Search Results

Search found 7442 results on 298 pages for 'dynamic allocation'.

Page 244/298 | < Previous Page | 240 241 242 243 244 245 246 247 248 249 250 251  | Next Page >

  • What is best configuration settings for Wordpress and MySQL on Win2008 + IIS7 stack?

    - by holiveira
    I currently have four blogs that uses Wordpress running on a shared hosting company. This blogs have a considerable amount of visits and I'm constantly receiving warnings from the hosting company saying that I'm consuming too much server CPU. Considering the fact that I have a dedicated server in another company with plenty of idle resources (it has a quad core Xeon 2.5GHz and 8GB of Ram and run on Win2008) I'm planning to move the blogs to this server in order to have some more freedom. I'm currently using this server to host some web applications using ASP.Net and SQL Express. I've installed a blog to test and it worked fine, but some issues appeared and raised some questions in my mind: How to properly set the permissions in the folders used by wordpress plugins, I mean, what permissions should I set for the IIS_User in some folders so that the plugins works correctly? What's the best caching plugin to use considering this is a Window Server? In the previous hosting company I used the WPSuperCache, but it was a Linux Stack. Or should I ignore the caching plugins and use the Dynamic Caching Feature of IIS7? How can I optmize the MySQL server running in this server (specially the settings regarding memory and caching) How can I protect the admin folders against hacker attacks? I know some people will advice me not to run Wordpress in a Windows stack, but that's my only choice. I don't even know were to start managing and LAMP stack, don't have the time to do so nor the money to rent another server.

    Read the article

  • Remotely port forward/launch process or a client-less remote desktop app?

    - by DC177E
    I have an XP box running Logmein at a remote location behind a linksys router, which was running well for a whole of four days, until we had a power failure. Our ISP gave us a new IP, the machine restarted, and logmein did not autorun (or, at least, it did not automatically sign in), and our service (which may or may not be a Minecraft server with non-backed-up save files) also did not run upon startup. Logmein does not register the new IP (it still displays the old one). I have a DDNS updater service, so I do know the new dynamic address. I have tried using the built in XP remote desktop service, but, as with almost all non-cloud-based remote desktop services, it requires a port forward. Thus, I would appreciate it if anyone has any ideas as to: A: Any way of accessing our router remotely to forward the remote desktop port. I've seen the Remote Management option (forwarding the setup page to port 8080), but I do not have it enabled. I've tried UPnP, but again, the setup page for our router is not forwarded. B: Any way of remotely launching a process that does not require port forwarding (or uses ports 255XX, 18XXX, or 9000.), such as a remote console service built into XP. I realize this is a near impossibility. C: A Way to remotely start logmein, and sign in, which is likely a definite impossibility. Sorry if this is too specific for Stackexchange, or if I've put it into the wrong section (is SuperUser the correct place for this?). Ideas would, again be much appreciated, as shot-in-the-dark-like this may be.

    Read the article

  • Apache Virtual Host with directory aliases

    - by brechtvhb
    Hi, I'm trying to set up a dynamic virtual host in apache with a directory alias pointing to a difirent path for every domain. Here's what I'm trying to achive. Say I have 2 domains: * www.domain1.com * www.domein2.com I want both to point to the same index.php file (C:/cms/index.php). Now the hard part ... I want directories or certain file types to point to a diffirent path for each domain. Example: * www.domain1.com/layout -> C:/store/www.domain1.com/layout * www.domain2.com/layout -> C:/store/www.domain2.com/layout * www.domain1.com/image.png -> C:/store/www.domain1.com/image.png * www.domain2.com/image.png -> C:/store/www.domain2.com/image.png However the admin directory should point to the same path again for all sites * www.domain1.com/admin -> C:/cms/admin * www.domain2.com/admin -> C:/cms/admin Is there a way to achieve this kind of behaviour in apache 2.2 without having to create a virtualhost entry for each new domain?

    Read the article

  • Skipping nginx PHP cache for certain areas of a site?

    - by DisgruntledGoat
    I have just set up a new server with nginx (which I am new to) and PHP. On my site there are essentially 3 different types of files: static content like CSS, JS, and some images (most images are on an external CDN) main PHP/MySQL database-driven website which essentially acts like a static site dynamic PHP/MySQL forum It is my understanding from this question and this page that the static files need no special treatment and will be served as fast as possible. I followed the answer from the above question to set up caching for PHP files and now I have a config like this: location ~ \.php$ { try_files $uri =404; fastcgi_cache one; fastcgi_cache_key $scheme$host$request_uri; fastcgi_cache_valid 200 302 304 30m; fastcgi_cache_valid 301 1h; include /etc/nginx/fastcgi_params; fastcgi_pass unix:/var/run/php-fastcgi/php-fastcgi.socket; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME /srv/www/example$fastcgi_script_name; fastcgi_param HTTPS off; } However, now I want to prevent caching on the forum (either for everyone or only for logged-in users - haven't checked if the latter is feasible with the forum software). I've heard that "if is evil" inside location blocks, so I am unsure how to proceed. With the if inside the location block I would probably add this in the middle: if ($request_uri ~* "^/forum/") { fastcgi_cache_bypass 1; } # or possible this, if I'm able to cache pages for anonymous visitors if ($request_uri ~* "^/forum/" && $http_cookie ~* "loggedincookie") { fastcgi_cache_bypass 1; } Will that work fine, or is there a better way to achieve this?

    Read the article

  • Server taking too long to respond error

    - by DCJones
    Hi, This is my first post on serverFault and my first entry in to web server configuration. The hardware and software. CPU: GenuineIntel, Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz OS: Linux 2.6.18-128.el5 Memory: 2Gb Background. I am running a small database (MySQL), around 1000 records with each record containing 44 fields. At the start of each day “00:01” the tables are cleared and populated with fresh data. The are 10 remote PCs all running Winodws XP and Firefox internet browser. All remote PC’s are connected to the internet using a min 4Gb broadband connection. Each remote PC runs a URL which displays a dynamic page of data which is refreshed every 20 seconds. This is a continual process 24 hours a day. I problem I am having is on odd occasions throughout the day the PC browser error with “Server taking too long to respond error”. What I am trying to find our is if I have the correct setting in the httpd.conf file on the server. Any help or advice anyone can provide would be very helpful. Best regards Dereck Server config file: httpd.conf ServerRoot "/etc/httpd" PidFile run/httpd.pid Timeout 120 KeepAlive On MaxKeepAliveRequests 200 KeepAliveTimeout 5 StartServers 8 MinSpareServers 5 MaxSpareServers 20 ServerLimit 256 MaxClients 254 MaxRequestsPerChild 4000 StartServers 2 MaxClients 150 MinSpareThreads 25 MaxSpareThreads 150 ThreadsPerChild 25 MaxRequestsPerChild 0

    Read the article

  • Cisco 7206vxr cpu reducing

    - by naimson
    I have a 7206VXR (NPE-G2) . At the rate of 140 kpps i gain 80% of cpu . So i looking for ways how to reduce it? So i want to turn off netflow(but don't want to this,monitoring is highly important for me), but it will give me only 10-20% ? At this moment with 84kpps i have 58% sh processes cpu sorted give me this. PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process 109 163534600 537236763 304 35.38% 32.83% 16.85% 0 IP Input 67 829396 52280 15864 0.15% 0.01% 0.00% 0 Per-minute Jobs 68 5542736 3053476 1815 0.15% 0.18% 0.16% 0 Per-Second Jobs 51 635852 1116315 569 0.07% 0.03% 0.02% 0 Net Background 329 120396 4607274 26 0.07% 0.00% 0.00% 0 EIGRP-IPv4 Hello 105 50508 95032488 0 0.07% 0.05% 0.05% 0 IPAM Manager 6 4068580 476916 8531 0.00% 0.07% 0.05% 0 Check heaps 7 7768 3634 2137 0.00% 0.00% 0.00% 0 Pool Manager 8 0 1 0 0.00% 0.00% 0.00% 0 DiscardQ Backgro 10 8 708 11 0.00% 0.00% 0.00% 0 WATCH_AFS 5 0 1 0 0.00% 0.00% 0.00% 0 RO Notify Timers 12 0 2 0 0.00% 0.00% 0.00% 0 ATM VC Auto Crea 9 0 2 0 0.00% 0.00% 0.00% 0 Timers 11 0 2 0 0.00% 0.00% 0.00% 0 ATM AutoVC Perio 13 296 610532 0 0.00% 0.00% 0.00% 0 IPC Event Notifi 16 0 1 0 0.00% 0.00% 0.00% 0 IPC Zone Manager 17 3584 2980311 1 0.00% 0.00% 0.00% 0 IPC Periodic Tim 4 0 1 0 0.00% 0.00% 0.00% 0 EDDRI_MAIN 19 0 1 0 0.00% 0.00% 0.00% 0 IPC Process leve 20 0 1 0 0.00% 0.00% 0.00% 0 IPC Seat Manager 21 96 174453 0 0.00% 0.00% 0.00% 0 IPC Check Queue 14 4 50890 0 0.00% 0.00% 0.00% 0 IPC Dynamic Cach 3 0 1 0 0.00% 0.00% 0.00% 0 cpf_process_tpQ 24 756 305371 2 0.00% 0.00% 0.00% 0 IPC Keep Alive M 25 2340 610561 3 0.00% 0.00% 0.00% 0 IPC Loadometer 22 0 1 0 0.00% 0.00% 0.00% 0 IPC Seat RX Cont 15 0 1 0 0.00% 0.00% 0.00% 0 IPC Session Serv 18 1620 2980310 0 0.00% 0.00% 0.00% 0 IPC Deferred Por 29 0 1 0 0.00% 0.00% 0.00% 0 Exception contro sh run(greped): http://pastie.org/5483194 Hardware: c7200p-adventerprisek9-mz.151-4.M1.bin Cisco 7206VXR (NPE-G2) processor (revision A) with 917504K/65536K bytes of memory. Processor board ID 2xxxxxxx MPC7448 CPU at 1666Mhz, Implementation 0, Rev 2.2 6 slot VXR midplane, Version 2.1

    Read the article

  • Locate devices within a building

    - by ams0
    The situation: Our company is spread between two floors in a building. Every employee has a laptop (macbook Air or MacbookPro) and an iPhone. We have static DHCP mappings and DNS resolution so every mobile gets a name like employeeiphone.example.com, every macbook air gets a employeelaptop.example.com and every macbook pro gets a employeelaptop.example.com on the Ethernet interface (the wifi gets a dynamic IP from a small range dedicated for the purpose). We know each and every MAC address of phones and laptops, since we do DHCP static mapping (ISC DHCP server runs on linux). At each floor we have a Netgear stack of two switches, connected via 10GB fiber to each other. No VLANs so far. At every floor there are 4 Airport Extreme making a single SSID network with WPA2 authentication. The request: Our CTO wants to know who is present at which floor. My solution (so far): Every switch contains an table listing MAC address and originating port. On each switch stack, all the MAC addresses coming from the other floor are listed as coming on port 48 (the fiber link). So I came up with: 1) Get the table from each switch via SNMP 2) Filter out the ones associated with port 48 3) Grep dhcpd.conf, removing all entries not *laptop and not *iphone 4) Match the two lists for each switch, output in JSON or XML 5) present the results on a dashboard for all to see I wrote it in bash with a lot of awk and sed, it kinda works but I always have for some reason stale entries in the switch lookup tables, making it unreliable; some people may have put their laptop to sleep, their iphones drop connections after a while, if not woken up and so on..I searched left and right, we are prepared to spend a little on the project too (RFIDs?), does anybody do something similar? I can provide with the script if needed (although it's really specific to our switches and naming scheme). Thanks! p.s. perhaps is this a question for stackoverflow? please move if it so.

    Read the article

  • Checking for valid document files

    - by sweb
    I need a simple way to check if my files are valid documents (pdf, doc, docx, ppt, pptx, xls, xlsx, odt, ods, odp and etc). I can't use file because magic does not work well at all. For example, for PDF files, this is my output. sweb@sweb-laptop: /media/files/ebooks/PDF and CHM$ file --mime *. Pdf PHP 5 for Dummies. Pdf: application/pdf; charset=binary PHP 6 and MySQL 5 for Dynamic Web Sites. Pdf: application/octet-stream; charset=binary PHP6 and MySQL Bible. Pdf: application/pdf; charset=binary PHP6.pdf: application/octet-stream; charset=binary PHP and MySQL for Dummies SE. Pdf: application/pdf; charset=binary For example, I use abiword – which is a good tool – but it converts any format. It doesn't check for valid documents: abiword --to=txt --to-name=output.txt audio.mp3 Is there any command available to check for valid documents then?

    Read the article

  • Very high CPU and low RAM usage - is it possible to place some of swap some of the CPU usage to the RAM (with CloudLinux LVE Manager installed)?

    - by Chriswede
    I had to install CloudLinux so that I could somewhat controle the CPU ussage and more importantly the Concurrent-Connections the Websites use. But as you can see the Server load is way to high and thats why some sites take up to 10 sec. to load! Server load 22.46 (8 CPUs) (!) Memory Used 36.32% (2,959,188 of 8,146,632) (ok) Swap Used 0.01% (132 of 2,104,504) (ok) Server: 8 x Intel(R) Xeon(R) CPU E31230 @ 3.20GHz Memory: 8143680k/9437184k available (2621k kernel code, 234872k reserved, 1403k data, 244k init) Linux Yesterday: Total of 214,514 Page-views (Awstat) Now my question: Can I shift some of the CPU usage to the RAM? Or what else could I do to make the sites run faster (websites are dynamic - so SQL heavy) Thanks top - 06:10:14 up 29 days, 20:37, 1 user, load average: 11.16, 13.19, 12.81 Tasks: 526 total, 1 running, 524 sleeping, 0 stopped, 1 zombie Cpu(s): 42.9%us, 21.4%sy, 0.0%ni, 33.7%id, 1.9%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 8146632k total, 7427632k used, 719000k free, 131020k buffers Swap: 2104504k total, 132k used, 2104372k free, 4506644k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 318421 mysql 15 0 1315m 754m 4964 S 474.9 9.5 95300:17 mysqld 6928 root 10 -5 0 0 0 S 2.0 0.0 90:42.85 kondemand/3 476047 headus 17 0 172m 19m 10m S 1.7 0.2 0:00.05 php 476055 headus 18 0 172m 18m 9.9m S 1.7 0.2 0:00.05 php 476056 headus 15 0 172m 19m 10m S 1.7 0.2 0:00.05 php 476061 headus 18 0 172m 19m 10m S 1.7 0.2 0:00.05 php 6930 root 10 -5 0 0 0 S 1.3 0.0 161:48.12 kondemand/5 6931 root 10 -5 0 0 0 S 1.3 0.0 193:11.74 kondemand/6 476049 headus 17 0 172m 19m 10m S 1.3 0.2 0:00.04 php 476050 headus 15 0 172m 18m 9.9m S 1.3 0.2 0:00.04 php 476057 headus 17 0 172m 18m 9.9m S 1.3 0.2 0:00.04 php 6926 root 10 -5 0 0 0 S 1.0 0.0 90:13.88 kondemand/1 6932 root 10 -5 0 0 0 S 1.0 0.0 247:47.50 kondemand/7 476064 worldof 18 0 172m 19m 10m S 1.0 0.2 0:00.03 php 6927 root 10 -5 0 0 0 S 0.7 0.0 93:52.80 kondemand/2 6929 root 10 -5 0 0 0 S 0.3 0.0 161:54.38 kondemand/4 8459 root 15 0 103m 5576 1268 S 0.3 0.1 54:45.39 lvest

    Read the article

  • Using Openfire for distributed XMPP-based video-chat

    - by Yitzhak
    I have been tasked with setting up a distributed video-chat system built on XMPP. Currently my setup looks like this: Openfire (XMPP server) + JingleNodes plugin for video chat OpenLDAP (LDAP server) for storing user information and allowing directory queries Kerberos server for authentication and passwords In testing with one set of machines (i.e. only three), everything works as expected: I can log in to Openfire and it looks up the user information in the OpenLDAP database, which in turn authenticates my user with Kerberos. Now, I want to have several clusters, so that there is a cluster on each continent. A typical cluster will probably contain 2-5 servers. Users logging in will be directed to the closest cluster based on geographical location. Something that concerns me particularly is the dynamic maintenance of contact lists. If a user is using a machine in Asia, for example, how would contact lists be updated around the world to reflect the current server he is using? How would that work with LDAP? Specific questions: How do I direct users based on geographical location? What is the best architecture for a cluster? -- would all traffic need to come into a load-balancer on each one, for example? How do I manage the update of contact lists across all these servers? In general, how do I go about setting this up? What are the pitfalls in doing this? I am inexperienced in this area, so any advice and suggestions would be appreciated.

    Read the article

  • Data recovery on working hard drive

    - by emgee
    So I have a 5 bay hot swap SATA enclosure that's connected to a Silicon Image-based SATA adapter in a computer. It's running XP Pro. There are two 1.5TB hard drives in slots 1 and 2 respectively, set up using RAID 1 using the the Silicon Image utility. There are also two 1TB drives in bays 3 and 4, also set to RAID 1 the same way. The partitions for both RAID arrays are Dynamic partitions. A few days back, there was a bare hard drive that needed some files copied off of, so it was popped it in bay 5, that bay to pass-through, and the copied data off of it. Later, I noticed that my 1.5TB drives no longer showed up in windows. In the Silicon Image utility, the drives showed up fine, no error. However, in Device Manager, it shows the RAID 1 array as uninitialized. It shows up as the right size, etc., but nothing else. There's no sign of anything wrong with either drive, so I'm not sure what happened exactly. I'm not the only one who has access to that computer, so it is possible there is something else done to it that I don't know of. There's quite a lot of data on it still, and if at all possible, I'd prefer to not send it to Ontrack. Does anyone know of software that would restore the partitions, keeping in mind that it's a Windows LDM partition? I have access to a variety of Operating Systems, so something that would work on Mac, Windows or Linux would be acceptable. The programs I usually use are not compatible with LDM.

    Read the article

  • How can I tell System Restore in WIndows 7 recovery console to use my recovered backup drive's restore point data?

    - by Rich Shealer
    My Windows 7 desktop PC failed to boot. It would get to a grayish screen with a mouse and would only respond to the power button. After much examination I found that the problem was not a failed drive as running CHKDSK from the Recovery Console on my main drives passed without any errors. I had been installing various Java version in the days before the failure so I decided to use a restore point to roll backwards. I have an external SATA drive controller with two 2 TB drives mirrored using the Windows mirroring function. My system has been backing up to this drive regularly. The problem is I accidently broke the mirror when testing to see if this drive system might have been causing my boot issue. Connecting it to another machine showed two dynamic drives that were invalid. In the end I reformatted one as an NTFS basic disc and used recovery software on the other to copy all of the files to the reformatted drive. I had to copy the restore points into the new drive's System Volume Information folder by granting rights to that user. I moved the drive back to the original machine and rebooted. I can see my new drive, it even uses the same drive letter as it did in normal mode. Running System Restore it lists a new Automatic Restore point created while sitting at the RC along with all of my backups. Selecting the backup I want (or any other) I get a dialog. The backup drive could not be found. System Restore is looking for restore points on your backup. Make sure the backup drive is on and connected to this computer and then click OK. What do I need to do to allow system restore to see the restore points?

    Read the article

  • Print over the internet from a remote linux session locally (on a Windows 7 machine) to the shared printers?

    - by obeliksz
    I'm trying to use a linux virtual machine as a file server for windows clients. I have successfully implemented remote file sharing (samba+ssh) with which I am able to print locally with a little program that I made for this purpose (jetforms style)... but I would like to hear about a somewhat more direct approach. How can I attach the printers to the server, so that I can for example open a file on the remote session and in the print dialogbox I would see my local printers (on the machine from which I have established a remote session)? I guess there should be some kind of putty tunneling, but dont know how. I have a windows 7 machine locally; there is a CentOS 6 VM over the internet. It has ssh, cups, and samba. I have found a question which asks the opposite: there is a windows based server to connect form linux but that windows has a domain, mine is just a simple windows workstation that is behind NAT and has a dynamic IP. That question is: Print from Linux to Windows networked printer.

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Web Browser Control &ndash; Specifying the IE Version

    - by Rick Strahl
    I use the Internet Explorer Web Browser Control in a lot of my applications to display document type layout. HTML happens to be one of the most common document formats and displaying data in this format – even in desktop applications, is often way easier than using normal desktop technologies. One issue the Web Browser Control has that it’s perpetually stuck in IE 7 rendering mode by default. Even though IE 8 and now 9 have significantly upgraded the IE rendering engine to be more CSS and HTML compliant by default the Web Browser control will have none of it. IE 9 in particular – with its much improved CSS support and basic HTML 5 support is a big improvement and even though the IE control uses some of IE’s internal rendering technology it’s still stuck in the old IE 7 rendering by default. This applies whether you’re using the Web Browser control in a WPF application, a WinForms app, a FoxPro or VB classic application using the ActiveX control. Behind the scenes all these UI platforms use the COM interfaces and so you’re stuck by those same rules. Rendering Challenged To see what I’m talking about here are two screen shots rendering an HTML 5 doctype page that includes some CSS 3 functionality – rounded corners and border shadows - from an earlier post. One uses IE 9 as a standalone browser, and one uses a simple WPF form that includes the Web Browser control. IE 9 Browser:   Web Browser control in a WPF form: The IE 9 page displays this HTML correctly – you see the rounded corners and shadow displayed. Obviously the latter rendering using the Web Browser control in a WPF application is a bit lacking. Not only are the new CSS features missing but the page also renders in Internet Explorer’s quirks mode so all the margins, padding etc. behave differently by default, even though there’s a CSS reset applied on this page. If you’re building an application that intends to use the Web Browser control for a live preview of some HTML this is clearly undesirable. Feature Delegation via Registry Hacks Fortunately starting with Internet Explore 8 and later there’s a fix for this problem via a registry setting. You can specify a registry key to specify which rendering mode and version of IE should be used by that application. These are not global mind you – they have to be enabled for each application individually. There are two different sets of keys for 32 bit and 64 bit applications. 32 bit: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: yourapplication.exe 64 bit: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION Value Key: yourapplication.exe The value to set this key to is (taken from MSDN here) as decimal values: 9999 (0x270F) Internet Explorer 9. Webpages are displayed in IE9 Standards mode, regardless of the !DOCTYPE directive. 9000 (0x2328) Internet Explorer 9. Webpages containing standards-based !DOCTYPE directives are displayed in IE9 mode. 8888 (0x22B8) Webpages are displayed in IE8 Standards mode, regardless of the !DOCTYPE directive. 8000 (0x1F40) Webpages containing standards-based !DOCTYPE directives are displayed in IE8 mode. 7000 (0x1B58) Webpages containing standards-based !DOCTYPE directives are displayed in IE7 Standards mode.   The added key looks something like this in the Registry Editor: With this in place my Html Html Help Builder application which has wwhelp.exe as its main executable now works with HTML 5 and CSS 3 documents in the same way that Internet Explorer 9 does. Incidentally I accidentally added an ‘empty’ DWORD value of 0 to my EXE name and that worked as well giving me IE 9 rendering. Although not documented I suspect 0 (or an invalid value) will default to the installed browser. Don’t have a good way to test this but if somebody could try this with IE 8 installed that would be great: What happens when setting 9000 with IE 8 installed? What happens when setting 0 with IE 8 installed? Don’t forget to add Keys for Host Environments If you’re developing your application in Visual Studio and you run the debugger you may find that your application is still not rendering right, but if you run the actual generated EXE from Explorer or the OS command prompt it works. That’s because when you run the debugger in Visual Studio it wraps your application into a debugging host container. For this reason you might want to also add another registry key for yourapp.vshost.exe on your development machine. If you’re developing in Visual FoxPro make sure you add a key for vfp9.exe to see the rendering adjustments in the Visual FoxPro development environment. Cleaner HTML - no more HTML mangling! There are a number of additional benefits to setting up rendering of the Web Browser control to the IE 9 engine (or even the IE 8 engine) beyond the obvious rendering functionality. IE 9 actually returns your HTML in something that resembles the original HTML formatting, as opposed to the IE 7 default format which mangled the original HTML content. If you do the following in the WPF application: private void button2_Click(object sender, RoutedEventArgs e) { dynamic doc = this.webBrowser.Document; MessageBox.Show(doc.body.outerHtml); } you get different output depending on the rendering mode active. With the default IE 7 rendering you get: <BODY><DIV> <H1>Rounded Corners and Shadows - Creating Dialogs in CSS</H1> <DIV class=toolbarcontainer><A class=hoverbutton href="./"><IMG src="../../css/images/home.gif"> Home</A> <A class=hoverbutton href="RoundedCornersAndShadows.htm"><IMG src="../../css/images/refresh.gif"> Refresh</A> </DIV> <DIV class=containercontent> <FIELDSET><LEGEND>Plain Box</LEGEND><!-- Simple Box with rounded corners and shadow --> <DIV style="BORDER-BOTTOM: steelblue 2px solid; BORDER-LEFT: steelblue 2px solid; WIDTH: 550px; BORDER-TOP: steelblue 2px solid; BORDER-RIGHT: steelblue 2px solid" class="roundbox boxshadow"> <DIV style="BACKGROUND: khaki" class="boxcontenttext roundbox">Simple Rounded Corner Box. </DIV></DIV></FIELDSET> <FIELDSET><LEGEND>Box with Header</LEGEND> <DIV style="BORDER-BOTTOM: steelblue 2px solid; BORDER-LEFT: steelblue 2px solid; WIDTH: 550px; BORDER-TOP: steelblue 2px solid; BORDER-RIGHT: steelblue 2px solid" class="roundbox boxshadow"> <DIV class="gridheaderleft roundbox-top">Box with a Header</DIV> <DIV style="BACKGROUND: khaki" class="boxcontenttext roundbox-bottom">Simple Rounded Corner Box. </DIV></DIV></FIELDSET> <FIELDSET><LEGEND>Dialog Style Window</LEGEND> <DIV style="POSITION: relative; WIDTH: 450px" id=divDialog class="dialog boxshadow" jQuery16107208195684204002="2"> <DIV style="POSITION: relative" class=dialog-header> <DIV class=closebox></DIV>User Sign-in <DIV class=closebox jQuery16107208195684204002="3"></DIV></DIV> <DIV class=descriptionheader>This dialog is draggable and closable</DIV> <DIV class=dialog-content><LABEL>Username:</LABEL> <INPUT name=txtUsername value=" "> <LABEL>Password</LABEL> <INPUT name=txtPassword value=" "> <HR> <INPUT id=btnLogin value=Login type=button> </DIV> <DIV class=dialog-statusbar>Ready</DIV></DIV></FIELDSET> </DIV> <SCRIPT type=text/javascript>     $(document).ready(function () {         $("#divDialog")             .draggable({ handle: ".dialog-header" })             .closable({ handle: ".dialog-header",                 closeHandler: function () {                     alert("Window about to be closed.");                     return true;  // true closes - false leaves open                 }             });     }); </SCRIPT> </DIV></BODY> Now lest you think I’m out of my mind and create complete whacky HTML rooted in the last century, here’s the IE 9 rendering mode output which looks a heck of a lot cleaner and a lot closer to my original HTML of the page I’m accessing: <body> <div>         <h1>Rounded Corners and Shadows - Creating Dialogs in CSS</h1>     <div class="toolbarcontainer">         <a class="hoverbutton" href="./"> <img src="../../css/images/home.gif"> Home</a>         <a class="hoverbutton" href="RoundedCornersAndShadows.htm"> <img src="../../css/images/refresh.gif"> Refresh</a>     </div>         <div class="containercontent">     <fieldset>         <legend>Plain Box</legend>                <!-- Simple Box with rounded corners and shadow -->             <div style="border: 2px solid steelblue; width: 550px;" class="roundbox boxshadow">                              <div style="background: khaki;" class="boxcontenttext roundbox">                     Simple Rounded Corner Box.                 </div>             </div>     </fieldset>     <fieldset>         <legend>Box with Header</legend>         <div style="border: 2px solid steelblue; width: 550px;" class="roundbox boxshadow">                          <div class="gridheaderleft roundbox-top">Box with a Header</div>             <div style="background: khaki;" class="boxcontenttext roundbox-bottom">                 Simple Rounded Corner Box.             </div>         </div>     </fieldset>       <fieldset>         <legend>Dialog Style Window</legend>         <div style="width: 450px; position: relative;" id="divDialog" class="dialog boxshadow">             <div style="position: relative;" class="dialog-header">                 <div class="closebox"></div>                 User Sign-in             <div class="closebox"></div></div>             <div class="descriptionheader">This dialog is draggable and closable</div>                    <div class="dialog-content">                             <label>Username:</label>                 <input name="txtUsername" value=" " type="text">                 <label>Password</label>                 <input name="txtPassword" value=" " type="text">                                 <hr/>                                 <input id="btnLogin" value="Login" type="button">                        </div>             <div class="dialog-statusbar">Ready</div>         </div>     </fieldset>     </div> <script type="text/javascript">     $(document).ready(function () {         $("#divDialog")             .draggable({ handle: ".dialog-header" })             .closable({ handle: ".dialog-header",                 closeHandler: function () {                     alert("Window about to be closed.");                     return true;  // true closes - false leaves open                 }             });     }); </script>        </div> </body> IOW, in IE9 rendering mode IE9 is much closer (but not identical) to the original HTML from the page on the Web that we’re reading from. As a side note: Unfortunately, the browser feature emulation can't be applied against the Html Help (CHM) Engine in Windows which uses the Web Browser control (or COM interfaces anyway) to render Html Help content. I tried setting up hh.exe which is the help viewer, to use IE 9 rendering but a help file generated with CSS3 features will simply show in IE 7 mode. Bummer - this would have been a nice quick fix to allow help content served from CHM files to look better. HTML Editing leaves HTML formatting intact In the same vane, if you do any inline HTML editing in the control by setting content to be editable, IE 9’s control does a much more reasonable job of creating usable and somewhat valid HTML. It also leaves the original content alone other than the text your are editing or adding. No longer is the HTML output stripped of excess spaces and reformatted in IEs format. So if I do: private void button3_Click(object sender, RoutedEventArgs e) { dynamic doc = this.webBrowser.Document; doc.body.contentEditable = true; } and then make some changes to the document by typing into it using IE 9 mode, the document formatting stays intact and only the affected content is modified. The created HTML is reasonably clean (although it does lack proper XHTML formatting for things like <br/> <hr/>). This is very different from IE 7 mode which mangled the HTML as soon as the page was loaded into the control. Any editing you did stripped out all white space and lost all of your existing XHTML formatting. In IE 9 mode at least *most* of your original formatting stays intact. This is huge! In Html Help Builder I have supported HTML editing for a long time but the HTML mangling by the Web Browser control made it very difficult to edit the HTML later. Previously IE would mangle the HTML by stripping out spaces, upper casing all tags and converting many XHTML safe tags to its HTML 3 tags. Now IE leaves most of my document alone while editing, and creates cleaner and more compliant markup (with exception of self-closing elements like BR/HR). The end result is that I now have HTML editing in place that's much cleaner and actually capable of being manually edited. Caveats, Caveats, Caveats It wouldn't be Internet Explorer if there weren't some major compatibility issues involved in using this various browser version interaction. The biggest thing I ran into is that there are odd differences in some of the COM interfaces and what they return. I specifically ran into a problem with the document.selection.createRange() function which with IE 7 compatibility returns an expected text range object. When running in IE 8 or IE 9 mode however. I could not retrieve a valid text range with this code where loEdit is the WebBrowser control: loRange = loEdit.document.selection.CreateRange() The loRange object returned (here in FoxPro) had a length property of 0 but none of the other properties of the TextRange or TextRangeCollection objects were available. I figured this was due to some changed security settings but even after elevating the Intranet Security Zone and mucking with the other browser feature flags pertaining to security I had no luck. In the end I relented and used a JavaScript function in my editor document that returns a selection range object: function getselectionrange() { var range = document.selection.createRange(); return range; } and call that JavaScript function from my host applications code: *** Use a function in the document to get around HTML Editing issues loRange = loEdit.document.parentWindow.getselectionrange(.f.) and that does work correctly. This wasn't a big deal as I'm already loading a support script file into the editor page so all I had to do is add the function to this existing script file. You can find out more how to call script code in the Web Browser control from a host application in a previous post of mine. IE 8 and 9 also clamp down the security environment a little more than the default IE 7 control, so there may be other issues you run into. Other than the createRange() problem above I haven't seen anything else that is breaking in my code so far though and that's encouraging at least since it uses a lot of HTML document manipulation for the custom editor I've created (and would love to replace - any PROFESSIONAL alternatives anybody?) Registry Key Installation for your Application It’s important to remember that this registry setting is made per application, so most likely this is something you want to set up with your installer. Also remember that 32 and 64 bit settings require separate settings in the registry so if you’re creating your installer you most likely will want to set both keys in the registry preemptively for your application. I use Tarma Installer for all of my application installs and in Tarma I configure registry keys for both and set a flag to only install the latter key group in the 64 bit version: Because this setting is application specific you have to do this for every application you install unfortunately, but this also means that you can safely configure this setting in the registry because it is after only applied to your application. Another problem with install based installation is version detection. If IE 8 is installed I’d want 8000 for the value, if IE 9 is installed I want 9000. I can do this easily in code but in the installer this is much more difficult. I don’t have a good solution for this at the moment, but given that the app works with IE 7 mode now, IE 9 mode is just a bonus for the moment. If IE 9 is not installed and 9000 is used the default rendering will remain in use.   It sure would be nice if we could specify the IE rendering mode as a property, but I suspect the ActiveX container has to know before it loads what actual version to load up and once loaded can only load a single version of IE. This would account for this annoying application level configuration… Summary The registry feature emulation has been available for quite some time, but I just found out about it today and started experimenting around with it. I’m stoked to see that this is available as I’d pretty much given up in ever seeing any better rendering in the Web Browser control. Now at least my apps can take advantage of newer HTML features. Now if we could only get better HTML Editing support somehow <snicker>… ah can’t have everything.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  Windows  

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • SQL SERVER – SSMS: Disk Usage Report

    - by Pinal Dave
    Let us start with humor!  I think we the series on various reports, we come to a logical point. We covered all the reports at server level. This means the reports we saw were targeted towards activities that are related to instance level operations. These are mostly like how a doctor diagnoses a patient. At this point I am reminded of a dialog which I read somewhere: Patient: Doc, It hurts when I touch my head. Doc: Ok, go on. What else have you experienced? Patient: It hurts even when I touch my eye, it hurts when I touch my arms, it even hurts when I touch my feet, etc. Doc: Hmmm … Patient: I feel it hurts when I touch anywhere in my body. Doc: Ahh … now I get it. You need a plaster to your finger John. Sometimes the server level gives an indicator to what is happening in the system, but we need to get to the root cause for a specific database. So, this is the first blog in series where we would start discussing about database level reports. To launch database level reports, expand selected server in Object Explorer, expand the Databases folder, and then right-click any database for which we want to look at reports. From the menu, select Reports, then Standard Reports, and then any of database level reports. In this blog, we would talk about four “disk” reports because they are similar: Disk Usage Disk Usage by Top Tables Disk Usage by Table Disk Usage by Partition Disk Usage This report shows multiple information about the database. Let us discuss them one by one.  We have divided the output into 5 different sections. Section 1 shows the high level summary of the database. It shows the space used by database files (mdf and ldf). Under the hood, the report uses, various DMVs and DBCC Commands, it is using sys.data_spaces and DBCC SHOWFILESTATS. Section 2 and 3 are pie charts. One for data file allocation and another for the transaction log file. Pie chart for “Data Files Space Usage (%)” shows space consumed data, indexes, allocated to the SQL Server database, and unallocated space which is allocated to the SQL Server database but not yet filled with anything. “Transaction Log Space Usage (%)” used DBCC SQLPERF (LOGSPACE) and shows how much empty space we have in the physical transaction log file. Section 4 shows the data from Default Trace and looks at Event IDs 92, 93, 94, 95 which are for “Data File Auto Grow”, “Log File Auto Grow”, “Data File Auto Shrink” and “Log File Auto Shrink” respectively. Here is an expanded view for that section. If default trace is not enabled, then this section would be replaced by the message “Trace Log is disabled” as highlighted below. Section 5 of the report uses DBCC SHOWFILESTATS to get information. Here is the enhanced version of that section. This shows the physical layout of the file. In case you have In-Memory Objects in the database (from SQL Server 2014), then report would show information about those as well. Here is the screenshot taken for a different database, which has In-Memory table. I have highlighted new things which are only shown for in-memory database. The new sections which are highlighted above are using sys.dm_db_xtp_checkpoint_files, sys.database_files and sys.data_spaces. The new type for in-memory OLTP is ‘FX’ in sys.data_space. The next set of reports is targeted to get information about a table and its storage. These reports can answer questions like: Which is the biggest table in the database? How many rows we have in table? Is there any table which has a lot of reserved space but its unused? Which partition of the table is having more data? Disk Usage by Top Tables This report provides detailed data on the utilization of disk space by top 1000 tables within the Database. The report does not provide data for memory optimized tables. Disk Usage by Table This report is same as earlier report with few difference. First Report shows only 1000 rows First Report does order by values in DMV sys.dm_db_partition_stats whereas second one does it based on name of the table. Both of the reports have interactive sort facility. We can click on any column header and change the sorting order of data. Disk Usage by Partition This report shows the distribution of the data in table based on partition in the table. This is so similar to previous output with the partition details now. Here is the query taken from profiler. SELECT row_number() OVER (ORDER BY a1.used_page_count DESC, a1.index_id) AS row_number ,      (dense_rank() OVER (ORDER BY a5.name, a2.name))%2 AS l1 ,      a1.OBJECT_ID ,      a5.name AS [schema] ,       a2.name ,       a1.index_id ,       a3.name AS index_name ,       a3.type_desc ,       a1.partition_number ,       a1.used_page_count * 8 AS total_used_pages ,       a1.reserved_page_count * 8 AS total_reserved_pages ,       a1.row_count FROM sys.dm_db_partition_stats a1 INNER JOIN sys.all_objects a2  ON ( a1.OBJECT_ID = a2.OBJECT_ID) AND a1.OBJECT_ID NOT IN (SELECT OBJECT_ID FROM sys.tables WHERE is_memory_optimized = 1) INNER JOIN sys.schemas a5 ON (a5.schema_id = a2.schema_id) LEFT OUTER JOIN  sys.indexes a3  ON ( (a1.OBJECT_ID = a3.OBJECT_ID) AND (a1.index_id = a3.index_id) ) WHERE (SELECT MAX(DISTINCT partition_number) FROM sys.dm_db_partition_stats a4 WHERE (a4.OBJECT_ID = a1.OBJECT_ID)) >= 1 AND a2.TYPE <> N'S' AND  a2.TYPE <> N'IT' ORDER BY a5.name ASC, a2.name ASC, a1.index_id, a1.used_page_count DESC, a1.partition_number Using all of the above reports, you should be able to get the usage of database files and also space used by tables. I think this is too much disk information for a single blog and I hope you have used them in the past to get data. Do let me know if you found anything interesting using these reports in your environments. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Reports

    Read the article

  • techniques for an AI for a highly cramped turn-based tactics game

    - by Adam M.
    I'm trying to write an AI for a tactics game in the vein of Final Fantasy Tactics or Vandal Hearts. I can't change the game rules in any way, only upgrade the AI. I have experience programming AI for classic board games (basically minimax and its variants), but I think the branching factor is too great for the approach to be reasonable here. I'll describe the game and some current AI flaws that I'd like to fix. I'd like to hear ideas for applicable techniques. I'm a decent enough programmer, so I only need the ideas, not an implementation (though that's always appreciated). I'd rather not expend effort chasing (too many) dead ends, so although speculation and brainstorming are good and probably helpful, I'd prefer to hear from somebody with actual experience solving this kind of problem. For those who know it, the game is the land battle mini-game in Sid Meier's Pirates! (2004) and you can skim/skip the next two paragraphs. For those who don't, here's briefly how it works. The battle is turn-based and takes place on a 16x16 grid. There are three terrain types: clear (no hindrance), forest (hinders movement, ranged attacks, and sight), and rock (impassible, but does not hinder attacks or sight). The map is randomly generated with roughly equal amounts of each type of terrain. Because there are many rock and forest tiles, movement is typically very cramped. This is tactically important. The terrain is not flat; higher terrain gives minor bonuses. The terrain is known to both sides. The player is always the attacker and the AI is always the defender, so it's perfectly valid for the AI to set up a defensive position and just wait. The player wins by killing all defenders or by getting a unit to the city gates (a tile on the other side of the map). There are very few units on each side, usually 4-8. Because of this, it's crucial not to take damage without gaining some advantage from it. Units can take multiple actions per turn. All units on one side move before any units on the other side. Order of execution is important, and interleaving of actions between units is often useful. Units have melee and ranged attacks. Melee attacks vary widely in strength; ranged attacks have the same strength but vary in range. The main challenges I face are these: Lots of useful move combinations start with a "useless" move that gains no immediate advantage, or even loses advantage, in order to set up a powerful flank attack in the future. And, since the player units are stronger and have longer range, the AI pretty much always has to take some losses before they can start to gain kills. The AI must be able to look ahead to distinguish between sacrificial actions that provide a future benefit and those that don't. Because the terrain is so cramped, most of the tactics come down to achieving good positioning with multiple units that work together to defend an area. For instance, two defenders can often dominate a narrow pass by positioning themselves so an enemy unit attempting to pass must expose itself to a flank attack. But one defender in the same pass would be useless, and three units can defend a slightly larger pass. Etc. The AI should be able to figure out where the player must go to reach the city gates and how to best position its few units to cover the approaches, shifting, splitting, or combining them appropriately as the player moves. Because flank attacks are extremely deadly (and engineering flank attacks is key to the player strategy), the AI should be competent at moving its units so that they cover each other's flanks unless the sacrifice of a unit would give a substantial benefit. They should also be able to force flank attacks on players, for instance by threatening a unit from two different directions such that responding to one threat exposes the flank to the other. The AI should attack if possible, but sometimes there are no good ways to approach the player's position. In that case, the AI should be able to recognize this and set up a defensive position of its own. But the AI shouldn't be vulnerable to a trivial exploit where the player repeatedly opens and closes a hole in his defense and shoots at the AI as it approaches and retreats. That is, the AI should ideally be able to recognize that the player is capable of establishing a solid defense of an area, even if the defense is not currently in place. (I suppose if a good unit allocation algorithm existed, as needed for the second bullet point, the AI could run it on the player units to see where they could defend.) Because it's important to choose a good order of action and interleave actions between units, it's not as simple as just finding the best move for each unit in turn. All of these can be accomplished with a minimax search in theory, but the search space is too large, so specialized techniques are needed. I thought about techniques such as influence mapping, but I don't see how to use the technique to great effect. I thought about assigning goals to the units. This can help them work together in some limited way, and the problem of "how do I accomplish this goal?" is easier to solve than "how do I win this battle?", but assigning good goals is a hard problem in itself, because it requires knowing whether the goal is achievable and whether it's a good use of resources. So, does anyone have specific ideas for techniques that can help cleverize this AI? Update: I found a related question on Stackoverflow: http://stackoverflow.com/questions/3133273/ai-for-a-final-fantasy-tactics-like-game The selected answer gives a decent approach to choosing between alternative actions, but it doesn't seem to have much ability to look into the future and discern beneficial sacrifices from wasteful ones. It also focuses on a single unit at a time and it's not clear how it could be extended to support cooperation between units in defending or attacking.

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • ANTS Memory Profiler 7.0

    - by James Michael Hare
    I had always been a fan of ANTS products (Reflector is absolutely invaluable, and their performance profiler is great as well – very easy to use!), so I was curious to see what the ANTS Memory Profiler could show me. Background While a performance profiler will track how much time is typically spent in each unit of code, a memory profiler gives you much more detail on how and where your memory is being consumed and released in a program. As an example, I’d been working on a data access layer at work to call a market data web service.  This web service would take a list of symbols to quote and would return back the quote data.  To help consolidate the thousands of web requests per second we get and reduce load on the web services, we implemented a 5-second cache of quote data.  Not quite long enough to where customers will typically notice a quote go “stale”, but just long enough to be able to collapse multiple quote requests for the same symbol in a short period of time. A 5-second cache may not sound like much, but it actually pays off by saving us roughly 42% of our web service calls, while still providing relatively up-to-date information.  The question is whether or not the extra memory involved in maintaining the cache was worth it, so I decided to fire up the ANTS Memory Profiler and take a look at memory usage. First Impressions The main thing I’ve always loved about the ANTS tools is their ease of use.  Pretty much everything is right there in front of you in a way that makes it easy for you to find what you need with little digging required.  I’ve worked with other, older profilers before (that shall remain nameless other than to hint it was created by a very large chip maker) where it was a mind boggling experience to figure out how to do simple tasks. Not so with AMP.  The opening dialog is very straightforward.  You can choose from here whether to debug an executable, a web application (either in IIS or from VS’s web development server), windows services, etc. So I chose a .NET Executable and navigated to the build location of my test harness.  Then began profiling. At this point while the application is running, you can see a chart of the memory as it ebbs and wanes with allocations and collections.  At any given point in time, you can take snapshots (to compare states) zoom in, or choose to stop at any time.  Snapshots Taking a snapshot also gives you a breakdown of the managed memory heaps for each generation so you get an idea how many objects are staying around for extended periods of time (as an object lives and survives collections, it gets promoted into higher generations where collection becomes less frequent). Generating a snapshot brings up an analysis view with very handy graphs that show your generation sizes.  Almost all my memory is in Generation 1 in the managed memory component of the first graph, which is good news to me, because Gen 2 collections are much rarer.  I once3 made the mistake once of caching data for 30 minutes and found it didn’t get collected very quick after I released my reference because it had been promoted to Gen 2 – doh! Analysis It looks like (from the second pie chart) that the majority of the allocations were in the string class.  This also is expected for me because the majority of the memory allocated is in the web service responses, so it doesn’t seem the entities I’m adapting to (to prevent being too tightly coupled to the web service proxy classes, which can change easily out from under me) aren’t taking a significant portion of memory. I also appreciate that they have clear summary text in key places such as “No issues with large object heap fragmentation were detected”.  For novice users, this type of summary information can be critical to getting them to use a tool and develop a good working knowledge of it. There is also a handy link at the bottom for “What to look for on the summary” which loads a web page of help on key points to look for. Clicking over to the session overview, it’s easy to compare the samples at each snapshot to see how your memory is growing, shrinking, or staying relatively the same.  Looking at my snapshots, I’m pretty happy with the fact that memory allocation and heap size seems to be fairly stable and in control: Once again, you can check on the large object heap, generation one heap, and generation two heap across each snapshot to spot trends. Back on the analysis tab, we can go to the [Class List] button to get an idea what classes are making up the majority of our memory usage.  As was little surprise to me, System.String was the clear majority of my allocations, though I found it surprising that the System.Reflection.RuntimeMehtodInfo came in second.  I was curious about this, so I selected it and went into the [Instance Categorizer].  This view let me see where these instances to RuntimeMehtodInfo were coming from. So I scrolled back through the graph, and discovered that these were being held by the System.ServiceModel.ChannelFactoryRefCache and I was satisfied this was just an artifact of my WCF proxy. I also like that down at the bottom of the Instance Categorizer it gives you a series of filters and offers to guide you on which filter to use based on the problem you are trying to find.  For example, if I suspected a memory leak, I might try to filter for survivors in growing classes.  This means that for instances of a class that are growing in memory (more are being created than cleaned up), which ones are survivors (not collected) from garbage collection.  This might allow me to drill down and find places where I’m holding onto references by mistake and not freeing them! Finally, if you want to really see all your instances and who is holding onto them (preventing collection), you can go to the “Instance Retention Graph” which creates a graph showing what references are being held in memory and who is holding onto them. Visual Studio Integration Of course, VS has its own profiler built in – and for a free bundled profiler it is quite capable – but AMP gives a much cleaner and easier-to-use experience, and when you install it you also get the option of letting it integrate directly into VS. So once you go back into VS after installation, you’ll notice an ANTS menu which lets you launch the ANTS profiler directly from Visual Studio.   Clicking on one of these options fires up the project in the profiler immediately, allowing you to get right in.  It doesn’t integrate with the Visual Studio windows themselves (like the VS profiler does), but still the plethora of information it provides and the clear and concise manner in which it presents it makes it well worth it. Summary If you like the ANTS series of tools, you shouldn’t be disappointed with the ANTS Memory Profiler.  It was so easy to use that I was able to jump in with very little product knowledge and get the information I was looking it for. I’ve used other profilers before that came with 3-inch thick tomes that you had to read in order to get anywhere with the tool, and this one is not like that at all.  It’s built for your everyday developer to get in and find their problems quickly, and I like that! Tweet Technorati Tags: Influencers,ANTS,Memory,Profiler

    Read the article

  • I see no LOBs!

    - by Paul White
    Is it possible to see LOB (large object) logical reads from STATISTICS IO output on a table with no LOB columns? I was asked this question today by someone who had spent a good fraction of their afternoon trying to work out why this was occurring – even going so far as to re-run DBCC CHECKDB to see if any corruption had taken place.  The table in question wasn’t particularly pretty – it had grown somewhat organically over time, with new columns being added every so often as the need arose.  Nevertheless, it remained a simple structure with no LOB columns – no TEXT or IMAGE, no XML, no MAX types – nothing aside from ordinary INT, MONEY, VARCHAR, and DATETIME types.  To add to the air of mystery, not every query that ran against the table would report LOB logical reads – just sometimes – but when it did, the query often took much longer to execute. Ok, enough of the pre-amble.  I can’t reproduce the exact structure here, but the following script creates a table that will serve to demonstrate the effect: IF OBJECT_ID(N'dbo.Test', N'U') IS NOT NULL DROP TABLE dbo.Test GO CREATE TABLE dbo.Test ( row_id NUMERIC IDENTITY NOT NULL,   col01 NVARCHAR(450) NOT NULL, col02 NVARCHAR(450) NOT NULL, col03 NVARCHAR(450) NOT NULL, col04 NVARCHAR(450) NOT NULL, col05 NVARCHAR(450) NOT NULL, col06 NVARCHAR(450) NOT NULL, col07 NVARCHAR(450) NOT NULL, col08 NVARCHAR(450) NOT NULL, col09 NVARCHAR(450) NOT NULL, col10 NVARCHAR(450) NOT NULL, CONSTRAINT [PK dbo.Test row_id] PRIMARY KEY CLUSTERED (row_id) ) ; The next script loads the ten variable-length character columns with one-character strings in the first row, two-character strings in the second row, and so on down to the 450th row: WITH Numbers AS ( -- Generates numbers 1 - 450 inclusive SELECT TOP (450) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) INSERT dbo.Test WITH (TABLOCKX) SELECT REPLICATE(N'A', N.n), REPLICATE(N'B', N.n), REPLICATE(N'C', N.n), REPLICATE(N'D', N.n), REPLICATE(N'E', N.n), REPLICATE(N'F', N.n), REPLICATE(N'G', N.n), REPLICATE(N'H', N.n), REPLICATE(N'I', N.n), REPLICATE(N'J', N.n) FROM Numbers AS N ORDER BY N.n ASC ; Once those two scripts have run, the table contains 450 rows and 10 columns of data like this: Most of the time, when we query data from this table, we don’t see any LOB logical reads, for example: -- Find the maximum length of the data in -- column 5 for a range of rows SELECT result = MAX(DATALENGTH(T.col05)) FROM dbo.Test AS T WHERE row_id BETWEEN 50 AND 100 ; But with a different query… -- Read all the data in column 1 SELECT result = MAX(DATALENGTH(T.col01)) FROM dbo.Test AS T ; …suddenly we have 49 LOB logical reads, as well as the ‘normal’ logical reads we would expect. The Explanation If we had tried to create this table in SQL Server 2000, we would have received a warning message to say that future INSERT or UPDATE operations on the table might fail if the resulting row exceeded the in-row storage limit of 8060 bytes.  If we needed to store more data than would fit in an 8060 byte row (including internal overhead) we had to use a LOB column – TEXT, NTEXT, or IMAGE.  These special data types store the large data values in a separate structure, with just a small pointer left in the original row. Row Overflow SQL Server 2005 introduced a feature called row overflow, which allows one or more variable-length columns in a row to move to off-row storage if the data in a particular row would otherwise exceed 8060 bytes.  You no longer receive a warning when creating (or altering) a table that might need more than 8060 bytes of in-row storage; if SQL Server finds that it can no longer fit a variable-length column in a particular row, it will silently move one or more of these columns off the row into a separate allocation unit. Only variable-length columns can be moved in this way (for example the (N)VARCHAR, VARBINARY, and SQL_VARIANT types).  Fixed-length columns (like INTEGER and DATETIME for example) never move into ‘row overflow’ storage.  The decision to move a column off-row is done on a row-by-row basis – so data in a particular column might be stored in-row for some table records, and off-row for others. In general, if SQL Server finds that it needs to move a column into row-overflow storage, it moves the largest variable-length column record for that row.  Note that in the case of an UPDATE statement that results in the 8060 byte limit being exceeded, it might not be the column that grew that is moved! Sneaky LOBs Anyway, that’s all very interesting but I don’t want to get too carried away with the intricacies of row-overflow storage internals.  The point is that it is now possible to define a table with non-LOB columns that will silently exceed the old row-size limit and result in ordinary variable-length columns being moved to off-row storage.  Adding new columns to a table, expanding an existing column definition, or simply storing more data in a column than you used to – all these things can result in one or more variable-length columns being moved off the row. Note that row-overflow storage is logically quite different from old-style LOB and new-style MAX data type storage – individual variable-length columns are still limited to 8000 bytes each – you can just have more of them now.  Having said that, the physical mechanisms involved are very similar to full LOB storage – a column moved to row-overflow leaves a 24-byte pointer record in the row, and the ‘separate storage’ I have been talking about is structured very similarly to both old-style LOBs and new-style MAX types.  The disadvantages are also the same: when SQL Server needs a row-overflow column value it needs to follow the in-row pointer a navigate another chain of pages, just like retrieving a traditional LOB. And Finally… In the example script presented above, the rows with row_id values from 402 to 450 inclusive all exceed the total in-row storage limit of 8060 bytes.  A SELECT that references a column in one of those rows that has moved to off-row storage will incur one or more lob logical reads as the storage engine locates the data.  The results on your system might vary slightly depending on your settings, of course; but in my tests only column 1 in rows 402-450 moved off-row.  You might like to play around with the script – updating columns, changing data type lengths, and so on – to see the effect on lob logical reads and which columns get moved when.  You might even see row-overflow columns moving back in-row if they are updated to be smaller (hint: reduce the size of a column entry by at least 1000 bytes if you hope to see this). Be aware that SQL Server will not warn you when it moves ‘ordinary’ variable-length columns into overflow storage, and it can have dramatic effects on performance.  It makes more sense than ever to choose column data types sensibly.  If you make every column a VARCHAR(8000) or NVARCHAR(4000), and someone stores data that results in a row needing more than 8060 bytes, SQL Server might turn some of your column data into pseudo-LOBs – all without saying a word. Finally, some people make a distinction between ordinary LOBs (those that can hold up to 2GB of data) and the LOB-like structures created by row-overflow (where columns are still limited to 8000 bytes) by referring to row-overflow LOBs as SLOBs.  I find that quite appealing, but the ‘S’ stands for ‘small’, which makes expanding the whole acronym a little daft-sounding…small large objects anyone? © Paul White 2011 email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Oracle EBS?????(Order->AR)

    - by Pan.Tian
    ???? ??:Order Management > Orders,Returns > Sales Orders ???????,??,????,???? ???????,????,??... ??Book Order,??Book??,????????Status??????“Booked”,???????"Awaiting Shipping",?????????,??????????????? ??:??Book??,????????????,????Shipping Transactions Form,????,?????????Line Status?Ready to Release,Next Step?Pick Release Pick Release ??:Order Management > Shipping > Release Sales Orders > Release Sales Orders Pick Release????(?????????).?Order  Number?????????? Auto Pick Confirm???No Auto Allocate???N Auto Allocate?Auto Pick Confirm??????Yes,???????????,??????No,???Yes??,?????Allocate?Pick Confirm??,??????????? ??????????Pick  Release,”Concurrent“??Pick Release?????Concurrent Request???,"Execute Now"????????Pick Release,??????????????User,??????Concurrent??? Pick Release?????????Pick Release?????Pick Wave??Move Order,??Move Order????????????????????(Staging),????INV??????????? INV_MOVE_ORDER_PUB.CREATE_MOVE_ORDER_HEADER???Move Order??(??Pick Release?????????????:Pick Release Process) ????????,?Pick Release??,?????????????Reservation(??),?????????Soft Reservations,?????????????,????Org?????????? ??:????,Shipping Transaction?Line Status?"Released to Warehouse",Next Step?"Transact Move Order";????????Booked,?????”Awaiting Shipping“? Pick Confirm Pick Confirm(????)????????Transact Move Order????,?Allocate????,?Transact Move Order. ??:Inventory > Move Orders > Transact Move Orders ????,Pick Wave??Tab,????? ??TMO????,??Allocate,Allocate?????????Picking Rule?????,??????Suggestion????,Suggestion?????? MTL_MATERIAL_TRANSACTIONS_TEMP?(?Pending Transactions)? ????Allocate??,??????Allocation????Single,Multiple??None???,Single??, ??????????Suggestion?Transaction??,Multiple???????;None??????Suggestion? ?(????????????????) ????????Transact??Move Order ?Transact??,Inventory Transaction Manager ???Suggestion Transactions(MMTT),???????????????,??????Subinventory??????(Staging)??? Transction???Material Transaction?Form????? ????Reservation??,?Transact??,???????,Reservation????????,????Sub,locator???? ??:????,Shipping Transaction?Line Status?"Staged/Pick Confirmed",Next Step?"Ship Confirm/Close Trip Stop";????????Booked,??????”Picked“? Ship Confirm Deliveries ??:Order Management > Shipping > Transactions ???Delivery??,??Ship Confirm(????),????Pick Release???,????Autocreate Delivery,???????Define Shipping Parameters????????,??shipping parameters???????,?????????Ship Confirm?????Action->Auto-create Deliveries. Delivery????????????????,????????.... Delivery??,??Ship Confirm???,???????,"Defer Interface"?????,?????????Interface Trip Stop SRS,????Defer Interface,?OK? Delivery was successfully confirmed!!! Ship Confirm????????????MTL_TRANSACTIONS_INTERFACE??,??MTI??????Sales Order Issue,??????????Interface Trip Stop???,???MTI??MMT??? ??:????,Shipping Transaction?Line Status?"Shipped",Next Step?"Run Interfaces";????????Booked,??????”Shipped“? Interface Trip Stop - SRS ?????Ship Confirm??????Defer Interface,??????????????Interface Trip Stop - SRS? ??:Order Management > Shipping > Interface > Run > Request:Interface Trip Stop - SRS Interface Trip Stop????????:Inventory Interface  SRS(????????)? Order Management Interface  SRS(?????????????AR??)? Inventory Interface  SRS???Shipping Transaction??????MTI,??INV Manager????MTI????MMT??,??Sales Order Issue?transaction??????,???????????Reservation????Inventory Interface  SRS?????,???WSH_DELIVERY_DETAILS??INV_INTERFACED_FLAG???Y? Order Management Interface - SRS??Inventory Interface  SRS?????,??Request?????????????AR??,OM Interface????????WSH_DELIVERY_DETAILS??OE_INTERFACED_FLAG?Y? ??:????,Shipping Transaction?Line Status?"Interfaced",Next Step?"Not Applicable";????????Booked,??????”Shipped“? Workflow background Process ??:Inventory > Workflow Background Engine Item Type:OM Order Line Process Deferred:Yes Process Timeout:No ??program????Deffered???workflow,Workflow Background Process???,???????Order????RA Interface???(RA_INTERFACE_LINES_ALL,RA_INTERFACE_SALESCREDITS_ALL,RA_Interface_distribution) ????????SQL???RA Interface??: 1.SELECT * FROM RA_INTERFACE_LINES_ALL WHERE sales_order = '65961'; 2.SELECT * FROM RA_INTERFACE_SALESCREDITS_ALL WHERE INTERFACE_LINE_ID IN (SELECT INTERFACE_LINE_ID FROM RA_INTERFACE_LINES_ALL WHERE sales_order = '65961' ); 3.SELECT * FROM RA_INTERFACE_DISTRIBUTIONS_ALL WHERE INTERFACE_LINE_ID IN (SELECT INTERFACE_LINE_ID FROM RA_INTERFACE_LINES_ALL WHERE sales_order = '65961' ); ?????RA Interface??,??OE_ORDER_LINES_ALL?INVOICE_INTERFACE_STATUS_CODE????? Yes,INVOICED_QUANTITY?????????????????????????Closed,????????Booked? AutoInvoice ????AR?? ??:Account Receivable > Interface > AutoInvoice Name:Autoinvoice Master Program Invoice Source:Order Entry Default Day:???? ???,?request????”Autoinvoice Import Program“???? ???,????Auto Invoice Program????RA?interface?,?????????????,???????AR???? (RA_CUSTOMER_TRX_ALL,RA_CUSTOMER_TRX_LINES,AR_PAYMENT_SCHEDULES). ?????? Order > Action > Additional Information > Invoices/Credit Memos????????,???????SQL?????AR??, SELECT ooha.order_number , oola.line_number so_line_number , oola.ordered_item , oola.ordered_quantity * oola.unit_selling_price so_extended_price , rcta.trx_number invoice_number , rcta.trx_date , rctla.line_number inv_line_number , rctla.unit_selling_price inv_unit_selling_price FROM oe_order_headers_all ooha , oe_order_lines_all oola , ra_customer_trx_all rcta , ra_customer_trx_lines_all rctla WHERE ooha.header_id = oola.header_id AND rcta.customer_trx_id = rctla.customer_trx_id AND rctla.interface_line_attribute6 = TO_CHAR (oola.line_id) AND rctla.interface_line_attribute1 = TO_CHAR (ooha.order_number) AND order_number = :p_order_number; ??Autoinvoice Import Program???error???,?????RA_INTERFACE_ERRORS_ALL?Message_text??,???????? Closing the Order ?????????,?????????(Close??Cancel)?0.5?,??????Workflow Background Process??????? ????????:you can wait until month-end and the “Order Flow – Generic” workflow will close it for you. Order&Shipping Transactions Status Summary Step Order Header Status Order Line Status Order Flow Workflow Status (Order Header) Line Flow Workflow Status (Order Line) Shipping Transaction  Status(RELEASED_STATUS in WDD) 1. Enter an Order Entered Entered Book Order Manual Enter – Line                              N/A 2. Book the Order Booked Awaiting Shipping Close Order Schedule ->Create Supply ->Ship – Line                       Ready to Release(R) 3. Pick the Order Booked Picked Close Order Ship – Line 1.Released to Warehouse(S)(Pick Release but not pick confirm) 2.Staged/Pick Confirmed(Y)(After pick confirm) 4. Ship the Order Booked Shipped Close Order Fulfill – Deferred 1.Shipped(After ship confirm) 2.Interfaced(C)(After ITS) Booked Closed Close Order Fulfill ->Invoice Interface ->Close Line -> End 5. Close the Order Closed Closed End End ????,shipping txn???,??????????:http://blog.csdn.net/pan_tian/article/details/7696528 ======EOF======

    Read the article

  • Applying ServiceKnownTypeAttribute to WCF service with Spring

    - by avidgoffer
    I am trying to apply the ServiceKnownTypeAttribute to my WCF Service but keep getting the error below my config. Does anyone have any ideas? <object id="HHGEstimating" type="Spring.ServiceModel.ServiceExporter, Spring.Services"> <property name="TargetName" value="HHGEstimatingHelper"/> <property name="Name" value="HHGEstimating"/> <property name="Namespace" value="http://www.igcsoftware.com/HHGEstimating"/> <property name="TypeAttributes"> <list> <ref local="wcfErrorBehavior"/> <ref local="wcfSilverlightFaultBehavior"/> <object type="System.ServiceModel.ServiceKnownTypeAttribute, System.ServiceModel"> <constructor-arg name="type" value="IGCSoftware.HHG.Business.UserControl.AtlasUser, IGCSoftware.HHG.Business"/> </object> </list> </property> Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: Spring.Objects.Factory.ObjectCreationException: Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [ObjectCreationException: Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46'] Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveInnerObjectDefinition(String name, String innerObjectName, String argumentName, IObjectDefinition definition, Boolean singletonOwner) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:300 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolvePropertyValue(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:150 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveValueIfNecessary(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:112 Spring.Objects.Factory.Config.ManagedList.Resolve(String objectName, IObjectDefinition definition, String propertyName, ManagedCollectionElementResolver resolver) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Config\ManagedList.cs:126 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolvePropertyValue(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:201 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveValueIfNecessary(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:112 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.ApplyPropertyValues(String name, RootObjectDefinition definition, IObjectWrapper wrapper, IPropertyValues properties) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:373 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.PopulateObject(String name, RootObjectDefinition definition, IObjectWrapper wrapper) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:563 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.ConfigureObject(String name, RootObjectDefinition definition, IObjectWrapper wrapper) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:1844 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.InstantiateObject(String name, RootObjectDefinition definition, Object[] arguments, Boolean allowEagerCaching, Boolean suppressConfigure) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:918 Spring.Objects.Factory.Support.AbstractObjectFactory.CreateAndCacheSingletonInstance(String objectName, RootObjectDefinition objectDefinition, Object[] arguments) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractObjectFactory.cs:2120 Spring.Objects.Factory.Support.AbstractObjectFactory.GetObjectInternal(String name, Type requiredType, Object[] arguments, Boolean suppressConfigure) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractObjectFactory.cs:2046 Spring.Objects.Factory.Support.DefaultListableObjectFactory.PreInstantiateSingletons() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\DefaultListableObjectFactory.cs:505 Spring.Context.Support.AbstractApplicationContext.Refresh() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\AbstractApplicationContext.cs:911 _dynamic_Spring.Context.Support.XmlApplicationContext..ctor(Object[] ) +197 Spring.Reflection.Dynamic.SafeConstructor.Invoke(Object[] arguments) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Reflection\Dynamic\DynamicConstructor.cs:116 Spring.Context.Support.RootContextInstantiator.InvokeContextConstructor(ConstructorInfo ctor) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:550 Spring.Context.Support.ContextInstantiator.InstantiateContext() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:494 Spring.Context.Support.ContextHandler.InstantiateContext(IApplicationContext parentContext, Object configContext, String contextName, Type contextType, Boolean caseSensitive, String[] resources) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:330 Spring.Context.Support.ContextHandler.Create(Object parent, Object configContext, XmlNode section) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:280 [ConfigurationErrorsException: Error creating context 'spring.root': Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46'] System.Configuration.BaseConfigurationRecord.EvaluateOne(String[] keys, SectionInput input, Boolean isTrusted, FactoryRecord factoryRecord, SectionRecord sectionRecord, Object parentResult) +202 System.Configuration.BaseConfigurationRecord.Evaluate(FactoryRecord factoryRecord, SectionRecord sectionRecord, Object parentResult, Boolean getLkg, Boolean getRuntimeObject, Object& result, Object& resultRuntimeObject) +1061 System.Configuration.BaseConfigurationRecord.GetSectionRecursive(String configKey, Boolean getLkg, Boolean checkPermission, Boolean getRuntimeObject, Boolean requestIsHere, Object& result, Object& resultRuntimeObject) +1431 System.Configuration.BaseConfigurationRecord.GetSection(String configKey, Boolean getLkg, Boolean checkPermission) +56 System.Configuration.BaseConfigurationRecord.GetSection(String configKey) +8 System.Web.Configuration.HttpConfigurationSystem.GetApplicationSection(String sectionName) +45 System.Web.Configuration.HttpConfigurationSystem.GetSection(String sectionName) +49 System.Web.Configuration.HttpConfigurationSystem.System.Configuration.Internal.IInternalConfigSystem.GetSection(String configKey) +6 System.Configuration.ConfigurationManager.GetSection(String sectionName) +78 Spring.Util.ConfigurationUtils.GetSection(String sectionName) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Util\ConfigurationUtils.cs:69 Spring.Context.Support.ContextRegistry.InitializeContextIfNeeded() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextRegistry.cs:340 Spring.Context.Support.ContextRegistry.GetContext() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextRegistry.cs:206 Spring.ServiceModel.Activation.ServiceHostFactory.CreateServiceHost(String reference, Uri[] baseAddresses) in l:\projects\spring-net\trunk\src\Spring\Spring.Services\ServiceModel\Activation\ServiceHostFactory.cs:66 System.ServiceModel.HostingManager.CreateService(String normalizedVirtualPath) +11687036 System.ServiceModel.HostingManager.ActivateService(String normalizedVirtualPath) +42 System.ServiceModel.HostingManager.EnsureServiceAvailable(String normalizedVirtualPath) +479 [ServiceActivationException: The service '/HHGEstimating.svc' cannot be activated due to an exception during compilation. The exception message is: Error creating context 'spring.root': Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46'.] System.ServiceModel.AsyncResult.End(IAsyncResult result) +11592858 System.ServiceModel.Activation.HostedHttpRequestAsyncResult.End(IAsyncResult result) +194 System.ServiceModel.Activation.HostedHttpRequestAsyncResult.ExecuteSynchronous(HttpApplication context, Boolean flowContext) +176 System.ServiceModel.Activation.HttpModule.ProcessRequest(Object sender, EventArgs e) +275 System.Web.SyncEventExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +68 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +75

    Read the article

  • IntellIJ editor doesn't appear

    - by neveu
    I updated my IntellIJ install to the latest version (11.1.4) and now the Editor window doesn't appear. Double-clicking on the file, jump-to-source, nothing happens. No error message, it just doesn't appear. If I double-click on an xml layout file the preview window works, but no Editor window. Have installed and reinstalled; went back to an earlier version and it doesn't work there either. I'm at a loss. Any ideas? Update: Editor works if I create a new project. Update 2: idea.log file includes this (I don't know what ins.android.sdk.AndroidSdkData is): 2012-11-04 20:40:52,481 [ 2677] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $APP_CONFIG$/macros.xml file is null 2012-11-04 20:40:52,481 [ 2677] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $APP_CONFIG$/macros.xml 2012-11-04 20:40:52,482 [ 2678] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $APP_CONFIG$/quicklists.xml file is null 2012-11-04 20:40:52,482 [ 2678] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $APP_CONFIG$/quicklists.xml 2012-11-04 20:40:52,564 [ 2760] INFO - pl.stores.ApplicationStoreImpl - 76 application components initialized in 1285 ms 2012-11-04 20:40:52,575 [ 2771] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $APP_CONFIG$/customization.xml file is null 2012-11-04 20:40:52,575 [ 2771] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $APP_CONFIG$/customization.xml 2012-11-04 20:40:52,674 [ 2870] INFO - ij.openapi.wm.impl.IdeRootPane - App initialization took 3385 ms 2012-11-04 20:40:53,136 [ 3332] INFO - TestNG Runner - Create TestNG Template Configuration 2012-11-04 20:40:53,138 [ 3334] INFO - TestNG Runner - Create TestNG Template Configuration 2012-11-04 20:40:53,253 [ 3449] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/dynamic.xml file is null 2012-11-04 20:40:53,253 [ 3449] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/dynamic.xml 2012-11-04 20:40:53,280 [ 3476] INFO - api.vfs.impl.local.FileWatcher - 1 paths checked, 0 mapped, 202 mks 2012-11-04 20:40:53,366 [ 3562] INFO - ellij.project.impl.ProjectImpl - 137 project components initialized in 403 ms 2012-11-04 20:40:53,563 [ 3759] INFO - .module.impl.ModuleManagerImpl - 4 modules loaded in 197 ms 2012-11-04 20:40:53,625 [ 3821] INFO - api.vfs.impl.local.FileWatcher - 6 paths checked, 0 mapped, 150 mks 2012-11-04 20:40:54,187 [ 4383] INFO - .roots.impl.DirectoryIndexImpl - Directory index initialized in 271 ms, indexed 1611 directories 2012-11-04 20:40:54,207 [ 4403] INFO - pl.PushedFilePropertiesUpdater - File properties pushed in 18 ms 2012-11-04 20:40:54,237 [ 4433] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $APP_CONFIG$/plainTextFiles.xml file is null 2012-11-04 20:40:54,237 [ 4433] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $APP_CONFIG$/plainTextFiles.xml 2012-11-04 20:40:54,246 [ 4442] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/gant_config.xml file is null 2012-11-04 20:40:54,246 [ 4442] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/gant_config.xml 2012-11-04 20:40:54,253 [ 4449] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/gradle.xml file is null 2012-11-04 20:40:54,253 [ 4449] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/gradle.xml 2012-11-04 20:40:55,855 [ 6051] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/IntelliLang.xml file is null 2012-11-04 20:40:55,855 [ 6051] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/IntelliLang.xml 2012-11-04 20:40:56,995 [ 7191] INFO - leEditor.impl.EditorsSplitters - splitter 2012-11-04 20:40:56,996 [ 7192] INFO - leEditor.impl.EditorsSplitters - splitter 2012-11-04 20:40:57,233 [ 7429] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/codeStyleSettings.xml file is null 2012-11-04 20:40:57,233 [ 7429] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/codeStyleSettings.xml 2012-11-04 20:40:57,234 [ 7430] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/projectCodeStyle.xml file is null 2012-11-04 20:40:57,234 [ 7430] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/projectCodeStyle.xml 2012-11-04 20:40:58,145 [ 8341] INFO - indexing.UnindexedFilesUpdater - Indexable files iterated in 3911 ms 2012-11-04 20:40:58,146 [ 8342] INFO - indexing.UnindexedFilesUpdater - Unindexed files update started: 0 files to update 2012-11-04 20:40:58,146 [ 8342] INFO - indexing.UnindexedFilesUpdater - Unindexed files update done in 0 ms 2012-11-04 20:40:58,362 [ 8558] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/fileColors.xml file is null 2012-11-04 20:40:58,362 [ 8558] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $PROJECT_CONFIG_DIR$/fileColors.xml 2012-11-04 20:41:00,420 [ 10616] INFO - ins.android.sdk.AndroidSdkData - For input string: "20.0.1" java.lang.NumberFormatException: For input string: "20.0.1" at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48) at java.lang.Integer.parseInt(Integer.java:458) at java.lang.Integer.parseInt(Integer.java:499) at org.jetbrains.android.sdk.AndroidSdkData.parsePackageRevision(AndroidSdkData.java:86) at org.jetbrains.android.sdk.AndroidSdkData.<init>(AndroidSdkData.java:73) at org.jetbrains.android.sdk.AndroidSdkData.parse(AndroidSdkData.java:167) at org.jetbrains.android.sdk.AndroidPlatform.parse(AndroidPlatform.java:83) at org.jetbrains.android.sdk.AndroidSdkAdditionalData.getAndroidPlatform(AndroidSdkAdditionalData.java:119) at org.jetbrains.android.facet.AndroidFacet.addResourceFolderToSdkRootsIfNecessary(AndroidFacet.java:532) at org.jetbrains.android.facet.AndroidFacet.access$500(AndroidFacet.java:103) at org.jetbrains.android.facet.AndroidFacet$3.run(AndroidFacet.java:440) at com.intellij.ide.startup.impl.StartupManagerImpl$6.run(StartupManagerImpl.java:230) at com.intellij.ide.startup.impl.StartupManagerImpl.runActivities(StartupManagerImpl.java:203) at com.intellij.ide.startup.impl.StartupManagerImpl.access$100(StartupManagerImpl.java:41) at com.intellij.ide.startup.impl.StartupManagerImpl$4.run(StartupManagerImpl.java:170) at com.intellij.openapi.project.DumbServiceImpl.updateFinished(DumbServiceImpl.java:213) at com.intellij.openapi.project.DumbServiceImpl.access$1000(DumbServiceImpl.java:51) at com.intellij.openapi.project.DumbServiceImpl$IndexUpdateRunnable$1$3.run(DumbServiceImpl.java:363) at java.awt.event.InvocationEvent.dispatch(InvocationEvent.java:209) at java.awt.EventQueue.dispatchEventImpl(EventQueue.java:702) at java.awt.EventQueue.access$400(EventQueue.java:82) at java.awt.EventQueue$2.run(EventQueue.java:663) at java.awt.EventQueue$2.run(EventQueue.java:661) at java.security.AccessController.doPrivileged(Native Method) at java.security.AccessControlContext$1.doIntersectionPrivilege(AccessControlContext.java:87) at java.awt.EventQueue.dispatchEvent(EventQueue.java:672) at com.intellij.ide.IdeEventQueue.defaultDispatchEvent(IdeEventQueue.java:699) at com.intellij.ide.IdeEventQueue._dispatchEvent(IdeEventQueue.java:538) at com.intellij.ide.IdeEventQueue._dispatchEvent(IdeEventQueue.java:420) at com.intellij.ide.IdeEventQueue.dispatchEvent(IdeEventQueue.java:378) at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:296) at java.awt.EventDispatchThread.pumpEventsForFilter(EventDispatchThread.java:211) at java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:201) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:196) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:188) at java.awt.EventDispatchThread.run(EventDispatchThread.java:122) 2012-11-04 20:41:00,459 [ 10655] INFO - ins.android.sdk.AndroidSdkData - For input string: "20.0.1" java.lang.NumberFormatException: For input string: "20.0.1" at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48) at java.lang.Integer.parseInt(Integer.java:458) at java.lang.Integer.parseInt(Integer.java:499) at org.jetbrains.android.sdk.AndroidSdkData.parsePackageRevision(AndroidSdkData.java:86) at org.jetbrains.android.sdk.AndroidSdkData.<init>(AndroidSdkData.java:73) at org.jetbrains.android.sdk.AndroidSdkData.parse(AndroidSdkData.java:167) at org.jetbrains.android.sdk.AndroidPlatform.parse(AndroidPlatform.java:83) at org.jetbrains.android.sdk.AndroidSdkAdditionalData.getAndroidPlatform(AndroidSdkAdditionalData.java:119) at org.jetbrains.android.facet.AndroidFacet.addResourceFolderToSdkRootsIfNecessary(AndroidFacet.java:532) at org.jetbrains.android.facet.AndroidFacet.access$500(AndroidFacet.java:103) at org.jetbrains.android.facet.AndroidFacet$3.run(AndroidFacet.java:440) at com.intellij.ide.startup.impl.StartupManagerImpl$6.run(StartupManagerImpl.java:230) at com.intellij.ide.startup.impl.StartupManagerImpl.runActivities(StartupManagerImpl.java:203) at com.intellij.ide.startup.impl.StartupManagerImpl.access$100(StartupManagerImpl.java:41) at com.intellij.ide.startup.impl.StartupManagerImpl$4.run(StartupManagerImpl.java:170) at com.intellij.openapi.project.DumbServiceImpl.updateFinished(DumbServiceImpl.java:213) at com.intellij.openapi.project.DumbServiceImpl.access$1000(DumbServiceImpl.java:51) at com.intellij.openapi.project.DumbServiceImpl$IndexUpdateRunnable$1$3.run(DumbServiceImpl.java:363) at java.awt.event.InvocationEvent.dispatch(InvocationEvent.java:209) at java.awt.EventQueue.dispatchEventImpl(EventQueue.java:702) at java.awt.EventQueue.access$400(EventQueue.java:82) at java.awt.EventQueue$2.run(EventQueue.java:663) at java.awt.EventQueue$2.run(EventQueue.java:661) at java.security.AccessController.doPrivileged(Native Method) at java.security.AccessControlContext$1.doIntersectionPrivilege(AccessControlContext.java:87) at java.awt.EventQueue.dispatchEvent(EventQueue.java:672) at com.intellij.ide.IdeEventQueue.defaultDispatchEvent(IdeEventQueue.java:699) at com.intellij.ide.IdeEventQueue._dispatchEvent(IdeEventQueue.java:538) at com.intellij.ide.IdeEventQueue._dispatchEvent(IdeEventQueue.java:420) at com.intellij.ide.IdeEventQueue.dispatchEvent(IdeEventQueue.java:378) at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:296) at java.awt.EventDispatchThread.pumpEventsForFilter(EventDispatchThread.java:211) at java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:201) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:196) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:188) at java.awt.EventDispatchThread.run(EventDispatchThread.java:122) 2012-11-04 20:41:01,305 [ 11501] INFO - tor.impl.FileEditorManagerImpl - Project opening took 8374 ms 2012-11-04 20:41:01,719 [ 11915] INFO - dom.attrs.AttributeDefinitions - Found tag with unknown parent: AndroidManifest.AndroidManifestCompatibleScreens 2012-11-04 20:41:07,522 [ 17718] INFO - roid.compiler.tools.AndroidApt - [/Users/neveu/Dev/android-sdk-macosx/platform-tools/aapt] [package] [-m] [--non-constant-id] [-J] [/private/var/folders/xb/hg6cdxt51rs8lylmmjw0fk8m0000gp/T/android_apt_autogeneration6157451500950136901tmp] [-M] [/Users/neveu/Dev/magic_android/3rdParty/facebook/AndroidManifest.xml] [-S] [/Users/neveu/Dev/magic_android/3rdParty/facebook/res] [-I] [/Users/neveu/Dev/android-sdk-macosx/platforms/android-14/android.jar] 2012-11-04 20:41:08,706 [ 18902] INFO - roid.compiler.tools.AndroidApt - [/Users/neveu/Dev/android-sdk-macosx/platform-tools/aapt] [package] [-m] [-J] [/private/var/folders/xb/hg6cdxt51rs8lylmmjw0fk8m0000gp/T/android_apt_autogeneration3143184519400737414tmp] [-M] [/Users/neveu/Dev/magic_android/AndroidManifest.xml] [-S] [/Users/neveu/Dev/magic_android/res] [-I] [/Users/neveu/Dev/android-sdk-macosx/platforms/android-15/android.jar] 2012-11-04 20:41:08,763 [ 18959] INFO - roid.compiler.tools.AndroidIdl - [/Users/neveu/Dev/android-sdk-macosx/platform-tools/aidl] [-p/Users/neveu/Dev/android-sdk-macosx/platforms/android-15/framework.aidl] [-I/Users/neveu/Dev/magic_android/magic/src] [-I/Users/neveu/Dev/magic_android/src] [-I/Users/neveu/Dev/magic_android/3rdParty/Tapjoy] [-I/Users/neveu/Dev/magic_android/gen] [/Users/neveu/Dev/magic_android/src/com/android/vending/billing/IMarketBillingService.aidl] [/Users/neveu/Dev/magic_android/gen/com/android/vending/billing/IMarketBillingService.java] 2012-11-04 20:41:14,004 [ 24200] INFO - dom.attrs.AttributeDefinitions - Found tag with unknown parent: AndroidManifest.AndroidManifestCompatibleScreens 2012-11-04 20:41:18,781 [ 28977] INFO - s.impl.stores.FileBasedStorage - Document was not loaded for $APP_CONFIG$/cachedDictionary.xml file is null 2012-11-04 20:41:18,782 [ 28978] INFO - .impl.stores.XmlElementStorage - Document was not loaded for $APP_CONFIG$/cachedDictionary.xml

    Read the article

  • how do you make a "concurrent queue safe" lazy loader (singleton manager) in objective-c

    - by Rich
    Hi, I made this class that turns any object into a singleton, but I know that it's not "concurrent queue safe." Could someone please explain to me how to do this, or better yet, show me the code. To be clear I want to know how to use this with operation queues and dispatch queues (NSOperationQueue and Grand Central Dispatch) on iOS. Thanks in advance, Rich EDIT: I had an idea for how to do it. If someone could confirm it for me I'll do it and post the code. The idea is that proxies make queues all on their own. So if I make a mutable proxy (like Apple does in key-value coding/observing) for any object that it's supposed to return, and always return the same proxy for the same object/identifier pair (using the same kind of lazy loading technique as I used to create the singletons), the proxies would automatically queue up the any messages to the singletons, and make it totally thread safe. IMHO this seems like a lot of work to do, so I don't want to do it if it's not gonna work, or if it's gonna slow my apps down to a crawl. Here's my non-thread safe code: RMSingletonCollector.h // // RMSingletonCollector.h // RMSingletonCollector // // Created by Rich Meade-Miller on 2/11/11. // Copyright 2011 Rich Meade-Miller. All rights reserved. // #import <Foundation/Foundation.h> #import "RMWeakObjectRef.h" struct RMInitializerData { // The method may take one argument. // required SEL designatedInitializer; // data to pass to the initializer or nil. id data; }; typedef struct RMInitializerData RMInitializerData; RMInitializerData RMInitializerDataMake(SEL initializer, id data); @interface NSObject (SingletonCollector) // Returns the selector and data to pass to it (if the selector takes an argument) for use when initializing the singleton. // If you override this DO NOT call super. + (RMInitializerData)designatedInitializerForIdentifier:(NSString *)identifier; @end @interface RMSingletonCollector : NSObject { } + (id)collectionObjectForType:(NSString *)className identifier:(NSString *)identifier; + (id<RMWeakObjectReference>)referenceForObjectOfType:(NSString *)className identifier:(NSString *)identifier; + (void)destroyCollection; + (void)destroyCollectionObjectForType:(NSString *)className identifier:(NSString *)identifier; @end // ==--==--==--==--==Notifications==--==--==--==--== extern NSString *const willDestroySingletonCollection; extern NSString *const willDestroySingletonCollectionObject; RMSingletonCollector.m // // RMSingletonCollector.m // RMSingletonCollector // // Created by Rich Meade-Miller on 2/11/11. // Copyright 2011 Rich Meade-Miller. All rights reserved. // #import "RMSingletonCollector.h" #import <objc/objc-runtime.h> NSString *const willDestroySingletonCollection = @"willDestroySingletonCollection"; NSString *const willDestroySingletonCollectionObject = @"willDestroySingletonCollectionObject"; RMInitializerData RMInitializerDataMake(SEL initializer, id data) { RMInitializerData newData; newData.designatedInitializer = initializer; newData.data = data; return newData; } @implementation NSObject (SingletonCollector) + (RMInitializerData)designatedInitializerForIdentifier:(NSString *)identifier { return RMInitializerDataMake(@selector(init), nil); } @end @interface RMSingletonCollector () + (NSMutableDictionary *)singletonCollection; + (void)setSingletonCollection:(NSMutableDictionary *)newSingletonCollection; @end @implementation RMSingletonCollector static NSMutableDictionary *singletonCollection = nil; + (NSMutableDictionary *)singletonCollection { if (singletonCollection != nil) { return singletonCollection; } NSMutableDictionary *collection = [[NSMutableDictionary alloc] initWithCapacity:1]; [self setSingletonCollection:collection]; [collection release]; return singletonCollection; } + (void)setSingletonCollection:(NSMutableDictionary *)newSingletonCollection { if (newSingletonCollection != singletonCollection) { [singletonCollection release]; singletonCollection = [newSingletonCollection retain]; } } + (id)collectionObjectForType:(NSString *)className identifier:(NSString *)identifier { id obj; NSString *key; if (identifier) { key = [className stringByAppendingFormat:@".%@", identifier]; } else { key = className; } if (obj = [[self singletonCollection] objectForKey:key]) { return obj; } // dynamic creation. // get a class for Class classForName = NSClassFromString(className); if (classForName) { obj = objc_msgSend(classForName, @selector(alloc)); // if the initializer takes an argument... RMInitializerData initializerData = [classForName designatedInitializerForIdentifier:identifier]; if (initializerData.data) { // pass it. obj = objc_msgSend(obj, initializerData.designatedInitializer, initializerData.data); } else { obj = objc_msgSend(obj, initializerData.designatedInitializer); } [singletonCollection setObject:obj forKey:key]; [obj release]; } else { // raise an exception if there is no class for the specified name. NSException *exception = [NSException exceptionWithName:@"com.RMDev.RMSingletonCollector.failed_to_find_class" reason:[NSString stringWithFormat:@"SingletonCollector couldn't find class for name: %@", [className description]] userInfo:nil]; [exception raise]; [exception release]; } return obj; } + (id<RMWeakObjectReference>)referenceForObjectOfType:(NSString *)className identifier:(NSString *)identifier { id obj = [self collectionObjectForType:className identifier:identifier]; RMWeakObjectRef *objectRef = [[RMWeakObjectRef alloc] initWithObject:obj identifier:identifier]; return [objectRef autorelease]; } + (void)destroyCollection { NSDictionary *userInfo = [singletonCollection copy]; [[NSNotificationCenter defaultCenter] postNotificationName:willDestroySingletonCollection object:self userInfo:userInfo]; [userInfo release]; // release the collection and set it to nil. [self setSingletonCollection:nil]; } + (void)destroyCollectionObjectForType:(NSString *)className identifier:(NSString *)identifier { NSString *key; if (identifier) { key = [className stringByAppendingFormat:@".%@", identifier]; } else { key = className; } [[NSNotificationCenter defaultCenter] postNotificationName:willDestroySingletonCollectionObject object:[singletonCollection objectForKey:key] userInfo:nil]; [singletonCollection removeObjectForKey:key]; } @end RMWeakObjectRef.h // // RMWeakObjectRef.h // RMSingletonCollector // // Created by Rich Meade-Miller on 2/12/11. // Copyright 2011 Rich Meade-Miller. All rights reserved. // // In order to offset the performance loss from always having to search the dictionary, I made a retainable, weak object reference class. #import <Foundation/Foundation.h> @protocol RMWeakObjectReference <NSObject> @property (nonatomic, assign, readonly) id objectRef; @property (nonatomic, retain, readonly) NSString *className; @property (nonatomic, retain, readonly) NSString *objectIdentifier; @end @interface RMWeakObjectRef : NSObject <RMWeakObjectReference> { id objectRef; NSString *className; NSString *objectIdentifier; } - (RMWeakObjectRef *)initWithObject:(id)object identifier:(NSString *)identifier; - (void)objectWillBeDestroyed:(NSNotification *)notification; @end RMWeakObjectRef.m // // RMWeakObjectRef.m // RMSingletonCollector // // Created by Rich Meade-Miller on 2/12/11. // Copyright 2011 Rich Meade-Miller. All rights reserved. // #import "RMWeakObjectRef.h" #import "RMSingletonCollector.h" @implementation RMWeakObjectRef @dynamic objectRef; @synthesize className, objectIdentifier; - (RMWeakObjectRef *)initWithObject:(id)object identifier:(NSString *)identifier { if (self = [super init]) { NSString *classNameForObject = NSStringFromClass([object class]); className = classNameForObject; objectIdentifier = identifier; objectRef = object; [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(objectWillBeDestroyed:) name:willDestroySingletonCollectionObject object:object]; [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(objectWillBeDestroyed:) name:willDestroySingletonCollection object:[RMSingletonCollector class]]; } return self; } - (id)objectRef { if (objectRef) { return objectRef; } objectRef = [RMSingletonCollector collectionObjectForType:className identifier:objectIdentifier]; return objectRef; } - (void)objectWillBeDestroyed:(NSNotification *)notification { objectRef = nil; } - (void)dealloc { [[NSNotificationCenter defaultCenter] removeObserver:self]; [className release]; [super dealloc]; } @end

    Read the article

< Previous Page | 240 241 242 243 244 245 246 247 248 249 250 251  | Next Page >