Search Results

Search found 10101 results on 405 pages for 'temporary tables'.

Page 241/405 | < Previous Page | 237 238 239 240 241 242 243 244 245 246 247 248  | Next Page >

  • Configure phpMyAdmin to connect to another MySql server

    - by Spirit
    I have installed WAMP server on my laptop and for the sake of simplicity I want to configure phpMyAdmin to connect to a mysql server on another machine so that I can dump the database tables. If this is possible (and i believe it is), does any1 knows where is phpMyAdmin settings file located? The location of wamp on my laptop is C:\wamp. I've noticed in C:\wamp\apps\phpmyadmin3.5.1 but there are a lot of php scripts in there. Which one of this should I modify?

    Read the article

  • SQL Server 2005 transactional replication break before a configured number of retries

    - by ti2
    We have a SQL Server 2000 Standard database with some tables being replicated (continuous transactional replication) to dozens of SQL Server 2005 Express and MSDE computers. The step 2 of the replication agent job (Run agent) is configured by default to retry every 1 minute for 10 times if some problem ocurr. Because the client machines get shut down at night (they are POS machines), we changed the number of retries to 5760 (4 days), so replication would not be broken at night and would not need to be restarted manually. But the problem is that every other day we have at least one machine with broken replication, with this error: The process could not connect to Subscriber 'POS986'. NOTE: The step was retried the requested number of times (5760) without succeeding. The step failed. It seems that SQL Server is not respecting the number of retries or the interval between retries as we configured. PS: I have restarted the replication job after changing the number of retries from 10 to 5760.

    Read the article

  • How can I speed up a MySQL restore from a dump file?

    - by Dave Forgac
    I am restoring a 30GB database from a mysqldump file to an empty database on a new server. When running the SQL from the dump file, the restore starts very quickly and then starts to get slower and slower. Individual inserts are now taking 15+ seconds. The tables are MyISAM. The server has no other active connections. SHOW PROCESSLIST; only shows the insert from the restore (and the show processlist itself). Does anyone have any ideas what could be causing the dramatic slowdown? Are there any MySQL variables that I can change to speed the restore while it is progressing?

    Read the article

  • In mysql I want to set lower_case_table_names=1 on existing databases to avoid cases-sensitivity issues accross multiple platforms

    - by sakhunzai
    In mysql I want to set lower_case_table_names=1 on existing databases to avoid cases-sensitivity issues accross multiple platforms. A) What are the risks ?( besides show table issue) B) After setting lower_case_table_names=1, will I be in position to query databases across multiple platforms consistantly ? select * from USERS == select * from users; C) How the triggers + stored procedure + functions + views + events will be affected in this regards. I know lower_case_table_names is only for "TABLE" names but how about triggers other database objects . Will they remain case-insensitive How about views ? D) Do I need to rename all tables before/after this configuration setting or this will do the miracle in one step (i.e lower_case_table_names=1 neutralize table names) ? E) What will be the exact steps WRT:mysqd / my.ini ?

    Read the article

  • Make a server ( other than the router ) to be the default gateway for a subnet

    - by powerguy123
    I am trying to make a server ( lets call it server_A) which is different from the router to be the gateway for a subnet. Why do I want this ? I want to host a loadbalancer on server_A using LVS-NAT, and I dont want to implement a V-Lan or IP-IP tunneling. I have modified the routing tables of the remaining servers on the subnet to use server_A as the gateway. I have set server_A to not send ICMP reroute packets. But most traffic from servers in that subnet to outside clients are still being sent through the original gateway, bypassing server_A. Is there any other configuration I need to set in order to achieve my goal ?

    Read the article

  • Can't conncet to memcached

    - by DMClark
    We currently have memcached running on CentOS. None of our PHP applications can connect, have tried multiple applications trying to establish access. The most informative PHP error we get is: "Memcache::get() [function.Memcache-get]: Server 127.0.0.1 (tcp 11211) failed with: Permission denied (13) in /var/www/.." memcached 1.4.5 PECL 2.25 We can telnet and it works. IP tables is full access from lo to lo. We've tried this on two different servers with both compiled version and the rpm in CentOS 5.5 and get the same result. Is there anything fairly obvious that we are missing?

    Read the article

  • Reasons why ports below 1024 cannot be opened

    - by Sitoplex
    I'm root on a machine I don't know how it was configured. I try to open SSHD on another port than 22 but it does not work. I changed the /etc/ssh/sshd_config file and added a new Port line extra to the Port 22. but it does only work when this second port is a number above 1024. Why is that? How can I find the reason? Infos: I'm restarting it using /etc/init.d/sshd restart as root. "netstat -apn" does not show the port is open by any other service (anyway I tried different ports and only above 1024 work). "telnet localhost port" also shows the service works only when they are above 1024. In iptables all tables are empty. Thanks!

    Read the article

  • How can we recover/restore lost/overwritten data in our MSSQL 2008 table?

    - by TeTe
    I am in serious trouble and I am seeking professional advices here. We are using MSSQL server 2008. We removed primary key, replaced exiting data with new data resulted losing our critical business data in its child tables on MSSQL Server. It was completely human mistake and we didn't have disk failure. 1) The last backup file was a month ago which means it is useless. 2) We created Maintenance Plans to backup our database at 12AM everyday but those files are nohwere to be found 3) A friend of mine said we can recover from Transaction Logs. When I go to TaskRestore Transaction log is dimmed/disabled. 4) I checked ManagementMaintenance Plans. I can't find any restored point there. It seems that our maintenance plan hasn't been working. Is there any third party tool to recover lost/overwritten data from MSSQL table? Thanks a lot.

    Read the article

  • How can 2 or more instances of the same program to communicate in local network?

    - by user1981437
    I want to create program which will be in use for few computers connected in local network. Basically the program aim is to keep track of all tables in a bar ( lets say ), which are reserved. When some user book a table as reserved the program should broadcast the table number to all other Pc's and mark the table as reserved. Since all computers use the same program, how is possible to create communication between all of them ? Should i use sockets to achieve this? If it matters, all of the computers have installed Linux OS,and the app will be developed in ruby,perl or php. Thank you.

    Read the article

  • "Undeleting" partition (NTFS) - recommendations?

    - by kagali-san
    So I have a drive which either suffered from hardware error or, possibly, got a little shock from badly configured Windows unattended install started on the same PC (the drive in question wasn't the install drive..). Quick exam shows that filesystem is seemingly intact, as some data recovery tools work with it (UnFormat rated it as "Excellent"). This may mean that a copy of partition table exists on disk, or a copy of MFT survived whatever happened, or.. Any idea how to restore partition tables/FS header, add a drive letter thus let Windows to mount the filesystem as if nothing happened? (I guess there must be tools of this kind)

    Read the article

  • Best tool for writing a Programming Book?

    - by walkthedog
    Well, this is not directly programming related! But a friend of mine wants to write a book about programming. Now he asked me if I knew a good software for this, because Word crashes 10 times a day on his machine, and OpenOffice is just very chunky and slow. Also none of them seem to have any useful support for including Code Listings (examples) with useful syntax highlighting or at least some sort of support for inserting code (i.e. indicating line breaks with arrows that turn around, line numbers, etc). Latex is out of question since it's incredible hard to use and has no really useful feature for including tables. It's a mess. Maybe some IT authors are here who can give some hints what tools they use. That would be great!

    Read the article

  • Performance impact of running Linux in a virtual machine in Windows?

    - by vovick
    Hello, I'd like to know what performance impact I could expect running Linux in a virtual machine in Windows. The job I need Linux for is heavy and almost non-stop code compilation with GCC. Dual-boot doesn't look like a very attractive solution, so I'm counting on low VM overhead right now (10-20% would be fine for me, but 50% or more will be unacceptable). Did anyone try to measure the performance difference, are there any comparison tables? What virtual machine with the lowest overhead possible will you suggest? My host OS is Win7 and I've got a modern Core i7 with VT-x present. Thanks!

    Read the article

  • sqlserver.exe uses 100% CPU

    - by Markus
    I've created an application (asp.net) that once a day syncs an entire database through XML-files. The sync first creates an transaction and then clears the databases tables and then starts to parse and insert the new rows into the database. When all the parsing is complete it commits the transaction. This works fine on a SQL Server 2005 (on another machine), but on SQL Server 2005 Express, the process starts to use 100% CPU after a while, and as I log the inserts being made I can see that it just stops inserting. No exception, it just stops inserting. Anyone got any idea what this may be? I've previously run the syncronization on another sql 2005 express (also on another computer), and that worked. The server has only 2GB RAM, could this be the problem?

    Read the article

  • SQL SERVER – Generate Report for Index Physical Statistics – SSMS

    - by pinaldave
    Few days ago, I wrote about SQL SERVER – Out of the Box – Activity and Performance Reports from SSSMS (Link). A user asked me a question regarding if we can use similar reports to get the detail about Indexes. Yes, it is possible to do the same. There are similar type of reports are available at Database level, just like those available at the Server Instance level. You can right click on Database name and click Reports. Under Standard Reports, you will find following reports. Disk Usage Disk Usage by Top Tables Disk Usage by Table Disk Usage by Partition Backup and Restore Events All Transactions All Blocking Transactions Top Transactions by Age Top Transactions by Blocked Transactions Count Top Transactions by Locks Count Resource Locking Statistics by Objects Object Execute Statistics Database Consistency history Index Usage Statistics Index Physical Statistics Schema Change history User Statistics Select the Reports with name Index Physical Statistics. Once click, a report containing all the index names along with other information related to index will be visible, e.g. Index Type and number of partitions. One column that caught my interest was Operation Recommended. In some place, it suggested that index needs to be rebuilt. It is also possible to click and expand the column of partitions and see additional details about index as well. DBA and Developers who just want to have idea about how your index is and its physical statistics can use this tool. Click to Enlarge Note: Please note that I will rebuild my indexes just because this report is recommending it. There are many other parameters you need to consider before rebuilding indexes. However, this tool gives you the accurate stats of your index and it can be right away exported to Excel or PDF writing by clicking on the report. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • LLBLGen Pro v3.0 with Entity Framework v4.0 (12m video)

    - by FransBouma
    Today I recorded a video in which I illustrate some of the database-first functionality available in LLBLGen Pro v3.0. LLBLGen Pro v3.0 also supports model-first functionality, which I hope to illustrate in an upcoming video. LLBLGen Pro v3.0 is currently in beta and is scheduled to RTM some time in May 2010. It supports the following frameworks out of the box, with more scheduled to follow in the coming year: LLBLGen Pro RTL (our own o/r mapper framework), Linq to Sql, NHibernate and Entity Framework (v1 and v4). The video I linked to below illustrates the creation of an entity model for Entity Framework v4, by reverse engineering the SQL Server 2008 example database 'AdventureWorks'. The following topics (among others) are included in the video: Abbreviation support (example: convert 'Qty' into 'Quantity' during name construction) Flexible, framework specific settings Attribute definitions for various elements (so no requirement for buddy-classes or messing with generated code or templates) Retrieval of relational model data from a database Reverse engineering of tables into entities, automatically placed in groups Auto-creation of inheritance hierarchies Refactoring of entity fields into Value Type Definitions (DDD) Mapping a Typed view onto a stored procedure resultset Creation of a Typed list (definition of a query with a projection) on a set of related entities Validation and correction of found inconsistencies and errors Generating code using one of the pre-defined presets Illustration of the code in vs.net 2010 It also gives a good overview of what it takes with LLBLGen Pro v3.0 to start from a new project, point it to a database, get an entity model, perform tweaks and validation and generate code which is ready to run. I am no video recording expert so there's no audio and some mouse movements might be a little too quickly. If that's the case, please pause the video. It's rather big (52MB). Click here to open the HTML page with the video (Flash). Opens in a new window. LLBLGen Pro v3.0 is currently in beta (available for v2.x customers) and scheduled to be released somewhere in May 2010.

    Read the article

  • Azure - Part 4 - Table Storage Service in Windows Azure

    - by Shaun
    In Windows Azure platform there are 3 storage we can use to save our data on the cloud. They are the Table, Blob and Queue. Before the Chinese New Year Microsoft announced that Azure SDK 1.1 had been released and it supports a new type of storage – Drive, which allows us to operate NTFS files on the cloud. I will cover it in the coming few posts but now I would like to talk a bit about the Table Storage.   Concept of Table Storage Service The most common development scenario is to retrieve, create, update and remove data from the data storage. In the normal way we communicate with database. When we attempt to move our application over to the cloud the most common requirement should be have a storage service. Windows Azure provides a in-build service that allow us to storage the structured data, which is called Windows Azure Table Storage Service. The data stored in the table service are like the collection of entities. And the entities are similar to rows or records in the tradtional database. An entity should had a partition key, a row key, a timestamp and set of properties. You can treat the partition key as a group name, the row key as a primary key and the timestamp as the identifer for solving the concurrency problem. Different with a table in a database, the table service does not enforce the schema for tables, which means you can have 2 entities in the same table with different property sets. The partition key is being used for the load balance of the Azure OS and the group entity transaction. As you know in the cloud you will never know which machine is hosting your application and your data. It could be moving based on the transaction weight and the number of the requests. If the Azure OS found that there are many requests connect to your Book entities with the partition key equals “Novel” it will move them to another idle machine to increase the performance. So when choosing the partition key for your entities you need to make sure they indecate the category or gourp information so that the Azure OS can perform the load balance as you wish.   Consuming the Table Although the table service looks like a database, you cannot access it through the way you are using now, neither ADO.NET nor ODBC. The table service exposed itself by ADO.NET Data Service protocol, which allows you can consume it through the RESTful style by Http requests. The Azure SDK provides a sets of classes for us to connect it. There are 2 classes we might need: TableServiceContext and TableServiceEntity. The TableServiceContext inherited from the DataServiceContext, which represents the runtime context of the ADO.NET data service. It provides 4 methods mainly used by us: CreateQuery: It will create a IQueryable instance from a given type of entity. AddObject: Add the specified entity into Table Service. UpdateObject: Update an existing entity in the Table Service. DeleteObject: Delete an entity from the Table Service. Beofre you operate the table service you need to provide the valid account information. It’s something like the connect string of the database but with your account name and the account key when you created the storage service on the Windows Azure Development Portal. After getting the CloudStorageAccount you can create the CloudTableClient instance which provides a set of methods for using the table service. A very useful method would be CreateTableIfNotExist. It will create the table container for you if it’s not exsited. And then you can operate the eneities to that table through the methods I mentioned above. Let me explain a bit more through an exmaple. We always like code rather than sentence.   Straightforward Accessing to the Table Here I would like to build a WCF service on the Windows Azure platform, and for now just one requirement: it would allow the client to create an account entity on the table service. The WCF service would have a method named Register and accept an instance of the account which the client wants to create. After perform some validation it will add the entity into the table service. So the first thing I should do is to create a Cloud Application on my VIstial Studio 2010 RC. (The Azure SDK 1.1 only supports VS2008 and VS2010 RC.) The solution should be like this below. Then I added a configuration items for the storage account through the Settings section under the cloud project. (Double click the Services file under Roles folder and navigate to the Setting section.) This setting will be used when to retrieve my storage account information. Since for now I just in the development phase I will select “UseDevelopmentStorage=true”. And then I navigated to the WebRole.cs file under my WCF project. If you have read my previous posts you would know that this file defines the process when the application start, and terminate on the cloud. What I need to do is to when the application start, set the configuration publisher to load my config file with the config name I specified. So the code would be like below. I removed the original service and contract created by the VS template and add my IAccountService contract and its implementation class - AccountService. And I add the service method Register with the parameters: email, password and it will return a boolean value to indicates the result which is very simple. At this moment if I press F5 the application will be established on my local development fabric and I can see my service runs well through the browser. Let’s implement the service method Rigister, add a new entity to the table service. As I said before the entities you want to store in the table service must have 3 properties: partition key, row key and timespan. You can create a class with these 3 properties. The Azure SDK provides us a base class for that named TableServiceEntity in Microsoft.WindowsAzure.StorageClient namespace. So what we need to do is more simply, create a class named Account and let it derived from the TableServiceEntity. And I need to add my own properties: Email, Password, DateCreated and DateDeleted. The DateDeleted is a nullable date time value to indecate whether this entity had been deleted and when. Do you notice that I missed something here? Yes it’s the partition key and row key I didn’t assigned. The TableServiceEntity base class defined 2 constructors one was a parameter-less constructor which will be used to fill values into the properties from the table service when retrieving data. The other was one with 2 parameters: partition key and row key. As I said below the partition key may affect the load balance and the row key must be unique so here I would like to use the email as the parition key and the email plus a Guid as the row key. OK now we finished the entity class we need to store onto the table service. The next step is to create a data access class for us to add it. Azure SDK gives us a base class for it named TableServiceContext as I mentioned below. So let’s create a class for operate the Account entities. The TableServiceContext need the storage account information for its constructor. It’s the combination of the storage service URI that we will create on Windows Azure platform, and the relevant account name and key. The TableServiceContext will use this information to find the related address and verify the account to operate the storage entities. Hence in my AccountDataContext class I need to override this constructor and pass the storage account into it. All entities will be saved in the table storage with one or many tables which we call them “table containers”. Before we operate an entity we need to make sure that the table container had been created on the storage. There’s a method we can use for that: CloudTableClient.CreateTableIfNotExist. So in the constructor I will perform it firstly to make sure all method will be invoked after the table had been created. Notice that I passed the storage account enpoint URI and the credentials to specify where my storage is located and who am I. Another advise is that, make your entity class name as the same as the table name when create the table. It will increase the performance when you operate it over the cloud especially querying. Since the Register WCF method will add a new account into the table service, here I will create a relevant method to add the account entity. Before implement, I should add a reference - System.Data.Services.Client to the project. This reference provides some common method within the ADO.NET Data Service which can be used in the Windows Azure Table Service. I will use its AddObject method to create my account entity. Since the table service are not fully implemented the ADO.NET Data Service, there are some methods in the System.Data.Services.Client that TableServiceContext doesn’t support, such as AddLinks, etc. Then I implemented the serivce method to add the account entity through the AccountDataContext. You can see in the service implmentation I load the storage account information through my configuration file and created the account table entity from the parameters. Then I created the AccountDataContext. If it’s my first time to invoke this method the constructor of the AccountDataContext will create a table container for me. Then I use Add method to add the account entity into the table. Next, let’s create a farely simple client application to test this service. I created a windows console application and added a service reference to my WCF service. The metadata information of the WCF service cannot be retrieved if it’s deployed on the Windows Azure even though the <serviceMetadata httpGetEnabled="true"/> had been set. If we need to get its metadata we can deploy it on the local development service and then changed the endpoint to the address which is on the cloud. In the client side app.config file I specified the endpoint to the local development fabric address. And the just implement the client to let me input an email and a password then invoke the WCF service to add my acocunt. Let’s run my application and see the result. Of course it should return TRUE to me. And in the local SQL Express I can see the data had been saved in the table.   Summary In this post I explained more about the Windows Azure Table Storage Service. I also created a small application for demostration of how to connect and consume it through the ADO.NET Data Service Managed Library provided within the Azure SDK. I only show how to create an eneity in the storage service. In the next post I would like to explain about how to query the entities with conditions thruogh LINQ. I also would like to refactor my AccountDataContext class to make it dyamic for any kinds of entities.   Hope this helps, Shaun   All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • What is Linq?

    - by Aamir Hasan
    The way data can be retrieved in .NET. LINQ provides a uniform way to retrieve data from any object that implements the IEnumerable<T> interface. With LINQ, arrays, collections, relational data, and XML are all potential data sources. Why LINQ?With LINQ, you can use the same syntax to retrieve data from any data source:var query = from e in employeeswhere e.id == 1select e.nameThe middle level represents the three main parts of the LINQ project: LINQ to Objects is an API that provides methods that represent a set of standard query operators (SQOs) to retrieve data from any object whose class implements the IEnumerable<T> interface. These queries are performed against in-memory data.LINQ to ADO.NET augments SQOs to work against relational data. It is composed of three parts.LINQ to SQL (formerly DLinq) is use to query relational databases such as Microsoft SQL Server. LINQ to DataSet supports queries by using ADO.NET data sets and data tables. LINQ to Entities is a Microsoft ORM solution, allowing developers to use Entities (an ADO.NET 3.0 feature) to declaratively specify the structure of business objects and use LINQ to query them. LINQ to XML (formerly XLinq) not only augments SQOs but also includes a host of XML-specific features for XML document creation and queries. What You Need to Use LINQLINQ is a combination of extensions to .NET languages and class libraries that support them. To use it, you’ll need the following: Obviously LINQ, which is available from the new Microsoft .NET Framework 3.5 that you can download at http://go.microsoft.com/?linkid=7755937.You can speed up your application development time with LINQ using Visual Studio 2008, which offers visual tools such as LINQ to SQL designer and the Intellisense  support with LINQ’s syntax.Optionally, you can download the Visual C# 2008 Expression Edition tool at www.microsoft.com/vstudio/express/download. It is the free edition of Visual Studio 2008 and offers a lot of LINQ support such as Intellisense and LINQ to SQL designer. To use LINQ to ADO.NET, you need SQL

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • The Most Common and Least Used 4-Digit PIN Numbers [Security Analysis Report]

    - by Asian Angel
    How ‘secure’ is your 4-digit PIN number? Is your PIN number a far too common one or is it a bit more unique in comparison to others? The folks over at the Data Genetics blog have put together an interesting analysis report that looks at the most common and least used 4-digit PIN numbers chosen by people. Numerically based (0-9) 4-digit PIN numbers only allow for a total of 10,000 possible combinations, so it stands to reason that some combinations are going to be far more common than others. The question is whether or not your personal PIN number choices are among the commonly used ones or ‘stand out’ as being more unique. Note 1: Data Genetics used data condensed from released, exposed, & discovered password tables and security breaches to generate the analysis report. Note 2: The updates section at the bottom has some interesting tidbits concerning peoples’ use of dates and certain words for PIN number generation. The analysis makes for very interesting reading, so browse on over to get an idea of where you stand with regards to your personal PIN number choices. 8 Deadly Commands You Should Never Run on Linux 14 Special Google Searches That Show Instant Answers How To Create a Customized Windows 7 Installation Disc With Integrated Updates

    Read the article

  • Entity Association Mapping with Code First Part 1 : Mapping Complex Types

    - by mortezam
    Last week the CTP5 build of the new Entity Framework Code First has been released by data team at Microsoft. Entity Framework Code-First provides a pretty powerful code-centric way to work with the databases. When it comes to associations, it brings ultimate flexibility. I’m a big fan of the EF Code First approach and am planning to explain association mapping with code first in a series of blog posts and this one is dedicated to Complex Types. If you are new to Code First approach, you can find a great walkthrough here. In order to build a solid foundation for our discussion, we will start by learning about some of the core concepts around the relationship mapping.   What is Mapping?Mapping is the act of determining how objects and their relationships are persisted in permanent data storage, in our case, relational databases. What is Relationship mapping?A mapping that describes how to persist a relationship (association, aggregation, or composition) between two or more objects. Types of RelationshipsThere are two categories of object relationships that we need to be concerned with when mapping associations. The first category is based on multiplicity and it includes three types: One-to-one relationships: This is a relationship where the maximums of each of its multiplicities is one. One-to-many relationships: Also known as a many-to-one relationship, this occurs when the maximum of one multiplicity is one and the other is greater than one. Many-to-many relationships: This is a relationship where the maximum of both multiplicities is greater than one. The second category is based on directionality and it contains two types: Uni-directional relationships: when an object knows about the object(s) it is related to but the other object(s) do not know of the original object. To put this in EF terminology, when a navigation property exists only on one of the association ends and not on the both. Bi-directional relationships: When the objects on both end of the relationship know of each other (i.e. a navigation property defined on both ends). How Object Relationships Are Implemented in POCO domain models?When the multiplicity is one (e.g. 0..1 or 1) the relationship is implemented by defining a navigation property that reference the other object (e.g. an Address property on User class). When the multiplicity is many (e.g. 0..*, 1..*) the relationship is implemented via an ICollection of the type of other object. How Relational Database Relationships Are Implemented? Relationships in relational databases are maintained through the use of Foreign Keys. A foreign key is a data attribute(s) that appears in one table and must be the primary key or other candidate key in another table. With a one-to-one relationship the foreign key needs to be implemented by one of the tables. To implement a one-to-many relationship we implement a foreign key from the “one table” to the “many table”. We could also choose to implement a one-to-many relationship via an associative table (aka Join table), effectively making it a many-to-many relationship. Introducing the ModelNow, let's review the model that we are going to use in order to implement Complex Type with Code First. It's a simple object model which consist of two classes: User and Address. Each user could have one billing address. The Address information of a User is modeled as a separate class as you can see in the UML model below: In object-modeling terms, this association is a kind of aggregation—a part-of relationship. Aggregation is a strong form of association; it has some additional semantics with regard to the lifecycle of objects. In this case, we have an even stronger form, composition, where the lifecycle of the part is fully dependent upon the lifecycle of the whole. Fine-grained domain models The motivation behind this design was to achieve Fine-grained domain models. In crude terms, fine-grained means “more classes than tables”. For example, a user may have both a billing address and a home address. In the database, you may have a single User table with the columns BillingStreet, BillingCity, and BillingPostalCode along with HomeStreet, HomeCity, and HomePostalCode. There are good reasons to use this somewhat denormalized relational model (performance, for one). In our object model, we can use the same approach, representing the two addresses as six string-valued properties of the User class. But it’s much better to model this using an Address class, where User has the BillingAddress and HomeAddress properties. This object model achieves improved cohesion and greater code reuse and is more understandable. Complex Types: Splitting a Table Across Multiple Types Back to our model, there is no difference between this composition and other weaker styles of association when it comes to the actual C# implementation. But in the context of ORM, there is a big difference: A composed class is often a candidate Complex Type. But C# has no concept of composition—a class or property can’t be marked as a composition. The only difference is the object identifier: a complex type has no individual identity (i.e. no AddressId defined on Address class) which make sense because when it comes to the database everything is going to be saved into one single table. How to implement a Complex Types with Code First Code First has a concept of Complex Type Discovery that works based on a set of Conventions. The convention is that if Code First discovers a class where a primary key cannot be inferred, and no primary key is registered through Data Annotations or the fluent API, then the type will be automatically registered as a complex type. Complex type detection also requires that the type does not have properties that reference entity types (i.e. all the properties must be scalar types) and is not referenced from a collection property on another type. Here is the implementation: public class User{    public int UserId { get; set; }    public string FirstName { get; set; }    public string LastName { get; set; }    public string Username { get; set; }    public Address Address { get; set; }} public class Address {     public string Street { get; set; }     public string City { get; set; }            public string PostalCode { get; set; }        }public class EntityMappingContext : DbContext {     public DbSet<User> Users { get; set; }        } With code first, this is all of the code we need to write to create a complex type, we do not need to configure any additional database schema mapping information through Data Annotations or the fluent API. Database SchemaThe mapping result for this object model is as follows: Limitations of this mappingThere are two important limitations to classes mapped as Complex Types: Shared references is not possible: The Address Complex Type doesn’t have its own database identity (primary key) and so can’t be referred to by any object other than the containing instance of User (e.g. a Shipping class that also needs to reference the same User Address). No elegant way to represent a null reference There is no elegant way to represent a null reference to an Address. When reading from database, EF Code First always initialize Address object even if values in all mapped columns of the complex type are null. This means that if you store a complex type object with all null property values, EF Code First returns a initialized complex type when the owning entity object is retrieved from the database. SummaryIn this post we learned about fine-grained domain models which complex type is just one example of it. Fine-grained is fully supported by EF Code First and is known as the most important requirement for a rich domain model. Complex type is usually the simplest way to represent one-to-one relationships and because the lifecycle is almost always dependent in such a case, it’s either an aggregation or a composition in UML. In the next posts we will revisit the same domain model and will learn about other ways to map a one-to-one association that does not have the limitations of the complex types. References ADO.NET team blog Mapping Objects to Relational Databases Java Persistence with Hibernate

    Read the article

  • Objective-C As A First OOP Language?

    - by Daniel Scocco
    I am just finishing the second semester of my CS degree. So far I learned C, all the fundamental algorithms and data structures (e.g., searching, sorting, linked lists, heaps, hash tables, trees, graphs, etc). Next year we'll start with OOP, using either Java or C++. Recently I got some ideas for some iPhone apps and got itchy to start working on them. However I heard some bad things about Objectice-C in the past, so I am wondering if learning it as my first OOP language could be a problem. Not to mention that I think it will be hard to find books/online courses that teach basic OOP concepts using Objective-C to illustrate the concepts (as opposed to books using Java or C++, which are plenty), so this could be another problem. In summary: should I start learning Objective-C and OOP concepts right now by my own, or wait one more semester until I learn Java/C++ at university and then jump into Objective-C? Update: For those interested in getting started with OOP via Objective-C I just found some nice tutorials inside Apple's Developer Library - http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html

    Read the article

  • MySQL at Mobile World Congress (on Valentine's Day...)

    - by mat.keep(at)oracle.com
    It is that time of year again when the mobile communications industry converges on Barcelona for what many regard as the premier telecommunications show of the year.Starting on February 14th, what better way for a Brit like me to spend Valentines Day with 50,000 mobile industry leaders (my wife doesn't tend to read this blog, so I'm reasonably safe with that statement).As ever, Oracle has an extensive presence at the show, and part of that presence this year includes MySQL.We will be running a live demonstration of the MySQL Cluster database on Booth 7C18 in the App Planet.The demonstration will show how the MySQL Cluster Connector for Java is implemented to provide native connectivity to the carrier grade MySQL Cluster database from Java ME clients via Java SE virtual machines and Java EE servers.  The demonstration will show how end-to-end Java services remain continuously available during both catastrophic failures and scheduled maintenance activities.The MySQL Cluster Connector for Java provides both a native Java API and JPA plug-in that directly maps Java objects to relational tables stored in the MySQL Cluster database, without the overhead and complexity of having to transform objects to JDBC, and then SQL  The result is 10x higher throughput, and a simpler development model for Java engineers.Stop by the stand for a demonstration, and an opportunity to speak with the MySQL telecoms team who will share experiences on how MySQL is being used to bring the innovation of the web to the carrier network.Of course, if you can't make it to Barcelona, you can still learn more about the MySQL Cluster Connector for Java from this whitepaper and are free to download it as part of MySQL Cluster Community Edition  Let us know via the comments if you have Java applications that you think will benefit from the MySQL Cluster Connector for JavaI can't promise that Valentines Day at MWC will be the time you fall in love with MySQL Cluster...but I'm confident you will at least develop a healthy respect for it  

    Read the article

  • SSMS - Please get keyboard shortcuts working for schemas

    - by simonsabin
    My current client is using schemas which is good as it provides nice seperation. However it causes me pain on a daily basis. The reason. I can't use the built in keyboard shortcuts in SQL Server management studio. I can't believe how painfully annoying this is. It's just madness that SQL Server's own tool doesn't support a best practice feature.  You can vote on the connect item here to get this sorted https://connect.microsoft.com/SQLServer/feedback/details/349116/keyboard-shortcut-alt-f1-sp-help-doesnt-work-for-tables-belonging-to-non-default-schemas I've blogged about this before, but this just annoys me so much I'm posting about it again. Surely it can't be difficult to change. The other option is to open up SSMS so we can use add-Ins. I've blogged that before and you can vote on that suggestion here https://connect.microsoft.com/SQLServer/feedback/details/265567 I've also raised a connect item to give other improvements to keyboard shortcuts https://connect.microsoft.com/SQLServer/feedback/details/390612/improvements-to-keyboard-shortcuts-in-ssms

    Read the article

  • How to design database for tests in online test application

    - by Kien Thanh
    I'm building an online test application, the purpose of app is, it can allow teacher create courses, topics of course, and questions (every question has mark), and they can create tests for students and students can do tests online. To create tests of any courses for students, first teacher need to create a test pattern for that course, test pattern actually is a general test includes the number of questions teacher want it has, then from that test pattern, teacher will generate number of tests corresponding with number of students will take tests of that course, and every test for student will has different number of questions, although the max mark of test in every test are the same. Example if teacher generate tests for two students, the max mark of test will be 20, like this: Student A take test with 20 questions, student B take test only has 10 questions, it means maybe every question in test of student A only has mark is 1, but questions in student B has mark is 2. So 20 = 10 x 2, sorry for my bad English but I don't know how to explain it better. I have designed tables for: - User (include students and teachers account) - Course - Topic - Question - Answer But I don't know how to define associations between user and test pattern, test, question. Currently I only can think these: Test pattern table: name, description, dateStart, dateFinish, numberOfMinutes, maxMarkOfTest Test table: test_pattern_id And when user (is Student) take tests, I think i will have one more table: Result: user_id, test_id, mark but I can't set up associations among test pattern and test and question. How to define associations?

    Read the article

  • Oracle Announces Oracle Big Data Appliance X3-2 and Enhanced Oracle Big Data Connectors

    - by jgelhaus
    Enables Customers to Easily Harness the Business Value of Big Data at Lower Cost Engineered System Simplifies Big Data for the Enterprise Oracle Big Data Appliance X3-2 hardware features the latest 8-core Intel® Xeon E5-2600 series of processors, and compared with previous generation, the 18 compute and storage servers with 648 TB raw storage now offer: 33 percent more processing power with 288 CPU cores; 33 percent more memory per node with 1.1 TB of main memory; and up to a 30 percent reduction in power and cooling Oracle Big Data Appliance X3-2 further simplifies implementation and management of big data by integrating all the hardware and software required to acquire, organize and analyze big data. It includes: Support for CDH4.1 including software upgrades developed collaboratively with Cloudera to simplify NameNode High Availability in Hadoop, eliminating the single point of failure in a Hadoop cluster; Oracle NoSQL Database Community Edition 2.0, the latest version that brings better Hadoop integration, elastic scaling and new APIs, including JSON and C support; The Oracle Enterprise Manager plug-in for Big Data Appliance that complements Cloudera Manager to enable users to more easily manage a Hadoop cluster; Updated distributions of Oracle Linux and Oracle Java Development Kit; An updated distribution of open source R, optimized to work with high performance multi-threaded math libraries Read More   Data sheet: Oracle Big Data Appliance X3-2 Oracle Big Data Appliance: Datacenter Network Integration Big Data and Natural Language: Extracting Insight From Text Thomson Reuters Discusses Oracle's Big Data Platform Connectors Integrate Hadoop with Oracle Big Data Ecosystem Oracle Big Data Connectors is a suite of software built by Oracle to integrate Apache Hadoop with Oracle Database, Oracle Data Integrator, and Oracle R Distribution. Enhancements to Oracle Big Data Connectors extend these data integration capabilities. With updates to every connector, this release includes: Oracle SQL Connector for Hadoop Distributed File System, for high performance SQL queries on Hadoop data from Oracle Database, enhanced with increased automation and querying of Hive tables and now supported within the Oracle Data Integrator Application Adapter for Hadoop; Transparent access to the Hive Query language from R and introduction of new analytic techniques executing natively in Hadoop, enabling R developers to be more productive by increasing access to Hadoop in the R environment. Read More Data sheet: Oracle Big Data Connectors High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database

    Read the article

< Previous Page | 237 238 239 240 241 242 243 244 245 246 247 248  | Next Page >