Search Results

Search found 25880 results on 1036 pages for 'google safe browsing'.

Page 246/1036 | < Previous Page | 242 243 244 245 246 247 248 249 250 251 252 253  | Next Page >

  • SEO for duplicate sites with multiple domain extensions

    - by lock
    I am running business in different nations and I got domains for example www.mydomain.com www.mydomain.us www.mydomain.ca www.mydomain.uk www.mydomain.com.au So, if I run same website with same content (of course there will be little changes like address, etc.) as all these domains has same content will it be considered as spam or will the domains rank well as per the country? Also, is there solutions if Google considers this as spam.

    Read the article

  • How can I advetise efficiatly on my sites? [on hold]

    - by Smillification
    Are there any ad networks that give publishers/websites the ability to display adverts that are chosen by the publisher immediately on page load. Lets say the page loads, and a script inserts certain key words that the ad network uses to search their inventory of adverts and assigns the nearest one with matching tags to the publisher advert area? I know Google's adsense and many other similar services index/reads the pages content and then assign certain advert depending on the content with little or no control by the publisher... Any help is appreciated.

    Read the article

  • I have many domain names and 1 website, how can I improve my SEO strategy?

    - by user114659
    I have some domains with several extensions like .us, .net, .org etc. I want to use them all to redirect to one website, which is a social networking website. I want to use these domains in such a way that these domains become helpful in SEO point of view, this time. So far I am doing the followoing: pointing all domains to one directory on my hosting I have some other options including using 301 redirect, but I don't want to see duplicate contents in Google, What else do I need to do?

    Read the article

  • Chrome : Google se met au 64 bits sur Windows 7 et 8 et propose une version plus rapide, stable et sécurisée de son navigateur

    Chrome : Google se met au 64 bits sur Windows 7 et 8 et propose une version plus rapide, stable et sécurisée de son navigateur Google vient de publier les versions tests de Chrome destinées aux utilisateurs de Windows 7 et Windows 8 sur le canal réservé aux développeurs ainsi que via Google Chrome Canary afin de « donner une expérience plus rapide et plus sûre de la navigation ». Google a estimé que cette version offrent aux utilisateurs trois principaux avantages : la vitesse puisque le 64-bits...

    Read the article

  • Retrieving Chrome History and History Archives for Mac

    - by Justin
    I've read some articles here that suggest that we are able to retrieve Chrome's history as SQLite databases: Export history from chome browser How can I view "archived" Google Chrome history — i.e. history older than three months? I can't seem to find the folder where these are supposed to be located. In the first article, the provided path was ~/Library/Application\ Support/Google/Chrome/Default/History, but there is no such directory in my filesystem. I am using Chrome 26.0.1410.65 on Mac OS X Lion. And I am signed in with my Google account. Article http://unlockforus.blogspot.it/2008/09/how-opening-google-chrome-files-history.html provided in the last of the above is very useful, but it is only for Windows. Is there something similar to that but for Mac? Is there a way to find the folder where Chrome stores my history?

    Read the article

  • Working around Gmail mailing-list "feature."

    - by Paul J. Lucas
    I'm using Google Apps for my domain's e-mail via IMAP. Whenever I send mail to a mailing list, I don't receive a copy of my own mail back in my inbox. According to Google, this is a "feature." Is there a way to disable this "feature" so that all mail I send to mailing lists appears in my inbox just like all other e-mail? Perhaps something along the lines of this method for disabling Google's spam filter??

    Read the article

  • Set up internal domain to use external SMTP in Exchange 2007

    - by Geoffrey
    I'm moving to Google Apps and have setup dual-delivery. Everything is fine, but for mail sent internally (from [email protected] to [email protected]), Exchange is not using the send connectors I have pointing to Google's servers. I believe my question is similar to this question: How to force internal email through an smtp connector in exchange 2007 Again, if a user is connected to the Exchange server and tries to send to [email protected] it works just fine, but I cannot seem to force *@mydomain.com to route correctly. This should be a fairly simple, but according to this: google.com/support/forum/p/Google+Apps/thread?tid=30b6ad03baa57289&hl=en (can't post two links due to spam prevention) It does not seem possible. Any ideas?

    Read the article

  • How to install a private user script in Chrome 21+?

    - by Mathias Bynens
    In Chrome 20 and older versions, you could simply open any .user.js file in Chrome and it would prompt you to install the user script. However, in Chrome 21 and up, it downloads the file instead, and displays a warning at the top saying “Extensions, apps, and user scripts can only be added from the Chrome Web Store”. The “Learn More” link points to http://support.google.com/chrome_webstore/bin/answer.py?hl=en&answer=2664769, but that page doesn’t say anything about user scripts, only about extensions in .crx format, apps, and themes. This part sounded interesting: Enterprise Administrators: You can specify URLs that are allowed to install extensions, apps, and themes directly through the ExtensionInstallSources policy. So, I ran the following commands, then restarted Chrome and Chrome Canary: defaults write com.google.Chrome ExtensionInstallSources -array "https://gist.github.com/*" defaults write com.google.Chrome.canary ExtensionInstallSources -array "https://gist.github.com/*" Sadly, these settings only seem to affect extensions, apps, and themes (as it says in the text), not user scripts. (I’ve filed a bug asking to make this setting affect user scripts as well.) Any ideas on how to install a private user script (that I don’t want to add to the Chrome Web Store) in Chrome 21+? Update: The problem was that gist.github.com’s raw URLs redirect to a different domain. So, use these commands instead: # Allow installing user scripts via GitHub or Userscripts.org defaults write com.google.Chrome ExtensionInstallSources -array "https://*.github.com/*" "http://userscripts.org/*" defaults write com.google.Chrome.canary ExtensionInstallSources -array "https://*.github.com/*" "http://userscripts.org/*" This works!

    Read the article

  • Email notification and mail server

    - by Jerr Wu
    I am building a web application with email notification just like Facebook, which will host in http://www.linode.com/. When a user A comment to a post, the poster will get an email notification from '[email protected]' with the comment message written by user A. (Not spam) I really like Google Apps but they have sending limits 2000 sending per day, that is not suit for my case becuz I cannot have sending limits. There will be many email notifications. http://support.google.com/a/bin/answer.py?hl=en&answer=166852 I also need company email accounts for team members use which I prefer Google Apps. My web application will host in linode, I am considering "Amazon Simple Notification Service" for the email notification. My questions are Any other recommend email service provider suits my case for me? Can I bind company email accounts(ex: [email protected]) with Google Apps and bind [email protected] with other email service provider?

    Read the article

  • Working around Gmail mailing-list “feature.”

    - by Paul J. Lucas
    I'm using Google Apps for my domain's e-mail via IMAP. Whenever I send mail to a mailing list, I don't receive a copy of my own mail back in my inbox. According to Google, this is a "feature." Is there a way to disable this "feature" so that all mail I send to mailing lists appears in my inbox just like all other e-mail? Perhaps something along the lines of this method for disabling Google's spam filter??

    Read the article

  • Does GoogleBot respect User-agent: *

    - by rkulla
    I blocked a page in robots.txt under User-agent: *, and tried to do a manual removal of that URL from Google's cache in the webmasters tools. Google said it wasn't being blocked in my robots.txt, so I then blocked it specifically under User-agent: GoogleBot and tried removing it again and this time it worked. Does that mean Google doesn't respect User-agent: * or what?

    Read the article

  • Issues using gmail with google apps and external domain

    - by Jonathan Kelly
    I have recently tried to use gmail through google apps as my main email client, but I'm experiencing a few different problems. I am managing the domain (conjunktiondesign.co.uk) through 123reg.co.uk but it is hosted through fasthosts.co.uk. I transfered the domain to 123reg as fasthosts did not allow me to change the MX records myself. I followed the setup instructions step by step on google apps and changed the MX records as they told me to. My email was now working perfectly but my website was down and I was getting the following error: The dnsserver returned: No DNS records I have a friend that is using the same system as me (ie. Externally hosted domain and google apps mail) and I changed my 123reg details to the same that he had (as his was working perfectly - both email and website). I changed my name servers to point to fasthosts, rather than 123reg and I added an A record called '@' pointing to fasthosts IP address. I also created another A record called 'www' pointing to fasthosts IP address. After I did this, my website worked almost immediately but I have only realised that since changing it my email is now down. I have not received anything since Saturday. I am a web designer and would consider myself fairly tech savvy, but I have no idea about A records, CNAME's and all the things I have been messing about with! What I ultimately need is someone to help me get my email and website working at the same time, rather than one being down when the other is OK. I seem only able to get one or the other working. I have now changed the name servers back to 123reg in an attempt to get my email back as it is more important than my website at this stage. Any help is much appreciated. Thanks.

    Read the article

  • Google Chrome Browser

    - by Harish
    Hi friends. Am using Google Chrome as my default web browser. I don't have any problem with it. The only problem rise is when I enter gmail.com and login into my account. I need to go to Histories in Google chrome (ctrl + shft + del) and select "Del Cokies and Other datas" for entering into gmail again. My gmail page is workin just once. I nedd to log in. Check my mail and I have to clear the cookies in order to log in again If i fail, This is d info I get The webpage at https://mail.google.com/mail/?shva=1&ui=html&zy=l&pli=1&auth=DQAAALgAAABhdI_K9uptgb6yQfGVmnl74VZEUH7U2M7WGJn3kJnCiY0CNI5QBU3X-g6UjPENGoHKSHE9nRna_Ygu_d59mN-HG1SUzNpI_UEMJ9CwDqZAYxYLEJl8r_JA2qJNGF8H0fdKfn99Gb2YeI-lprGxCrWRT7LicyADxQvNLQ6l9xBvOccEBSJfdIrna8dOXeX06N41L0zpnLQrVG1qdulR7LxId9XwtVb6QtfhwnambqLoNiY402Y5pjGG1_gFL4dNpJA&gausr=hariss89%40gmail.com has resulted in too many redirects. Clearing your cookies for this site or allowing third-party cookies may fix the problem. If not, it is possibly a server configuration issue and not a problem with your computer. Here are some suggestions: Reload this web page later. Learn more about this problem. Wat can I do ...

    Read the article

  • DNS issues on my iPhone

    - by mattalexx
    I'm trying to call up "https://m.google.com" on my iPhone on my home WiFi. It's saying Safari "cannot verify server identity" of m.google.com, then when I press Details, it refers to https://m.google.com as "mattserver". "mattserver" is the name of my development server, a Linux box on my home network. This stinks of DNS issues to me. Accessing the unsecure version of that URL ("http://m.google.com") gives me a blank page. What could be going on here? Is there a way to look at the logs of my router somehow?

    Read the article

  • How can I optimize my ajax calls to deliver at 60ms.

    - by Quintin Par
    I am building an autocomplete functionality for my site and the Google instant results are my benchmark. When I look at Google, the 50-60 ms response time baffle me. They look insane. In comparison here’s how mine looks like. To give you an idea my results are cached on the load balancer and served from a machine that has httpd slowstart and initcwnd fixed. My site is also behind cloudflare From a server side perspective I don’t think I can do anything more. Can someone help me take this 500 ms response time to 60ms? What more should I be doing to achieve Google level performance? Edit: People, you seemed to be angry that I did a comparison to Google and the question is very generic. Sorry about that. To rephrase: How can I bring down response time from 500 ms to 60 ms provided my server response time is just a fraction of ms. Assume the results are served from Nginx - Varnish with a cache hit. Here are some answers I would like to answer myself assume the response sizes remained more or less the same. Ensure results are http compressed Ensure SPDY if you are on https Ensure you have initcwnd set to 10 and disable slow start on linux machines. Etc. I don’t think I’ll end up with 60 ms at Google level but your collective expertise can help easily shave off a 100 ms and that’s a big win.

    Read the article

  • IE Search Provider: Specifying gTLD / Country-Specific Site

    - by jwa
    I am based in the UK, and as such typically use google.co.uk as my search engine. However, my employer is based in continental Europe, and thus my internet proxy is located overseas. As a result, IP geo-location presents a location outside of the UK. Google detects this, and as a result will redirect my searches from the address bar to a foreign Google domain. This leads to "local" answers having a higher ranking, many of which are not written in English language! Is there a specific search provider / URL I can give to IE which will use a specific gTLD of google (.co.uk), rather than performing the location-based redirect?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Best Platform/Engine for turn based Client/Server Android game

    - by Paradine
    I'm currently designing a turn based game for tablets. Initially for Android with porting to iOS later considered in design. I'm having trouble narrowing down the available technologies to even know where to spend my research time. I am hoping that if I explain what I am trying to achieve someone may be able to suggest a platform and/or engine. I've looked into some of the open source Engines ( http://www.cuteandroid.com/ten-open-source-android-2d-or-3d-game-engine-for-android-developers ) and some appear to handle much of what I might require - although with a higher focus on graphics than i need. Mages looks interesting although development appears to have ceased. If I could somehow leverage GoogleApps that would be excellent. Here is what I am trying to achieve: PvP turn based strategy game over internet - minimal animation and bandwidth required Players match up online using MetaGame system MatchID created on Resolution Server and Game starts Clients have 30 second countdown to select MoveString Clients sends small secure timestamped and MatchIDed MoveString to Resolution server Resolution server looks up Move String for each player, Resolves and Updates Players status in MatchID on Server Resolution server updates Client Views Repeat until victory conditions met - MatchID Closed, Rewards earned in MetaGame There will also need to be a full social and account system and metagame backend - but this could be running on separate system(s) Tablet in Offline mode would be catalog browsing and perhaps single player AI - bum I'm focusing on the Resolution Server at this point I'm not even certain if I would be looking at an Android App or a WebApp at this stage! I want a custom GUI so I guess an app - but maybe as I have little animation a WebApp might also work. Probably some combination of both. There will be very small overhead in data between client server - essentially a small text string every 30 seconds sent to the Resolution server which looks up the Effect and applies it to the Opponents string and determines some results to apply to the match. The client view is updated minimally with the results (only 5 in game Integers tracked) - perhaps triggering small animations/popups on the client to show the end result. e.g Explosion. If you have suggestions for a good technology or platform to best achieving the Resolution Server I'd love to hear. Also if you have experience with open source Engines - and could narrow down which (if any ) might be most suitable that would be a big help. Thanks in advance

    Read the article

  • Best Platform/Engine for turn based Client/Server Android game

    - by Paradine
    I'm currently designing a turn based game for tablets. Initially for Android with porting to iOS later considered in design. I'm having trouble narrowing down the available technologies to even know where to spend my research time. I am hoping that if I explain what I am trying to achieve someone may be able to suggest a platform and/or engine. I've looked into some of the open source Engines ( http://www.cuteandroid.com/ten-open-source-android-2d-or-3d-game-engine-for-android-developers ) and some appear to handle much of what I might require - although with a higher focus on graphics than i need. Mages looks interesting although development appears to have ceased. If I could somehow leverage GoogleApps that would be excellent. Here is what I am trying to achieve: PvP turn based strategy game over internet - minimal animation and bandwidth required Players match up online using MetaGame system MatchID created on Resolution Server and Game starts Clients have 30 second countdown to select MoveString Clients sends small secure timestamped and MatchIDed MoveString to Resolution server Resolution server looks up Move String for each player, Resolves and Updates Players status in MatchID on Server Resolution server updates Client Views Repeat until victory conditions met - MatchID Closed, Rewards earned in MetaGame There will also need to be a full social and account system and metagame backend - but this could be running on separate system(s) Tablet in Offline mode would be catalog browsing and perhaps single player AI - bum I'm focusing on the Resolution Server at this point I'm not even certain if I would be looking at an Android App or a WebApp at this stage! I want a custom GUI so I guess an app - but maybe as I have little animation a WebApp might also work. Probably some combination of both. There will be very small overhead in data between client server - essentially a small text string every 30 seconds sent to the Resolution server which looks up the Effect and applies it to the Opponents string and determines some results to apply to the match. The client view is updated minimally with the results (only 5 in game Integers tracked) - perhaps triggering small animations/popups on the client to show the end result. e.g Explosion. If you have suggestions for a good technology or platform to best achieving the Resolution Server I'd love to hear. Also if you have experience with open source Engines - and could narrow down which (if any ) might be most suitable that would be a big help. Thanks in advance

    Read the article

  • Craziest JavaScript behavior I've ever seen

    - by Dan Ray
    And that's saying something. This is based on the Google Maps sample for Directions in the Maps API v3. <html> <head> <meta name="viewport" content="initial-scale=1.0, user-scalable=no"/> <meta http-equiv="content-type" content="text/html; charset=UTF-8"/> <title>Google Directions</title> <script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=false"></script> <script type="text/javascript"> var directionDisplay; var directionsService = new google.maps.DirectionsService(); var map; function initialize() { directionsDisplay = new google.maps.DirectionsRenderer(); var myOptions = { zoom:7, mapTypeId: google.maps.MapTypeId.ROADMAP } map = new google.maps.Map(document.getElementById("map_canvas"), myOptions); directionsDisplay.setMap(map); directionsDisplay.setPanel(document.getElementById("directionsPanel")); } function render() { var start; if(navigator.geolocation) { navigator.geolocation.getCurrentPosition(function(position) { start = new google.maps.LatLng(position.coords.latitude,position.coords.longitude); }, function() { handleNoGeolocation(browserSupportFlag); }); } else { // Browser doesn't support Geolocation handleNoGeolocation(); } alert("booga booga"); var end = '<?= $_REQUEST['destination'] ?>'; var request = { origin:start, destination:end, travelMode: google.maps.DirectionsTravelMode.DRIVING }; directionsService.route(request, function(response, status) { if (status == google.maps.DirectionsStatus.OK) { directionsDisplay.setDirections(response); } }); } </script> </head> <body style="margin:0px; padding:0px;" onload="initialize()"> <div><div id="map_canvas" style="float:left;width:70%; height:100%"></div> <div id="directionsPanel" style="float:right;width:30%;height 100%"></div> <script type="text/javascript">render();</script> </body> </html> See that "alert('booga booga')" in there? With that in place, this all works fantastic. Comment that out, and var start is undefined when we hit the line to define var request. I discovered this when I removed the alert I put in there to show me the value of var start, and it quit working. If I DO ask it to alert me the value of var start, it tells me it's undefined, BUT it has a valid (and accurate!) value when we define var request a few lines later. I'm suspecting it's a timing issue--like an asynchronous something is having time to complete in the background in the moment it takes me to dismiss the alert. Any thoughts on work-arounds?

    Read the article

  • Google TV Gets Bad Reception. Can Media Center Pull in the Signal?

    - by andrewbrust
    The news hit Monday morning that Google has decided to delay the release of its Google TV platform, and has asked its OEMs to delay any products that embed the software.  Coming just about two weeks prior to the 2011 Consumer Electronics Show (CES), Google’s timing is about the worst imaginable.  CES is where the platform should have had its coming out party, especially given all the anticipation that has built up since its initial announcement came 7 months ago. At last year’s CES, it seemed every consumer electronics company had fashioned its own software stack for Internet-based video programming and applications/widgets on its TVs, optical disc players and set top boxes.  In one case, I even saw two platforms on a single TV set (one provided by Yahoo and the other one native to the TV set). The whole point of Google TV was to solve this problem and offer a standard, embeddable platform.  But that won’t be happening, at least not for a while.  Google seems unable to get it together, and more proprietary approaches, like Apple TV, don’t seem to be setting the world of TV-Internet convergence on fire, either. It seems to me, that when it comes to building a “TV operating system,” Windows Media Center is still the best of a bad bunch.  But it won’t stay so for much longer without some changes.  Will Redmond pick up the ball that Google has fumbled?  I’m skeptical, but hopeful.  Regardless, here are some steps that could help Microsoft make the most of Google’s faux pas: Introduce a new Media Center version that uses XBox 360, rather than Windows 7 (or 8), as the platform.  TV platforms should be appliance-like, not PC-like.  Combine that notion with the runaway sales numbers for Xbox 360 Kinect, and the mass appeal it has delivered for Xbox, and the switch form Windows makes even more sense. As I have pointed out before, Microsoft’s Xbox implementation of its Mediaroom platform (announced and demoed at last year’s CES) gets Redmond 80% of the way toward this goal.  Nothing stops Microsoft from going the other 20%, other than its own apathy, which I hope has dissipated. Reverse the decision to remove Drive Extender technology from Windows Home Server (WHS), and create deep integration between WHS and Media Center.  I have suggested this previously as well, but the recent announcement that Drive Extender would be dropped from WHS 2.0 creates the need for me to a) join the chorus of people urging Microsoft to reconsider and b) reiterate the importance of Media Center-WHS integration in the context of a Google compete scenario. Enable Windows Phone 7 (WP7) as a Media Center client.  This would tighten the integration loop already established between WP7, Xbox and Zune.  But it would also counter Echostar/DISH Network/Sling Media, strike a blow against Google/Android (and even Apple/iOS) and could be the final strike against TiVO. Bring the WP7 user interface to Media Center and Kinect-enable it.  This would further the integration discussed above and would be appropriate recognition of WP7’s Metro UI having been built on the heritage of the original Media Center itself.  And being able to run your DVR even if you can’t find the remote (or can’t see its buttons in the dark) could be a nifty gimmick. Microsoft can do this but its consumer-oriented organization, responsible for Xbox, Zune and WP7, has to take the reins here, or none of this will likely work.  There’s a significant chance that won’t happen, but I won’t let that stop me from hoping that it does and insisting that it must.  Honestly, this fight is Microsoft’s to lose.

    Read the article

  • Download YouTube Videos the Easy Way

    - by Trevor Bekolay
    You can’t be online all the time, and despite the majority of YouTube videos being nut-shots and Lady Gaga parodies, there is a lot of great content that you might want to download and watch offline. There are some programs and browser extensions to do this, but we’ve found that the easiest and quickest method is a bookmarklet that was originally posted on the Google Operating System blog (it’s since been removed). It will let you download standard quality and high-definition movies as MP4 files. Also, because it’s a bookmarklet, it will work on any modern web browser, and on any operating system! Installing the bookmarket is easy – just drag and drop the Get YouTube video link below to the bookmarks bar of your browser of choice. If you’ve hidden the bookmark bar, in most browsers you can right-click on the link and save it to your bookmarks. Get YouTube video   With the bookmarklet available in your browser, go to the YouTube video that you’d like to download. Click on the Get YouTube video link in your bookmarks bar, or in the bookmarks menu, wherever you saved it earlier. You will notice some new links appear below the description of the video. If you download the standard definition file, it will save as “video.mp4” by default. However, if you download the high definition file, it will save with the same name as the title of the video. There are many methods of downloading YouTube videos…but we think this is the easiest and quickest method. You don’t have to install anything or use up resources, but you can still get a link to download an MP4 with one click. Do you use a different method to download Youtube videos? Let us know about it in the comments! javascript:(function(){if(document.getElementById(’download-youtube-video’))return;var args=null,video_title=null,video_id=null,video_hash=null;var download_code=new Array();var fmt_labels={‘18′:’standard%20MP4′,’22′:’HD%20720p’,'37′:’HD%201080p’};try{args=yt.getConfig(’SWF_ARGS’);video_title=yt.getConfig(’VIDEO_TITLE’)}catch(e){}if(args){var fmt_url_map=unescape(args['fmt_url_map']);if(fmt_url_map==”)return;video_id=args['video_id'];video_hash=args['t'];video_title=video_title.replace(/[%22\'\?\\\/\:\*%3C%3E]/g,”);var fmt=new Array();var formats=fmt_url_map.split(’,');var format;for(var i=0;i%3Cformats.length;i++){var format_elems=formats[i].split(’|');fmt[format_elems[0]]=unescape(format_elems[1])}for(format in fmt_labels){if(fmt[format]!=null){download_code.push(’%3Ca%20href=\”+(fmt[format]+’&title=’+video_title)+’\'%3E’+fmt_labels[format]+’%3C/a%3E’)}elseif(format==’18′){download_code.push(’%3Ca%20href=\’http://www.youtube.com/get_video?fmt=18&video_id=’+video_id+’&t=’+video_hash+’\'%3E’+fmt_labels[format]+’%3C/a%3E’)}}}if(video_id==null||video_hash==null)return;var div_embed=document.getElementById(’watch-embed-div’);if(div_embed){var div_download=document.createElement(’div’);div_download.innerHTML=’%3Cbr%20/%3E%3Cspan%20id=\’download-youtube-video\’%3EDownload:%20′+download_code.join(’%20|%20′)+’%3C/span%3E’;div_embed.appendChild(div_download)}})() Similar Articles Productive Geek Tips Watch YouTube Videos in Cinema Style in FirefoxDownload YouTube Videos with Cheetah YouTube DownloaderStop YouTube Videos from Automatically Playing in FirefoxImprove YouTube Video Viewing in Google ChromeConvert YouTube Videos to MP3 with YouTube Downloader TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family Amazon Free Kindle for PC Download Stretch popurls.com with a Stylish Script (Firefox) OldTvShows.org – Find episodes of Hitchcock, Soaps, Game Shows and more Download Microsoft Office Help tab

    Read the article

  • 6 Prominent Features of New GMail User Interface

    - by Gopinath
    GMail’s user interface has got a big make over today and the new user interface is available to everyone. We can switch to the new user interface by click on “Switch to the new look” link available at the bottom right of GMail (If you are on IE 6 or similar type of bad browsers, you will not see the option!). I switched to the new user interface as soon I noticed the link and played with it for sometime. In this post I want to share the prominent features of all new GMail interface. 1. All New Conversations Interface GMail’s threaded conversations is a game changing feature when it was first introduced by Google. For  a long time we have not seen much updates to the threaded conversation views. In the new GMail interface, threaded conversation sports a great new look – conversations are always visible in a horizontal fashion as opposed to stack interface of earlier version. When you open a conversation, you get a quick glance of individual thread without expanding the thread. Readability is improved a lot now.  Check image after the break 2. Sender Profile Photos In Email Threads Did you observe the above screenshot of conversations view? It has profile images of the participants in the thread. Identifying person of a thread is much more easy. 3. Advanced Search Box Search is the heart of Google’s business and it’s their flagship technology. GMail’s search interface is enhanced to let you quickly find the required e-mails. Also you can create mail filters from the search box without leaving the screen or opening up a new popup. 4. Gmail Automatically Resizing To Fit Multiple Devices There is no doubt that this is post PC era where people started using more of tablets and big screen smartphones than ever. The new user interface of GMail automatically resizes itself to fit the size of screen seamlessly. 5. HD Images For Your Themes, Sourced from iStockphoto Are you bored with minimalistic GMail interface and the few flashy themes? Here comes GMail HD themes backed by stock photographs sourced from iStockPhoto website. If you have a widescreen HD monitor then decorate your inbox with beautiful themes. 6. Resize Labels & Chat Panels Now you got a splitter between Labels & Chat panel that lets resize their height as you prefer. Also Label panel auto expands its height when you mouse over to show you hidden labels if any. Video – overview of new GMail features This article titled,6 Prominent Features of New GMail User Interface, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • Chrome Web Browser Messages: Some Observations

    - by ultan o'broin
    I'm always on the lookout for how different apps handle errors and what kind of messages are shown (I probably need to get out more), I use this 'research' to reflect on our own application error messages patterns and guidelines and how we might make things better for our users in future. Users are influenced by all sorts of things, but their everyday experiences of technology, and especially what they encounter on the internet, increasingly sets their expectations for the enterprise user experience too. I recently came across a couple of examples from Google's Chrome web browser that got me thinking. In the first case, we have a Chrome error about not being able to find a web page. I like how simple, straightforward messaging language is used along with an optional ability to explore things a bit further--for those users who want to. The 'more information' option shows the error encountered by the browser (or 'original' error) in technical terms, along with an error number. Contrasting the two messages about essentially the same problem reveals what's useful to users and what's not. Everyone can use the first message, but the technical version of the message has to be explicitly disclosed for any more advanced user to pursue further. More technical users might search for a resolution, using that Error 324 number, but I imagine most users who see the message will try again later or check their URL again. Seems reasonable that such an approach be adopted in the enterprise space too, right? Maybe. Generally, end users don't go searching for solutions based on those error numbers, and help desk folks generally prefer they don't do so. That's because of the more critical nature of enterprise data or the fact that end users may not have the necessary privileges to make any fixes anyway. What might be more useful here is a link to a trusted source of additional help provided by the help desk or reputable community instead. This takes me on to the second case, this time more closely related to the language used in messaging situations. Here, I first noticed by the using of the (s) approach to convey possibilities of there being one or more pages at the heart of the problem. This approach is a no-no in Oracle style terms (the plural would be used) and it can create translation issues (though it is not a show-stopper). I think Google could have gone with the plural too. However, of more interest is the use of the verb "kill", shown in the message text and as an action button label. For many writers, words like "kill" and "abort" are to be avoided as they can give offense. I am not so sure about that judgment, as really their use cannot be separated from the context. Certainly, for more technical users, they're fine and have been in use for years, so I see no reason to avoid these terms if the audience has accepted them. Most end users too, I think would find the idea of "kill" usable and may even use the term in every day speech. Others might disagree--Apple uses a concept of Force Quit, for example. Ultimately, the only way to really know how to proceed is to research these matter by asking users of differing roles and expertise to perform some tasks, encounter these messages and then make recommendations based on those findings for our designs. Something to do in 2011!

    Read the article

< Previous Page | 242 243 244 245 246 247 248 249 250 251 252 253  | Next Page >