Search Results

Search found 23716 results on 949 pages for 'call for papers'.

Page 246/949 | < Previous Page | 242 243 244 245 246 247 248 249 250 251 252 253  | Next Page >

  • Setting up Visual Studio 2010 to step into Microsoft .NET Source Code

    - by rajbk
    Using the Microsoft Symbol Server to obtain symbol debugging information is now much easier in VS 2010. Microsoft gives you access to their internet symbol server that contains symbol files for most of the .NET framework including the recently announced availability of MVC 2 Symbols.  SETUP In VS 2010 RTM, go to Tools –> Options –> Debugging –> General. Check “Enable .NET Framework source stepping” We get the following dialog box   This automatically disables “Enable My Code”   Go to Debugging –> Symbols and Check “Microsoft Symbol Servers”. You can selectively exclude modules if you want to.   You will get a warning dialog like so: Hitting OK will start the download process   The setup is complete. You are now ready to start debugging! DEBUGGING Add a break point to your application and run the application in debug mode (F5 shortcut for me). Go to your call stack when you hit the break point. Right click on a frame that is grayed out. Select “Load Symbols from” “Microsoft Symbol Servers”. VS will begin a one time download of that assembly. This assembly will be cached locally so you don’t have to wait for the download the next time you debug the app.   We get a one time license agreement dialog box You might see an error like the one below regarding different encoding (hopefully will be fixed).    Assemblies for which the symbols have been loaded are no longer grayed out. Double clicking on any entry in the call stack should now directly take you to the source code for that assembly. AFAIK, not all symbols are available on the MS symbol server. In cases like that you will see a tab like the one below and be given the option to “Show Disassembly”. Enjoy! Newsreel Announcer: Humiliated, Muntz vows a return to Paradise Falls and promises to capture the beast alive! Charles Muntz: [speaking to a large audience outside in the newsreel] I promise to capture the beast alive, and I will not come back until I do!

    Read the article

  • Oracle SOA Security for OUAF Web Services

    - by Anthony Shorten
    With the ability to use Oracle SOA Suite 11g with the Oracle Utilities Application Framework based products, an additional consideration needs to be configured to ensure correct integration. That additional consideration is security. By default, SOA Suite propagates any credentials from the calling application through to the interfacing applications. In most cases, this behavior is not appropriate as the calling application may use different credential stores and also some interfaces are “disconnected” from a calling application (for example, a file based load using the File Adapter). These situations require that the Web Service calls to the Oracle Utilities Application Framework based products have their own valid credentials. To do this the credentials must be attached at design time or at run time to provide the necessary credentials for the call. There are a number of techniques that can be used to do this: At design time, when integrating a Web Service from an Oracle Utilities Application Framework based product you can attach the security policy “oracle/wss_username_token_client_policy” in the composite.xml view. In this view select the Web Service you want to attach the policy to and right click to display the context menu and select “Configure WS Policies” and select the above policy from the list. If you are using SSL then you can use “oracle/wss_username_token_over_ssl_client_policy” instead. At design time, you can also specify the credential key (csf-key) associated with the above policy by selecting the policy and clicking “Edit Config Override Properties”. You name the key appropriately. Everytime the SOA components are deployed the credential configuration is also sent. You can also do this after deployment, or what I call at “runtime”, by specifying the policy and credential key in the Fusion Middleware Control. Refer to the Fusion Middleware Control documentation on how to do this. To complete the configuration you need to add a map and the key specified earlier to the credential store in the Oracle WebLogic instance used for Oracle SOA Suite. From Fusion Middleware Control, you do this by selecting the domain the SOA Suite is installed in a select “Credentials” from the context menu. You now need to add the credentials by adding the map “oracle.wsm.security” (the name is IMPORTANT) and creating a key with the necessary valid credentials. The example below added a key called “mdm.key”. The name I used is for example only. You can name the key anything you like as long as it corresponds to the key you specified in the design time component. Note: I used SYSUSER as an example credentials in the example, in real life you would use another credential as SYSUSER is not appropriate for production use. This key can be reused for other Oracle Utilities Application Framework Web Service integrations or you can use other keys for individual Web Service calls. Once the key is created and the SOA Suite components deployed the transactions should be able to be called as necessary. If you need to change the password for the credentials it can be done using the Fusion Middleware Control functionality.

    Read the article

  • ASP.NET MVC 2 throws exception for ‘favicon.ico’

    - by nmarun
    I must be on fire or something – third blog in 2 days… awesome! Before I begin, in case you’re wondering, favicon.ico is the small image that appears to the left of your web address, once the page loads. In order to learn more about MVC or any thing for that matter, it’s better to look at the source itself. Since MVC is open source (at least some part of it is), I started looking at the source code that’s available for download. While doing so, I hit Steve Sanderson’s blog site where he explains in great detail the way to debug your app using ASP.NET MVC source code. For those who are not aware, Steve Sanderson’s book - Pro ASP.NET MVC Framework, is one of the best books to learn about MVC. Alrighty, I followed the article and I hit F5 to debug the default / unchanged MVC project. I put a breakpoint in the DefaultControllerFactory.cs, CreateController() method. To know a little more about this class and the method, read this. Sure enough, the control stopped at the breakpoint and I hit F5 again and the page rendered just fine. But then what’s this? The breakpoint was hit again, as if something else was being requested. I now hovered my mouse over the ‘controllerName’ parameter and it says – favicon.ico. This by itself was more than enough for me to raise my eye-brows, but what happened next just took the ground below my feet. Oh, oh, I’m sorry I’m just typing, no code, no image, so here are a couple of screen captures. The first one shows the request for the Home controller; I get ‘Home’ when I hover over the parameter: And here’s the one that shows the same for call for ‘favicon.ico’. So, I step through the code and when the control reaches line 91 – GetControllerInstance() method, I step in. This is when I had the ‘ground-losing’ experience. Wow, an exception is being thrown for this file and that too in RTM. For some reason MVC thinks, this as a controller and tries to run it through the MvcHandler and it hits this snag. So it seems like this will happen for any MVC 2 site and this did not happen for me in the previous version of MVC. Before I get to how to resolve it, here’s another way of reproducing this exception. Revert back all your changes that you did as mentioned in Steve’s blog above. Now, add a class to your MVC project and call it say, MyControllerFactory and let this inherit from DefaultControllerFactory class. (Read this for details on the DefaultControllerFactory class is and how it is used in a different context). Add an override for the CreateController() method and for the sake of this blog, just copy the same content from the DefaultControllerFactory class. The last step is to tell your MVC app to use the MyControllerFactory class instead of the default one. To do this, go to your Global.asax.cs file and add line 6 of the snippet below: 1: protected void Application_Start() 2: { 3: AreaRegistration.RegisterAllAreas(); 4:   5: RegisterRoutes(RouteTable.Routes); 6: ControllerBuilder.Current.SetControllerFactory(new MyControllerFactory()); 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, you’re ready to reproduce the issue. Just F5 the project and when you hit the overridden CreateController() method for the second time, this is what it looks like for me: And continuing further gives me the same exception. I believe this is something that MS should fix, as not having ‘favicon.ico’ file will be common for most of the applications. So I think the when you create an MVC project, line 6 should be added by default by Visual Studio itself: 1: public class MvcApplication : System.Web.HttpApplication 2: { 3: public static void RegisterRoutes(RouteCollection routes) 4: { 5: routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); 6: routes.IgnoreRoute("favicon.ico"); 7:   8: routes.MapRoute( 9: "Default", // Route name 10: "{controller}/{action}/{id}", // URL with parameters 11: new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults 12: ); 13: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } There it is, that’s the solution to avoid the exception altogether. I tried this both IE8 and Firefox browsers and was able to successfully reproduce the error. Hope someone will look at this issue and find a fix. Just before I finish up, I found another ‘bug’, if you want to call it, with Visual Studio 2008. Remember how you could change what browser you want your application to run in by just right clicking on the .aspx file and choosing ‘Browse with…’? Seems like that’s missing when you’re working with an MVC project. In order to test the above bug in the other browser, I had to load a classic ASP.NET project, change the settings and then run my MVC project. Felt kinda ‘icky’, for lack of a better word.

    Read the article

  • Development processes, the use of version control, and unit-testing

    - by ct01
    Preface I've worked at quite a few "flat" organizations in my time. Most of the version control policy/process has been "only commit after it's been tested". We were constantly committing at each place to "trunk" (cvs/svn). The same was true with unit-testing - it's always been a "we need to do this" mentality but it never really materializes in a substantive form b/c there is no institutional knowledge base to do it - no mentorship. Version Control The emphasis for version control management at one place was a very strict protocol for commit messages (format & content). The other places let employees just do "whatever". The branching, tagging, committing, rolling back, and merging aspect of things was always ill defined and almost never used. This sort of seems to leave the version control system in the position of being a fancy file-storage mechanism with a meta-data component that never really gets accessed/utilized. (The same was true for unit testing and committing code to the source tree) Unit tests It seems there's a prevailing "we must/should do this" mentality in most places I've worked. As a policy or standard operating procedure it never gets implemented because there seems to be a very ill-defined understanding about what that means, what is going to be tested, and how to do it. Summary It seems most places I've been to think version control and unit testing is "important" b/c the trendy trade journals say it is but, if there's very little mentorship to use these tools or any real business policies, then the full power of version control/unit testing is never really expressed. So grunts, like myself, never really have a complete understanding of the point beyond that "it's a good thing" and "we should do it". Question I was wondering if there are blogs, books, white-papers, or online journals about what one could call the business process or "standard operating procedures" or uses cases for version control and unit testing? I want to know more than the trade journals tell me and get serious about doing these things. PS: @Henrik Hansen had a great comment about the lack of definition for the question. I'm not interested in a specific unit-testing/versioning product or methodology (like, XP) - my interest is more about work-flow at the individual team/developer level than evangelism. This is more-or-less a by product of the management situation I've operated under more than a lack of reading software engineering books or magazines about development processes. A lot of what I've seen/read is more marketing oriented material than any specifically enumerated description of "well, this is how our shop operates".

    Read the article

  • World Record Performance on PeopleSoft Enterprise Financials Benchmark on SPARC T4-2

    - by Brian
    Oracle's SPARC T4-2 server achieved World Record performance on Oracle's PeopleSoft Enterprise Financials 9.1 executing 20 Million Journals lines in 8.92 minutes on Oracle Database 11g Release 2 running on Oracle Solaris 11. This is the first result published on this version of the benchmark. The SPARC T4-2 server was able to process 20 million general ledger journal edit and post batch jobs in 8.92 minutes on this benchmark that reflects a large customer environment that utilizes a back-end database of nearly 500 GB. This benchmark demonstrates that the SPARC T4-2 server with PeopleSoft Financials 9.1 can easily process 100 million journal lines in less than 1 hour. The SPARC T4-2 server delivered more than 146 MB/sec of IO throughput with Oracle Database 11g running on Oracle Solaris 11. Performance Landscape Results are presented for PeopleSoft Financials Benchmark 9.1. Results obtained with PeopleSoft Financials Benchmark 9.1 are not comparable to the the previous version of the benchmark, PeopleSoft Financials Benchmark 9.0, due to significant change in data model and supports only batch. PeopleSoft Financials Benchmark, Version 9.1 Solution Under Test Batch (min) SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 8.92 Results from PeopleSoft Financials Benchmark 9.0. PeopleSoft Financials Benchmark, Version 9.0 Solution Under Test Batch (min) Batch with Online (min) SPARC Enterprise M4000 (Web/App) SPARC Enterprise M5000 (DB) 33.09 34.72 SPARC T3-1 (Web/App) SPARC Enterprise M5000 (DB) 35.82 37.01 Configuration Summary Hardware Configuration: 1 x SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 128 GB memory Storage Configuration: 1 x Sun Storage F5100 Flash Array (for database and redo logs) 2 x Sun Storage 2540-M2 arrays and 2 x Sun Storage 2501-M2 arrays (for backup) Software Configuration: Oracle Solaris 11 11/11 SRU 7.5 Oracle Database 11g Release 2 (11.2.0.3) PeopleSoft Financials 9.1 Feature Pack 2 PeopleSoft Supply Chain Management 9.1 Feature Pack 2 PeopleSoft PeopleTools 8.52 latest patch - 8.52.03 Oracle WebLogic Server 10.3.5 Java Platform, Standard Edition Development Kit 6 Update 32 Benchmark Description The PeopleSoft Enterprise Financials 9.1 benchmark emulates a large enterprise that processes and validates a large number of financial journal transactions before posting the journal entry to the ledger. The validation process certifies that the journal entries are accurate, ensuring that ChartFields values are valid, debits and credits equal out, and inter/intra-units are balanced. Once validated, the entries are processed, ensuring that each journal line posts to the correct target ledger, and then changes the journal status to posted. In this benchmark, the Journal Edit & Post is set up to edit and post both Inter-Unit and Regular multi-currency journals. The benchmark processes 20 million journal lines using AppEngine for edits and Cobol for post processes. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN PeopleSoft Financial Management oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • SQLAuthority News MS Access Database is the Way to Go April 1st Humor

    First of all, today is April 1- April Fools Day, so I have written this post for some light entertainment. My friend has just sent me an email about why a person should go for Access Database. For a short background, I used to be an MS Access user once (I will not call myself [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Microsoft Desktop Player is a Valuable Tool for IT Pro’s

    - by Mysticgeek
    If you are an IT Professional, a new education tool introduced by Microsoft is the MS Desktop Player. Today we take a look at what it has to offer, from Webcasts, White Papers, Training Videos, and more. Microsoft Desktop Player You can run the player from the website (shown here) or download the application for use on your local machine (link below). It allows you to easily access MS training and information in a central interface. To get the Desktop version, download the .msi file from the site… And run through the installer…   When you first start out, enter in if you’re an IT Pro, Developer and your role. Then you can decide on the resources you’re looking for such as Exchange Server, SharePoint, Windows 7, Security…etc. Here is an example of checking out a Podcast on Office 2007 setup and configuration from TechNet radio. Under Settings you can customize your search results and local resources. This helps you narrow down pertinent information for your needs. If you find something you really like, hover the pointer over the screen and you can add it to your library, share it, send feedback, and check for additional resources. If you don’t need items in your library they can be easily deleted. Under the News tab you get previews of Microsoft news items, clicking on it will open the full article in a separate browser. While you’re watching a presentation you can show or hide the details related to it. Conclusion Microsoft Desktop Player is currently in Beta, but has a lot of cool features to offer for your learning needs. You can easily find Podcasts, Webcasts, and more without having to browse all over the place. In our experience we didn’t notice any bugs, and what it offers so far works well. If you’re a geek who’s constantly browsing TechNet and other Microsoft learning sites, this helps keep everything consolidated in one app.  Download Microsoft Desktop Player Similar Articles Productive Geek Tips Fixing When Windows Media Player Library Won’t Let You Add FilesBuilt-in Quick Launch Hotkeys in Windows VistaNew Vista Syntax for Opening Control Panel Items from the Command-lineHow to Get Virtual Desktops on Windows XPWindows 7 Welcome Screen Taking Forever? Here’s the Fix (Maybe) TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 Zoofs, find the most popular tweeted YouTube videos Video preview of new Windows Live Essentials 21 Cursor Packs for XP, Vista & 7 Map the Stars with Stellarium Use ILovePDF To Split and Merge PDF Files TimeToMeet is a Simple Online Meeting Planning Tool

    Read the article

  • Warm Reception By Partners at EMEA Manageability Forum

    - by Get_Specialized!
    For the EMEA Partners that were able to attend the event in Istanbul Turkey, thank you for your attendance and feedback at the event. As you can see, the weather kept most of inside during the event and at times there was even some snow.  And while it may have been chilly outside, there was a warm reception from Partners who traveled from all over EMEA to hear from other Oracle Specialized Partners and subject matter experts about the opportunities and benefits of Oracle Enterprise Manager and Exadata Specialization. Here you can see David Robo, Oracle Technology Director for Manageability kicking off the event followed later by Patrick Rood, Oracle Indirect Manageability Business. A special thank you to all the Partner speakers including Ron Tolido, VP and CTO of Application Services Continental Europe Capgemini, who delivered a very innovative keynote where many in attendance learned that Black Swans do exist. And while at break, interactivity among partners continued and it was great to see such innovative partners who had listed their achieved specializations on their business cards. Here we can see Oracle Enterprise Manager customer, Turkish Oracle User Group board member and Blogger Gokhan Atil sharing his product experiences with others attending. Additionally, Christian Trieb of Paragon Data, also shared with other Partners what the German Oracle User Group (DOAG) was doing around manageability and invitation to submit papers for their next event. Here we can see at one of the breaks, one of the event organizers Javier Puerta (left), Oracle Director of Partner Programs, joined by Sebastiaan Vingerhoed (middle), Oracle EE & CIS Manager Manageability and speaker on Managing the Application Lifecycle, Julian Dontcheff (right), Global Head of Database Management at Accenture. Below is Julian Dontcheff's delivering his partner presentation on Exadata and Lifecycle Management. Just after his plane landed and 1 hour Turkish taxi experience to the event location, Julian still took the time to sit down with me and provide some extra insights on his experiences of managing the enterprise infrastructure with Oracle Enterprise Manager. Below is one of the Oracle Enterprise Management Product Management Team,  Mark McGill, Oracle Principal Product Manager, presenting to Partners on how you can perform Chargeback and Metering with Oracle Enterprise Manager 12c Cloud Control. Overall, it was a great event and an extra thank you to those OPN Specialized Partners who presented, to the Partners that attended, and to those Oracle team members who organized the event and presented.

    Read the article

  • Compute Scalars, Expressions and Execution Plan Performance

    - by Paul White
    The humble Compute Scalar is one of the least well-understood of the execution plan operators, and usually the last place people look for query performance problems. It often appears in execution plans with a very low (or even zero) cost, which goes some way to explaining why people ignore it. Some readers will already know that a Compute Scalar can contain a call to a user-defined function, and that any T-SQL function with a BEGIN…END block in its definition can have truly disastrous consequences...(read more)

    Read the article

  • Google I/O 2012 - The Sensitive Side of Android

    Google I/O 2012 - The Sensitive Side of Android Tony Chan, Ankur Kotwal , Tim Bray, Tony Chan Android has a sensitive side. In this session, we will call out all the Android sensors: accelerometer, gyroscope, light, and more. We'll cover best practices for handling sensor data, with special focus on balancing battery life and usability. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 2157 35 ratings Time: 56:06 More in Science & Technology

    Read the article

  • How to submit a form on pressing enter key

    - by SAMIR BHOGAYTA
    function clickButton(e, buttonid) { var bt = document.getElementById(buttonid); if (typeof bt == 'object'){ if(navigator.appName.indexOf("Netscape")(-1)){ if (e.keyCode == 13){ bt.click(); return false; } } if (navigator.appName.indexOf("Microsoft Internet Explorer")(-1)) { if (event.keyCode == 13){ bt.click(); return false; } } } } //Call this function on last text box of a form with onKeyPress="clickButton(this)"

    Read the article

  • Consistent Flash Player Crash ONLY on YouTube

    - by Aiman Mueller
    It could be similar to one of the bugs listed on LaunchPad (#689158), but may not be. Basically, I used to occasionally get a crash on YouTube and opening a new browser or rebooting (don't remember which) took care of the problem. However, now, EVERY time I try to open a video on YouTube, I get the frowning block and the message, "The Adobe Flash plugin has crashed." However, Hulu would also call for Adobe, right? But I can see videos there.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Best practice to query data from MS SQL Server in C Sharp?

    - by Bruno
    What is the best way to query data from a MS SQL Server in C Sharp? I know that it is not good practice to have an SQL query in the code. Is the best way to create a stored procedure and call it from C Sharp with parameters? using (var conn = new SqlConnection(connStr)) using (var command = new SqlCommand("StoredProc", conn) { CommandType = CommandType.StoredProcedure }) { conn.Open(); command.ExecuteNonQuery(); conn.Close(); }

    Read the article

  • Oracle’s Sun Server X4-8 with Built-in Elastic Computing

    - by kgee
    We are excited to announce the release of Oracle's new 8-socket server, Sun Server X4-8. It’s the most flexible 8-socket x86 server Oracle has ever designed, and also the most powerful. Not only does it use the fastest Intel® Xeon® E7 v2 processors, but also its memory, I/O and storage subsystems are all designed for maximum performance and throughput. Like its predecessor, the Sun Server X4-8 uses a “glueless” design that allows for maximum performance for Oracle Database, while also reducing power consumption and improving reliability. The specs are pretty impressive. Sun Server X4-8 supports 120 cores (or 240 threads), 6 TB memory, 9.6 TB HDD capacity or 3.2 TB SSD capacity, contains 16 PCIe Gen 3 I/O expansion slots, and allows for up to 6.4 TB Sun Flash Accelerator F80 PCIe Cards. The Sun Server X4-8 is also the most dense x86 server with its 5U chassis, allowing 60% higher rack-level core and DIMM slot density than the competition.  There has been a lot of innovation in Oracle’s x86 product line, but the latest and most significant is a capability called elastic computing. This new capability is built into each Sun Server X4-8.   Elastic computing starts with the Intel processor. While Intel provides a wide range of processors each with a fixed combination of core count, operational frequency, and power consumption, customers have been forced to make tradeoffs when they select a particular processor. They have had to make educated guesses on which particular processor (core count/frequency/cache size) will be best suited for the workload they intend to execute on the server.Oracle and Intel worked jointly to define a new processor, the Intel Xeon E7-8895 v2 for the Sun Server X4-8, that has unique characteristics and effectively combines the capabilities of three different Xeon processors into a single processor. Oracle system design engineers worked closely with Oracle’s operating system development teams to achieve the ability to vary the core count and operating frequency of the Xeon E7-8895 v2 processor with time without the need for a system level reboot.  Along with the new processor, enhancements have been made to the system BIOS, Oracle Solaris, and Oracle Linux, which allow the processors in the system to dynamically clock up to faster speeds as cores are disabled and to reach higher maximum turbo frequencies for the remaining active cores. One customer, a stock market trading company, will take advantage of the elastic computing capability of Sun Server X4-8 by repurposing servers between daytime stock trading activity and nighttime stock portfolio processing, daily, to achieve maximum performance of each workload.To learn more about Sun Server X4-8, you can find more details including the data sheet and white papers here.Josh Rosen is a Principal Product Manager for Oracle’s x86 servers, focusing on Oracle’s operating systems and software. He previously spent more than a decade as a developer and architect of system management software. Josh has worked on system management for many of Oracle's hardware products ranging from the earliest blade systems to the latest Oracle x86 servers.

    Read the article

  • Desktop Fun: Wolves Wallpaper Collection Series 2

    - by Asian Angel
    Early last year we shared a wonderful collection of wolves wallpapers with you and today we are back we more to increase the size of your ‘wolf pack’. Feel the call of the wild on your desktop with the second in our series of Wolves Wallpaper collections. 7 Ways To Free Up Hard Disk Space On Windows HTG Explains: How System Restore Works in Windows HTG Explains: How Antivirus Software Works

    Read the article

  • Share and Deliver BI Publisher Reports in Multiple Languages

    - by kanichiro.nishida
    When you share your reports with someone who speak and read in different languages you want your reports to be shown in their language, right ? Well, translating reports with BI Publisher is not only easy but also reduces the maintenance cost a lot. Many of us in the BI Publisher product development team used to work in Globalization and Multi Lingual support, which enables Oracle products and applications to be used in many different languages and countries and territories.  And we have a lot of experience in this area. In fact, being a strategic reporting platform for Oracle EBS, PeopleSoft, JD Edwards, Siebel, and many other Oracle application products, our customers from all over the world are generating thousands of thousands of reports, including out-of-the-box pre-developed reports from Oracle and customer created or customized reports, in their own local language everyday as they operate and manage their business. Today, I’m going to talk about this very topic, how to translate my reports with BI Publisher 11G. Translation Grows, not the Numbers of the Reports Most of the reporting tools, regardless if it’s traditional or new, always take this translation on the back burner. They require their users to copy an original report and translate the whole thing. So when you want to support additional10 languages you will need to have 10 copies of the original. Imagine when you have 50 reports then you will end up having 500 reports (50 x 10) ! Now you need to maintain these 500 reports, whenever you need to make a change in a report you need to apply the same change to the other 10 reports. And as you imagine this is not only a nightmare for IT managements but not acceptable especially for the applications like Oracle EBS that supports over 30 languages. So first thing we did was, very simple, we separated the translation out of the report and marry it to the report only at the report generation. This means, regardless of how many languages you need to support you need to have only one report and translation files for the 10 languages, which would contain the translated letters and words. So let’s say you have 50 reports and need to support 10 languages for those reports you still have only 50 reports and each report now has 10 language translation files. Yes, translation is the one should grow as you add more languages to support, not the report itself! And second, we provide the translation files in XLIFF format, which is an international standard XML based format to exchange and maintain translation strings. So once you generate the XLIFF files for your reports with BI Publisher then you can work with any translation vendors in the world to make a mass translation or you can translate the XML files by yourself by manually updating the translatable strings presented in this text file. Lastly, we made it easier to manage the translation process starting from generating the XLIFF files to uploading the translated XLIFF files back to the BI Publisher server. You can generate, download, upload the XLIFF files from the BI Publisher’s Web interface with your browser and you can see the translated reports right away without needing to shutdown or restart your server. While the translated reports are displayed based on your language preference setting you can also specify a different language when you schedule or deliver the reports so that they can be generated in your customer’s preferred language. What Can I Translate? When it comes to translation there are three things. First, report content translation. When you receive a report you like to see the content like report title, section title, comments, annotation, table column header, and anything that are static and embedded in the report. in your preferred language. We call this Reports Content translation. Second, when you open a report online you might want to see not only the report content being translated but also the report UI, such as report name, parameter name, layout name, and anything that would help you to navigate around the reports, to be translated in your language. We call this Reports UI translation. And this separation of the Reports Content and Reports UI translation makes it very useful especially when you want to navigate through the reports in your preferred language UI but want to generate the reports in your customer’s preferred language. Imagine you are English native speaker and need to generate and send a report to your customers in China. You like to see the report name, parameter name in English so that you can comfortably navigate to the report and generate the report output, but like to see the report generated in Chinese so that the your customers in China can understand the report when they receive it. And lastly, you might want to see even the data presented in the report to be translated. For example, you might want to see product names in an Order Status report to be translated based on the report viewer’s language preference. We call this Reporting Data translation. Since this Reporting Data translation is maintained at the data source level such as Database tables along with the main data, you need to prepare the translation at the data source level first. Then, you want to make sure that your query is switched accordingly based on the language preference setting so that the translated data will be retrieved. How to Translate BI Publisher Reports? Now when it comes to ‘how to translate BI Publisher reports?’ the main focus here is about the translation for the Report Content and Report UI. And I just created this video to show you how to create and manage the translation with BI Publisher 11G. Please take a look at the clip below.   In today’s business world, customers and suppliers are from all over the world regardless of the size of the company or organization. Supporting multiple languages for your reports is no longer something ‘nice to have’, it’s mandatory. BI Publisher is designed to support multi lingual reports from the beginning without any extra hidden cost of license or configuration like other reporting tools such as Crystal Reports. You can support additional languages translation at any time with the very simple steps shown in the video above. Happy translation! Please share your translation experience with us! 

    Read the article

  • Inverted schedctl usage in the JVM

    - by Dave
    The schedctl facility in Solaris allows a thread to request that the kernel defer involuntary preemption for a brief period. The mechanism is strictly advisory - the kernel can opt to ignore the request. Schedctl is typically used to bracket lock critical sections. That, in turn, can avoid convoying -- threads piling up on a critical section behind a preempted lock-holder -- and other lock-related performance pathologies. If you're interested see the man pages for schedctl_start() and schedctl_stop() and the schedctl.h include file. The implementation is very efficient. schedctl_start(), which asks that preemption be deferred, simply stores into a thread-specific structure -- the schedctl block -- that the kernel maps into user-space. Similarly, schedctl_stop() clears the flag set by schedctl_stop() and then checks a "preemption pending" flag in the block. Normally, this will be false, but if set schedctl_stop() will yield to politely grant the CPU to other threads. Note that you can't abuse this facility for long-term preemption avoidance as the deferral is brief. If your thread exceeds the grace period the kernel will preempt it and transiently degrade its effective scheduling priority. Further reading : US05937187 and various papers by Andy Tucker. We'll now switch topics to the implementation of the "synchronized" locking construct in the HotSpot JVM. If a lock is contended then on multiprocessor systems we'll spin briefly to try to avoid context switching. Context switching is wasted work and inflicts various cache and TLB penalties on the threads involved. If context switching were "free" then we'd never spin to avoid switching, but that's not the case. We use an adaptive spin-then-park strategy. One potentially undesirable outcome is that we can be preempted while spinning. When our spinning thread is finally rescheduled the lock may or may not be available. If not, we'll spin and then potentially park (block) again, thus suffering a 2nd context switch. Recall that the reason we spin is to avoid context switching. To avoid this scenario I've found it useful to enable schedctl to request deferral while spinning. But while spinning I've arranged for the code to periodically check or poll the "preemption pending" flag. If that's found set we simply abandon our spinning attempt and park immediately. This avoids the double context-switch scenario above. One annoyance is that the schedctl blocks for the threads in a given process are tightly packed on special pages mapped from kernel space into user-land. As such, writes to the schedctl blocks can cause false sharing on other adjacent blocks. Hopefully the kernel folks will make changes to avoid this by padding and aligning the blocks to ensure that one cache line underlies at most one schedctl block at any one time.

    Read the article

  • Client Centric Approach of AJAX using Toolkit

    In this article, the author discusses the client-centric approach for AJAX using the ASP.NET AJAX Toolkit. In general, server-centric (use of Update panel) is very popular in this field. But when it comes to performance, the client-centric approach is preferred. Sandeep also demonstrates how to call a webservice using javascript.

    Read the article

  • Why some consider static analysis a testing and some do not?

    - by user970696
    Preparing myself also to ISTQB certification, I found they call static analysis actually as a static testing, while some engineering book distinct between static analysis and testing, which is the dynamic activity. I tent to think that static analysis is not a testing in the true sense as it does not test, it checks/verifies. But sure I would love to hear opinion of the true experts here. Thank you

    Read the article

  • MySQL Connect: Interview with Tomas Ulin

    - by Bertrand Matthelié
    The MySQL Connect conference is taking place September 29-30 in San Francisco. We asked a few questions about the event to Oracle’s VP of MySQL Engineering Tomas Ulin. Hi Tomas, to start with, what is MySQL Connect? A: MySQL Connect is a conference delivered by Oracle, with and for the MySQL Community. We’ll have over 60 technical breakout sessions, Birds-of-a-feather sessions and Hands-On labs running throughout the two days, plus the keynotes. So it’s a fantastic opportunity to learn a huge amount in only two days, and to network with Oracle engineers, users, customers and partners. When will the program be available online? A: The call for papers ended May 6 and we got an amazing response. The content committee has been working hard to build a great program, and the content catalog will be available by mid-June. Will Oracle MySQL engineers developing and supporting the products be there? A: Absolutely. And they’ll be available during the whole conference to answer questions. What do you plan to cover in your keynote? A: That’s a secret...:). Oracle is driving a lot of MySQL innovations and I will spend time on the latest developments, as well as help folks understand where we are going. What should attendees definitely not miss? A: We’ll have so many great sessions that the list could be long…but I also think the Saturday eve reception should not be missed. It’s always a lot of fun to meet so many MySQL users and have passionate discussions in a relaxed setting. What do you personally look forward to? A: Getting to meet the MySQL users and customers is probably most rewarding, as well as getting the chance to showcase the latest and greatest in our MySQL products. The development is so rapid that there are always new and exciting things to talk about. Oh, and I’ve also been told that there will be a game zone including Guitar Hero...:) In summary, why should people attend MySQL Connect? A: During two days, you’ll hang out with MySQL experts. You’ll learn a lot, you’ll meet the Oracle engineers developing and supporting the MySQL products, you’ll hear from customers using MySQL in a wide variety of applications and share your experiences with them, and you’ll have a lot of fun! Thank you Tomas! MySQL Connect registration is open – Register Now and you’ll save US$500 with the early bird discount! Interested in Sponsorship and Exhibit opportunities? You will find more information here.

    Read the article

  • Pygame Import Error, Python 3.2

    - by Treb Nicholas
    I'm having an issue with the Pygame module. I run Python 3.2 and installed the respective Pygame file, but now when I try to import it in the IDLE, it gives me this error: import pygame Traceback (most recent call last): File "", line 1, in import pygame File "C:\Python32\lib\site-packages\pygame__init__.py", line 95, in from pygame.base import * ImportError: DLL load failed: %1 is not a valid Win32 application. Any help will be appreciated.

    Read the article

  • Separating physics and game logic from UI code

    - by futlib
    I'm working on a simple block-based puzzle game. The game play consists pretty much of moving blocks around in the game area, so it's a trivial physics simulation. My implementation, however, is in my opinion far from ideal and I'm wondering if you can give me any pointers on how to do it better. I've split the code up into two areas: Game logic and UI, as I did with a lot of puzzle games: The game logic is responsible for the general rules of the game (e.g. the formal rule system in chess) The UI displays the game area and pieces (e.g. chess board and pieces) and is responsible for animations (e.g. animated movement of chess pieces) The game logic represents the game state as a logical grid, where each unit is one cell's width/height on the grid. So for a grid of width 6, you can move a block of width 2 four times until it collides with the boundary. The UI takes this grid, and draws it by converting logical sizes into pixel sizes (that is, multiplies it by a constant). However, since the game has hardly any game logic, my game logic layer [1] doesn't have much to do except collision detection. Here's how it works: Player starts to drag a piece UI asks game logic for the legal movement area of that piece and lets the player drag it within that area Player lets go of a piece UI snaps the piece to the grid (so that it is at a valid logical position) UI tells game logic the new logical position (via mutator methods, which I'd rather avoid) I'm not quite happy with that: I'm writing unit tests for my game logic layer, but not the UI, and it turned out all the tricky code is in the UI: Stopping the piece from colliding with others or the boundary and snapping it to the grid. I don't like the fact that the UI tells the game logic about the new state, I would rather have it call a movePieceLeft() method or something like that, as in my other games, but I didn't get far with that approach, because the game logic knows nothing about the dragging and snapping that's possible in the UI. I think the best thing to do would be to get rid of my game logic layer and implement a physics layer instead. I've got a few questions regarding that: Is such a physics layer common, or is it more typical to have the game logic layer do this? Would the snapping to grid and piece dragging code belong to the UI or the physics layer? Would such a physics layer typically work with pixel sizes or with some kind of logical unit, like my game logic layer? I've seen event-based collision detection in a game's code base once, that is, the player would just drag the piece, the UI would render that obediently and notify the physics system, and the physics system would call a onCollision() method on the piece once a collision is detected. What is more common? This approach or asking for the legal movement area first? [1] layer is probably not the right word for what I mean, but subsystem sounds overblown and class is misguiding, because each layer can consist of several classes.

    Read the article

< Previous Page | 242 243 244 245 246 247 248 249 250 251 252 253  | Next Page >