Search Results

Search found 251490 results on 10060 pages for 'integer overflow'.

Page 243/10060 | < Previous Page | 239 240 241 242 243 244 245 246 247 248 249 250  | Next Page >

  • WCF REST Error Handler

    - by Elton Stoneman
    I’ve put up on GitHub a sample WCF error handler for REST services, which returns proper HTTP status codes in response to service errors.   The code is very simple – a ServiceBehavior implementation which can be specified in config to tag the RestErrorHandler to a service. Any uncaught exceptions will be routed to the error handler, which sets the HTTP status code and description in the response, based on the type of exception.   The sample defines a ClientException which can be thrown in code to indicate a problem with the client’s request, and the response will be a status 400 with a friendly error message:       throw new ClientException("Invalid userId. Must be provided as a positive integer");   - responds:   Request URL http://localhost/Sixeyed.WcfRestErrorHandler.Sample/ErrorProneService.svc/lastLogin?userId=xyz   Error Status Code: 400, Description: Invalid userId. Must be provided as a positive integer   Any other uncaught exceptions are hidden from the client. The full details are logged with a GUID to identify the error, and the response to the client is a status 500 with a generic message giving them the GUID to follow up on:       var iUserId = 0;     var dbz = 1 / iUserId;   - logs the divide-by-zero error and responds:   Request URL http://localhost/Sixeyed.WcfRestErrorHandler.Sample/ErrorProneService.svc/dbz     Error Status Code: 500, Description: Something has gone wrong. Please contact our support team with helpdesk ID: C9C5A968-4AEA-48C7-B90A-DEC986F80DA5   The sample demonstrates two techniques for building the response. For client exceptions, a friendly HTML response is sent in the body as well as the status code and description. Personally I prefer not to do that – it doesn’t make sense to get a 400 error and find text/html when you’re expecting application/json, but it’s easy to do if that’s the functionality you want. The other option is to send an empty response, which the sample does with server exceptions.   The obvious extension is to have multiple exceptions representing all the status codes you want to provide, then your code is as simple as throwing the relevant exception – UnauthorizedException, ForbiddenExeption, NotImplementedException etc – anywhere in the stack, and it will be handled nicely.

    Read the article

  • Am I missing something about these considerations about Leaderboard's database's schema?

    - by misiMe
    I just finished to develop a mobile game, now I want to implement an online leaerboard using mysql. I'm wondering about the database's schema, I thought about some possibilities: (I didn't got in detail with syntax because my question is just about the logic of it) Name: string; Score: integer I thought to ask the name just the first time. If, in the future, you will modify that, it will call just an update to the name associated with your id. Leaderboard(ID, Name, Score) ID: integer autoincrement, PrimaryKey With this kind of idea maybe the db will grow fast because if you choose everytime a different name for the score, it will add a new entry. Leaderboard(PhoneId, Name, Score) Here PhoneId will be the unique identifier of the phone, PrimaryKey. A con of this choice is that if you want to play with your friends' phone, you can't put a different name for the score. Leaderboard(Name, Score) Here Name is PrimaryKey. With that, if you enter a name that already exists, you will be prompted to choose another one. Do you agree with this considerations? What will you do? Am I missing something?

    Read the article

  • Throwing and catching exceptions in the same function/method

    - by usr
    I've written a function that asks a user for input until user enters a positive integer (a natural number). Somebody said I shouldn't throw and catch exceptions in my function and should let the caller of my function handle them. I wonder what other developers think about this. I'm also probably misusing exceptions in the function. Here's the code in Java: private static int sideInput() { int side = 0; String input; Scanner scanner = new Scanner(System.in); do { System.out.print("Side length: "); input = scanner.nextLine(); try { side = Integer.parseInt(input); if (side <= 0) { // probably a misuse of exceptions throw new NumberFormatException(); } } catch (NumberFormatException numFormExc) { System.out.println("Invalid input. Enter a natural number."); } } while (side <= 0); return side; } I'm interested in two things: Should I let the caller worry about exceptions? The point of the function is that it nags the user until the user enters a natural number. Is the point of the function bad? I'm not talking about UI (user not being able to get out of the loop without proper input), but about looped input with exceptions handled. Would you say the throw statement (in this case) is a misuse of exceptions? I could easily create a flag for checking validity of the number and output the warning message based on that flag. But that would add more lines to the code and I think it's perfectly readable as it is. The thing is I often write a separate input function. If user has to input a number multiple times, I create a separate function for input that handles all formatting exceptions and limitations.

    Read the article

  • Java Program Compilaton on Windows [closed]

    - by Mc Elroy
    I am trying to compile my program on the command line on windows using the java command and it says: Error: could not find or load main class or addition class It is for a program for adding two integers. I don't understand how to resolve the problem since I defined the static main class in my source code here is it: //Filename:addition.java //Usage: this program adds two numbers and displays their sum. //Author: Nyah Check, Developer @ Ink Corp.. //Licence: No warranty following the GNU Public licence import java.util.Scanner; //this imports the scanner class. public class addition { public static void main(String[] args) { Scanner input = new Scanner(System.in);//this creates scanners instance to take input from the input. int input1, input2, sum; System.out.printf("\nEnter First Integer: "); input1 = input.nextInt(); System.out.printf("\nEnter Second Integer: "); input2 = input.nextInt(); sum = input1 + input2; System.out.printf("\nThe Sum is: %d", sum); } }//This ends the class definition

    Read the article

  • Entry level engineer question regarding memory management

    - by Ealianis
    It has been a few months since I started my position as an entry level software developer. Now that I am past some learning curves (e.g. the language, jargon, syntax of VB and C#) I'm starting to focus on more esoteric topics, as to write better software. A simple question I presented to a fellow coworker was responded with "I'm focusing on the wrong things." While I respect this coworker I do disagree that this is a "wrong thing" to focus upon. Here was the code (in VB) and followed by the question. Note: The Function GenerateAlert() returns an integer. Dim alertID as Integer = GenerateAlert() _errorDictionary.Add(argErrorID, NewErrorInfo(Now(), alertID)) vs... _errorDictionary.Add(argErrorID, New ErrorInfo(Now(), GenerateAlert())) I originally wrote the latter and rewrote it with the "Dim alertID" so that someone else might find it easier to read. But here was my concern and question: Should one write this with the Dim AlertID, it would in fact take up more memory; finite but more, and should this method be called many times could it lead to an issue? How will .NET handle this object AlertID. Outside of .NET should one manually dispose of the object after use (near the end of the sub). I want to ensure I become a knowledgeable programmer that does not just rely upon garbage collection. Am I over thinking this? Am I focusing on the wrong things?

    Read the article

  • What is an efficient algorithm for randomly assigning a pool of objects to a parent using specific rules

    - by maple_shaft
    I need some expert answers to help me determine the most efficient algorithm in this scenario. Consider the following data structures: type B { A parent; } type A { set<B> children; integer minimumChildrenAllowed; integer maximumChildrenAllowed; } I have a situation where I need to fetch all the orphan children (there could be hundreds of thousands of these) and assign them RANDOMLY to A type parents based on the following rules. At the end of the job, there should be no orphans left At the end of the job, no object A should have less children than its predesignated minimum. At the end of the job, no object A should have more children than its predesignated maximum. If we run out of A objects then we should create a new A with default values for minimum and maximum and assign remaining orphans to these objects. The distribution of children should be as evenly distributed as possible. There may already be some children assigned to A before the job starts. I was toying with how to do this but I am afraid that I would just end up looping across the parents sorted from smallest to largest, and then grab an orphan for each parent. I was wondering if there is a more efficient way to handle this?

    Read the article

  • Associate a texture to an object (from a data-model, not graphical point of view).

    - by Raveline
    I'm writing a roguelike where objects and floor can be made of different materials. For instance, let's say we can have a wooden chair, an iron chair, a golden chair, and so on. I've got an Object class (I know, the name is terrible), which is more or less using a composite pattern, and a Material class. Material have different important properties (noise, color...). For the time being, there are 5 different instances of materials, created at the initialization of the game. How would connect an instance of Object with one of the 5 instances of materials ? I see three simple solutions : Using a pointer. Simple and brutal. Using an integer material-id, then get the materials out of a table when engine manipulates the object for various purposes (display, attack analysis, etc.). Not very beautiful, I think, and not very flexible. Using an integer material-id, then get the materials out of a std::map. A bit more flexible, but still not perfect. Do you see other possibilities ? If not, what would you choose (and why) ? Thanks in advance !

    Read the article

  • How to get the level and position of the player from an extern program? [on hold]

    - by user3727174
    I want to write a program that needs the current level and position of the player (primary single player). This should work for potentially every game installed and running on the computer my program is running on. The data I need is basically one integer value for the level (if there are any) and three integer values for x, y and optimal z for the position of the player. In which relation/scale or where the null point is does not matter, because this information is going to be interpreted game dependent, I will use this information to read information out of a database created for the game currently running. Currently I'm using C++, but if there is a better option for Java I´m willing to port my program. My thoughs so far are: make a mod for every game that should be supported, get the position/level from there, write this information to the disk and read it from my program tracking mouse/keyboard events and reconstructing the movement won't work Are there any general APIs for something like this? Any Tool to find this data? Or maybe engines that provide APIs to get this data directly from the game?

    Read the article

  • ASP.NET MVC Case Studies

    - by shiju
     The below are the some of the case studies of ASP.NET MVC Jwaala - Online Banking Solution Benefits after ASP.NET MVC Replaces Ruby on Rails, Linux http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?casestudyid=4000006675 Stack Overflow - Developers See Faster Web Coding, Better Performance with Model-View-Controller http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?casestudyid=4000006676 Kelley Blue Book - Pioneer Provider of Vehicle-Pricing Information Uses Technology to Expand Reach http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?casestudyid=4000006272 

    Read the article

  • The Sitemap Paradox

    - by Jeff Atwood
    We use a sitemap on Stack Overflow, but I have mixed feelings about it. Web crawlers usually discover pages from links within the site and from other sites. Sitemaps supplement this data to allow crawlers that support Sitemaps to pick up all URLs in the Sitemap and learn about those URLs using the associated metadata. Using the Sitemap protocol does not guarantee that web pages are included in search engines, but provides hints for web crawlers to do a better job of crawling your site. Based on our two years' experience with sitemaps, there's something fundamentally paradoxical about the sitemap: Sitemaps are intended for sites that are hard to crawl properly. If Google can't successfully crawl your site to find a link, but is able to find it in the sitemap it gives the sitemap link no weight and will not index it! That's the sitemap paradox -- if your site isn't being properly crawled (for whatever reason), using a sitemap will not help you! Google goes out of their way to make no sitemap guarantees: "We cannot make any predictions or guarantees about when or if your URLs will be crawled or added to our index" citation "We don't guarantee that we'll crawl or index all of your URLs. For example, we won't crawl or index image URLs contained in your Sitemap." citation "submitting a Sitemap doesn't guarantee that all pages of your site will be crawled or included in our search results" citation Given that links found in sitemaps are merely recommendations, whereas links found on your own website proper are considered canonical ... it seems the only logical thing to do is avoid having a sitemap and make damn sure that Google and any other search engine can properly spider your site using the plain old standard web pages everyone else sees. By the time you have done that, and are getting spidered nice and thoroughly so Google can see that your own site links to these pages, and would be willing to crawl the links -- uh, why do we need a sitemap, again? The sitemap can be actively harmful, because it distracts you from ensuring that search engine spiders are able to successfully crawl your whole site. "Oh, it doesn't matter if the crawler can see it, we'll just slap those links in the sitemap!" Reality is quite the opposite in our experience. That seems more than a little ironic considering sitemaps were intended for sites that have a very deep collection of links or complex UI that may be hard to spider. In our experience, the sitemap does not help, because if Google can't find the link on your site proper, it won't index it from the sitemap anyway. We've seen this proven time and time again with Stack Overflow questions. Am I wrong? Do sitemaps make sense, and we're somehow just using them incorrectly?

    Read the article

  • Inversion of Control Resource

    - by MarkPearl
    Well… this is going to be another really short blog posting. I have been meaning to read more about IOC containers and came across this blog post which seemed to really explain the concept well – based on Castle Windsor. I also  enjoyed reading the replies about IOC on stack overflow and what it meant. If anyone knows of other good articles that explain the basics really well – wont you comment them to me.

    Read the article

  • Date and Time Support in SQL Server 2008

    - by Aamir Hasan
      Using the New Date and Time Data Types Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} 1.       The new date and time data types in SQL Server 2008 offer increased range and precision and are ANSI SQL compatible. 2.       Separate date and time data types minimize storage space requirements for applications that need only date or time information. Moreover, the variable precision of the new time data type increases storage savings in exchange for reduced accuracy. 3.       The new data types are mostly compatible with the original date and time data types and use the same Transact-SQL functions. 4.       The datetimeoffset data type allows you to handle date and time information in global applications that use data that originates from different time zones. SELECT c.name, p.* FROM politics pJOIN country cON p.country = c.codeWHERE YEAR(Independence) < 1753ORDER BY IndependenceGO8.    Highlight the SELECT statement and click Execute ( ) to show the use of some of the date functions.T-SQLSELECT c.name AS [Country Name],        CONVERT(VARCHAR(12), p.Independence, 107) AS [Independence Date],       DATEDIFF(YEAR, p.Independence, GETDATE()) AS [Years Independent (appox)],       p.GovernmentFROM politics pJOIN country cON p.country = c.codeWHERE YEAR(Independence) < 1753ORDER BY IndependenceGO10.    Select the SET DATEFORMAT statement and click Execute ( ) to change the DATEFORMAT to day-month-year.T-SQLSET DATEFORMAT dmyGO11.    Select the DECLARE and SELECT statements and click Execute ( ) to show how the datetime and datetime2 data types interpret a date literal.T-SQLSET DATEFORMAT dmyDECLARE @dt datetime = '2008-12-05'DECLARE @dt2 datetime2 = '2008-12-05'SELECT MONTH(@dt) AS [Month-Datetime], DAY(@dt)     AS [Day-Datetime]SELECT MONTH(@dt2) AS [Month-Datetime2], DAY(@dt2)     AS [Day-Datetime2]GO12.    Highlight the DECLARE and SELECT statements and click Execute ( ) to use integer arithmetic on a datetime variable.T-SQLDECLARE @dt datetime = '2008-12-05'SELECT @dt + 1GO13.    Highlight the DECLARE and SELECT statements and click Execute ( ) to show how integer arithmetic is not allowed for datetime2 variables.T-SQLDECLARE @dt2 datetime = '2008-12-05'SELECT @dt2 + 1GO14.    Highlight the DECLARE and SELECT statements and click Execute ( ) to show how to use DATE functions to do simple arithmetic on datetime2 variables.T-SQLDECLARE @dt2 datetime2(7) = '2008-12-05'SELECT DATEADD(d, 1, @dt2)GO15.    Highlight the DECLARE and SELECT statements and click Execute ( ) to show how the GETDATE function can be used with both datetime and datetime2 data types.T-SQLDECLARE @dt datetime = GETDATE();DECLARE @dt2 datetime2(7) = GETDATE();SELECT @dt AS [GetDate-DateTime], @dt2 AS [GetDate-DateTime2]GO16.    Draw attention to the values returned for both columns and how they are equal.17.    Highlight the DECLARE and SELECT statements and click Execute ( ) to show how the SYSDATETIME function can be used with both datetime and datetime2 data types.T-SQLDECLARE @dt datetime = SYSDATETIME();DECLARE @dt2 datetime2(7) = SYSDATETIME();SELECT @dt AS [Sysdatetime-DateTime], @dt2     AS [Sysdatetime-DateTime2]GO18.    Draw attention to the values returned for both columns and how they are different.Programming Global Applications with DateTimeOffset 2.    If you have not previously created the SQLTrainingKitDB database while completing another demo in this training kit, highlight the CREATE DATABASE statement and click Execute ( ) to do so now.T-SQLCREATE DATABASE SQLTrainingKitDBGO3.    Select the USE and CREATE TABLE statements and click Execute ( ) to create table datetest in the SQLTrainingKitDB database.T-SQLUSE SQLTrainingKitDBGOCREATE TABLE datetest (  id integer IDENTITY PRIMARY KEY,  datetimecol datetimeoffset,  EnteredTZ varchar(40)); Reference:http://www.microsoft.com/downloads/details.aspx?FamilyID=E9C68E1B-1E0E-4299-B498-6AB3CA72A6D7&displaylang=en   

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Query Tuning Mastery at PASS Summit 2012: The Demos

    - by Adam Machanic
    For the second year in a row, I was asked to deliver a 500-level "Query Tuning Mastery" talk in room 6E of the Washington State Convention Center, for the PASS Summit. ( Here's some information about last year's talk, on workspace memory. ) And for the second year in a row, I had to deliver said talk at 10:15 in the morning, in a room used as overflow for the keynote, following a keynote speaker that didn't stop speaking on time. Frustrating! Last Thursday, after very, very quickly setting up and...(read more)

    Read the article

  • How to become a better programmer in 2011?

    - by Anish Patel
    Not strictly a Stack Overflow thing, but I thought I'd get it out there and ask the question. What are you as a programmer going to do to improve in 2011? The things I am planning to do are as follows: Learn Functional Programming Write 100 blog posts Take a bunch of Microsoft exams (70-433, 70-511, 70-513, 70-515, 70-516, 70-518, 70-519) Contribute to an open source project Lets hope the motivation lasts all year!

    Read the article

  • Is software development an engineering discipline?

    - by Vaibhav Garg
    Can software development be considered engineering? If no, what are the things that it lacks in order to be qualified as an engineering discipline? Related to this is this question on Stack Overflow about the difference between a programmer and a software engineer. There is the Software Engineering Institute at Carnigie Mellon University that prescribes and maintains the CMMI standards. Is this something that will turn development into engineering?

    Read the article

  • Top 10 CV Tips - update

    - by simonsabin
    Three years ago I wrote a blog post about my top 10 CV tips. http://sqlblogcasts.com/blogs/simons/archive/2007/01/09/TOP-10-CV-Tips.aspx The world has changed slightly since then and one item I would add is that if you are active on the forums, stack overflow etc then put a link to your profile. This is a great way for recruiters to see some of your knowledge and importantly how you respond and interact with people. The latter is something that is crucial when employing someone but is very difficult...(read more)

    Read the article

  • Microsoft BI Conference 2010 Recap & books promo

    - by Marco Russo (SQLBI)
    Last week I’ve been at Microsoft BI Conference and I presented an interactive session about PowerPivot DAX Patterns. Unfortunately only the breakout session were recorded and available on TechEd Online . The room was full and there were probably many other people in an overflow room.  I would like to thanks all the attendees of my session and you can write me (marco dot russo [at] sqlbi dot com) if you have other questions and/or feedback about the session. The interest about PowerPivot (especially...(read more)

    Read the article

  • Microsoft BI Conference 2010 Recap & books promo

    - by Marco Russo (SQLBI)
    Last week I’ve been at Microsoft BI Conference and I presented an interactive session about PowerPivot DAX Patterns. Unfortunately only the breakout session were recorded and available on TechEd Online . The room was full and there were probably many other people in an overflow room.  I would like to thanks all the attendees of my session and you can write me (marco dot russo [at] sqlbi dot com) if you have other questions and/or feedback about the session. The interest about PowerPivot (especially...(read more)

    Read the article

  • Using CTAS & Exchange Partition Replace IAS for Copying Partition on Exadata

    - by Bandari Huang
    Usage Scenario: Copy data&index from one partition to another partition in a partitioned table. Solution: Create a partition definition Copy data from one partition to another partiton by 'Insert as select (IAS)' Create a nonpartitioned table by 'Create table as select (CTAS)' Convert a nonpartitioned table into a partition of partitoned table by exchangng their data segments. Rebuild unusable index Exchange Partition Convertion Mutual convertion between a partition (or subpartition) and a nonpartitioned table Mutual convertion between a hash-partitioned table and a partition of a composite *-hash partitioned table Mutual convertiton a [range | list]-partitioned table into a partition of a composite *-[range | list] partitioned table. Exchange Partition Usage Scenario High-speed data loading of new, incremental data into an existing partitioned table in DW environment Exchanging old data partitions out of a partitioned table, the data is purged from the partitioned table without actually being deleted and can be archived separately Exchange Partition Syntax ALTER TABLE schema.table EXCHANGE [PARTITION|SUBPARTITION] [partition|subprtition] WITH TABLE schema.table [INCLUDE|EXCLUDING] INDEX [WITH|WITHOUT] VALIDATION UPDATE [INDEXES|GLOBAL INDEXES] INCLUDING | EXCLUDING INDEXES Specify INCLUDING INDEXES if you want local index partitions or subpartitions to be exchanged with the corresponding table index (for a nonpartitioned table) or local indexes (for a hash-partitioned table). Specify EXCLUDING INDEXES if you want all index partitions or subpartitions corresponding to the partition and all the regular indexes and index partitions on the exchanged table to be marked UNUSABLE. If you omit this clause, then the default is EXCLUDING INDEXES. WITH | WITHOUT VALIDATION Specify WITH VALIDATION if you want Oracle Database to return an error if any rows in the exchanged table do not map into partitions or subpartitions being exchanged. Specify WITHOUT VALIDATION if you do not want Oracle Database to check the proper mapping of rows in the exchanged table. If you omit this clause, then the default is WITH VALIDATION.  UPADATE INDEX|GLOBAL INDEX Unless you specify UPDATE INDEXES, the database marks UNUSABLE the global indexes or all global index partitions on the table whose partition is being exchanged. Global indexes or global index partitions on the table being exchanged remain invalidated. (You cannot use UPDATE INDEXES for index-organized tables. Use UPDATE GLOBAL INDEXES instead.) Exchanging Partitions&Subpartitions Notes Both tables involved in the exchange must have the same primary key, and no validated foreign keys can be referencing either of the tables unless the referenced table is empty.  When exchanging partitioned index-organized tables: – The source and target table or partition must have their primary key set on the same columns, in the same order. – If key compression is enabled, then it must be enabled for both the source and the target, and with the same prefix length. – Both the source and target must be index organized. – Both the source and target must have overflow segments, or neither can have overflow segments. Also, both the source and target must have mapping tables, or neither can have a mapping table. – Both the source and target must have identical storage attributes for any LOB columns. 

    Read the article

  • Can I use silverlight for building SocialNetworking applicaiton?

    - by dimmV
    Hi all, I am wondering: how feasible it would be to start developing a social networking website entirely based on silverlight; This has been fairly discussed over the years in favor of HTML. Has something changed with silverlight improvements over the years? What about: * Performance -- active users -- technology used, MVVM + MEF (possibility of lags, server memory overflow...) * Security --- WCF Ria Services & EF What are your thoughts on this subject?

    Read the article

  • PowerShell &ndash; Recycle All IIS App Pools

    - by Lance Robinson
    With a little help from Shay Levy’s post on Stack Overflow and the MSDN documentation, I added this handy function to my profile to automatically recycle all IIS app pools.           function Recycle-AppPools {     param(     [string] $server = "3bhs001",     [int] $mode = 1, # ManagedPipelineModes: 0 = integrated, 1 = classic     )  $iis = [adsi]"IIS://$server/W3SVC/AppPools" $iis.psbase.children | %{ $pool = [adsi]($_.psbase.path);    if ($pool.AppPoolState -eq 2 -and $pool.ManagedPipelineMode -eq $mode) {    # AppPoolStates:  1 = starting, 2 = started, 3 = stopping, 4 = stopped               $pool.psbase.invoke("recycle")      }   }}

    Read the article

  • Why do this PDF's fonts appear unreadable on my machine?

    - by Matthew
    I'm trying to read The Art of Assembly Language as per this answer on Stack Overflow. When I open it on my Ubuntu 12.04 box, it looks like this: I haven't tested it on another machine, but this can't be intentional. What is going on, and how can I fix it? Edit: The above screenshot is from Chrome. It look like this in Evince: Still squished and hardly readable, but better. Is there anything I can do to fix it?

    Read the article

  • Long polling using Spring MVC 3.2M1

    - by Dangling Piyush
    I want to implement Long polling Using Spring 3.2 DeferredResult. I got only this tutorial available on internet Long Polling with Spring MVC. It's a good tutorial but I could not understand it fully because I am pretty new to Spring MVC. So if anyone could explain me how to use DeferredResult for implenting long polling efficiently (server-side code) I would be grateful. I have posted this question before on Stack Overflow but got zero response so I thought of reposting it here again.

    Read the article

  • Multiple vulnerabilities in libpng

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2011-2690 Buffer Overflow vulnerability 6.8 PNG reference library (libpng) Solaris 10 SPARC: 137080-06 X86: 137081-06 Solaris 9 Contact Support Solaris 8 Contact Support CVE-2011-2691 Denial of Service (Dos) vulnerability 5.0 CVE-2011-2692 Denial of Service (Dos) vulnerability 4.3 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

< Previous Page | 239 240 241 242 243 244 245 246 247 248 249 250  | Next Page >