helps here in a couple of important ways. It offers the ability to easily install multiple copies of Solaris as guests on top of any popular system (Microsoft Windows, MacOS, Solaris, Oracle Linux (and other Linuxes) etc.). It also offers the ability to create a separate virtual disk drive (VDI) that appears as a local hard disk to a guest. This virtual disk can be moved very easily from one guest to another. In other words, you can follow the steps below on a laptop or larger x86 system. Please note that the ability to use ZOSS to store a zone on a local disk is very useful for a lab environment, but not so useful for production. I do not suggest regularly moving disk drives among computers. In the method I describe below, that virtual hard disk will contain the zone that will be migrated among the (virtual) hosts. In production, you would use FC or iSCSI LUNs instead. The zonecfg(1M) man page details the syntax for each of the three types of devices. Why Migrate? Why is the migration of virtual servers important? Some of the most common reasons are: Moving a workload to a different computer so that the original computer can be turned off for extensive maintenance. Moving a workload to a larger system because the workload has outgrown its original system. If the workload runs in an environment (such as a Solaris Zone) that is stored on shared storage, you can restore the service of the workload on an alternate computer if the original computer has failed and will not reboot. You can simplify lifecycle management of a workload by developing it on a laptop, migrating it to a test platform when it's ready, and finally moving it to a production system. Concepts For ZOSS, the important new concept is named "rootzpool". You can read about it in the zonecfg(1M) man page, but here's the short version: it's the backing store (hard disk(s), or LUN(s)) that will be used to make a ZFS zpool - the zpool that will hold the zone. This zpool: contains the zone's Solaris content, i.e. the root file system does not contain any content not related to the zone can only be mounted by one Solaris instance at a time Method Overview Here is a brief list of the steps to create a zone on shared storage and migrate it. The next section shows the commands and output. You will need a host system with an x86 CPU (hopefully at least a couple of CPU cores), at least 2GB of RAM, and at least 25GB of free disk space. (The steps below will not actually use 25GB of disk space, but I don't want to lead you down a path that ends in a big sign that says "Your HDD is full. Good luck!") Configure the zone on both systems, specifying the rootzpool that both will use. The best way is to configure it on one system and then copy the output of "zonecfg export" to the other system to be used as input to zonecfg. This method reduces the chances of pilot error. (It is not necessary to configure the zone on both systems before creating it. You can configure this zone in multiple places, whenever you want, and migrate it to one of those places at any time - as long as those systems all have access to the shared storage.) Install the zone on one system, onto shared storage. Boot the zone. Provide system configuration information to the zone. (In the Real World(tm) you will usually automate this step.) Shutdown the zone. Detach the zone from the original system. Attach the zone to its new "home" system. Boot the zone. The zone can be used normally, and even migrated back, or to a different system. Details The rest of this shows the commands and output. The two hostnames are "sysA" and "sysB". Note that each Solaris guest might use a different device name for the VDI that they share. I used the device names shown below, but you must discover the device name(s) after booting each guest. In a production environment you would also discover the device name first and then configure the zone with that name. Fortunately, you can use the command "zpool import" or "format" to discover the device on the "new" host for the zone. The first steps create the VirtualBox guests and the shared disk drive. I describe the steps here without demonstrating them. Download VirtualBox and install it using a method normal for your host OS. You can read the complete instructions. Create two VirtualBox guests, each to run Solaris 11.1. Each will use its own VDI as its root disk. Install Solaris 11.1 in each guest.Install Solaris 11.1 in each guest. To install a Solaris 11.1 guest, you can either download a pre-built VirtualBox guest, and import it, or install Solaris 11.1 from the "text install" media. If you use the latter method, after booting you will not see a windowing system. To install the GUI and other important things, login and run "pkg install solaris-desktop" and take a break while it installs those important things. Life is usually easier if you install the VirtualBox Guest Additions because then you can copy and paste between the host and guests, etc. You can find the guest additions in the folder matching the version of VirtualBox you are using. You can also read the instructions for installing the guest additions. To create the zone's shared VDI in VirtualBox, you can open the storage configuration for one of the two guests, select the SATA controller, and click on the "Add Hard Disk" icon nearby. Choose "Create New Disk" and specify an appropriate path name for the file that will contain the VDI. The shared VDI must be at least 1.5 GB. Note that the guest must be stopped to do this. Add that VDI to the other guest - using its Storage configuration - so that each can access it while running. The steps start out the same, except that you choose "Choose Existing Disk" instead of "Create New Disk." Because the disk is configured on both of them, VirtualBox prevents you from running both guests at the same time. Identify device names of that VDI, in each of the guests. Solaris chooses the name based on existing devices. The names may be the same, or may be different from each other. This step is shown below as "Step 1." Assumptions In the example shown below, I make these assumptions. The guest that will own the zone at the beginning is named sysA. The guest that will own the zone after the first migration is named sysB. On sysA, the shared disk is named /dev/dsk/c7t2d0 On sysB, the shared disk is named /dev/dsk/c7t3d0 (Finally!) The Steps Step 1) Determine the name of the disk that will move back and forth between the systems. root@sysA:~# format Searching for disks...done AVAILABLE DISK SELECTIONS: 0. c7t0d0 /pci@0,0/pci8086,2829@d/disk@0,0 1. c7t2d0 /pci@0,0/pci8086,2829@d/disk@2,0 Specify disk (enter its number): ^D Step 2) The first thing to do is partition and label the disk. The magic needed to write an EFI label is not overly complicated. root@sysA:~# format -e c7t2d0 selecting c7t2d0 [disk formatted] FORMAT MENU: ... format fdisk No fdisk table exists. The default partition for the disk is: a 100% "SOLARIS System" partition Type "y" to accept the default partition, otherwise type "n" to edit the partition table. n SELECT ONE OF THE FOLLOWING: ... Enter Selection: 1 ... G=EFI_SYS 0=Exit? f SELECT ONE... ... 6 format label ... Specify Label type[1]: 1 Ready to label disk, continue? y format quit root@sysA:~# ls /dev/dsk/c7t2d0 /dev/dsk/c7t2d0 Step 3) Configure zone1 on sysA. root@sysA:~# zonecfg -z zone1 Use 'create' to begin configuring a new zone. zonecfg:zone1 create create: Using system default template 'SYSdefault' zonecfg:zone1 set zonename=zone1 zonecfg:zone1 set zonepath=/zones/zone1 zonecfg:zone1 add rootzpool zonecfg:zone1:rootzpool add storage dev:dsk/c7t2d0 zonecfg:zone1:rootzpool end zonecfg:zone1 exit root@sysA:~# oot@sysA:~# zonecfg -z zone1 info zonename: zone1 zonepath: /zones/zone1 brand: solaris autoboot: false bootargs: file-mac-profile: pool: limitpriv: scheduling-class: ip-type: exclusive hostid: fs-allowed: anet: ... rootzpool: storage: dev:dsk/c7t2d0 Step 4) Install the zone. This step takes the most time, but you can wander off for a snack or a few laps around the gym - or both! (Just not at the same time...) root@sysA:~# zoneadm -z zone1 install Created zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T163634Z.zone1.install Image: Preparing at /zones/zone1/root. AI Manifest: /tmp/manifest.xml.RXaycg SC Profile: /usr/share/auto_install/sc_profiles/enable_sci.xml Zonename: zone1 Installation: Starting ... Creating IPS image Startup linked: 1/1 done Installing packages from: solaris origin: http://pkg.us.oracle.com/support/ DOWNLOAD PKGS FILES XFER (MB) SPEED Completed 183/183 33556/33556 222.2/222.2 2.8M/s PHASE ITEMS Installing new actions 46825/46825 Updating package state database Done Updating image state Done Creating fast lookup database Done Installation: Succeeded Note: Man pages can be obtained by installing pkg:/system/manual done. Done: Installation completed in 1696.847 seconds. Next Steps: Boot the zone, then log into the zone console (zlogin -C) to complete the configuration process. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T163634Z.zone1.install Step 5) Boot the Zone. root@sysA:~# zoneadm -z zone1 boot Step 6) Login to zone's console to complete the specification of system information. root@sysA:~# zlogin -C zone1 Answer the usual questions and wait for a login prompt. Then you can end the console session with the usual "~." incantation. Step 7) Shutdown the zone so it can be "moved." root@sysA:~# zoneadm -z zone1 shutdown Step 8) Detach the zone so that the original global zone can't use it. root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 installed /zones/zone1 solaris excl root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - zone1_rpool 1.98G 484M 1.51G 23% 1.00x ONLINE - root@sysA:~# zoneadm -z zone1 detach Exported zone zpool: zone1_rpool Step 9) Review the result and shutdown sysA so that sysB can use the shared disk. root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysA:~# init 0 Step 10) Now boot sysB and configure a zone with the parameters shown above in Step 1. (Again, the safest method is to use "zonecfg ... export" on sysA as described in section "Method Overview" above.) The one difference is the name of the rootzpool storage device, which was shown in the list of assumptions, and which you must determine by booting sysB and using the "format" or "zpool import" command. When that is done, you should see the output shown next. (I used the same zonename - "zone1" - in this example, but you can choose any valid zonename you want.) root@sysB:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysB:~# zonecfg -z zone1 info zonename: zone1 zonepath: /zones/zone1 brand: solaris autoboot: false bootargs: file-mac-profile: pool: limitpriv: scheduling-class: ip-type: exclusive hostid: fs-allowed: anet: linkname: net0 ... rootzpool: storage: dev:dsk/c7t3d0 Step 11) Attaching the zone automatically imports the zpool. root@sysB:~# zoneadm -z zone1 attach Imported zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T184034Z.zone1.attach Installing: Using existing zone boot environment Zone BE root dataset: zone1_rpool/rpool/ROOT/solaris Cache: Using /var/pkg/publisher. Updating non-global zone: Linking to image /. Processing linked: 1/1 done Updating non-global zone: Auditing packages. No updates necessary for this image. Updating non-global zone: Zone updated. Result: Attach Succeeded. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T184034Z.zone1.attach root@sysB:~# zoneadm -z zone1 boot root@sysB:~# zlogin zone1 [Connected to zone 'zone1' pts/2] Oracle Corporation SunOS 5.11 11.1 September 2012 Step 12) Now let's migrate the zone back to sysA. Create a file in zone1 so we can verify it exists after we migrate the zone back, then begin migrating it back. root@zone1:~# ls /opt root@zone1:~# touch /opt/fileA root@zone1:~# ls -l /opt/fileA -rw-r--r-- 1 root root 0 Oct 22 14:47 /opt/fileA root@zone1:~# exit logout [Connection to zone 'zone1' pts/2 closed] root@sysB:~# zoneadm -z zone1 shutdown root@sysB:~# zoneadm -z zone1 detach Exported zone zpool: zone1_rpool root@sysB:~# init 0 Step 13) Back on sysA, check the status. Oracle Corporation SunOS 5.11 11.1 September 2012 root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - Step 14) Re-attach the zone back to sysA. root@sysA:~# zoneadm -z zone1 attach Imported zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T190441Z.zone1.attach Installing: Using existing zone boot environment Zone BE root dataset: zone1_rpool/rpool/ROOT/solaris Cache: Using /var/pkg/publisher. Updating non-global zone: Linking to image /. Processing linked: 1/1 done Updating non-global zone: Auditing packages. No updates necessary for this image. Updating non-global zone: Zone updated. Result: Attach Succeeded. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T190441Z.zone1.attach root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - zone1_rpool 1.98G 491M 1.51G 24% 1.00x ONLINE - root@sysA:~# zoneadm -z zone1 boot root@sysA:~# zlogin zone1 [Connected to zone 'zone1' pts/2] Oracle Corporation SunOS 5.11 11.1 September 2012 root@zone1:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 1.98G 538M 1.46G 26% 1.00x ONLINE - Step 15) Check for the file created on sysB, earlier. root@zone1:~# ls -l /opt total 1 -rw-r--r-- 1 root root 0 Oct 22 14:47 fileA Next Steps Here is a brief list of some of the fun things you can try next. Add space to the zone by adding a second storage device to the rootzpool. Make sure that you add it to the configurations of both zones! Create a new zone, specifying two disks in the rootzpool when you first configure the zone. When you install that zone, or clone it from another zone, zoneadm uses those two disks to create a mirrored pool. (Three disks will result in a three-way mirror, etc.) Conclusion Hopefully you have seen the ease with which you can now move Solaris Zones from one system to another.

    Read the article

  • jqgrid scrollable dialog

    - by gurun8
    I have a jqGrid that has add/edit dialogs with a form that's longer than the dialog height but the dialog won't scroll. I've tried to add an overflow: auto style to the dialog but no effect: $("div.ui-jqdialog-content").css("overflow", "auto"); Although, if I change auto to scroll, I at least see a scrollbar but still no scrolling: $("div.ui-jqdialog-content").css("overflow", "scroll"); This at least gives me a small glimmer of hope that I'm on the right track. There doesn't seem to be any direction from the API documentation to support scrolling: http://www.trirand.com/jqgridwiki/doku.php?id=wiki:form_editing Does anyone know how to add a working scrollbar to the jqModal dialog window used by jqGrid?

    Read the article

  • Changes in gcc/persistence of optimization flags gcc/C

    - by gnometorule
    Just curious. Using gcc/gdb under Ubuntu 9.10. Reading a C book that also often gives the disassembly of the object file. When reading in January, my disassembly looks a lot like the book's; now, it's quite different - possibly more optimized (I notice some re-arrangements in the assembly code now that, at least in the files I checked, look optimized). I have used optimization options -O1 - -O3 for gcc between the first and second read, but not before the first. (1) Is the use of optimization options persistent, aka, if you use them once, you'll use them until switching them off? That would be weird (browsed man file and at least did not see anything to that sort). In the unlikely case that it is true, how do you switch them off? (2) Has gcc's assembly changed through any recent upgrade? (3) Does gcc sometimes produce (significantly) different assembly code although same compile options are chosen? Thanks much.

    Read the article

  • help me with asp.net mvc 2 custom validation attribute

    - by Omu
    I'm trying to write a validation attribute that is going to check that at least one of the specified properties is true [AttributeUsage(AttributeTargets.Class, AllowMultiple = false, Inherited = true)] public sealed class AtLeastOneTrueAttribute : ValidationAttribute { private const string DefaultErrorMessage = "select at least one"; public AtLeastOneTrueAttribute(params string[] props) : base(DefaultErrorMessage) { this.props = props; } private readonly string[] props; public override string FormatErrorMessage(string name) { return DefaultErrorMessage; } public override bool IsValid(object value) { var properties = TypeDescriptor.GetProperties(value); return props.Any(p => (bool) properties.Find(p, true).GetValue(value)); } } now when I'm trying to use I can't really get specify the props after the fir , the intellisence shows me that I'm entering the ErrorMessage and only the first string is the params string[] props

    Read the article

  • Mysql server crashes Innodb

    - by martin
    Today we got some DB crash. The DB is InnoDB. At firstin log: 120404 10:57:40 InnoDB: ERROR: the age of the last checkpoint is 9433732, InnoDB: which exceeds the log group capacity 9433498. InnoDB: If you are using big BLOB or TEXT rows, you must set the InnoDB: combined size of log files at least 10 times bigger than the InnoDB: largest such row. 120404 10:58:48 InnoDB: ERROR: the age of the last checkpoint is 9825579, InnoDB: which exceeds the log group capacity 9433498. InnoDB: If you are using big BLOB or TEXT rows, you must set the InnoDB: combined size of log files at least 10 times bigger than the InnoDB: largest such row. 120404 10:59:04 InnoDB: ERROR: the age of the last checkpoint is 13992586, InnoDB: which exceeds the log group capacity 9433498. InnoDB: If you are using big BLOB or TEXT rows, you must set the InnoDB: combined size of log files at least 10 times bigger than the InnoDB: largest such row. 120404 10:59:20 InnoDB: ERROR: the age of the last checkpoint is 18059881, InnoDB: which exceeds the log group capacity 9433498. InnoDB: If you are using big BLOB or TEXT rows, you must set the InnoDB: combined size of log files at least 10 times bigger than the InnoDB: largest such row. after manual service stop and normal PC restart : 120404 11:12:35 InnoDB: Error: page 3473451 log sequence number 105 802365904 InnoDB: is in the future! Current system log sequence number 105 796344770. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.1/en/forcing-recovery.html InnoDB: for more information. InnoDB: 1 transaction(s) which must be rolled back or cleaned up InnoDB: in total 1 row operations to undo InnoDB: Trx id counter is 0 1103869440 120404 11:12:37 InnoDB: Error: page 0 log sequence number 105 834817616 InnoDB: is in the future! Current system log sequence number 105 796344770. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.1/en/forcing-recovery.html InnoDB: for more information. InnoDB: Last MySQL binlog file position 0 3710603, file name .\mysql-bin.000336 InnoDB: Starting in background the rollback of uncommitted transactions 120404 11:12:38 InnoDB: Rolling back trx with id 0 1103866646, 1 rows to undo 120404 11:12:38 InnoDB: Started; log sequence number 105 796344770 120404 11:12:38 InnoDB: Error: page 2097163 log sequence number 105 803249754 InnoDB: is in the future! Current system log sequence number 105 796344770. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.1/en/forcing-recovery.html InnoDB: for more information. InnoDB: Rolling back of trx id 0 1103866646 completed 120404 11:12:39 InnoDB: Rollback of non-prepared transactions completed 120404 11:12:39 [Note] Event Scheduler: Loaded 0 events 120404 11:12:39 [Note] wampmysqld: ready for connections. Version: '5.1.53-community' socket: '' port: 3306 MySQL Community Server (GPL) 120404 11:12:40 InnoDB: Error: page 2097162 log sequence number 105 803215859 InnoDB: is in the future! Current system log sequence number 105 796345097. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.1/en/forcing-recovery.html InnoDB: for more information. 120404 11:12:40 InnoDB: Error: page 2097156 log sequence number 105 803181181 InnoDB: is in the future! Current system log sequence number 105 796345097. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.1/en/forcing-recovery.html InnoDB: for more information. 120404 11:12:40 InnoDB: Error: page 2097157 log sequence number 105 803193066 InnoDB: is in the future! Current system log sequence number 105 796345097. InnoDB: Your database may be corrupt or you may have copied the InnoDB InnoDB: tablespace but not the InnoDB log files. See InnoDB: http://dev.mysql.com/doc/refman/5.1/en/forcing-recovery.html InnoDB: for more information. when tried to recover data get : key_buffer_size=16777216 read_buffer_size=262144 max_used_connections=0 max_threads=151 threads_connected=0 It is possible that mysqld could use up to key_buffer_size + (read_buffer_size + sort_buffer_size)*max_threads = 133725 K bytes of memory Hope that's ok; if not, decrease some variables in the equation. thd: 0x0 Attempting backtrace. You can use the following information to find out where mysqld died. If you see no messages after this, something went terribly wrong... 0000000140262AFC mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402AAFA1 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402AB33A mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 0000000140268219 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000014027DB13 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402A909F mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402A91B6 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000014025B9B0 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000014022F9C6 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 0000000140219979 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000014009ABCF mysqld.exe!?ha_initialize_handlerton@@YAHPEAUst_plugin_int@@@Z() 000000014003308C mysqld.exe!?plugin_lock_by_name@@YAPEAUst_plugin_int@@PEAVTHD@@PEBUst_mysql_lex_string@@H@Z() 00000001400375A9 mysqld.exe!?plugin_init@@YAHPEAHPEAPEADH@Z() 000000014001DACE mysqld.exe!handle_shutdown() 000000014001E285 mysqld.exe!?win_main@@YAHHPEAPEAD@Z() 000000014001E632 mysqld.exe!?mysql_service@@YAHPEAX@Z() 00000001402EA477 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402EA545 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000007712652D kernel32.dll!BaseThreadInitThunk() 000000007725C521 ntdll.dll!RtlUserThreadStart() The manual page at http://dev.mysql.com/doc/mysql/en/crashing.html contains information that should help you find out what is causing the crash. 120404 14:17:49 [Note] Plugin 'FEDERATED' is disabled. 120404 14:17:49 [Warning] option 'innodb-force-recovery': signed value 8 adjusted to 6 InnoDB: The user has set SRV_FORCE_NO_LOG_REDO on InnoDB: Skipping log redo InnoDB: Error: trying to access page number 4290979199 in space 0, InnoDB: space name .\ibdata1, InnoDB: which is outside the tablespace bounds. InnoDB: Byte offset 0, len 16384, i/o type 10. InnoDB: If you get this error at mysqld startup, please check that InnoDB: your my.cnf matches the ibdata files that you have in the InnoDB: MySQL server. 120404 14:17:52 InnoDB: Assertion failure in thread 3928 in file .\fil\fil0fil.c lin23 InnoDB: We intentionally generate a memory trap. InnoDB: Submit a detailed bug report to http://bugs.mysql.com. InnoDB: If you get repeated assertion failures or crashes, even InnoDB: immediately after the mysqld startup, there may be InnoDB: corruption in the InnoDB tablespace. Please refer to InnoDB: http://dev.mysql.com/doc/refman/5.1/en/forcing-recovery.html InnoDB: about forcing recovery. 120404 14:17:52 - mysqld got exception 0xc0000005 ; This could be because you hit a bug. It is also possible that this binary or one of the libraries it was linked against is corrupt, improperly built, or misconfigured. This error can also be caused by malfunctioning hardware. We will try our best to scrape up some info that will hopefully help diagnose the problem, but since we have already crashed, something is definitely wrong and this may fail. key_buffer_size=16777216 read_buffer_size=262144 max_used_connections=0 max_threads=151 threads_connected=0 It is possible that mysqld could use up to key_buffer_size + (read_buffer_size + sort_buffer_size)*max_threads = 133725 K bytes of memory Hope that's ok; if not, decrease some variables in the equation. thd: 0x0 Attempting backtrace. You can use the following information to find out where mysqld died. If you see no messages after this, something went terribly wrong... 0000000140262AFC mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402AAFA1 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402AB33A mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 0000000140268219 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000014027DB13 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402A909F mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402A91B6 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000014025B9B0 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000014022F9C6 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 0000000140219979 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000014009ABCF mysqld.exe!?ha_initialize_handlerton@@YAHPEAUst_plugin_int@@@Z() 000000014003308C mysqld.exe!?plugin_lock_by_name@@YAPEAUst_plugin_int@@PEAVTHD@@PEBUst_mysql_lex_string@@H@Z() 00000001400375A9 mysqld.exe!?plugin_init@@YAHPEAHPEAPEADH@Z() 000000014001DACE mysqld.exe!handle_shutdown() 000000014001E285 mysqld.exe!?win_main@@YAHHPEAPEAD@Z() 000000014001E632 mysqld.exe!?mysql_service@@YAHPEAX@Z() 00000001402EA477 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 00000001402EA545 mysqld.exe!?check_next_symbol@Gis_read_stream@@QEAA_ND@Z() 000000007712652D kernel32.dll!BaseThreadInitThunk() 000000007725C521 ntdll.dll!RtlUserThreadStart() The manual page at http://dev.mysql.com/doc/mysql/en/crashing.html contains information that should help you find out what is causing the crash. Any suggestion how to get DB working ????

    Read the article

  • What are modern and old compilers written in?

    - by ulum
    As a compiler, other than an interpreter, only needs to translate the input and not run it the performance of itself should be not that problematic as with an interpreter. Therefore, you wouldn't write an interpreter in, let's say Ruby or PHP because it would be far too slow. However, what about compilers? If you would write a compiler in a scripting language maybe even featuring rapid development you could possibly cut the source code and initial development time by halv, at least I think so. To be sure: With scripting language I mean interpreted languages having typical features that make programming faster, easier and more enjoyable for the programmer, usually at least. Examples: PHP, Ruby, Python, maybe JavaScript though that may be an odd choice for a compiler What are compilers normally written in? As I suppose you will respond with something low-level like C, C++ or even Assembler, why? Are there compilers written in scripting languages? What are the (dis)advantages of using low or high level programming languages for compiler writing?

    Read the article

  • Help:Graph contest problem: maybe a modified Dijkstra or another alternative algorithm

    - by newba
    Hi you all, I'm trying to do this contest exercise about graphs: XPTO is an intrepid adventurer (a little too temerarious for his own good) who boasts about exploring every corner of the universe, no matter how inhospitable. In fact, he doesn't visit the planets where people can easily live in, he prefers those where only a madman would go with a very good reason (several millions of credits for instance). His latest exploit is trying to survive in Proxima III. The problem is that Proxima III suffers from storms of highly corrosive acids that destroy everything, including spacesuits that were especially designed to withstand corrosion. Our intrepid explorer was caught in a rectangular area in the middle of one of these storms. Fortunately, he has an instrument that is capable of measuring the exact concentration of acid on each sector and how much damage it does to his spacesuit. Now, he only needs to find out if he can escape the storm. Problem The problem consists of finding an escape route that will allow XPTOto escape the noxious storm. You are given the initial energy of the spacesuit, the size of the rectangular area and the damage that the spacesuit will suffer while standing in each sector. Your task is to find the exit sector, the number of steps necessary to reach it and the amount of energy his suit will have when he leaves the rectangular area. The escape route chosen should be the safest one (i.e., the one where his spacesuit will be the least damaged). Notice that Rodericus will perish if the energy of his suit reaches zero. In case there are more than one possible solutions, choose the one that uses the least number of steps. If there are at least two sectors with the same number of steps (X1, Y1) and (X2, Y2) then choose the first if X1 < X2 or if X1 = X2 and Y1 < Y2. Constraints 0 < E = 30000 the suit's starting energy 0 = W = 500 the rectangle's width 0 = H = 500 rectangle's height 0 < X < W the starting X position 0 < Y < H the starting Y position 0 = D = 10000 the damage sustained in each sector Input The first number given is the number of test cases. Each case will consist of a line with the integers E, X and Y. The following line will have the integers W and H. The following lines will hold the matrix containing the damage D the spacesuit will suffer whilst in the corresponding sector. Notice that, as is often the case for computer geeks, (1,1) corresponds to the upper left corner. Output If there is a solution, the output will be the remaining energy, the exit sector's X and Y coordinates and the number of steps of the route that will lead Rodericus to safety. In case there is no solution, the phrase Goodbye cruel world! will be written. Sample Input 3 40 3 3 7 8 12 11 12 11 3 12 12 12 11 11 12 2 1 13 11 11 12 2 13 2 14 10 11 13 3 2 1 12 10 11 13 13 11 12 13 12 12 11 13 11 13 12 13 12 12 11 11 11 11 13 13 10 10 13 11 12 8 3 4 7 6 4 3 3 2 2 3 2 2 5 2 2 2 3 3 2 1 2 2 3 2 2 4 3 3 2 2 4 1 3 1 4 3 2 3 1 2 2 3 3 0 3 4 10 3 4 7 6 3 3 1 2 2 1 0 2 2 2 4 2 2 5 2 2 1 3 0 2 2 2 2 1 3 3 4 2 3 4 4 3 1 1 3 1 2 2 4 2 2 1 Sample Output 12 5 1 8 Goodbye cruel world! 5 1 4 2 Basically, I think we have to do a modified Dijkstra, in which the distance between nodes is the suit's energy (and we have to subtract it instead of suming up like is normal with distances) and the steps are the ....steps made along the path. The pos with the bester binomial (Energy,num_Steps) is our "way out". Important : XPTO obviously can't move in diagonals, so we have to cut out this cases. I have many ideas, but I have such a problem implementing them... Could someone please help me thinking about this with some code or, at least, ideas? Am I totally wrong?

    Read the article

  • DIV overlap on top of submit order INPUT button not working right in IE7

    - by Lauren
    I created a test account at www.avaline.com: username: [email protected] pass:test02 I'll keep the account around so you can see what's going on with this submit button without going through the registration process (and needing to fill in a fake address, etc). If logging in doesn't work, you can create your own test account though. Make sure at least one item is in your shopping cart, hit "proceed to checkout", and check off "PayPal" as your payment method (this way the payment won't go through for testing purposes). Once you're on the "review and submit" page, in IE7 (at least), hover over the "pay with Paypal" button, and you'll see that the cursor is a hand when you hover over the text or the button border, but it's a regular arrow when you hover over the button part. If you try clicking on the arrow-cursor area, you'll get the error that you should see...but if you click on the hand-cursor area, you get redirected to the paypal page. In FF, the #hidSubm DIV covers the "Pay with Paypal" button. Why isn't it working in IE7?

    Read the article

  • How to store the path of a game pawn in a turn based game ?

    - by panzerschreck
    Hello, I have a square grid, for a turn based game ( grid is similar to the chess board ), but the moves in the games are different based on whether you have lapped your opponent pawn at least once or not. i.e if you have not lapped (beaten any of the opponents pawns) in the outer most grid as below if you have lapped your opponent pawn once at least, then you get to reach home,this way.Any player having all his pawns reaching "home" first wins. The ones in yellow are safe-houses, i.e both the opponent pawn and the player's pawn get to stay in the same grid, this is not considered to be lapping ( the opponent ).The lapped pawn will return to its start point. Now the question is, what is the effective way to store the paths for the all the pawns.we will have 4 pawns for the player and 4 opponent pawns. Is there any pattern to store such static information, in a elegant way ? Thanks for your time

    Read the article

  • Handler invocation speed: Objective-C vs virtual functions

    - by Kerido
    I heard that calling a handler (delegate, etc.) in Objective-C can be even faster than calling a virtual function in C++. Is it really correct? If so, how can that be? AFAIK, virtual functions are not that slow to call. At least, this is my understanding of what happens when a virtual function is called: Compute the index of the function pointer location in vtbl. Obtain the pointer to vtbl. Dereference the pointer and obtain the beginning of the array of function pointers. Offset (in pointer scale) the beginning of the array with the index value obtained on step 1. Issue a call instruction. Unfortunately, I don't know Objective-C so it's hard for me to compare performance. But at least, the mechanism of a virtual function call doesn't look that slow, right? How can something other than static function call be faster?

    Read the article

  • Hidden Features of HTML

    - by Binoj Antony
    HTML being the most widely used language (at least as a markup language) has not gotten its due credit. Considering that it has been around for so many years, things like the FORM / INPUT controls have still remained same with no new controls added. So at least from the existing features, do you know any that are not well known but very useful. Of course, this question is along the lines of: Hidden Features of JavaScript Hidden Features of CSS Hidden Features of C# Hidden Features of VB.NET Hidden Features of Java Hidden Features of ASP.NET Hidden Features of Python Hidden Features of TextPad Hidden Features of Eclipse Do not mention features of HTML 5.0, since it is in working draft Please specify one feature per answer.

    Read the article

< Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >