Search Results

Search found 2542 results on 102 pages for 'nathan jon grant'.

Page 24/102 | < Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Windows Server 2008 R2 Accessing NFS share without AD or NIS

    - by Jon Rhoades
    I'm trying to mount an NFS share on our NetApp SAN on Windows 2008 R2. Using XP I have no problem mounting this share without a username/NIS/pswd file etc, but the new functionality in 2008 seems to insist on either using AD or an NIS server (to "streamline" Services for NFS MS removed user account mapping) see Technet. When I go to map the share using "map network drive" no combination of "root", no username, no password, my username works. Using the command line mount -o anon \\172... :n or mount -o -u:root \\172... :n either gives me a network error 53 or 67 error Is it possible with 2008 to mount an NFS share without AD or NIS? If so what am I doing wrong? (Security is taken care off by IP address permissions and VLANs)

    Read the article

  • Linux Server Performance Monitoring

    - by Jon
    I'm looking to monitor performance on my Linux servers (which happen to be Centos). What are the best tools for monitoring things in realtime such as: Disk Performance I/O, swapping etc.. CPU Performance Looking for low level tools, rather than web based tools such as Nagios, Ganglia etc... n.b. I'd like to know exactly what each tool does rather than just having a list of random toolnames if possible please. Why the tool is a better option than others would be good also.

    Read the article

  • What does the condition "new pull" mean?

    - by Nathan DeWitt
    I'm looking for a hard drive, and some of the conditions are listed as "New Pull" or "System Pull". I figure the System Pull means "taken from a computer and now sold separately" but what does New Pull mean? Does this mean it was assembled and never used? Or maybe it has been freshly pulled from a used machine?

    Read the article

  • Correct PHP5 DLL for Apache 2.2?

    - by Nathan Long
    I have installed Apache 2.2.14 (Win32) on a Windows XP machine and am trying to add the latest PHP module. I downloaded the ZIP file from here labeled "VC9 x86 Non Thread Safe" and extracted to my Apache directory. I then copied php5.dll to Apache's bin directory and copied php.ini to C:\Windows. In httpd.conf, I added these lines: LoadModule php5_module "C:/Program Files/Apache Software Foundation/Apache2.2/bin/php5.dll" AddType application/x-httpd-php .php Now Apache will not start. error.log says this: "Can't locate API module structure php5_module in file C:/Program Files/Apache Software Foundation/Apache2.2/bin/php5.dll": No error" I think I may have the wrong .dll file, because I found tutorials that use the filename php5apache2.dll and I didn't see that in the PHP package I got. Also, I have seen references to a file called php5ts.dll, but I don't see that either. What exactly do I need to make PHP5 work?

    Read the article

  • Problem with icacls on Windows 2003: "Acl length is incorrect"

    - by Andrew J. Brehm
    I am confused by the output of icacls on Windows 2003. Everything appears to work on Windows 2008. I am trying to change permissions on a directory: icacls . /grant mydomain\someuser:(OI)(CI)(F) This results in the following error: .: Acl length is incorrect. .: An internal error occurred. Successfully processed 0 files; Failed processing 1 files The same command used on a file named "file" works: icacls file /grant mydomain\someuser:(OI)(CI)(F) Result is: processed file: file Successfully processed 1 files; Failed processing 0 files What's going on?

    Read the article

  • LVS TCP connection timeouts - lingering connections

    - by Jon Topper
    I'm using keepalived to load-balance connections between a number of TCP servers. I don't expect it matters, but the service in this case is rabbitmq. I'm using NAT type balancing with weighted round-robin. A client connects to the server thus: [client]-----------[lvs]------------[real server] a b If a client connects to the LVS and remains idle, sending nothing on the socket, this eventually times out, according to timeouts set using ipvsadm --set. At this point, the connection marked 'a' above correctly disappears from the output of netstat -anp on the client, and from the output of ipvsadm -L -n -c on the lvs box. Connection 'b', however, remains ESTABLISHED according to netstat -anp on the real server box. Why is this? Can I force lvs to properly reset the connection to the real server?

    Read the article

  • Most useful AutoHotkey scripts?

    - by Jon Erickson
    What AutoHotkey scripts have you found that proved to be extremely useful? I'll share one that I am using for multiple monitors. Windows + Right: Move window from the left monitor to the right monitor #right:: WinGet, mm, MinMax, A WinRestore, A WinGetPos, X, Y,,,A WinMove, A,, X+A_ScreenWidth, Y if(mm = 1){ WinMaximize, A } return Windows + Left: Move window from the right monitor to the left monitor #left:: WinGet, mm, MinMax, A WinRestore, A WinGetPos, X, Y,,,A WinMove, A,, X-A_ScreenWidth, Y if(mm = 1){ WinMaximize, A } return

    Read the article

  • How do I create statistics to make ‘small’ objects appear ‘large’ to the Optmizer?

    - by Maria Colgan
    I recently spoke with a customer who has a development environment that is a tiny fraction of the size of their production environment. His team has been tasked with identifying problem SQL statements in this development environment before new code is released into production. The problem is the objects in the development environment are so small, the execution plans selected in the development environment rarely reflects what actually happens in production. To ensure the development environment accurately reflects production, in the eyes of the Optimizer, the statistics used in the development environment must be the same as the statistics used in production. This can be achieved by exporting the statistics from production and import them into the development environment. Even though the underlying objects are a fraction of the size of production, the Optimizer will see them as the same size and treat them the same way as it would in production. Below are the necessary steps to achieve this in their environment. I am using the SH sample schema as the application schema who's statistics we want to move from production to development. Step 1. Create a staging table, in the production environment, where the statistics can be stored Step 2. Export the statistics for the application schema, from the data dictionary in production, into the staging table Step 3. Create an Oracle directory on the production system where the export of the staging table will reside and grant the SH user the necessary privileges on it. Step 4. Export the staging table from production using data pump export Step 5. Copy the dump file containing the stating table from production to development Step 6. Create an Oracle directory on the development system where the export of the staging table resides and grant the SH user the necessary privileges on it.  Step 7. Import the staging table into the development environment using data pump import Step 8. Import the statistics from the staging table into the dictionary in the development environment. You can get a copy of the script I used to generate this post here. +Maria Colgan

    Read the article

  • Lenovo Mini Wireless Keyboard N5901: Remap orange "My Computer" button

    - by Jon Schneider
    I have a Lenovo Mini Wireless Keyboard N5901 (a.k.a. Part No. 57Y6336) that I'm using with an HTPC running Windows 7. The remote comes with an orange button in the top-left corner that by default, when pressed, opens the Windows "My Computer" window. I would like to remap / reprogram this button to act like the green "Windows Media Center" button instead on a Windows Media Center (WMC) remote; that is, open Windows Media Center if it isn't already open, or go to the WMC homepage if WMC is already open. I've tried several keyboard-remapping utilities (as recommended in other, more general "how to remap keyboard key?" SuperUser.com questions) including SharpKeys, Key Mapper, and KeyTweak, with no luck so far. None of these utilities recognize the orange button -- they all do recognize that some key was pressed, but display a value for the key of "unsupported" or something similar. I was able to use a utility called Keyboard Scan Code Generator to determine that a press of the orange button has a KeyData value of 16777217 (0x1000001), and a "Virtual Code" value of 182. (The other "media" buttons on the N5901 have the same KeyData value, but different Virtual Code values). I'm not sure at this point where in Windows this keystroke is being interpreted as a command to open "My Computer." There is no special software / driver for this device; it worked out of the box with Windows 7, no special driver install necessary. Is there any way to accomplish this? Thanks in advance for any suggestions!

    Read the article

  • Linux Server Performance Monitoring

    - by Jon
    I'm looking to monitor performance on my Linux servers (which happen to be Centos). What are the best tools for monitoring things in realtime such as: Disk Performance I/O, swapping etc.. CPU Performance Looking for low level tools, rather than web based tools such as Nagios, Ganglia etc... n.b. I'd like to know exactly what each tool does rather than just having a list of random toolnames if possible please. Why the tool is a better option than others would be good also.

    Read the article

  • unexplainable packet drops with 5 ethernet NICs and low traffic on Ubuntu

    - by jon
    I'm stuck on problem where my machine started to drops packets with no sign of ANY system load or high interrupt usage after an upgrade to Ubuntu 12.04. My server is a network monitoring sensor, running Ubuntu LTS 12.04, it passively collects packets from 5 interfaces doing network intrusion type stuff. Before the upgrade I managed to collect 200+GB of packets a day while writing them to disk with around 0% packet loss depending on the day with the help of CPU affinity and NIC IRQ to CPU bindings. Now I lose a great deal of packets with none of my applications running and at very low PPS rate which a modern workstation NIC would have no trouble with. Specs: x64 Xeon 4 cores 3.2 Ghz 16 GB RAM NICs: 5 Intel Pro NICs using the e1000 driver (NAPI). [1] eth0 and eth1 are integrated NICs (in the motherboard) There are 2 other PCI-X network cards, each with 2 Ethernet ports. 3 of the interfaces are running at Gigabit Ethernet, the others are not because they're attached to hubs. Specs: [2] http://support.dell.com/support/edocs/systems/pe2850/en/ug/t1390aa.htm uptime 17:36:00 up 1:43, 2 users, load average: 0.00, 0.01, 0.05 # uname -a Linux nms 3.2.0-29-generic #46-Ubuntu SMP Fri Jul 27 17:03:23 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux I also have the CPU governor set to performance mode and irqbalance off. The problem still occurs with them on. # lspci -t -vv -[0000:00]-+-00.0 Intel Corporation E7520 Memory Controller Hub +-02.0-[01-03]--+-00.0-[02]----0e.0 Dell PowerEdge Expandable RAID controller 4 | \-00.2-[03]-- +-04.0-[04]-- +-05.0-[05-07]--+-00.0-[06]----07.0 Intel Corporation 82541GI Gigabit Ethernet Controller | \-00.2-[07]----08.0 Intel Corporation 82541GI Gigabit Ethernet Controller +-06.0-[08-0a]--+-00.0-[09]--+-04.0 Intel Corporation 82546EB Gigabit Ethernet Controller (Copper) | | \-04.1 Intel Corporation 82546EB Gigabit Ethernet Controller (Copper) | \-00.2-[0a]--+-02.0 Digium, Inc. Wildcard TE210P/TE212P dual-span T1/E1/J1 card 3.3V | +-03.0 Intel Corporation 82546EB Gigabit Ethernet Controller (Copper) | \-03.1 Intel Corporation 82546EB Gigabit Ethernet Controller (Copper) +-1d.0 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #1 +-1d.1 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #2 +-1d.2 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #3 +-1d.7 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB2 EHCI Controller +-1e.0-[0b]----0d.0 Advanced Micro Devices [AMD] nee ATI RV100 QY [Radeon 7000/VE] +-1f.0 Intel Corporation 82801EB/ER (ICH5/ICH5R) LPC Interface Bridge \-1f.1 Intel Corporation 82801EB/ER (ICH5/ICH5R) IDE Controller I believe the NIC nor the NIC drivers are dropping the packets because ethtool reports 0 under rx_missed_errors and rx_no_buffer_count for each interface. On the old system, if it couldn't keep up this is where the drops would be. I drop packets on multiple interfaces just about every second, usually in small increments of 2-4. I tried all these sysctl values, I'm currently using the uncommented ones. # cat /etc/sysctl.conf # high net.core.netdev_max_backlog = 3000000 net.core.rmem_max = 16000000 net.core.rmem_default = 8000000 # defaults #net.core.netdev_max_backlog = 1000 #net.core.rmem_max = 131071 #net.core.rmem_default = 163480 # moderate #net.core.netdev_max_backlog = 10000 #net.core.rmem_max = 33554432 #net.core.rmem_default = 33554432 Here's an example of an interface stats report with ethtool. They are all the same, nothing is out of the ordinary ( I think ), so I'm only going to show one: ethtool -S eth2 NIC statistics: rx_packets: 7498 tx_packets: 0 rx_bytes: 2722585 tx_bytes: 0 rx_broadcast: 327 tx_broadcast: 0 rx_multicast: 1504 tx_multicast: 0 rx_errors: 0 tx_errors: 0 tx_dropped: 0 multicast: 1504 collisions: 0 rx_length_errors: 0 rx_over_errors: 0 rx_crc_errors: 0 rx_frame_errors: 0 rx_no_buffer_count: 0 rx_missed_errors: 0 tx_aborted_errors: 0 tx_carrier_errors: 0 tx_fifo_errors: 0 tx_heartbeat_errors: 0 tx_window_errors: 0 tx_abort_late_coll: 0 tx_deferred_ok: 0 tx_single_coll_ok: 0 tx_multi_coll_ok: 0 tx_timeout_count: 0 tx_restart_queue: 0 rx_long_length_errors: 0 rx_short_length_errors: 0 rx_align_errors: 0 tx_tcp_seg_good: 0 tx_tcp_seg_failed: 0 rx_flow_control_xon: 0 rx_flow_control_xoff: 0 tx_flow_control_xon: 0 tx_flow_control_xoff: 0 rx_long_byte_count: 2722585 rx_csum_offload_good: 0 rx_csum_offload_errors: 0 alloc_rx_buff_failed: 0 tx_smbus: 0 rx_smbus: 0 dropped_smbus: 01 # ifconfig eth0 Link encap:Ethernet HWaddr 00:11:43:e0:e2:8c UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:373348 errors:16 dropped:95 overruns:0 frame:16 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:356830572 (356.8 MB) TX bytes:0 (0.0 B) eth1 Link encap:Ethernet HWaddr 00:11:43:e0:e2:8d UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:13616 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:8690528 (8.6 MB) TX bytes:0 (0.0 B) eth2 Link encap:Ethernet HWaddr 00:04:23:e1:77:6a UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:7750 errors:0 dropped:471 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:2780935 (2.7 MB) TX bytes:0 (0.0 B) eth3 Link encap:Ethernet HWaddr 00:04:23:e1:77:6b UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:5112 errors:0 dropped:206 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:639472 (639.4 KB) TX bytes:0 (0.0 B) eth4 Link encap:Ethernet HWaddr 00:04:23:b6:35:6c UP BROADCAST RUNNING NOARP PROMISC ALLMULTI MULTICAST MTU:1500 Metric:1 RX packets:961467 errors:0 dropped:935 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:958561305 (958.5 MB) TX bytes:0 (0.0 B) eth5 Link encap:Ethernet HWaddr 00:04:23:b6:35:6d inet addr:192.168.1.6 Bcast:192.168.1.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:4264 errors:0 dropped:16 overruns:0 frame:0 TX packets:699 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:572228 (572.2 KB) TX bytes:124456 (124.4 KB) I tried the defaults, then started to play around with settings. I wasn't using any flow control and I increased the RxDescriptor count to 4096 before the upgrade as well without any problems. # cat /etc/modprobe.d/e1000.conf options e1000 XsumRX=0,0,0,0,0 RxDescriptors=4096,4096,4096,4096,4096 FlowControl=0,0,0,0,0 debug=16 Here's my network configuration file, I turned off checksumming and various offloading mechanisms along with setting CPU affinity with heavy use interfaces getting an entire CPU and light use interfaces sharing a CPU. I used these settings prior to the upgrade without problems. # cat /etc/network/interfaces # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet manual pre-up /sbin/ethtool -G eth0 rx 4096 tx 0 pre-up /sbin/ethtool -K eth0 gro off gso off rx off pre-up /sbin/ethtool -A eth0 rx off autoneg off up ifconfig eth0 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "4" > /proc/irq/48/smp_affinity down ifconfig eth0 down post-down /sbin/ethtool -G eth0 rx 256 tx 256 post-down /sbin/ethtool -K eth0 gro on gso on rx on post-down /sbin/ethtool -A eth0 rx on autoneg on auto eth1 iface eth1 inet manual pre-up /sbin/ethtool -G eth1 rx 4096 tx 0 pre-up /sbin/ethtool -K eth1 gro off gso off rx off pre-up /sbin/ethtool -A eth1 rx off autoneg off up ifconfig eth1 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "4" > /proc/irq/49/smp_affinity down ifconfig eth1 down post-down /sbin/ethtool -G eth1 rx 256 tx 256 post-down /sbin/ethtool -K eth1 gro on gso on rx on post-down /sbin/ethtool -A eth1 rx on autoneg on auto eth2 iface eth2 inet manual pre-up /sbin/ethtool -G eth2 rx 4096 tx 0 pre-up /sbin/ethtool -K eth2 gro off gso off rx off pre-up /sbin/ethtool -A eth2 rx off autoneg off up ifconfig eth2 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "1" > /proc/irq/82/smp_affinity down ifconfig eth2 down post-down /sbin/ethtool -G eth2 rx 256 tx 256 post-down /sbin/ethtool -K eth2 gro on gso on rx on post-down /sbin/ethtool -A eth2 rx on autoneg on auto eth3 iface eth3 inet manual pre-up /sbin/ethtool -G eth3 rx 4096 tx 0 pre-up /sbin/ethtool -K eth3 gro off gso off rx off pre-up /sbin/ethtool -A eth3 rx off autoneg off up ifconfig eth3 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "2" > /proc/irq/83/smp_affinity down ifconfig eth3 down post-down /sbin/ethtool -G eth3 rx 256 tx 256 post-down /sbin/ethtool -K eth3 gro on gso on rx on post-down /sbin/ethtool -A eth3 rx on autoneg on auto eth4 iface eth4 inet manual pre-up /sbin/ethtool -G eth4 rx 4096 tx 0 pre-up /sbin/ethtool -K eth4 gro off gso off rx off pre-up /sbin/ethtool -A eth4 rx off autoneg off up ifconfig eth4 0.0.0.0 -arp promisc mtu 1500 allmulti txqueuelen 0 up post-up echo "4" > /proc/irq/77/smp_affinity down ifconfig eth4 down post-down /sbin/ethtool -G eth4 rx 256 tx 256 post-down /sbin/ethtool -K eth4 gro on gso on rx on post-down /sbin/ethtool -A eth4 rx on autoneg on auto eth5 iface eth5 inet static pre-up /etc/fw.conf address 192.168.1.1 netmask 255.255.255.0 broadcast 192.168.1.255 gateway 192.168.1.1 dns-nameservers 192.168.1.2 192.168.1.3 up ifconfig eth5 up post-up echo "8" > /proc/irq/77/smp_affinity down ifconfig eth5 down Here's a few examples of packet drops, i ran one after another, probabling totaling 3 or 4 seconds. You can see increases in the drops from the 1st and 3rd. This was a non-busy time, very little traffic. # awk '{ print $1,$5 }' /proc/net/dev Inter-| face drop eth3: 225 lo: 0 eth2: 505 eth1: 0 eth5: 17 eth0: 105 eth4: 1034 # awk '{ print $1,$5 }' /proc/net/dev Inter-| face drop eth3: 225 lo: 0 eth2: 507 eth1: 0 eth5: 17 eth0: 105 eth4: 1034 # awk '{ print $1,$5 }' /proc/net/dev Inter-| face drop eth3: 227 lo: 0 eth2: 512 eth1: 0 eth5: 17 eth0: 105 eth4: 1039 I tried the pci=noacpi options. With and without, it's the same. This is what my interrupt stats looked like before the upgrade, after, with ACPI on PCI it showed multiple NICs bound to an interrupt and shared with other devices such as USB drives which I didn't like so I think i'm going to keep it with ACPI off as it's easier to designate sole purpose interrupts. Is there any advantage I would have using the default i.e. ACPI w/ PCI. ? # cat /etc/default/grub | grep CMD_LINE GRUB_CMDLINE_LINUX_DEFAULT="ipv6.disable=1 noacpi pci=noacpi" GRUB_CMDLINE_LINUX="" # cat /proc/interrupts CPU0 CPU1 CPU2 CPU3 0: 45 0 0 16 IO-APIC-edge timer 1: 1 0 0 7936 IO-APIC-edge i8042 2: 0 0 0 0 XT-PIC-XT-PIC cascade 6: 0 0 0 3 IO-APIC-edge floppy 8: 0 0 0 1 IO-APIC-edge rtc0 9: 0 0 0 0 IO-APIC-edge acpi 12: 0 0 0 1809 IO-APIC-edge i8042 14: 1 0 0 4498 IO-APIC-edge ata_piix 15: 0 0 0 0 IO-APIC-edge ata_piix 16: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb2 18: 0 0 0 1350 IO-APIC-fasteoi uhci_hcd:usb4, radeon 19: 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb3 23: 0 0 0 4099 IO-APIC-fasteoi ehci_hcd:usb1 38: 0 0 0 61963 IO-APIC-fasteoi megaraid 48: 0 0 1002319 4 IO-APIC-fasteoi eth0 49: 0 0 38772 3 IO-APIC-fasteoi eth1 77: 0 0 130076 432159 IO-APIC-fasteoi eth4 78: 0 0 0 23917 IO-APIC-fasteoi eth5 82: 1329033 0 0 4 IO-APIC-fasteoi eth2 83: 0 4886525 0 6 IO-APIC-fasteoi eth3 NMI: 5 6 4 5 Non-maskable interrupts LOC: 61409 57076 64257 114764 Local timer interrupts SPU: 0 0 0 0 Spurious interrupts IWI: 0 0 0 0 IRQ work interrupts RES: 17956 25333 13436 14789 Rescheduling interrupts CAL: 22436 607 539 478 Function call interrupts TLB: 1525 1458 4600 4151 TLB shootdowns TRM: 0 0 0 0 Thermal event interrupts THR: 0 0 0 0 Threshold APIC interrupts MCE: 0 0 0 0 Machine check exceptions MCP: 16 16 16 16 Machine check polls ERR: 0 MIS: 0 Here's sample output of vmstat, showing the system. Barebones system right now. root@nms:~# vmstat -S m 1 procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---- r b swpd free buff cache si so bi bo in cs us sy id wa 0 0 0 14992 192 1029 0 0 56 2 419 29 1 0 99 0 0 0 0 14992 192 1029 0 0 0 0 922 27 0 0 100 0 0 0 0 14991 192 1029 0 0 0 36 763 50 0 0 100 0 0 0 0 14991 192 1029 0 0 0 0 646 35 0 0 100 0 0 0 0 14991 192 1029 0 0 0 0 722 54 0 0 100 0 0 0 0 14991 192 1029 0 0 0 0 793 27 0 0 100 0 ^C Here's dmesg output. I can't figure out why my PCI-X slots are negotiated as PCI. The network cards are all PCI-X with the exception of the integrated NICs that came with the server. In the output below it looks as if eth3 and eth2 negotiated at PCI-X speeds rather than PCI:66Mhz. Wouldn't they all drop to PCI:66Mhz? If your integrated NICs are PCI, as labeled below (eth0,eth1), then wouldn't all devices on your bus speed drop down to that slower bus speed? If not, I still don't know why only one of my NICs ( each has two ethernet ports) is labeled as PCI-X in the output below. Does that mean it is running at PCI-X speeds are is it showing that it's capable? # dmesg | grep e1000 [ 3678.349337] e1000: Intel(R) PRO/1000 Network Driver - version 7.3.21-k8-NAPI [ 3678.349342] e1000: Copyright (c) 1999-2006 Intel Corporation. [ 3678.349394] e1000 0000:06:07.0: PCI->APIC IRQ transform: INT A -> IRQ 48 [ 3678.409725] e1000 0000:06:07.0: Receive Descriptors set to 4096 [ 3678.409730] e1000 0000:06:07.0: Checksum Offload Disabled [ 3678.409734] e1000 0000:06:07.0: Flow Control Disabled [ 3678.586409] e1000 0000:06:07.0: eth0: (PCI:66MHz:32-bit) 00:11:43:e0:e2:8c [ 3678.586419] e1000 0000:06:07.0: eth0: Intel(R) PRO/1000 Network Connection [ 3678.586642] e1000 0000:07:08.0: PCI->APIC IRQ transform: INT A -> IRQ 49 [ 3678.649854] e1000 0000:07:08.0: Receive Descriptors set to 4096 [ 3678.649859] e1000 0000:07:08.0: Checksum Offload Disabled [ 3678.649863] e1000 0000:07:08.0: Flow Control Disabled [ 3678.826436] e1000 0000:07:08.0: eth1: (PCI:66MHz:32-bit) 00:11:43:e0:e2:8d [ 3678.826444] e1000 0000:07:08.0: eth1: Intel(R) PRO/1000 Network Connection [ 3678.826627] e1000 0000:09:04.0: PCI->APIC IRQ transform: INT A -> IRQ 82 [ 3679.093266] e1000 0000:09:04.0: Receive Descriptors set to 4096 [ 3679.093271] e1000 0000:09:04.0: Checksum Offload Disabled [ 3679.093275] e1000 0000:09:04.0: Flow Control Disabled [ 3679.130239] e1000 0000:09:04.0: eth2: (PCI-X:133MHz:64-bit) 00:04:23:e1:77:6a [ 3679.130246] e1000 0000:09:04.0: eth2: Intel(R) PRO/1000 Network Connection [ 3679.130449] e1000 0000:09:04.1: PCI->APIC IRQ transform: INT B -> IRQ 83 [ 3679.397312] e1000 0000:09:04.1: Receive Descriptors set to 4096 [ 3679.397318] e1000 0000:09:04.1: Checksum Offload Disabled [ 3679.397321] e1000 0000:09:04.1: Flow Control Disabled [ 3679.434350] e1000 0000:09:04.1: eth3: (PCI-X:133MHz:64-bit) 00:04:23:e1:77:6b [ 3679.434360] e1000 0000:09:04.1: eth3: Intel(R) PRO/1000 Network Connection [ 3679.434553] e1000 0000:0a:03.0: PCI->APIC IRQ transform: INT A -> IRQ 77 [ 3679.704072] e1000 0000:0a:03.0: Receive Descriptors set to 4096 [ 3679.704077] e1000 0000:0a:03.0: Checksum Offload Disabled [ 3679.704081] e1000 0000:0a:03.0: Flow Control Disabled [ 3679.738364] e1000 0000:0a:03.0: eth4: (PCI:33MHz:64-bit) 00:04:23:b6:35:6c [ 3679.738371] e1000 0000:0a:03.0: eth4: Intel(R) PRO/1000 Network Connection [ 3679.738538] e1000 0000:0a:03.1: PCI->APIC IRQ transform: INT B -> IRQ 78 [ 3680.046060] e1000 0000:0a:03.1: eth5: (PCI:33MHz:64-bit) 00:04:23:b6:35:6d [ 3680.046067] e1000 0000:0a:03.1: eth5: Intel(R) PRO/1000 Network Connection [ 3682.132415] e1000: eth0 NIC Link is Up 100 Mbps Half Duplex, Flow Control: None [ 3682.224423] e1000: eth1 NIC Link is Up 100 Mbps Half Duplex, Flow Control: None [ 3682.316385] e1000: eth2 NIC Link is Up 100 Mbps Half Duplex, Flow Control: None [ 3682.408391] e1000: eth3 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None [ 3682.500396] e1000: eth4 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: None [ 3682.708401] e1000: eth5 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: RX At first I thought it was the NIC drivers but I'm not so sure. I really have no idea where else to look at the moment. Any help is greatly appreciated as I'm struggling with this. If you need more information just ask. Thanks! [1]http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/Documentation/networking/e1000.txt?v=2.6.11.8 [2] http://support.dell.com/support/edocs/systems/pe2850/en/ug/t1390aa.htm

    Read the article

  • IIS7 Custom ASP.NET Errors

    - by Nathan Roe
    I'm trying to setup a custom error page for the IIS 7 404.13 (Content length too large) error. Here's the relevant sections of my web.config file: <system.webServer> <httpErrors errorMode="Custom" existingResponse="Replace"> <remove statusCode="404" subStatusCode="13" /> <error statusCode="404" subStatusCode="13" prefixLanguageFilePath="" path="/FileUpload/Test.aspx" responseMode="ExecuteURL" /> </httpErrors> <security> <requestFiltering> <requestLimits maxAllowedContentLength="10240" /> </requestFiltering> </security> </system.webServer> The response that is being sent back to the server is blank. The Test.aspx file is not blank. Any idea what's going on here?

    Read the article

  • iPhone App to Remotely Control Windows Media Center

    - by Barry-Jon
    Can anyone recommend an iPhone app, for non-jailbroken devices, that can be used to remotely control Windows (7, if it matters) Media Center from outside the home WiFi network? The objective is to be able to connect to the Media Center box during the day when I am not home. For instance, if I realise that the new series of [insert very trendy new show here] is starting tonight and I hadn’t set up a series link I could fire up the app and set my machine to record it. Solutions could include native iPhone apps, iPhone optimised web apps or regular web apps.

    Read the article

  • Forefront 2010 Antispam vs Exchange 2010 Antispam?

    - by Jon
    They look pretty similar, do they work together or independently? For example you have content filtering in Forefront where you can specify SCL barriers, just like in Exchange. However theres no where to specify the Spam mailbox. So will the spam mailbox still be used if I configure this in Forefront?

    Read the article

  • 3GB RAM Installed and Detected by BIOS, Windows Vista 32bit Only Sees 2GB

    - by Nathan Taylor
    I am attempting to install more RAM on a Windows Vista 32bit machine which is using a X6DAL-XG motherboard and the RAM amount reported in the BIOS is 3GB+, but Windows is only reporting 2GB installed. The motherboard has 6 RAM bays which I have populated with various combinations of 4 1GB sticks, and 2 512mb sticks, but no matter how I configure them Windows doesn't see more than 2GB. I realize of course 32-bit Windows has a 3gb cap on memory, but that doesn't explain why it will only report 2GB when there are in fact (currently) 5GB installed. I should think I would be able to see at least 3GB. According to the spec list for the motherboard the minimum RAM requirements are DDR333/266mhz installed in pairs. I have done this exactly, and the BIOS isn't reporting any problems at POST. RAM Configuration (according to CPU-Z): Slot #1: Kingston 128mx72D266C25 - 1024mb PC2100 (133mhz) Slot #2: Kingston KVR266X72RC25/1024 - 1024mb PC2100 (133mhz) Slot #3: PQI - 512mb PC2700 (166mhz) Slot #4: Kingston 128mx72D266C25 - 1024mb PC2100 (133mhz) Slot #5: Kingston KVR266X72RC25/1024 - 1024mb PC2100 (133mhz) Slot #6: PQI - 512mb PC2700 (166mhz) I'm not sure if memory specs above conflict with this statement in the motherboard manual or not: Memory Support The X6DAL-XG supports up to 12GB/24GB of registered ECC DDR333/266 (PC2700/PC2100) memory. The motherboard was designed to support 4GB (PC2100) modules in each slot, but only the 2GB modules have been tested. When using registered ECC DDR333 (PC2700) memory, installing four pieces of double-banked memory or six pieces of single-banked memory is supported. So, am I doing something wrong with the RAM I have now, or is there some sort of compatibility problem which I am missing? Thanks!

    Read the article

  • Setting WMI permissions remotely

    - by christianlinnell
    I've developed a tool that does a simple retrieval of registered services and installed applications from remote Windows Server 2003 servers via WMI. My problem is, the tool needs to be run on an ad hoc basis by a user who is not an administrator of those servers. I've created a domain user (which the tool will use to run the query) that I'd like to grant remote WMI permission on each server, but given there are about 200 servers, I can't do it manually. Is there a way to grant access to that domain user via WMI, or by distributing a registry change via SMS or Group Policy?

    Read the article

  • Software restriction policies set in the registry don't update Local Group Policy

    - by Jon Rhoades
    The joys of a Samba domain... First off Domain Group policy can't be used until Samba 4 arrives. We need to setup Software Restriction Policies (SRPs) on most of the computers in our Samba domain and I would dearly like to automate this. (We are moving away from just disabling the Windows installer). The traditional way is to set SRPs using Local Group Policy (LGP) Computer Conf-Windows Settings-SRP but this involves visiting every machine as it can't be set using in NTConfig.pol. It is possible to attempt to create the SRPs directly in the registry: [HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\Safer\CodeIdentifiers\262144\Paths\{30628f61-eb47-4d87-823b-6683a09eda87}] "LastModified"=hex(b):40,a2,94,09,b5,5d,ca,01 "Description"="" "SaferFlags"=dword:00000000 "ItemData"="C:\\location\\subfolder" SaferFlags DWORD seems to be what turns it on or off, but although this seems to work it does not update the Local Group Policy - SRPs still show as "No SRPs Defined". Where does the LGP store this setting - is it even in the registry and more importantly - Is there a cleverer way of setting up SRPs?

    Read the article

  • What extra permission settings were added in Windows Server 2003 over Windows Server 2000?

    - by Jon Seigel
    We have a domain controller currently running Windows Server 2000, and we're in the process of upgrading some of our workstations to Windows 7. The problem is that users are getting access denied messages to things they should be able to do, even trivial things like deleting shortcuts from the desktop. The users run at less than administrative levels, which we want to maintain. We think this is caused by Windows 7 having extra security permission settings that are getting defaulted to denied, because the new settings wouldn't actually exist in the Windows 2000 profiles. The reason I'm asking about Windows 2003 Server is because we have an available license of that, and not to 2008 (which would likely solve the problem completely, but costs $). So what I'd like to find out is if the permission settings in 2003 will be sufficient for our needs to justify upgrading the domain controller to 2003.

    Read the article

  • Outlook 2003: How to print embedded images in e-mails?

    - by Jon Seigel
    My boss has been trying to print his e-mails with embedded images, but the images don't print. All we get is a placeholder space where the image should be. Ideally, we'd like to have an option to control whether images get printed or not. I Googled this already and the one solution I found, trying to print the e-mail from the separate window using the print icon, did not work. Edit: also tried the solution here without success. I had him forward a sample e-mail to me, and I printed it fine in my Outlook (same version).

    Read the article

  • Active Directory using Samba/Open LDAP for user accounts

    - by Jon Rhoades
    I know this is the wrong way round... but Is it possible to use AD in front of Samba for our PC clients, so that the user accounts are in Samba/Open LDAP. Managing our fleet of Windows PC's is becoming more and more difficult with just Samba v3 - until Samba v4 comes along, it would be great if we could leverage Active Directory, but have the accounts stored in Samba/Open LDAP. Windows PC's are a minority in our organisation & Samaba/Open LDAP are used for just about every service (Zimbra/RADIUS/Intranet/SAN/Printing/...) so it will have to remain the definitive account source. Anyway, it probably can't be done, but I thought I would ask for ideas anyway.

    Read the article

  • Xen HVM networking wont work

    - by Nathan
    I'm trying to get a Xen HVM network working using route however I am failing. Xen PV works fine using Ubuntu but when installing Ubuntu on HVM it fails to pick up the network. I'll let you know now that I'm not that experienced with Xen so I would appreciate any help. vm104 is the HVM thats causing me the problems, here is the configs that I believe should help resolve the problem. [root@eros vm104]# cat vm104.cfg import os, re arch = os.uname()[4] if re.search('64', arch): arch_libdir = 'lib64' else: arch_libdir = 'lib' kernel = '/usr/lib/xen/boot/hvmloader' builder = 'hvm' memory = 6000 shadow_memory = '8' cpu_weight = 256 name = 'vm104' vif = ['type=ioemu, ip=85.25.x.y, vifname=vifvm104.0, mac=00:16:3e:52:3d:fe, bridge=xenbr0'] acpi = 1 apic = 1 vnc = 1 vcpus = 4 vncdisplay = 3 vncviewer = 0 vncconsole = 1 vnclisten = '217.118.x.y' vncpasswd = 'kCfb5S4tE7' serial = 'pty' disk = ['phy:/dev/vpsvg/vm104_img,hda,w', 'file:/home/solusvm/xen/iso/Windows-Server-2008-RC2.iso,hdc:cdrom,r'] device_model = '/usr/' + arch_libdir + '/xen/bin/qemu-dm' boot = 'cd' sdl = '0' usbdevice = 'tablet' pae=1 [root@eros /]# cat /etc/xen/xend-config.sxp | egrep -v "(^#.*|^$)" (xend-unix-server yes) (xend-unix-path /var/lib/xend/xend-socket) (xend-relocation-hosts-allow '^localhost$ ^localhost\\.localdomain$') (network-script network-route) (vif-script vif-route) (network-script 'network-route netdev=eth0') (dom0-min-mem 256) (dom0-cpus 0) (vnc-listen '0.0.0.0') (vncpasswd '') (keymap 'en-us') The Windows install will not pick up the network - I've tried setting the IP manually by using the Xen servers IP as the gateway and setting the main IP in Windows but no luck. If anyone needs any more information let me know and I appreciate any input!

    Read the article

< Previous Page | 20 21 22 23 24 25 26 27 28 29 30 31  | Next Page >