Search Results

Search found 6580 results on 264 pages for 'boost foreach'.

Page 248/264 | < Previous Page | 244 245 246 247 248 249 250 251 252 253 254 255  | Next Page >

  • Sending Messages to SignalR Hubs from the Outside

    - by Ricardo Peres
    Introduction You are by now probably familiarized with SignalR, Microsoft’s API for real-time web functionality. This is, in my opinion, one of the greatest products Microsoft has released in recent time. Usually, people login to a site and enter some page which is connected to a SignalR hub. Then they can send and receive messages – not just text messages, mind you – to other users in the same hub. Also, the server can also take the initiative to send messages to all or a specified subset of users on its own, this is known as server push. The normal flow is pretty straightforward, Microsoft has done a great job with the API, it’s clean and quite simple to use. And for the latter – the server taking the initiative – it’s also quite simple, just involves a little more work. The Problem The API for sending messages can be achieved from inside a hub – an instance of the Hub class – which is something that we don’t have if we are the server and we want to send a message to some user or group of users: the Hub instance is only instantiated in response to a client message. The Solution It is possible to acquire a hub’s context from outside of an actual Hub instance, by calling GlobalHost.ConnectionManager.GetHubContext<T>(). This API allows us to: Broadcast messages to all connected clients (possibly excluding some); Send messages to a specific client; Send messages to a group of clients. So, we have groups and clients, each is identified by a string. Client strings are called connection ids and group names are free-form, given by us. The problem with client strings is, we do not know how these map to actual users. One way to achieve this mapping is by overriding the Hub’s OnConnected and OnDisconnected methods and managing the association there. Here’s an example: 1: public class MyHub : Hub 2: { 3: private static readonly IDictionary<String, ISet<String>> users = new ConcurrentDictionary<String, ISet<String>>(); 4:  5: public static IEnumerable<String> GetUserConnections(String username) 6: { 7: ISet<String> connections; 8:  9: users.TryGetValue(username, out connections); 10:  11: return (connections ?? Enumerable.Empty<String>()); 12: } 13:  14: private static void AddUser(String username, String connectionId) 15: { 16: ISet<String> connections; 17:  18: if (users.TryGetValue(username, out connections) == false) 19: { 20: connections = users[username] = new HashSet<String>(); 21: } 22:  23: connections.Add(connectionId); 24: } 25:  26: private static void RemoveUser(String username, String connectionId) 27: { 28: users[username].Remove(connectionId); 29: } 30:  31: public override Task OnConnected() 32: { 33: AddUser(this.Context.Request.User.Identity.Name, this.Context.ConnectionId); 34: return (base.OnConnected()); 35: } 36:  37: public override Task OnDisconnected() 38: { 39: RemoveUser(this.Context.Request.User.Identity.Name, this.Context.ConnectionId); 40: return (base.OnDisconnected()); 41: } 42: } As you can see, I am using a static field to store the mapping between a user and its possibly many connections – for example, multiple open browser tabs or even multiple browsers accessing the same page with the same login credentials. The user identity, as is normal in .NET, is obtained from the IPrincipal which in SignalR hubs case is stored in Context.Request.User. Of course, this property will only have a meaningful value if we enforce authentication. Another way to go is by creating a group for each user that connects: 1: public class MyHub : Hub 2: { 3: public override Task OnConnected() 4: { 5: this.Groups.Add(this.Context.ConnectionId, this.Context.Request.User.Identity.Name); 6: return (base.OnConnected()); 7: } 8:  9: public override Task OnDisconnected() 10: { 11: this.Groups.Remove(this.Context.ConnectionId, this.Context.Request.User.Identity.Name); 12: return (base.OnDisconnected()); 13: } 14: } In this case, we will have a one-to-one equivalence between users and groups. All connections belonging to the same user will fall in the same group. So, if we want to send messages to a user from outside an instance of the Hub class, we can do something like this, for the first option – user mappings stored in a static field: 1: public void SendUserMessage(String username, String message) 2: { 3: var context = GlobalHost.ConnectionManager.GetHubContext<MyHub>(); 4: 5: foreach (String connectionId in HelloHub.GetUserConnections(username)) 6: { 7: context.Clients.Client(connectionId).sendUserMessage(message); 8: } 9: } And for using groups, its even simpler: 1: public void SendUserMessage(String username, String message) 2: { 3: var context = GlobalHost.ConnectionManager.GetHubContext<MyHub>(); 4:  5: context.Clients.Group(username).sendUserMessage(message); 6: } Using groups has the advantage that the IHubContext interface returned from GetHubContext has direct support for groups, no need to send messages to individual connections. Of course, you can wrap both mapping options in a common API, perhaps exposed through IoC. One example of its interface might be: 1: public interface IUserToConnectionMappingService 2: { 3: //associate and dissociate connections to users 4:  5: void AddUserConnection(String username, String connectionId); 6:  7: void RemoveUserConnection(String username, String connectionId); 8: } SignalR has built-in dependency resolution, by means of the static GlobalHost.DependencyResolver property: 1: //for using groups (in the Global class) 2: GlobalHost.DependencyResolver.Register(typeof(IUserToConnectionMappingService), () => new GroupsMappingService()); 3:  4: //for using a static field (in the Global class) 5: GlobalHost.DependencyResolver.Register(typeof(IUserToConnectionMappingService), () => new StaticMappingService()); 6:  7: //retrieving the current service (in the Hub class) 8: var mapping = GlobalHost.DependencyResolver.Resolve<IUserToConnectionMappingService>(); Now all you have to do is implement GroupsMappingService and StaticMappingService with the code I shown here and change SendUserMessage method to rely in the dependency resolver for the actual implementation. Stay tuned for more SignalR posts!

    Read the article

  • SSIS Lookup component tuning tips

    - by jamiet
    Yesterday evening I attended a London meeting of the UK SQL Server User Group at Microsoft’s offices in London Victoria. As usual it was both a fun and informative evening and in particular there seemed to be a few questions arising about tuning the SSIS Lookup component; I rattled off some comments and figured it would be prudent to drop some of them into a dedicated blog post, hence the one you are reading right now. Scene setting A popular pattern in SSIS is to use a Lookup component to determine whether a record in the pipeline already exists in the intended destination table or not and I cover this pattern in my 2006 blog post Checking if a row exists and if it does, has it changed? (note to self: must rewrite that blog post for SSIS2008). Fundamentally the SSIS lookup component (when using FullCache option) sucks some data out of a database and holds it in memory so that it can be compared to data in the pipeline. One of the big benefits of using SSIS dataflows is that they process data one buffer at a time; that means that not all of the data from your source exists in the dataflow at the same time and is why a SSIS dataflow can process data volumes that far exceed the available memory. However, that only applies to data in the pipeline; for reasons that are hopefully obvious ALL of the data in the lookup set must exist in the memory cache for the duration of the dataflow’s execution which means that any memory used by the lookup cache will not be available to be used as a pipeline buffer. Moreover, there’s an obvious correlation between the amount of data in the lookup cache and the time it takes to charge that cache; the more data you have then the longer it will take to charge and the longer you have to wait until the dataflow actually starts to do anything. For these reasons your goal is simple: ensure that the lookup cache contains as little data as possible. General tips Here is a simple tick list you can follow in order to tune your lookups: Use a SQL statement to charge your cache, don’t just pick a table from the dropdown list made available to you. (Read why in SELECT *... or select from a dropdown in an OLE DB Source component?) Only pick the columns that you need, ignore everything else Make the database columns that your cache is populated from as narrow as possible. If a column is defined as VARCHAR(20) then SSIS will allocate 20 bytes for every value in that column – that is a big waste if the actual values are significantly less than 20 characters in length. Do you need DT_WSTR typed columns or will DT_STR suffice? DT_WSTR uses twice the amount of space to hold values that can be stored using a DT_STR so if you can use DT_STR, consider doing so. Same principle goes for the numerical datatypes DT_I2/DT_I4/DT_I8. Only populate the cache with data that you KNOW you will need. In other words, think about your WHERE clause! Thinking outside the box It is tempting to build a large monolithic dataflow that does many things, one of which is a Lookup. Often though you can make better use of your available resources by, well, mixing things up a little and here are a few ideas to get your creative juices flowing: There is no rule that says everything has to happen in a single dataflow. If you have some particularly resource intensive lookups then consider putting that lookup into a dataflow all of its own and using raw files to pass the pipeline data in and out of that dataflow. Know your data. If you think, for example, that the majority of your incoming rows will match with only a small subset of your lookup data then consider chaining multiple lookup components together; the first would use a FullCache containing that data subset and the remaining data that doesn’t find a match could be passed to a second lookup that perhaps uses a NoCache lookup thus negating the need to pull all of that least-used lookup data into memory. Do you need to process all of your incoming data all at once? If you can process different partitions of your data separately then you can partition your lookup cache as well. For example, if you are using a lookup to convert a location into a [LocationId] then why not process your data one region at a time? This will mean your lookup cache only has to contain data for the location that you are currently processing and with the ability of the Lookup in SSIS2008 and beyond to charge the cache using a dynamically built SQL statement you’ll be able to achieve it using the same dataflow and simply loop over it using a ForEach loop. Taking the previous data partitioning idea further … a dataflow can contain more than one data path so why not split your data using a conditional split component and, again, charge your lookup caches with only the data that they need for that partition. Lookups have two uses: to (1) find a matching row from the lookup set and (2) put attributes from that matching row into the pipeline. Ask yourself, do you need to do these two things at the same time? After all once you have the key column(s) from your lookup set then you can use that key to get the rest of attributes further downstream, perhaps even in another dataflow. Are you using the same lookup data set multiple times? If so, consider the file caching option in SSIS 2008 and beyond. Above all, experiment and be creative with different combinations. You may be surprised at what works. Final  thoughts If you want to know more about how the Lookup component differs in SSIS2008 from SSIS2005 then I have a dedicated blog post about that at Lookup component gets a makeover. I am on a mini-crusade at the moment to get a BULK MERGE feature into the database engine, the thinking being that if the database engine can quickly merge massive amounts of data in a similar manner to how it can insert massive amounts using BULK INSERT then that’s a lot of work that wouldn’t have to be done in the SSIS pipeline. If you think that is a good idea then go and vote for BULK MERGE on Connect. If you have any other tips to share then please stick them in the comments. Hope this helps! @Jamiet Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Getting MySQL work with Entity Framework 4.0

    - by DigiMortal
    Does MySQL work with Entity Framework 4.0? The answer is: yes, it works! I just put up one experimental project to play with MySQL and Entity Framework 4.0 and in this posting I will show you how to get MySQL data to EF. Also I will give some suggestions how to deploy your applications to hosting and cloud environments. MySQL stuff As you may guess you need MySQL running somewhere. I have MySQL installed to my development machine so I can also develop stuff when I’m offline. The other thing you need is MySQL Connector for .NET Framework. Currently there is available development version of MySQL Connector/NET 6.3.5 that supports Visual Studio 2010. Before you start download MySQL and Connector/NET: MySQL Community Server Connector/NET 6.3.5 If you are not big fan of phpMyAdmin then you can try out free desktop client for MySQL – HeidiSQL. I am using it and I am really happy with this program. NB! If you just put up MySQL then create also database with couple of table there. To use all features of Entity Framework 4.0 I suggest you to use InnoDB or other engine that has support for foreign keys. Connecting MySQL to Entity Framework 4.0 Now create simple console project using Visual Studio 2010 and go through the following steps. 1. Add new ADO.NET Entity Data Model to your project. For model insert the name that is informative and that you are able later recognize. Now you can choose how you want to create your model. Select “Generate from database” and click OK. 2. Set up database connection Change data connection and select MySQL Database as data source. You may also need to set provider – there is only one choice. Select it if data provider combo shows empty value. Click OK and insert connection information you are asked about. Don’t forget to click test connection button to see if your connection data is okay. If everything works then click OK. 3. Insert context name Now you should see the following dialog. Insert your data model name for application configuration file and click OK. Click next button. 4. Select tables for model Now you can select tables and views your classes are based on. I have small database with events data. Uncheck the checkbox “Include foreign key columns in the model” – it is damn annoying to get them away from model later. Also insert informative and easy to remember name for your model. Click finish button. 5. Define your classes Now it’s time to define your classes. Here you can see what Entity Framework generated for you. Relations were detected automatically – that’s why we needed foreign keys. The names of classes and their members are not nice yet. After some modifications my class model looks like on the following diagram. Note that I removed attendees navigation property from person class. Now my classes look nice and they follow conventions I am using when naming classes and their members. NB! Don’t forget to see properties of classes (properties windows) and modify their set names if set names contain numbers (I changed set name for Entity from Entity1 to Entities). 6. Let’s test! Now let’s write simple testing program to see if MySQL data runs through Entity Framework 4.0 as expected. My program looks for events where I attended. using(var context = new MySqlEntities()) {     var myEvents = from e in context.Events                     from a in e.Attendees                     where a.Person.FirstName == "Gunnar" &&                             a.Person.LastName == "Peipman"                     select e;       Console.WriteLine("My events: ");       foreach(var e in myEvents)     {         Console.WriteLine(e.Title);     } }   Console.ReadKey(); And when I run it I get the result shown on screenshot on right. I checked out from database and these results are correct. At first run connector seems to work slow but this is only the effect of first run. As connector is loaded to memory by Entity Framework it works fast from this point on. Now let’s see what we have to do to get our program work in hosting and cloud environments where MySQL connector is not installed. Deploying application to hosting and cloud environments If your hosting or cloud environment has no MySQL connector installed you have to provide MySQL connector assemblies with your project. Add the following assemblies to your project’s bin folder and include them to your project (otherwise they are not packaged by WebDeploy and Azure tools): MySQL.Data MySQL.Data.Entity MySQL.Web You can also add references to these assemblies and mark references as local so these assemblies are copied to binary folder of your application. If you have references to these assemblies then you don’t have to include them to your project from bin folder. Also add the following block to your application configuration file. <?xml version="1.0" encoding="utf-8"?> <configuration> ...   <system.data>     <DbProviderFactories>         <add              name=”MySQL Data Provider”              invariant=”MySql.Data.MySqlClient”              description=”.Net Framework Data Provider for MySQL”              type=”MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data,                   Version=6.2.0.0, Culture=neutral,                   PublicKeyToken=c5687fc88969c44d”          />     </DbProviderFactories>   </system.data> ... </configuration> Conclusion It was not hard to get MySQL connector installed and MySQL connected to Entity Framework 4.0. To use full power of Entity Framework we used InnoDB engine because it supports foreign keys. It was also easy to query our model. To get our project online we needed some easy modifications to our project and configuration files.

    Read the article

  • Adding Volcanos and Options - Earthquake Locator, part 2

    - by Bobby Diaz
    Since volcanos are often associated with earthquakes, and vice versa, I decided to show recent volcanic activity on the Earthquake Locator map.  I am pulling the data from a website created for a joint project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program, found here.  They provide a Weekly Volcanic Activity Report as an RSS feed.   I started implementing this new functionality by creating a new Volcano entity in the domain model and adding the following to the EarthquakeService class (I also factored out the common reading/parsing helper methods to a separate FeedReader class that can be used by multiple domain service classes):           private static readonly string VolcanoFeedUrl =             ConfigurationManager.AppSettings["VolcanoFeedUrl"];           /// <summary>         /// Gets the volcano data for the previous week.         /// </summary>         /// <returns>A queryable collection of <see cref="Volcano"/> objects.</returns>         public IQueryable<Volcano> GetVolcanos()         {             var feed = FeedReader.Load(VolcanoFeedUrl);             var list = new List<Volcano>();               if ( feed != null )             {                 foreach ( var item in feed.Items )                 {                     var quake = CreateVolcano(item);                     if ( quake != null )                     {                         list.Add(quake);                     }                 }             }               return list.AsQueryable();         }           /// <summary>         /// Creates a <see cref="Volcano"/> object for each item in the RSS feed.         /// </summary>         /// <param name="item">The RSS item.</param>         /// <returns></returns>         private Volcano CreateVolcano(SyndicationItem item)         {             Volcano volcano = null;             string title = item.Title.Text;             string desc = item.Summary.Text;             double? latitude = null;             double? longitude = null;               FeedReader.GetGeoRssPoint(item, out latitude, out longitude);               if ( !String.IsNullOrEmpty(title) )             {                 title = title.Substring(0, title.IndexOf('-'));             }             if ( !String.IsNullOrEmpty(desc) )             {                 desc = String.Join("\n\n", desc                         .Replace("<p>", "")                         .Split(                             new string[] { "</p>" },                             StringSplitOptions.RemoveEmptyEntries)                         .Select(s => s.Trim())                         .ToArray())                         .Trim();             }               if ( latitude != null && longitude != null )             {                 volcano = new Volcano()                 {                     Id = item.Id,                     Title = title,                     Description = desc,                     Url = item.Links.Select(l => l.Uri.OriginalString).FirstOrDefault(),                     Latitude = latitude.GetValueOrDefault(),                     Longitude = longitude.GetValueOrDefault()                 };             }               return volcano;         } I then added the corresponding LoadVolcanos() method and Volcanos collection to the EarthquakeViewModel class in much the same way I did with the Earthquakes in my previous article in this series. Now that I am starting to add more information to the map, I wanted to give the user some options as to what is displayed and allowing them to choose what gets turned off.  I have updated the MainPage.xaml to look like this:   <UserControl x:Class="EarthquakeLocator.MainPage"     xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"     xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"     xmlns:d="http://schemas.microsoft.com/expression/blend/2008"     xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"     xmlns:basic="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"     xmlns:bing="clr-namespace:Microsoft.Maps.MapControl;assembly=Microsoft.Maps.MapControl"     xmlns:vm="clr-namespace:EarthquakeLocator.ViewModel"     mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480" >     <UserControl.Resources>         <DataTemplate x:Key="EarthquakeTemplate">             <Ellipse Fill="Red" Stroke="Black" StrokeThickness="1"                      Width="{Binding Size}" Height="{Binding Size}"                      bing:MapLayer.Position="{Binding Location}"                      bing:MapLayer.PositionOrigin="Center">                 <ToolTipService.ToolTip>                     <StackPanel>                         <TextBlock Text="{Binding Title}" FontSize="14" FontWeight="Bold" />                         <TextBlock Text="{Binding UtcTime}" />                         <TextBlock Text="{Binding LocalTime}" />                         <TextBlock Text="{Binding DepthDesc}" />                     </StackPanel>                 </ToolTipService.ToolTip>             </Ellipse>         </DataTemplate>           <DataTemplate x:Key="VolcanoTemplate">             <Polygon Fill="Gold" Stroke="Black" StrokeThickness="1" Points="0,10 5,0 10,10"                      bing:MapLayer.Position="{Binding Location}"                      bing:MapLayer.PositionOrigin="Center"                      MouseLeftButtonUp="Volcano_MouseLeftButtonUp">                 <ToolTipService.ToolTip>                     <StackPanel>                         <TextBlock Text="{Binding Title}" FontSize="14" FontWeight="Bold" />                         <TextBlock Text="Click icon for more information..." />                     </StackPanel>                 </ToolTipService.ToolTip>             </Polygon>         </DataTemplate>     </UserControl.Resources>       <UserControl.DataContext>         <vm:EarthquakeViewModel AutoLoadData="True" />     </UserControl.DataContext>       <Grid x:Name="LayoutRoot">           <bing:Map x:Name="map" CredentialsProvider="--Your-Bing-Maps-Key--"                   Center="{Binding MapCenter, Mode=TwoWay}"                   ZoomLevel="{Binding ZoomLevel, Mode=TwoWay}">               <bing:MapItemsControl ItemsSource="{Binding Earthquakes}"                                   ItemTemplate="{StaticResource EarthquakeTemplate}" />               <bing:MapItemsControl ItemsSource="{Binding Volcanos}"                                   ItemTemplate="{StaticResource VolcanoTemplate}" />         </bing:Map>           <basic:TabControl x:Name="tabs" VerticalAlignment="Bottom" MaxHeight="25" Opacity="0.7">             <basic:TabItem Margin="90,0,-90,0" MouseLeftButtonUp="TabItem_MouseLeftButtonUp">                 <basic:TabItem.Header>                     <TextBlock x:Name="txtHeader" Text="Options"                                FontSize="13" FontWeight="Bold" />                 </basic:TabItem.Header>                   <StackPanel Orientation="Horizontal">                     <TextBlock Text="Earthquakes:" FontWeight="Bold" Margin="3" />                     <StackPanel Margin="3">                         <CheckBox Content=" &lt; 4.0"                                   IsChecked="{Binding ShowLt4, Mode=TwoWay}" />                         <CheckBox Content="4.0 - 4.9"                                   IsChecked="{Binding Show4s, Mode=TwoWay}" />                         <CheckBox Content="5.0 - 5.9"                                   IsChecked="{Binding Show5s, Mode=TwoWay}" />                     </StackPanel>                       <StackPanel Margin="10,3,3,3">                         <CheckBox Content="6.0 - 6.9"                                   IsChecked="{Binding Show6s, Mode=TwoWay}" />                         <CheckBox Content="7.0 - 7.9"                                   IsChecked="{Binding Show7s, Mode=TwoWay}" />                         <CheckBox Content="8.0 +"                                   IsChecked="{Binding ShowGe8, Mode=TwoWay}" />                     </StackPanel>                       <TextBlock Text="Other:" FontWeight="Bold" Margin="50,3,3,3" />                     <StackPanel Margin="3">                         <CheckBox Content="Volcanos"                                   IsChecked="{Binding ShowVolcanos, Mode=TwoWay}" />                     </StackPanel>                 </StackPanel>               </basic:TabItem>         </basic:TabControl>       </Grid> </UserControl> Notice that I added a VolcanoTemplate that uses a triangle-shaped Polygon to represent the Volcano locations, and I also added a second <bing:MapItemsControl /> tag to the map to bind to the Volcanos collection.  The TabControl found below the map houses the options panel that will present the user with several checkboxes so they can filter the different points based on type and other properties (i.e. Magnitude).  Initially, the TabItem is collapsed to reduce it's footprint, but the screen shot below shows the options panel expanded to reveal the available settings:     I have updated the Source Code and Live Demo to include these new features.   Happy Mapping!

    Read the article

  • Improving WIF&rsquo;s Claims-based Authorization - Part 2

    - by Your DisplayName here!
    In the last post I showed you how to take control over the invocation of ClaimsAuthorizationManager. Then you have complete freedom over the claim types, the amount of claims and the values. In addition I added two attributes that invoke the authorization manager using an “application claim type”. This way it is very easy to distinguish between authorization calls that originate from WIF’s per-request authorization and the ones from “within” you application. The attribute comes in two flavours: a CAS attribute (invoked by the CLR) and an ASP.NET MVC attribute (for MVC controllers, invoke by the MVC plumbing). Both also feature static methods to easily call them using the application claim types. The CAS attribute is part of Thinktecture.IdentityModel on Codeplex (or via NuGet: Install-Package Thinktecture.IdentityModel). If you really want to see that code ;) There is also a sample included in the Codeplex donwload. The MVC attribute is currently used in Thinktecture.IdentityServer – and I don’t currently plan to make it part of the library project since I don’t want to add a dependency on MVC for now. You can find the code below – and I will write about its usage in a follow-up post. public class ClaimsAuthorize : AuthorizeAttribute {     private string _resource;     private string _action;     private string[] _additionalResources;     /// <summary>     /// Default action claim type.     /// </summary>     public const string ActionType = "http://application/claims/authorization/action";     /// <summary>     /// Default resource claim type     /// </summary>     public const string ResourceType = "http://application/claims/authorization/resource";     /// <summary>     /// Additional resource claim type     /// </summary>     public const string AdditionalResourceType = "http://application/claims/authorization/additionalresource"          public ClaimsAuthorize(string action, string resource, params string[] additionalResources)     {         _action = action;         _resource = resource;         _additionalResources = additionalResources;     }     public static bool CheckAccess(       string action, string resource, params string[] additionalResources)     {         return CheckAccess(             Thread.CurrentPrincipal as IClaimsPrincipal,             action,             resource,             additionalResources);     }     public static bool CheckAccess(       IClaimsPrincipal principal, string action, string resource, params string[] additionalResources)     {         var context = CreateAuthorizationContext(             principal,             action,             resource,             additionalResources);         return ClaimsAuthorization.CheckAccess(context);     }     protected override bool AuthorizeCore(HttpContextBase httpContext)     {         return CheckAccess(_action, _resource, _additionalResources);     }     private static WIF.AuthorizationContext CreateAuthorizationContext(       IClaimsPrincipal principal, string action, string resource, params string[] additionalResources)     {         var actionClaims = new Collection<Claim>         {             new Claim(ActionType, action)         };         var resourceClaims = new Collection<Claim>         {             new Claim(ResourceType, resource)         };         if (additionalResources != null && additionalResources.Length > 0)         {             additionalResources.ToList().ForEach(ar => resourceClaims.Add(               new Claim(AdditionalResourceType, ar)));         }         return new WIF.AuthorizationContext(             principal,             resourceClaims,             actionClaims);     } }

    Read the article

  • Routing Issue in ASP.NET MVC 3 RC 2

    - by imran_ku07
         Introduction:             Two weeks ago, ASP.NET MVC team shipped the ASP.NET MVC 3 RC 2 release. This release includes some new features and some performance optimization. This release also fixes most of the bugs but still some minor issues are present in this release. Some of these issues are already discussed by Scott Guthrie at Update on ASP.NET MVC 3 RC2 (and a workaround for a bug in it). In addition to these issues, I have found another issue in this release regarding routing. In this article, I will show you the issue regarding routing and a simple workaround for this issue.       Description:             The easiest way to understand an issue is to reproduce it in the application. So create a MVC 2 application and a MVC 3 RC 2 application. Then in both applications, just open global.asax file and update the default route as below,     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = UrlParameter.Optional, id2 = UrlParameter.Optional } // Parameter defaults );              Then just open Index View and add the following lines,    <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> Home Page </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <% Html.RenderAction("About"); %> </asp:Content>             The above view will issue a child request to About action method. Now run both applications. ASP.NET MVC 2 application will run just fine. But ASP.NET MVC 3 RC 2 application will throw an exception as shown below,                  You may think that this is a routing issue but this is not the case here as both ASP.NET MVC 2 and ASP.NET MVC  3 RC 2 applications(created above) are built with .NET Framework 4.0 and both will use the same routing defined in System.Web. Something is wrong in ASP.NET MVC 3 RC 2. So after digging into ASP.NET MVC source code, I have found that the UrlParameter class in ASP.NET MVC 3 RC 2 overrides the ToString method which simply return an empty string.     public sealed class UrlParameter { public static readonly UrlParameter Optional = new UrlParameter(); private UrlParameter() { } public override string ToString() { return string.Empty; } }             In MVC 2 the ToString method was not overridden. So to quickly fix the above problem just replace UrlParameter.Optional default value with a different value other than null or empty(for example, a single white space) or replace UrlParameter.Optional default value with a new class object containing the same code as UrlParameter class have except the ToString method is not overridden (or with a overridden ToString method that return a string value other than null or empty). But by doing this you will loose the benefit of ASP.NET MVC 2 Optional URL Parameters. There may be many different ways to fix the above problem and not loose the benefit of optional parameters. Here I will create a new class MyUrlParameter with the same code as UrlParameter class have except the ToString method is not overridden. Then I will create a base controller class which contains a constructor to remove all MyUrlParameter route data parameters, same like ASP.NET MVC doing with UrlParameter route data parameters early in the request.     public class BaseController : Controller { public BaseController() { if (System.Web.HttpContext.Current.CurrentHandler is MvcHandler) { RouteValueDictionary rvd = ((MvcHandler)System.Web.HttpContext.Current.CurrentHandler).RequestContext.RouteData.Values; string[] matchingKeys = (from entry in rvd where entry.Value == MyUrlParameter.Optional select entry.Key).ToArray(); foreach (string key in matchingKeys) { rvd.Remove(key); } } } } public class HomeController : BaseController { public ActionResult Index(string id1) { ViewBag.Message = "Welcome to ASP.NET MVC!"; return View(); } public ActionResult About() { return Content("Child Request Contents"); } }     public sealed class MyUrlParameter { public static readonly MyUrlParameter Optional = new MyUrlParameter(); private MyUrlParameter() { } }     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = MyUrlParameter.Optional, id2 = MyUrlParameter.Optional } // Parameter defaults );             MyUrlParameter class is a copy of UrlParameter class except that MyUrlParameter class not overrides the ToString method. Note that the default route is modified to use MyUrlParameter.Optional instead of UrlParameter.Optional. Also note that BaseController class constructor is removing MyUrlParameter parameters from the current request route data so that the model binder will not bind these parameters with action method parameters. Now just run the ASP.NET MVC 3 RC 2 application again, you will find that it runs just fine.             In case if you are curious to know that why ASP.NET MVC 3 RC 2 application throws an exception if UrlParameter class contains a ToString method which returns an empty string, then you need to know something about a feature of routing for url generation. During url generation, routing will call the ParsedRoute.Bind method internally. This method includes a logic to match the route and build the url. During building the url, ParsedRoute.Bind method will call the ToString method of the route values(in our case this will call the UrlParameter.ToString method) and then append the returned value into url. This method includes a logic after appending the returned value into url that if two continuous returned values are empty then don't match the current route otherwise an incorrect url will be generated. Here is the snippet from ParsedRoute.Bind method which will prove this statement.       if ((builder2.Length > 0) && (builder2[builder2.Length - 1] == '/')) { return null; } builder2.Append("/"); ........................................................... ........................................................... ........................................................... ........................................................... if (RoutePartsEqual(obj3, obj4)) { builder2.Append(UrlEncode(Convert.ToString(obj3, CultureInfo.InvariantCulture))); continue; }             In the above example, both id1 and id2 parameters default values are set to UrlParameter object and UrlParameter class include a ToString method that returns an empty string. That's why this route will not matched.            Summary:             In this article I showed you the issue regarding routing and also showed you how to workaround this problem. I explained this issue with an example by creating a ASP.NET MVC 2 and a ASP.NET MVC 3 RC 2 application. Finally I also explained the reason for this issue. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • MSCC: Scripting - Administrator's­ toolbox of magic...

    Finally, we made it to have our April meetup - in May. The most obvious explanation is the increased amount of open source and IT activities that either the MSCC, the Linux User Group of Mauritius (LUGM), or the University of Mauritius Student's Computer Club is organising. It's absolutely incredible to see the recent hype of events here on the island. And I'm loving it! Unfortunately, we also had to deal with arranging for a location this time. It was kind of an odyssey as my requests (and phone calls) haven't been answered, even though I tried it several times - well, kind of disappointing and I have to look into that for future gatherings. In my opinion, it is essential that two parameters of a community meeting are fixed as early as possible: Location, and Date and time You can't just change one or both on the very last minute. Well, this time we had to do it due to unforeseen reasons, and I apologise to any MSCC member which couldn't make it to our April meetup. Okay, lesson learned but now back to the actual meetup report ... Shortly after the meeting I placed the following statement as my first impression: "Spontaneous and improvised :) No, seriously, Ish and Dan had well prepared presentations on shell scripting, mainly focused towards Bourne Again Shell (bash), and the pros and cons of scripting versus actually writing something in a decent programming language. I thought that I could cut myself out of the equation but the demand for information about PowerShell was higher than expected..." Well, it turned out that the interest in Windows PowerShell was high, as I even got a couple of questions on it via social media networks during the evening. I also like to mention that the number of attendees went back to what I would call a "standard" number of participation. This time there were 12 craftsmen, but again a good number of First Timers. Reactions of other attendees Here are some impressions and feedback from our participants: "Enjoyed the bash and powershell (linux / windows) presentations ..." -- Nadim on event comments "He [Daniel] also showed us some syntax loopholes in Bash that could leave someone with bad code." -- Ish on MSCC – Let's talk about Scripting   Glad to see a couple of first time attendees, especially students from the university itself. Some details on the presentations MSCC: First time visit at the University of Mauritius - Phase II Engineering Tower, room 2.9 Gimme some love ... bash and other shells Ish gave a great introduction into shell scripting as he spoke about existing shell environments and a little bit about their history. Furthermore, he talked about various built-in commands, the use of coreutils, the ability to daisy-chain multiple commands using pipes, the importance of the standard I/O streams and their file descriptors in advanced scripting techniques. Combined with a couple of sample statements in the Linux terminal on Ubuntu 14.04 machine it was a solid presentation. Have a closer look at his slides - published on his blog on MSCC – Let's talk about Scripting. Oddities of scripting After the brief introduction into bash it was Daniel's turn to highlight a good number of oddities when working with shell scripts. First of all, it should be clear that scripting is not supposed for any kind of implementations in terms of software but simply to automate administrative procedures and to simplify routine jobs on a system. One of the cool oddities that he mentioned is that everything (!) in a shell is represented by strings; there are no other types like integer, float, date-time, etc. that you'd like to use in a full-fledged programming language. Let's have a look at his sample:  more to come... What's the output? As a conclusion, Daniel suggests that shell scripting should be limited but not restricted to automatic repetitive command stacks and batch jobs, startup wrapper for applications in order to set up the execution environment, and other not too sophisticated jobs. But as soon as it might involve a little bit more logic or you might rely on performance it's better to write an application in Ruby, Python, or Perl (among others of course). This is also enables the possibility to test your code properly. MSCC: Ish talking about Bourne Again Shell (bash) and shell scripting to automate regular tasks MSCC: Daniel gives an overview about the pros and cons of shell scripting versus programming MSCC: PowerShell as your scripting solution on Windows operating systems The path of the Enlightened is long ... and tough. Honestly, even though PowerShell was mentioned without any further details on the meetup's agenda, I didn't expect that there would be demand to give a presentation on Microsoft PowerShell after all. I already took this topic out of the announcement but the audience wanted to have some information. Okay, then let's see what I could do - improvised style. While my machine booted and got hooked up to the projector, I started to talk about the beginnings of PowerShell from back in 2006, and its predecessors MS DOS and Command Prompt. A throwback in history... always good for young people. As usual, Microsoft didn't get it at that time. Instead of listening to their client's needs and demands they ignored the feasibility to administrate Windows server farms without any UI tools. PowerShell is actually a result of this, and seeing that shell scripting is a common, reliable and fast way in an administrator's toolbox for decades, Microsoft had to adapt from their Microsoft Management Console (MMC) to a broader approach. It's not like shell scripting was something new; it is in daily use by alternative operating systems like AIX, HP UX, Solaris, and last but not least Linux. Most interestingly, Microsoft is very good at renovating existing architectures, and over the years PowerShell not only replaced their own combination of Command Prompt and Scripting Hosts (VBScript and CScript) but really turned into a challenging competitor on the market. The shell is easy to extend with cmdlets, and open to other Microsoft products like SQL Server, SharePoint, as well as Third-party software applications. Similar to MMC PowerShell also offers the ability to administer other machine remotely - only without a graphical user interface and therefore it's easier to automate and schedule regular tasks. Following is a sample of a PowerShell script file (extension .ps1): $strComputer = "." $colItems = get-wmiobject -class Win32_BIOS -namespace root\CIMV2 -comp $strComputer foreach ($objItem in $colItems) {write-host "BIOS Characteristics: " $objItem.BiosCharacteristicswrite-host "BIOS Version: " $objItem.BIOSVersionwrite-host "Build Number: " $objItem.BuildNumberwrite-host "Caption: " $objItem.Captionwrite-host "Code Set: " $objItem.CodeSetwrite-host "Current Language: " $objItem.CurrentLanguagewrite-host "Description: " $objItem.Descriptionwrite-host "Identification Code: " $objItem.IdentificationCodewrite-host "Installable Languages: " $objItem.InstallableLanguageswrite-host "Installation Date: " $objItem.InstallDatewrite-host "Language Edition: " $objItem.LanguageEditionwrite-host "List Of Languages: " $objItem.ListOfLanguageswrite-host "Manufacturer: " $objItem.Manufacturerwrite-host "Name: " $objItem.Namewrite-host "Other Target Operating System: " $objItem.OtherTargetOSwrite-host "Primary BIOS: " $objItem.PrimaryBIOSwrite-host "Release Date: " $objItem.ReleaseDatewrite-host "Serial Number: " $objItem.SerialNumberwrite-host "SMBIOS BIOS Version: " $objItem.SMBIOSBIOSVersionwrite-host "SMBIOS Major Version: " $objItem.SMBIOSMajorVersionwrite-host "SMBIOS Minor Version: " $objItem.SMBIOSMinorVersionwrite-host "SMBIOS Present: " $objItem.SMBIOSPresentwrite-host "Software Element ID: " $objItem.SoftwareElementIDwrite-host "Software Element State: " $objItem.SoftwareElementStatewrite-host "Status: " $objItem.Statuswrite-host "Target Operating System: " $objItem.TargetOperatingSystemwrite-host "Version: " $objItem.Versionwrite-host} Which gives you information about your BIOS and Windows OS. Then change the computer name to another one on your network (NetBIOS based) and run the script again. There lots of samples and tutorials at the Microsoft Script Center, and I would advise you to pay a visit over there if you are more interested in PowerShell. The Script Center provides the download links, too. Upcoming Events What are the upcoming events here in Mauritius? So far, we have the following ones (incomplete list as usual) in chronological order: Hacking Defence (14. May 2014) WebCup Maurice (7. & 8. June 2014) Developers Conference (TBA ~ July 2014) Linuxfest 2014 (TBA ~ November 2014) Hopefully, there will be more announcements during the next couple of weeks and months. If you know about any other event, like a bootcamp, a code challenge or hackathon here in Mauritius, please drop me a note in the comment section below this article. Thanks! My resume of the day Spontaneous and improvised :) The new location at the University of Mauritius turned out very well, there is plenty of space, and it could be a good choice for future meetings. Especially, having the ability to get more and more students into our IT community sounds like a great opportunity. Later during the day, I got some promising mails from Nadim regarding future sessions at the local branch of the Middlesex University. Well, we will see in the future... But for now this will be on hold until approximately October when students resume their regular studies. Anyway, it was a good experience at the university, and thanks again to the UoM Student's Computer Club that made the necessary arrangements for the MSCC!

    Read the article

  • Using ExcelPacke to create Excel sheets on server

    - by DigiMortal
    In one of my community projects I needed to output some listings as Excel file. As installing Excel to server is non-sense that I was easily able to avoid I found simple solution for Excel 2007 files – open-source project called ExcelPackage. In this posting I will show you hot to create simple event attendees report in Excel 2007 format using ExcelPackage. Cautions Although ExcelPackage works well for me here are some things you should be aware of. ExcelPackage needs file system access because compression library it uses is designed so. There is only very old source code available and it is published under GPL. So if you are writing application to your customers then you cannot use this library unless you make your whole application open-source. ExcelPackage has also some technical problems and it is not very easy to use in simple cases. Authors have not provided any new releases since the beginning of 2007 so I have good reason to consider this project as abandoned. You may find the extensive package EPPlus also useful as there are new versions coming over time. EPPlus is also published under GPL (because ExcelPackage is under GPL), so you can use it only on very limited manner. If you don’t afraid some s*itfight with technology and GPL is okay for your system then let’s go on. Exporting event attendees list to Excel Suppose we have list with event attendees and we want to export it to Excel. We are behaving normally and we don’t install Excel desktop software to our web server. Here is the code. void ExportToExcel(Event evt) {     var fileInfo = new FileInfo(Path.GetTempPath() + "\\" +                                  DateTime.Now.Ticks + ".xlsx");       using (var xls = new ExcelPackage(fileInfo))     {         var sheet = xls.Workbook.Worksheets.Add(evt.Title);           sheet.Cell(1, 1).Value = "First name";         sheet.Cell(1, 2).Value = "Last name";         sheet.Cell(1, 3).Value = "E-mail";         sheet.Cell(1, 4).Value = "Phone";         sheet.Cell(1, 5).Value = "Registered";         sheet.Cell(1, 6).Value = "Live Meeting";           var i = 1;         foreach(var attendee in evt.Attendees)         {             i++;               var profile = attendee.Profile;             sheet.Cell(i, 1).Value = profile.FirstName;             sheet.Cell(i, 2).Value = profile.LastName;             sheet.Cell(i, 3).Value = profile.Email;             sheet.Cell(i, 4).Value = profile.Phone;             sheet.Cell(i, 5).Value = att.Created.ToString();             sheet.Cell(i, 6).Value = att.LiveMeeting.ToString();         }           xls.Save();      }       Response.Clear();     Response.ContentType = "application/vnd.openxmlformats";     Response.AddHeader("Content-Disposition",                        "attachment; filename=" + fileInfo.Name);     Response.WriteFile(fileInfo.FullName);     Response.Flush();       if (fileInfo.Exists)         fileInfo.Delete(); } And here is the result. Although it is possible to make this list more effective and nice it works and users can start using it until all the nice bells and whistles are coming. Conclusion After some fighting with technology it was not very hard to get nice Excel 2007 sheets coming out from our server. We used ExcelPackage library to create list of event attendees and our event organizers can now simply download data to Excel if they need to contact with attendees or manage their data using Excel tools.

    Read the article

  • Dynamically creating a Generic Type at Runtime

    - by Rick Strahl
    I learned something new today. Not uncommon, but it's a core .NET runtime feature I simply did not know although I know I've run into this issue a few times and worked around it in other ways. Today there was no working around it and a few folks on Twitter pointed me in the right direction. The question I ran into is: How do I create a type instance of a generic type when I have dynamically acquired the type at runtime? Yup it's not something that you do everyday, but when you're writing code that parses objects dynamically at runtime it comes up from time to time. In my case it's in the bowels of a custom JSON parser. After some thought triggered by a comment today I realized it would be fairly easy to implement two-way Dictionary parsing for most concrete dictionary types. I could use a custom Dictionary serialization format that serializes as an array of key/value objects. Basically I can use a custom type (that matches the JSON signature) to hold my parsed dictionary data and then add it to the actual dictionary when parsing is complete. Generic Types at Runtime One issue that came up in the process was how to figure out what type the Dictionary<K,V> generic parameters take. Reflection actually makes it fairly easy to figure out generic types at runtime with code like this: if (arrayType.GetInterface("IDictionary") != null) { if (arrayType.IsGenericType) { var keyType = arrayType.GetGenericArguments()[0]; var valueType = arrayType.GetGenericArguments()[1]; … } } The GetArrayType method gets passed a type instance that is the array or array-like object that is rendered in JSON as an array (which includes IList, IDictionary, IDataReader and a few others). In my case the type passed would be something like Dictionary<string, CustomerEntity>. So I know what the parent container class type is. Based on the the container type using it's then possible to use GetGenericTypeArguments() to retrieve all the generic types in sequential order of definition (ie. string, CustomerEntity). That's the easy part. Creating a Generic Type and Providing Generic Parameters at RunTime The next problem is how do I get a concrete type instance for the generic type? I know what the type name and I have a type instance is but it's generic, so how do I get a type reference to keyvaluepair<K,V> that is specific to the keyType and valueType above? Here are a couple of things that come to mind but that don't work (and yes I tried that unsuccessfully first): Type elementType = typeof(keyvalue<keyType, valueType>); Type elementType = typeof(keyvalue<typeof(keyType), typeof(valueType)>); The problem is that this explicit syntax expects a type literal not some dynamic runtime value, so both of the above won't even compile. I turns out the way to create a generic type at runtime is using a fancy bit of syntax that until today I was completely unaware of: Type elementType = typeof(keyvalue<,>).MakeGenericType(keyType, valueType); The key is the type(keyvalue<,>) bit which looks weird at best. It works however and produces a non-generic type reference. You can see the difference between the full generic type and the non-typed (?) generic type in the debugger: The nonGenericType doesn't show any type specialization, while the elementType type shows the string, CustomerEntity (truncated above) in the type name. Once the full type reference exists (elementType) it's then easy to create an instance. In my case the parser parses through the JSON and when it completes parsing the value/object it creates a new keyvalue<T,V> instance. Now that I know the element type that's pretty trivial with: // Objects start out null until we find the opening tag resultObject = Activator.CreateInstance(elementType); Here the result object is picked up by the JSON array parser which creates an instance of the child object (keyvalue<K,V>) and then parses and assigns values from the JSON document using the types  key/value property signature. Internally the parser then takes each individually parsed item and adds it to a list of  List<keyvalue<K,V>> items. Parsing through a Generic type when you only have Runtime Type Information When parsing of the JSON array is done, the List needs to be turned into a defacto Dictionary<K,V>. This should be easy since I know that I'm dealing with an IDictionary, and I know the generic types for the key and value. The problem is again though that this needs to happen at runtime which would mean using several Convert.ChangeType() calls in the code to dynamically cast at runtime. Yuk. In the end I decided the easier and probably only slightly slower way to do this is a to use the dynamic type to collect the items and assign them to avoid all the dynamic casting madness: else if (IsIDictionary) { IDictionary dict = Activator.CreateInstance(arrayType) as IDictionary; foreach (dynamic item in items) { dict.Add(item.key, item.value); } return dict; } This code creates an instance of the generic dictionary type first, then loops through all of my custom keyvalue<K,V> items and assigns them to the actual dictionary. By using Dynamic here I can side step all the explicit type conversions that would be required in the three highlighted areas (not to mention that this nested method doesn't have access to the dictionary item generic types here). Static <- -> Dynamic Dynamic casting in a static language like C# is a bitch to say the least. This is one of the few times when I've cursed static typing and the arcane syntax that's required to coax types into the right format. It works but it's pretty nasty code. If it weren't for dynamic that last bit of code would have been a pretty ugly as well with a bunch of Convert.ChangeType() calls to litter the code. Fortunately this type of type convulsion is rather rare and reserved for system level code. It's not every day that you create a string to object parser after all :-)© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Reading All Users Session

    - by imran_ku07
      Introduction :            InProc Session is the widely used state management. Storing the session state Inproc is also the fastest method and is well-suited to small amounts of volatile data. Reading and writing current user Session is very easy. But some times we need to read all users session before taking a decision or sometimes we may need to check which users are currently active with the help of Session. But unfortunately there is no class in .Net Framework (i don't found myself) to read all user InProc Session Data. In this article i will use reflection to read all user Inproc Session.   Description :              This code will work equally in both MVC and webform, but for demonstration i will use a simple webform example. So let's create a simple Website and Add two aspx pages, Default.aspx and Default2.aspx. In Default.aspx just add a link to navigate to Default2.aspx and in Default.aspx.cs just add a Session. Default.aspx: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="Default" %><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html ><head runat="server">    <title>Untitled Page</title></head><body>    <form id="form1" runat="server">    <div>        <a href="Default2.aspx">Click to navigate to next page</a>    </div>    </form></body></html>  Default.aspx.cs:  using System;using System.Data;using System.Configuration;using System.Collections;using System.Web;using System.Web.Security;using System.Web.UI;using System.Web.UI.WebControls;using System.Web.UI.WebControls.WebParts;using System.Web.UI.HtmlControls;public partial class Default : System.Web.UI.Page{    protected void Page_Load(object sender, EventArgs e)    {        Session["User"] = "User" + DateTime.Now;    }} Now when every user click this link will navigate to Default2.aspx where all the magic appears.Default2.aspx.cs: using System;using System.Data;using System.Configuration;using System.Collections;using System.Web;using System.Web.Security;using System.Web.UI;using System.Web.UI.WebControls;using System.Web.UI.WebControls.WebParts;using System.Web.UI.HtmlControls;using System.Reflection;using System.Web.SessionState;public partial class Default2 : System.Web.UI.Page{    protected void Page_Load(object sender, EventArgs e)    {        object obj = typeof(HttpRuntime).GetProperty("CacheInternal", BindingFlags.NonPublic | BindingFlags.Static).GetValue(null, null);        Hashtable c2 = (Hashtable)obj.GetType().GetField("_entries", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(obj);        foreach (DictionaryEntry entry in c2)        {            object o1 = entry.Value.GetType().GetProperty("Value", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(entry.Value, null);            if (o1.GetType().ToString() == "System.Web.SessionState.InProcSessionState")            {                SessionStateItemCollection sess = (SessionStateItemCollection)o1.GetType().GetField("_sessionItems", BindingFlags.NonPublic | BindingFlags.Instance).GetValue(o1);                if (sess != null)                {                    if (sess["User"] != null)                    {                        Label1.Text += sess["User"] + " is Active.<br>";                    }                }            }        }    }}            Now just open more than one browsers or more than one browser instance and then navigate to Default.aspx and click the link, you will see all the user's Session data.    How this works :        InProc session data is stored in the HttpRuntime’s internal cache in an implementation of ISessionStateItemCollection that implements ICollection. In this code, first of all i got CacheInternal Static Property of HttpRuntime class and then with the help of this object i got _entries private member which is of type ICollection. Then simply enumerate this dictionary and only take object of type System.Web.SessionState.InProcSessionState and finaly got SessionStateItemCollection for each user.Summary :        In this article, I shows you how you can get all current user Sessions. However one thing you will find when executing this code is that it will not show the current user Session which is set in the current request context because Session will be saved after all the Page Events.

    Read the article

  • A simple Dynamic Proxy

    - by Abhijeet Patel
    Frameworks such as EF4 and MOQ do what most developers consider "dark magic". For instance in EF4, when you use a POCO for an entity you can opt-in to get behaviors such as "lazy-loading" and "change tracking" at runtime merely by ensuring that your type has the following characteristics: The class must be public and not sealed. The class must have a public or protected parameter-less constructor. The class must have public or protected properties Adhere to this and your type is magically endowed with these behaviors without any additional programming on your part. Behind the scenes the framework subclasses your type at runtime and creates a "dynamic proxy" which has these additional behaviors and when you navigate properties of your POCO, the framework replaces the POCO type with derived type instances. The MOQ framework does simlar magic. Let's say you have a simple interface:   public interface IFoo      {          int GetNum();      }   We can verify that the GetNum() was invoked on a mock like so:   var mock = new Mock<IFoo>(MockBehavior.Default);   mock.Setup(f => f.GetNum());   var num = mock.Object.GetNum();   mock.Verify(f => f.GetNum());   Beind the scenes the MOQ framework is generating a dynamic proxy by implementing IFoo at runtime. the call to moq.Object returns the dynamic proxy on which we then call "GetNum" and then verify that this method was invoked. No dark magic at all, just clever programming is what's going on here, just not visible and hence appears magical! Let's create a simple dynamic proxy generator which accepts an interface type and dynamically creates a proxy implementing the interface type specified at runtime.     public static class DynamicProxyGenerator   {       public static T GetInstanceFor<T>()       {           Type typeOfT = typeof(T);           var methodInfos = typeOfT.GetMethods();           AssemblyName assName = new AssemblyName("testAssembly");           var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);           var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");           var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);              typeBuilder.AddInterfaceImplementation(typeOfT);           var ctorBuilder = typeBuilder.DefineConstructor(                     MethodAttributes.Public,                     CallingConventions.Standard,                     new Type[] { });           var ilGenerator = ctorBuilder.GetILGenerator();           ilGenerator.EmitWriteLine("Creating Proxy instance");           ilGenerator.Emit(OpCodes.Ret);           foreach (var methodInfo in methodInfos)           {               var methodBuilder = typeBuilder.DefineMethod(                   methodInfo.Name,                   MethodAttributes.Public | MethodAttributes.Virtual,                   methodInfo.ReturnType,                   methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                   );               var methodILGen = methodBuilder.GetILGenerator();               methodILGen.EmitWriteLine("I'm a proxy");               if (methodInfo.ReturnType == typeof(void))               {                   methodILGen.Emit(OpCodes.Ret);               }               else               {                   if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)                   {                       MethodInfo getMethod = typeof(Activator).GetMethod(/span>"CreateInstance",new Type[]{typeof((Type)});                                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                       methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);                       methodILGen.Emit(OpCodes.Call, typeofype).GetMethod("GetTypeFromHandle"));  ));                       methodILGen.Emit(OpCodes.Callvirt, getMethod);                       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);                                                              }                 else                   {                       methodILGen.Emit(OpCodes.Ldnull);                   }                   methodILGen.Emit(OpCodes.Ret);               }               typeBuilder.DefineMethodOverride(methodBuilder, methodInfo);           }                     Type constructedType = typeBuilder.CreateType();           var instance = Activator.CreateInstance(constructedType);           return (T)instance;       }   }   Dynamic proxies are created by calling into the following main types: AssemblyBuilder, TypeBuilder, Modulebuilder and ILGenerator. These types enable dynamically creating an assembly and emitting .NET modules and types in that assembly, all using IL instructions. Let's break down the code above a bit and examine it piece by piece                Type typeOfT = typeof(T);              var methodInfos = typeOfT.GetMethods();              AssemblyName assName = new AssemblyName("testAssembly");              var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);              var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");              var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);   We are instructing the runtime to create an assembly caled "test.dll"and in this assembly we then emit a new module called "testModule". We then emit a new type definition of name "typeName"Proxy into this new module. This is the definition for the "dynamic proxy" for type T                 typeBuilder.AddInterfaceImplementation(typeOfT);               var ctorBuilder = typeBuilder.DefineConstructor(                         MethodAttributes.Public,                         CallingConventions.Standard,                         new Type[] { });               var ilGenerator = ctorBuilder.GetILGenerator();               ilGenerator.EmitWriteLine("Creating Proxy instance");               ilGenerator.Emit(OpCodes.Ret);   The newly created type implements type T and defines a default parameterless constructor in which we emit a call to Console.WriteLine. This call is not necessary but we do this so that we can see first hand that when the proxy is constructed, when our default constructor is invoked.   var methodBuilder = typeBuilder.DefineMethod(                      methodInfo.Name,                      MethodAttributes.Public | MethodAttributes.Virtual,                      methodInfo.ReturnType,                      methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                      );   We then iterate over each method declared on type T and add a method definition of the same name into our "dynamic proxy" definition     if (methodInfo.ReturnType == typeof(void))   {       methodILGen.Emit(OpCodes.Ret);   }   If the return type specified in the method declaration of T is void we simply return.     if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)   {                               MethodInfo getMethod = typeof(Activator).GetMethod("CreateInstance",                                                         new Type[]{typeof(Type)});                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                                                     methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);       methodILGen.Emit(OpCodes.Call, typeof(Type).GetMethod("GetTypeFromHandle"));       methodILGen.Emit(OpCodes.Callvirt, getMethod);       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);   }   If the return type in the method declaration of T is either a value type or an enum, then we need to create an instance of the value type and return that instance the caller. In order to accomplish that we need to do the following: 1) Get a handle to the Activator.CreateInstance method 2) Declare a local variable which represents the Type of the return type(i.e the type object of the return type) specified on the method declaration of T(obtained from the MethodInfo) and push this Type object onto the evaluation stack. In reality a RuntimeTypeHandle is what is pushed onto the stack. 3) Invoke the "GetTypeFromHandle" method(a static method in the Type class) passing in the RuntimeTypeHandle pushed onto the stack previously as an argument, the result of this invocation is a Type object (representing the method's return type) which is pushed onto the top of the evaluation stack. 4) Invoke Activator.CreateInstance passing in the Type object from step 3, the result of this invocation is an instance of the value type boxed as a reference type and pushed onto the top of the evaluation stack. 5) Unbox the result and place it into the local variable of the return type defined in step 2   methodILGen.Emit(OpCodes.Ldnull);   If the return type is a reference type then we just load a null onto the evaluation stack   methodILGen.Emit(OpCodes.Ret);   Emit a a return statement to return whatever is on top of the evaluation stack(null or an instance of a value type) back to the caller     Type constructedType = typeBuilder.CreateType();   var instance = Activator.CreateInstance(constructedType);   return (T)instance;   Now that we have a definition of the "dynamic proxy" implementing all the methods declared on T, we can now create an instance of the proxy type and return that out typed as T. The caller can now invoke the generator and request a dynamic proxy for any type T. In our example when the client invokes GetNum() we get back "0". Lets add a new method on the interface called DayOfWeek GetDay()   public interface IFoo      {          int GetNum();          DayOfWeek GetDay();      }   When GetDay() is invoked, the "dynamic proxy" returns "Sunday" since that is the default value for the DayOfWeek enum This is a very trivial example of dynammic proxies, frameworks like MOQ have a way more sophisticated implementation of this paradigm where in you can instruct the framework to create proxies which return specified values for a method implementation.

    Read the article

  • Using Table-Valued Parameters in SQL Server

    - by Jesse
    I work with stored procedures in SQL Server pretty frequently and have often found myself with a need to pass in a list of values at run-time. Quite often this list contains a set of ids on which the stored procedure needs to operate the size and contents of which are not known at design time. In the past I’ve taken the collection of ids (which are usually integers), converted them to a string representation where each value is separated by a comma and passed that string into a VARCHAR parameter of a stored procedure. The body of the stored procedure would then need to parse that string into a table variable which could be easily consumed with set-based logic within the rest of the stored procedure. This approach works pretty well but the VARCHAR variable has always felt like an un-wanted “middle man” in this scenario. Of course, I could use a BULK INSERT operation to load the list of ids into a temporary table that the stored procedure could use, but that approach seems heavy-handed in situations where the list of values is usually going to contain only a few dozen values. Fortunately SQL Server 2008 introduced the concept of table-valued parameters which effectively eliminates the need for the clumsy middle man VARCHAR parameter. Example: Customer Transaction Summary Report Let’s say we have a report that can summarize the the transactions that we’ve conducted with customers over a period of time. The report returns a pretty simple dataset containing one row per customer with some key metrics about how much business that customer has conducted over the date range for which the report is being run. Sometimes the report is run for a single customer, sometimes it’s run for all customers, and sometimes it’s run for a handful of customers (i.e. a salesman runs it for the customers that fall into his sales territory). This report can be invoked from a website on-demand, or it can be scheduled for periodic delivery to certain users via SQL Server Reporting Services. Because the report can be created from different places and the query to generate the report is complex it’s been packed into a stored procedure that accepts three parameters: @startDate – The beginning of the date range for which the report should be run. @endDate – The end of the date range for which the report should be run. @customerIds – The customer Ids for which the report should be run. Obviously, the @startDate and @endDate parameters are DATETIME variables. The @customerIds parameter, however, needs to contain a list of the identity values (primary key) from the Customers table representing the customers that were selected for this particular run of the report. In prior versions of SQL Server we might have made this parameter a VARCHAR variable, but with SQL Server 2008 we can make it into a table-valued parameter. Defining And Using The Table Type In order to use a table-valued parameter, we first need to tell SQL Server about what the table will look like. We do this by creating a user defined type. For the purposes of this stored procedure we need a very simple type to model a table variable with a single integer column. We can create a generic type called ‘IntegerListTableType’ like this: CREATE TYPE IntegerListTableType AS TABLE (Value INT NOT NULL) Once defined, we can use this new type to define the @customerIds parameter in the signature of our stored procedure. The parameter list for the stored procedure definition might look like: 1: CREATE PROCEDURE dbo.rpt_CustomerTransactionSummary 2: @starDate datetime, 3: @endDate datetime, 4: @customerIds IntegerListTableTableType READONLY   Note the ‘READONLY’ statement following the declaration of the @customerIds parameter. SQL Server requires any table-valued parameter be marked as ‘READONLY’ and no DML (INSERT/UPDATE/DELETE) statements can be performed on a table-valued parameter within the routine in which it’s used. Aside from the DML restriction, however, you can do pretty much anything with a table-valued parameter as you could with a normal TABLE variable. With the user defined type and stored procedure defined as above, we could invoke like this: 1: DECLARE @cusomterIdList IntegerListTableType 2: INSERT @customerIdList VALUES (1) 3: INSERT @customerIdList VALUES (2) 4: INSERT @customerIdList VALUES (3) 5:  6: EXEC dbo.rpt_CustomerTransationSummary 7: @startDate = '2012-05-01', 8: @endDate = '2012-06-01' 9: @customerIds = @customerIdList   Note that we can simply declare a variable of type ‘IntegerListTableType’ just like any other normal variable and insert values into it just like a TABLE variable. We could also populate the variable with a SELECT … INTO or INSERT … SELECT statement if desired. Using The Table-Valued Parameter With ADO .NET Invoking a stored procedure with a table-valued parameter from ADO .NET is as simple as building a DataTable and passing it in as the Value of a SqlParameter. Here’s some example code for how we would construct the SqlParameter for the @customerIds parameter in our stored procedure: 1: var customerIdsParameter = new SqlParameter(); 2: customerIdParameter.Direction = ParameterDirection.Input; 3: customerIdParameter.TypeName = "IntegerListTableType"; 4: customerIdParameter.Value = selectedCustomerIds.ToIntegerListDataTable("Value");   All we’re doing here is new’ing up an instance of SqlParameter, setting the pamameters direction, specifying the name of the User Defined Type that this parameter uses, and setting its value. We’re assuming here that we have an IEnumerable<int> variable called ‘selectedCustomerIds’ containing all of the customer Ids for which the report should be run. The ‘ToIntegerListDataTable’ method is an extension method of the IEnumerable<int> type that looks like this: 1: public static DataTable ToIntegerListDataTable(this IEnumerable<int> intValues, string columnName) 2: { 3: var intergerListDataTable = new DataTable(); 4: intergerListDataTable.Columns.Add(columnName); 5: foreach(var intValue in intValues) 6: { 7: var nextRow = intergerListDataTable.NewRow(); 8: nextRow[columnName] = intValue; 9: intergerListDataTable.Rows.Add(nextRow); 10: } 11:  12: return intergerListDataTable; 13: }   Since the ‘IntegerListTableType’ has a single int column called ‘Value’, we pass that in for the ‘columnName’ parameter to the extension method. The method creates a new single-columned DataTable using the provided column name then iterates over the items in the IEnumerable<int> instance adding one row for each value. We can then use this SqlParameter instance when invoking the stored procedure just like we would use any other parameter. Advanced Functionality Using passing a list of integers into a stored procedure is a very simple usage scenario for the table-valued parameters feature, but I’ve found that it covers the majority of situations where I’ve needed to pass a collection of data for use in a query at run-time. I should note that BULK INSERT feature still makes sense for passing large amounts of data to SQL Server for processing. MSDN seems to suggest that 1000 rows of data is the tipping point where the overhead of a BULK INSERT operation can pay dividends. I should also note here that table-valued parameters can be used to deal with more complex data structures than single-columned tables of integers. A User Defined Type that backs a table-valued parameter can use things like identities and computed columns. That said, using some of these more advanced features might require the use the SqlDataRecord and SqlMetaData classes instead of a simple DataTable. Erland Sommarskog has a great article on his website that describes when and how to use these classes for table-valued parameters. What About Reporting Services? Earlier in the post I referenced the fact that our example stored procedure would be called from both a web application and a SQL Server Reporting Services report. Unfortunately, using table-valued parameters from SSRS reports can be a bit tricky and warrants its own blog post which I’ll be putting together and posting sometime in the near future.

    Read the article

  • Adding RSS to tags in Orchard

    - by Bertrand Le Roy
    A year ago, I wrote a scary post about RSS in Orchard. RSS was one of the first features we implemented in our CMS, and it has stood the test of time rather well, but the post was explaining things at a level that was probably too abstract whereas my readers were expecting something a little more practical. Well, this post is going to correct this by showing how I built a module that adds RSS feeds for each tag on the site. Hopefully it will show that it's not very complicated in practice, and also that the infrastructure is pretty well thought out. In order to provide RSS, we need to do two things: generate the XML for the feed, and inject the address of that feed into the existing tag listing page, in order to make the feed discoverable. Let's start with the discoverability part. One might be tempted to replace the controller or the view that are responsible for the listing of the items under a tag. Fortunately, there is no need to do any of that, and we can be a lot less obtrusive. Instead, we can implement a filter: public class TagRssFilter : FilterProvider, IResultFilter .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } On this filter, we can implement the OnResultExecuting method and simply check whether the current request is targeting the list of items under a tag. If that is the case, we can just register our new feed: public void OnResultExecuting(ResultExecutingContext filterContext) { var routeValues = filterContext.RouteData.Values; if (routeValues["area"] as string == "Orchard.Tags" && routeValues["controller"] as string == "Home" && routeValues["action"] as string == "Search") { var tag = routeValues["tagName"] as string; if (! string.IsNullOrWhiteSpace(tag)) { var workContext = _wca.GetContext(); _feedManager.Register( workContext.CurrentSite + " – " + tag, "rss", new RouteValueDictionary { { "tag", tag } } ); } } } The registration of the new feed is just specifying the title of the feed, its format (RSS) and the parameters that it will need (the tag). _wca and _feedManager are just instances of IWorkContextAccessor and IFeedManager that Orchard injected for us. That is all that's needed to get the following tag to be added to the head of our page, without touching an existing controller or view: <link rel="alternate" type="application/rss+xml" title="VuLu - Science" href="/rss?tag=Science"/> Nifty. Of course, if we navigate to the URL of that feed, we'll get a 404. This is because no implementation of IFeedQueryProvider knows about the tag parameter yet. Let's build one that does: public class TagFeedQuery : IFeedQueryProvider, IFeedQuery IFeedQueryProvider has one method, Match, that we can implement to take over any feed request that has a tag parameter: public FeedQueryMatch Match(FeedContext context) { var tagName = context.ValueProvider.GetValue("tag"); if (tagName == null) return null; return new FeedQueryMatch { FeedQuery = this, Priority = -5 }; } This is just saying that if there is a tag parameter, we will handle it. All that remains to be done is the actual building of the feed now that we have accepted to handle it. This is done by implementing the Execute method of the IFeedQuery interface: public void Execute(FeedContext context) { var tagValue = context.ValueProvider.GetValue("tag"); if (tagValue == null) return; var tagName = (string)tagValue.ConvertTo(typeof (string)); var tag = _tagService.GetTagByName(tagName); if (tag == null) return; var site = _services.WorkContext.CurrentSite; var link = new XElement("link"); context.Response.Element.SetElementValue("title", site.SiteName + " - " + tagName); context.Response.Element.Add(link); context.Response.Element.SetElementValue("description", site.SiteName + " - " + tagName); context.Response.Contextualize(requestContext => link.Add(GetTagUrl(tagName, requestContext))); var items = _tagService.GetTaggedContentItems(tag.Id, 0, 20); foreach (var item in items) { context.Builder.AddItem(context, item.ContentItem); } } This code is resolving the tag content item from its name and then gets content items tagged with it, using the tag services provided by the Orchard.Tags module. Then we add those items to the feed. And that is it. To summarize, we handled the request unobtrusively in order to inject the feed's link, then handled requests for feeds with a tag parameter and generated the list of items for that tag. It remains fairly simple and still it is able to handle arbitrary content types. That makes me quite happy about our little piece of over-engineered code from last year. The full code for this can be found in the Vandelay.TagCloud module: http://orchardproject.net/gallery/List/Modules/ Orchard.Module.Vandelay.TagCloud/1.2

    Read the article

  • Using the BAM Interceptor with Continuation

    - by Charles Young
    Originally posted on: http://geekswithblogs.net/cyoung/archive/2014/06/02/using-the-bam-interceptor-with-continuation.aspxI’ve recently been resurrecting some code written several years ago that makes extensive use of the BAM Interceptor provided as part of BizTalk Server’s BAM event observation library.  In doing this, I noticed an issue with continuations.  Essentially, whenever I tried to configure one or more continuations for an activity, the BAM Interceptor failed to complete the activity correctly.   Careful inspection of my code confirmed that I was initializing and invoking the BAM interceptor correctly, so I was mystified.  However, I eventually found the problem.  It is a logical error in the BAM Interceptor code itself. The BAM Interceptor provides a useful mechanism for implementing dynamic tracking.  It supports configurable ‘track points’.  These are grouped into named ‘locations’.  BAM uses the term ‘step’ as a synonym for ‘location’.   Each track point defines a BAM action such as starting an activity, extracting a data item, enabling a continuation, etc.  Each step defines a collection of track points. Understanding Steps The BAM Interceptor provides an abstract model for handling configuration of steps.  It doesn’t, however, define any specific configuration mechanism (e.g., config files, SSO, etc.)  It is up to the developer to decide how to store, manage and retrieve configuration data.  At run time, this configuration is used to register track points which then drive the BAM Interceptor. The full semantics of a step are not immediately clear from Microsoft’s documentation.  They represent a point in a business activity where BAM tracking occurs.  They are named locations in the code.  What is less obvious is that they always represent either the full tracking work for a given activity or a discrete fragment of that work which commences with the start of a new activity or the continuation of an existing activity.  The BAM Interceptor enforces this by throwing an error if no ‘start new’ or ‘continue’ track point is registered for a named location. This constraint implies that each step must marked with an ‘end activity’ track point.  One of the peculiarities of BAM semantics is that when an activity is continued under a correlated ID, you must first mark the current activity as ‘ended’ in order to ensure the right housekeeping is done in the database.  If you re-start an ended activity under the same ID, you will leave the BAM import tables in an inconsistent state.  A step, therefore, always represents an entire unit of work for a given activity or continuation ID.  For activities with continuation, each unit of work is termed a ‘fragment’. Instance and Fragment State Internally, the BAM Interceptor maintains state data at two levels.  First, it represents the overall state of the activity using a ‘trace instance’ token.  This token contains the name and ID of the activity together with a couple of state flags.  The second level of state represents a ‘trace fragment’.   As we have seen, a fragment of an activity corresponds directly to the notion of a ‘step’.  It is the unit of work done at a named location, and it must be bounded by start and end, or continue and end, actions. When handling continuations, the BAM Interceptor differentiates between ‘root’ fragments and other fragments.  Very simply, a root fragment represents the start of an activity.  Other fragments represent continuations.  This is where the logic breaks down.  The BAM Interceptor loses state integrity for root fragments when continuations are defined. Initialization Microsoft’s BAM Interceptor code supports the initialization of BAM Interceptors from track point configuration data.  The process starts by populating an Activity Interceptor Configuration object with an array of track points.  These can belong to different steps (aka ‘locations’) and can be registered in any order.  Once it is populated with track points, the Activity Interceptor Configuration is used to initialise the BAM Interceptor.  The BAM Interceptor sets up a hash table of array lists.  Each step is represented by an array list, and each array list contains an ordered set of track points.  The BAM Interceptor represents track points as ‘executable’ components.  When the OnStep method of the BAM Interceptor is called for a given step, the corresponding list of track points is retrieved and each track point is executed in turn.  Each track point retrieves any required data using a call back mechanism and then serializes a BAM trace fragment object representing a specific action (e.g., start, update, enable continuation, stop, etc.).  The serialised trace fragment is then handed off to a BAM event stream (buffered or direct) which takes the appropriate action. The Root of the Problem The logic breaks down in the Activity Interceptor Configuration.  Each Activity Interceptor Configuration is initialised with an instance of a ‘trace instance’ token.  This provides the basic metadata for the activity as a whole.  It contains the activity name and ID together with state flags indicating if the activity ID is a root (i.e., not a continuation fragment) and if it is completed.  This single token is then shared by all trace actions for all steps registered with the Activity Interceptor Configuration. Each trace instance token is automatically initialised to represent a root fragment.  However, if you subsequently register a ‘continuation’ step with the Activity Interceptor Configuration, the ‘root’ flag is set to false at the point the ‘continue’ track point is registered for that step.   If you use a ‘reflector’ tool to inspect the code for the ActivityInterceptorConfiguration class, you can see the flag being set in one of the overloads of the RegisterContinue method.    This makes no sense.  The trace instance token is shared across all the track points registered with the Activity Interceptor Configuration.  The Activity Interceptor Configuration is designed to hold track points for multiple steps.  The ‘root’ flag is clearly meant to be initialised to ‘true’ for the preliminary root fragment and then subsequently set to false at the point that a continuation step is processed.  Instead, if the Activity Interceptor Configuration contains a continuation step, it is changed to ‘false’ before the root fragment is processed.  This is clearly an error in logic. The problem causes havoc when the BAM Interceptor is used with continuation.  Effectively the root step is no longer processed correctly, and the ultimate effect is that the continued activity never completes!   This has nothing to do with the root and the continuation being in the same process.  It is due to a fundamental mistake of setting the ‘root’ flag to false for a continuation before the root fragment is processed. The Workaround Fortunately, it is easy to work around the bug.  The trick is to ensure that you create a new Activity Interceptor Configuration object for each individual step.  This may mean filtering your configuration data to extract the track points for a single step or grouping the configured track points into individual steps and the creating a separate Activity Interceptor Configuration for each group.  In my case, the first approach was required.  Here is what the amended code looks like: // Because of a logic error in Microsoft's code, a separate ActivityInterceptorConfiguration must be used // for each location. The following code extracts only those track points for a given step name (location). var trackPointGroup = from ResolutionService.TrackPoint tp in bamActivity.TrackPoints                       where (string)tp.Location == bamStepName                       select tp; var bamActivityInterceptorConfig =     new Microsoft.BizTalk.Bam.EventObservation.ActivityInterceptorConfiguration(activityName); foreach (var trackPoint in trackPointGroup) {     switch (trackPoint.Type)     {         case TrackPointType.Start:             bamActivityInterceptorConfig.RegisterStartNew(trackPoint.Location, trackPoint.ExtractionInfo);             break; etc… I’m using LINQ to filter a list of track points for those entries that correspond to a given step and then registering only those track points on a new instance of the ActivityInterceptorConfiguration class.   As soon as I re-wrote the code to do this, activities with continuations started to complete correctly.

    Read the article

  • Thank You for a Great Welcome for Oracle GoldenGate 11g Release 2

    - by Irem Radzik
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Yesterday morning we had two launch webcasts for Oracle GoldenGate 11g Release 2. I had the pleasure to present, as well as moderate the Q&A panels in both of these webcasts. Both events had hundreds of live attendees, sending us over 150 questions. Even though we left 30 minutes for Q&A, it was not nearly enough time to address for all the insightful questions our audience sent. Our product management team and I really appreciate the interaction we had yesterday and we are starting to respond back with outstanding questions today. Oracle GoldenGate’s new release launch also had great welcome from the media. You can find the links for various articles on the new release below: ITBusinessEdge Oracle Embraces Cross-Platform Data Integration Information Week: Oracle Real-Time Advance Taps Compressed Data Integration Developer News, Oracle GoldenGate Adds Deeper Oracle Integration, Extends Real-Time Performance CIO, Oracle GoldenGate Buddies Up with Sibling Software DBTA, Real-Time Data Integration: Oracle GoldenGate 11g Release 2 Now Available CBR Oracle unveils GoldenGate 11g Release 2 real-time data integration application In this blog, I want to address some of the frequently asked questions that came up during the webcasts. You can find the top questions and their answers along with related resources below. We will continue to address frequently asked questions via future blogs. Q: Will the new Integrated Capture for Oracle Database replace the Classic Capture? If not, which one do I use when? A: No, Classic Capture will be around for long time. Core platform specific features, bug fixes, and patches will be available for both Capture processes.Oracle Database specific features will be only available in the Integrated Capture. The Integrated Capture for Oracle Database is an option for users that need to capture data from compressed tables or need support for XML data types, XA on RAC. Users who don’t leverage these features should continue to use our Classic Capture. For more information on Oracle GoldenGate 11g Release 2 I recommend to check out the White paper: Oracle GoldenGate 11gR2 New Features as well as other technical white papers we have on OTN.                                                         For those of you coming to OpenWorld, please attend the related session: Extracting Data in Oracle GoldenGate Integrated Capture Mode, Monday Oct 1st 1:45pm Moscone South – 102 to learn more about this new feature. Q: What is new in Conflict Detection and Resolution? And how does it work? A: There are now pre-built functions to identify the conditions under which an error occurs and how to handle the record when the condition occurs. Error conditions handled include inserts into a target table where the row already exists, updates or deletes to target table rows that exist, but the original source data (before columns) do not match the existing data in the target row, and updates or deletes where the row does not exist in the target database table.Foreach of these conditions a method to handle the error is specified.  Please check out our recent blog on this topic and the White paper: Oracle GoldenGate 11gR2 New Features white paper.  Also, for those attending OpenWorld please attend the session: Best Practices for Conflict Detection and Resolution in Oracle GoldenGate for Active/Active-  Wednesday Oct 3rd  3:30pm Mascone 3000 Q: Does Oracle GoldenGate Veridata and the Management Pack require additional licenses, or is it incorporated with the GoldenGate license? A: Oracle GoldenGate Veridata and Oracle Management Pack for Oracle GoldenGate are additional products and require separate licenses. Please check out Oracle's price list here. Q: Does GoldenGate - Oracle Enterprise Manager Plug-in require additional license? A: Oracle Enterprise Manager Plug-in is included in the Oracle Management Pack for Oracle GoldenGate license, which is separate from Oracle GoldenGate license. There is no separate license for the Enterprise Manager Plug-in by itself. Oracle GoldenGate Monitor, Oracle GoldenGate Director, and Enterprise Manager Plug-in are included in the Management Pack for Oracle GoldenGate license. Please check out Management Pack for Oracle GoldenGate data sheet for more info on this product bundle. Q: Is Oracle GoldenGate replacing Oracle Streams product? A: Oracle GoldenGate is the strategic data replication product. Therefore, Oracle Streams will continue to be supported, but will not be actively enhanced. Rather, the best elements of Oracle Streams will be added to Oracle GoldenGate. Conflict management is one of them and with the latest release Oracle GoldenGate has a more advanced conflict management offering. Current customers depending on Oracle Streams will continue to be fully supported. Q: How is Oracle GoldenGate different than Oracle Data Integrator? A: Oracle Data Integrator is designed for fast bulk data movement and transformation between heterogeneous systems, while GoldenGate is designed for real-time movement of transactions between heterogeneous systems. These two products are completely complementary where GoldenGate provides low-impact real-time change data capture and delivery to a staging area on the target. And Oracle Data Integrator transforms this data and loads the DW tables. In fact, Oracle Data Integrator integrates with GoldenGate to use GoldenGate’s Capture process as one option for its CDC mechanism. We have several customers that deployed GoldenGate and ODI together to feed real-time data to their data warehousing solutions. Please also check out Oracle Data Integrator Changed Data Capture with Oracle GoldenGate Data Sheet (PDF). Thank you again very much for welcoming Oracle GoldenGate 11g Release 2 and stay in touch with us for more exciting news, updates, and events.

    Read the article

  • Creating a podcast feed for iTunes & BlackBerry users using WCF Syndication

    - by brian_ritchie
     In my previous post, I showed how to create a RSS feed using WCF Syndication.  Next, I'll show how to add the additional tags needed to turn a RSS feed into an iTunes podcast.   A podcast is merely a RSS feed with some special characteristics: iTunes RSS tags.  These are additional tags beyond the standard RSS spec.  Apple has a good page on the requirements. Audio file enclosure.  This is a link to the audio file (such as mp3) hosted by your site.  Apple doesn't host the audio, they just read the meta-data from the RSS feed into their system. The SyndicationFeed class supports both AttributeExtensions & ElementExtensions to add custom tags to the RSS feeds. A couple of points of interest in the code below: The imageUrl below provides the album cover for iTunes (170px × 170px) Each SyndicationItem corresponds to an audio episode in your podcast So, here's the code: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: XNamespace itunesNS = "http://www.itunes.com/dtds/podcast-1.0.dtd"; 2: string prefix = "itunes"; 3:   4: var feed = new SyndicationFeed(title, description, new Uri(link)); 5: feed.Categories.Add(new SyndicationCategory(category)); 6: feed.AttributeExtensions.Add(new XmlQualifiedName(prefix, 7: "http://www.w3.org/2000/xmlns/"), itunesNS.NamespaceName); 8: feed.Copyright = new TextSyndicationContent(copyright); 9: feed.Language = "en-us"; 10: feed.Copyright = new TextSyndicationContent(DateTime.Now.Year + " " + ownerName); 11: feed.ImageUrl = new Uri(imageUrl); 12: feed.LastUpdatedTime = DateTime.Now; 13: feed.Authors.Add(new SyndicationPerson() {Name=ownerName, Email=ownerEmail }); 14: var extensions = feed.ElementExtensions; 15: extensions.Add(new XElement(itunesNS + "subtitle", subTitle).CreateReader()); 16: extensions.Add(new XElement(itunesNS + "image", 17: new XAttribute("href", imageUrl)).CreateReader()); 18: extensions.Add(new XElement(itunesNS + "author", ownerName).CreateReader()); 19: extensions.Add(new XElement(itunesNS + "summary", description).CreateReader()); 20: extensions.Add(new XElement(itunesNS + "category", 21: new XAttribute("text", category), 22: new XElement(itunesNS + "category", 23: new XAttribute("text", subCategory))).CreateReader()); 24: extensions.Add(new XElement(itunesNS + "explicit", "no").CreateReader()); 25: extensions.Add(new XDocument( 26: new XElement(itunesNS + "owner", 27: new XElement(itunesNS + "name", ownerName), 28: new XElement(itunesNS + "email", ownerEmail))).CreateReader()); 29:   30: var feedItems = new List<SyndicationItem>(); 31: foreach (var i in Items) 32: { 33: var item = new SyndicationItem(i.title, null, new Uri(link)); 34: item.Summary = new TextSyndicationContent(i.summary); 35: item.Id = i.id; 36: if (i.publishedDate != null) 37: item.PublishDate = (DateTimeOffset)i.publishedDate; 38: item.Links.Add(new SyndicationLink() { 39: Title = i.title, Uri = new Uri(link), 40: Length = i.size, MediaType = i.mediaType }); 41: var itemExt = item.ElementExtensions; 42: itemExt.Add(new XElement(itunesNS + "subtitle", i.subTitle).CreateReader()); 43: itemExt.Add(new XElement(itunesNS + "summary", i.summary).CreateReader()); 44: itemExt.Add(new XElement(itunesNS + "duration", 45: string.Format("{0}:{1:00}:{2:00}", 46: i.duration.Hours, i.duration.Minutes, i.duration.Seconds) 47: ).CreateReader()); 48: itemExt.Add(new XElement(itunesNS + "keywords", i.keywords).CreateReader()); 49: itemExt.Add(new XElement(itunesNS + "explicit", "no").CreateReader()); 50: itemExt.Add(new XElement("enclosure", new XAttribute("url", i.url), 51: new XAttribute("length", i.size), new XAttribute("type", i.mediaType))); 52: feedItems.Add(item); 53: } 54:   55: feed.Items = feedItems; If you're hosting your podcast feed within a MVC project, you can use the code from my previous post to stream it. Once you have created your feed, you can use the Feed Validator tool to make sure it is up to spec.  Or you can use iTunes: Launch iTunes. In the Advanced menu, select Subscribe to Podcast. Enter your feed URL in the text box and click OK. After you've verified your feed is solid & good to go, you can submit it to iTunes.  Launch iTunes. In the left navigation column, click on iTunes Store to open the store. Once the store loads, click on Podcasts along the top navigation bar to go to the Podcasts page. In the right column of the Podcasts page, click on the Submit a Podcast link. Follow the instructions on the Submit a Podcast page. Here are the full instructions.  Once they have approved your podcast, it will be available within iTunes. RIM has also gotten into the podcasting business...which is great for BlackBerry users.  They accept the same enhanced-RSS feed that iTunes uses, so just create an account with them & submit the feed's URL.  It goes through a similar approval process to iTunes.  BlackBerry users must be on BlackBerry 6 OS or download the Podcast App from App World. In my next post, I'll show how to build the podcast feed dynamically from the ID3 tags within the MP3 files.

    Read the article

  • C#: Does an IDisposable in a Halted Iterator Dispose?

    - by James Michael Hare
    If that sounds confusing, let me give you an example. Let's say you expose a method to read a database of products, and instead of returning a List<Product> you return an IEnumerable<Product> in iterator form (yield return). This accomplishes several good things: The IDataReader is not passed out of the Data Access Layer which prevents abstraction leak and resource leak potentials. You don't need to construct a full List<Product> in memory (which could be very big) if you just want to forward iterate once. If you only want to consume up to a certain point in the list, you won't incur the database cost of looking up the other items. This could give us an example like: 1: // a sample data access object class to do standard CRUD operations. 2: public class ProductDao 3: { 4: private DbProviderFactory _factory = SqlClientFactory.Instance 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: // must create the connection 10: using (var con = _factory.CreateConnection()) 11: { 12: con.ConnectionString = _productsConnectionString; 13: con.Open(); 14:  15: // create the command 16: using (var cmd = _factory.CreateCommand()) 17: { 18: cmd.Connection = con; 19: cmd.CommandText = _getAllProductsStoredProc; 20: cmd.CommandType = CommandType.StoredProcedure; 21:  22: // get a reader and pass back all results 23: using (var reader = cmd.ExecuteReader()) 24: { 25: while(reader.Read()) 26: { 27: yield return new Product 28: { 29: Name = reader["product_name"].ToString(), 30: ... 31: }; 32: } 33: } 34: } 35: } 36: } 37: } The database details themselves are irrelevant. I will say, though, that I'm a big fan of using the System.Data.Common classes instead of your provider specific counterparts directly (SqlCommand, OracleCommand, etc). This lets you mock your data sources easily in unit testing and also allows you to swap out your provider in one line of code. In fact, one of the shared components I'm most proud of implementing was our group's DatabaseUtility library that simplifies all the database access above into one line of code in a thread-safe and provider-neutral way. I went with my own flavor instead of the EL due to the fact I didn't want to force internal company consumers to use the EL if they didn't want to, and it made it easy to allow them to mock their database for unit testing by providing a MockCommand, MockConnection, etc that followed the System.Data.Common model. One of these days I'll blog on that if anyone's interested. Regardless, you often have situations like the above where you are consuming and iterating through a resource that must be closed once you are finished iterating. For the reasons stated above, I didn't want to return IDataReader (that would force them to remember to Dispose it), and I didn't want to return List<Product> (that would force them to hold all products in memory) -- but the first time I wrote this, I was worried. What if you never consume the last item and exit the loop? Are the reader, command, and connection all disposed correctly? Of course, I was 99.999999% sure the creators of C# had already thought of this and taken care of it, but inspection in Reflector was difficult due to the nature of the state machines yield return generates, so I decided to try a quick example program to verify whether or not Dispose() will be called when an iterator is broken from outside the iterator itself -- i.e. before the iterator reports there are no more items. So I wrote a quick Sequencer class with a Dispose() method and an iterator for it. Yes, it is COMPLETELY contrived: 1: // A disposable sequence of int -- yes this is completely contrived... 2: internal class Sequencer : IDisposable 3: { 4: private int _i = 0; 5: private readonly object _mutex = new object(); 6:  7: // Constructs an int sequence. 8: public Sequencer(int start) 9: { 10: _i = start; 11: } 12:  13: // Gets the next integer 14: public int GetNext() 15: { 16: lock (_mutex) 17: { 18: return _i++; 19: } 20: } 21:  22: // Dispose the sequence of integers. 23: public void Dispose() 24: { 25: // force output immediately (flush the buffer) 26: Console.WriteLine("Disposed with last sequence number of {0}!", _i); 27: Console.Out.Flush(); 28: } 29: } And then I created a generator (infinite-loop iterator) that did the using block for auto-Disposal: 1: // simply defines an extension method off of an int to start a sequence 2: public static class SequencerExtensions 3: { 4: // generates an infinite sequence starting at the specified number 5: public static IEnumerable<int> GetSequence(this int starter) 6: { 7: // note the using here, will call Dispose() when block terminated. 8: using (var seq = new Sequencer(starter)) 9: { 10: // infinite loop on this generator, means must be bounded by caller! 11: while(true) 12: { 13: yield return seq.GetNext(); 14: } 15: } 16: } 17: } This is really the same conundrum as the database problem originally posed. Here we are using iteration (yield return) over a large collection (infinite sequence of integers). If we cut the sequence short by breaking iteration, will that using block exit and hence, Dispose be called? Well, let's see: 1: // The test program class 2: public class IteratorTest 3: { 4: // The main test method. 5: public static void Main() 6: { 7: Console.WriteLine("Going to consume 10 of infinite items"); 8: Console.Out.Flush(); 9:  10: foreach(var i in 0.GetSequence()) 11: { 12: // could use TakeWhile, but wanted to output right at break... 13: if(i >= 10) 14: { 15: Console.WriteLine("Breaking now!"); 16: Console.Out.Flush(); 17: break; 18: } 19:  20: Console.WriteLine(i); 21: Console.Out.Flush(); 22: } 23:  24: Console.WriteLine("Done with loop."); 25: Console.Out.Flush(); 26: } 27: } So, what do we see? Do we see the "Disposed" message from our dispose, or did the Dispose get skipped because from an "eyeball" perspective we should be locked in that infinite generator loop? Here's the results: 1: Going to consume 10 of infinite items 2: 0 3: 1 4: 2 5: 3 6: 4 7: 5 8: 6 9: 7 10: 8 11: 9 12: Breaking now! 13: Disposed with last sequence number of 11! 14: Done with loop. Yes indeed, when we break the loop, the state machine that C# generates for yield iterate exits the iteration through the using blocks and auto-disposes the IDisposable correctly. I must admit, though, the first time I wrote one, I began to wonder and that led to this test. If you've never seen iterators before (I wrote a previous entry here) the infinite loop may throw you, but you have to keep in mind it is not a linear piece of code, that every time you hit a "yield return" it cedes control back to the state machine generated for the iterator. And this state machine, I'm happy to say, is smart enough to clean up the using blocks correctly. I suspected those wily guys and gals at Microsoft engineered it well, and I wasn't disappointed. But, I've been bitten by assumptions before, so it's good to test and see. Yes, maybe you knew it would or figured it would, but isn't it nice to know? And as those campy 80s G.I. Joe cartoon public service reminders always taught us, "Knowing is half the battle...". Technorati Tags: C#,.NET

    Read the article

  • Why Is Faulty Behaviour In The .NET Framework Not Fixed?

    - by Alois Kraus
    Here is the scenario: You have a Windows Form Application that calls a method via Invoke or BeginInvoke which throws exceptions. Now you want to find out where the error did occur and how the method has been called. Here is the output we do get when we call Begin/EndInvoke or simply Invoke The actual code that was executed was like this:         private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }            [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));   The faulting method is called GenerateError which does throw a NotImplementedException exception and wraps it in a NotSupportedException.           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         } It is clear that the method F2 and F1 did actually throw these exceptions but we do not see them in the call stack. If we directly call the InvokingFunction and catch and print the exception we can find out very easily how we did get into this situation. We see methods F1,F2,GenerateError and InvokingFunction directly in the stack trace and we see that actually two exceptions did occur. Here is for comparison what we get from Invoke/EndInvoke System.NotImplementedException: Inner Exception     StackTrace:    at System.Windows.Forms.Control.MarshaledInvoke(Control caller, Delegate method, Object[] args, Boolean synchronous)     at System.Windows.Forms.Control.Invoke(Delegate method, Object[] args)     at WindowsFormsApplication1.AppForm.InvokingFunction(CallMode mode)     at WindowsFormsApplication1.AppForm.cInvoke_Click(Object sender, EventArgs e)     at System.Windows.Forms.Control.OnClick(EventArgs e)     at System.Windows.Forms.Button.OnClick(EventArgs e) The exception message is kept but the stack starts running from our Invoke call and not from the faulting method F2. We have therefore no clue where this exception did occur! The stack starts running at the method MarshaledInvoke because the exception is rethrown with the throw catchedException which resets the stack trace. That is bad but things are even worse because if previously lets say 5 exceptions did occur .NET will return only the first (innermost) exception. That does mean that we do not only loose the original call stack but all other exceptions and all data contained therein as well. It is a pity that MS does know about this and simply closes this issue as not important. Programmers will play a lot more around with threads than before thanks to TPL, PLINQ that do come with .NET 4. Multithreading is hyped quit a lot in the press and everybody wants to use threads. But if the .NET Framework makes it nearly impossible to track down the easiest UI multithreading issue I have a problem with that. The problem has been reported but obviously not been solved. .NET 4 Beta 2 did not have changed that dreaded GetBaseException call in MarshaledInvoke to return only the innermost exception of the complete exception stack. It is really time to fix this. WPF on the other hand does the right thing and wraps the exceptions inside a TargetInvocationException which makes much more sense. But Not everybody uses WPF for its daily work and Windows forms applications will still be used for a long time. Below is the code to repro the issues shown and how the exceptions can be rendered in a meaningful way. The default Exception.ToString implementation generates a hard to interpret stack if several nested exceptions did occur. using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.Threading; using System.Globalization; using System.Runtime.CompilerServices;   namespace WindowsFormsApplication1 {     public partial class AppForm : Form     {         enum CallMode         {             Direct = 0,             BeginInvoke = 1,             Invoke = 2         };           public AppForm()         {             InitializeComponent();             Thread.CurrentThread.CurrentUICulture = CultureInfo.InvariantCulture;             Application.ThreadException += new System.Threading.ThreadExceptionEventHandler(Application_ThreadException);         }           void Application_ThreadException(object sender, System.Threading.ThreadExceptionEventArgs e)         {             cOutput.Text = PrintException(e.Exception, 0, null).ToString();         }           private void cDirectUnhandled_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Direct);         }           private void cDirectCall_Click(object sender, EventArgs e)         {             try             {                 InvokingFunction(CallMode.Direct);             }             catch (Exception ex)             {                 cOutput.Text = PrintException(ex, 0, null).ToString();             }         }           private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }           private void cBeginInvokeCall_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.BeginInvoke);         }           [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Direct:                     GenerateError();                     break;                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));                     break;                 case CallMode.BeginInvoke:                     IAsyncResult res = this.BeginInvoke(new MethodInvoker(GenerateError));                     this.EndInvoke(res);                     break;             }         }           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         }           StringBuilder PrintException(Exception ex, int identLevel, StringBuilder sb)         {             StringBuilder builtStr = sb;             if( builtStr == null )                 builtStr = new StringBuilder();               if( ex == null )                 return builtStr;                 WriteLine(builtStr, String.Format("{0}: {1}", ex.GetType().FullName, ex.Message), identLevel);             WriteLine(builtStr, String.Format("StackTrace: {0}", ShortenStack(ex.StackTrace)), identLevel + 1);             builtStr.AppendLine();               return PrintException(ex.InnerException, ++identLevel, builtStr);         }               void WriteLine(StringBuilder sb, string msg, int identLevel)         {             foreach (string trimmedLine in SplitToLines(msg)                                            .Select( (line) => line.Trim()) )             {                 for (int i = 0; i < identLevel; i++)                     sb.Append('\t');                 sb.Append(trimmedLine);                 sb.AppendLine();             }         }           string ShortenStack(string stack)         {             int nonAppFrames = 0;             // Skip stack frames not part of our app but include two foreign frames and skip the rest             // If our stack frame is encountered reset counter to 0             return SplitToLines(stack)                               .Where((line) =>                               {                                   nonAppFrames = line.Contains("WindowsFormsApplication1") ? 0 : nonAppFrames + 1;                                   return nonAppFrames < 3;                               })                              .Select((line) => line)                              .Aggregate("", (current, line) => current + line + Environment.NewLine);         }           static char[] NewLines = Environment.NewLine.ToCharArray();         string[] SplitToLines(string str)         {             return str.Split(NewLines, StringSplitOptions.RemoveEmptyEntries);         }     } }

    Read the article

  • Using Sitecore RenderingContext Parameters as MVC controller action arguments

    - by Kyle Burns
    I have been working with the Technical Preview of Sitecore 6.6 on a project and have been for the most part happy with the way that Sitecore (which truly is an MVC implementation unto itself) has been expanded to support ASP.NET MVC. That said, getting up to speed with the combined platform has not been entirely without stumbles and today I want to share one area where Sitecore could have really made things shine from the "it just works" perspective. A couple days ago I was asked by a colleague about the usage of the "Parameters" field that is defined on Sitecore's Controller Rendering data template. Based on the standard way that Sitecore handles a field named Parameters, I was able to deduce that the field expected key/value pairs separated by the "&" character, but beyond that I wasn't sure and didn't see anything from a documentation perspective to guide me, so it was time to dig and find out where the data in the field was made available. My first thought was that it would be really nice if Sitecore handled the parameters in this field consistently with the way that ASP.NET MVC handles the various parameter collections on the HttpRequest object and automatically maps them to parameters of the action method executing. Being the hopeful sort, I configured a name/value pair on one of my renderings, added a parameter with matching name to the controller action and fired up the bugger to see... that the parameter was not populated. Having established that the field's value was not going to be presented to me the way that I had hoped it would, the next assumption that I would work on was that Sitecore would handle this field similar to how they handle other similar data and would plug it into some ambient object that I could reference from within the controller method. After a considerable amount of guessing, testing, and cracking code open with Redgate's Reflector (a must-have companion to Sitecore documentation), I found that the most direct way to access the parameter was through the ambient RenderingContext object using code similar to: string myArgument = string.Empty; var rc = Sitecore.Mvc.Presentation.RenderingContext.CurrentOrNull; if (rc != null) {     var parms = rc.Rendering.Parameters;     myArgument = parms["myArgument"]; } At this point, we know how this field is used out of the box from Sitecore and can provide information from Sitecore's Content Editor that will be available when the controller action is executing, but it feels a little dirty. In order to properly test the action method I would have to do a lot of setup work and possible use an isolation framework such as Pex and Moles to get at a value that my action method is dependent upon. Notice I said that my method is dependent upon the value but in order to meet that dependency I've accepted another dependency upon Sitecore's RenderingContext.  I'm a big believer in, when possible, ensuring that any piece of code explicitly advertises dependencies using the method signature, so I found myself still wanting this to work the same as if the parameters were in the request route, querystring, or form by being able to add a myArgument parameter to the action method and have this parameter populated by the framework. Lucky for us, the ASP.NET MVC framework is extremely flexible and provides some easy to grok and use extensibility points. ASP.NET MVC is able to provide information from the request as input parameters to controller actions because it uses objects which implement an interface called IValueProvider and have been registered to service the application. The most basic statement of responsibility for an IValueProvider implementation is "I know about some data which is indexed by key. If you hand me the key for a piece of data that I know about I give you that data". When preparing to invoke a controller action, the framework queries registered IValueProvider implementations with the name of each method argument to see if the ValueProvider can supply a value for the parameter. (the rest of this post will assume you're working along and make a lot more sense if you do) Let's pull Sitecore out of the equation for a second to simplify things and create an extremely simple IValueProvider implementation. For this example, I first create a new ASP.NET MVC3 project in Visual Studio, selecting "Internet Application" and otherwise taking defaults (I'm assuming that anyone reading this far in the post either already knows how to do this or will need to take a quick run through one of the many available basic MVC tutorials such as the MVC Music Store). Once the new project is created, go to the Index action of HomeController.  This action sets a Message property on the ViewBag to "Welcome to ASP.NET MVC!" and invokes the View, which has been coded to display the Message. For our example, we will remove the hard coded message from this controller (although we'll leave it just as hard coded somewhere else - this is sample code). For the first step in our exercise, add a string parameter to the Index action method called welcomeMessage and use the value of this argument to set the ViewBag.Message property. The updated Index action should look like: public ActionResult Index(string welcomeMessage) {     ViewBag.Message = welcomeMessage;     return View(); } This represents the entirety of the change that you will make to either the controller or view.  If you run the application now, the home page will display and no message will be presented to the user because no value was supplied to the Action method. Let's now write a ValueProvider to ensure this parameter gets populated. We'll start by creating a new class called StaticValueProvider. When the class is created, we'll update the using statements to ensure that they include the following: using System.Collections.Specialized; using System.Globalization; using System.Web.Mvc; With the appropriate using statements in place, we'll update the StaticValueProvider class to implement the IValueProvider interface. The System.Web.Mvc library already contains a pretty flexible dictionary-like implementation called NameValueCollectionValueProvider, so we'll just wrap that and let it do most of the real work for us. The completed class looks like: public class StaticValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider;     public StaticValueProvider(ControllerContext controllerContext)     {         var parameters = new NameValueCollection();         parameters.Add("welcomeMessage", "Hello from the value provider!");         _wrappedProvider = new NameValueCollectionValueProvider(parameters, CultureInfo.InvariantCulture);     }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } Notice that the only entry in the collection matches the name of the argument to our HomeController's Index action.  This is the important "secret sauce" that will make things work. We've got our new value provider now, but that's not quite enough to be finished. Mvc obtains IValueProvider instances using factories that are registered when the application starts up. These factories extend the abstract ValueProviderFactory class by initializing and returning the appropriate implementation of IValueProvider from the GetValueProvider method. While I wouldn't do so in production code, for the sake of this example, I'm going to add the following class definition within the StaticValueProvider.cs source file: public class StaticValueProviderFactory : ValueProviderFactory {     public override IValueProvider GetValueProvider(ControllerContext controllerContext)     {         return new StaticValueProvider(controllerContext);     } } Now that we have a factory, we can register it by adding the following line to the end of the Application_Start method in Global.asax.cs: ValueProviderFactories.Factories.Add(new StaticValueProviderFactory()); If you've done everything right to this point, you should be able to run the application and be presented with the home page reading "Hello from the value provider!". Now that you have the basics of the IValueProvider down, you have everything you need to enhance your Sitecore MVC implementation by adding an IValueProvider that exposes values from the ambient RenderingContext's Parameters property. I'll provide the code for the IValueProvider implementation (which should look VERY familiar) and you can use the work we've already done as a reference to create and register the factory: public class RenderingContextValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider = null;     public RenderingContextValueProvider(ControllerContext controllerContext)     {         var collection = new NameValueCollection();         var rc = RenderingContext.CurrentOrNull;         if (rc != null && rc.Rendering != null)         {             foreach(var parameter in rc.Rendering.Parameters)             {                 collection.Add(parameter.Key, parameter.Value);             }         }         _wrappedProvider = new NameValueCollectionValueProvider(collection, CultureInfo.InvariantCulture);         }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } In this post I've discussed the MVC IValueProvider used to map data to controller action method arguments and how this can be integrated into your Sitecore 6.6 MVC solution.

    Read the article

  • Automating deployments with the SQL Compare command line

    - by Jonathan Hickford
    In my previous article, “Five Tips to Get Your Organisation Releasing Software Frequently” I looked at how teams can automate processes to speed up release frequency. In this post, I’m looking specifically at automating deployments using the SQL Compare command line. SQL Compare compares SQL Server schemas and deploys the differences. It works very effectively in scenarios where only one deployment target is required – source and target databases are specified, compared, and a change script is automatically generated and applied. But if multiple targets exist, and pressure to increase the frequency of releases builds, this solution quickly becomes unwieldy.   This is where SQL Compare’s command line comes into its own. I’ve put together a PowerShell script that loops through the Servers table and pulls out the server and database, these are then passed to sqlcompare.exe to be used as target parameters. In the example the source database is a scripts folder, a folder structure of scripted-out database objects used by both SQL Source Control and SQL Compare. The script can easily be adapted to use schema snapshots.     -- Create a DeploymentTargets database and a Servers table CREATE DATABASE DeploymentTargets GO USE DeploymentTargets GO CREATE TABLE [dbo].[Servers]( [id] [int] IDENTITY(1,1) NOT NULL, [serverName] [nvarchar](50) NULL, [environment] [nvarchar](50) NULL, [databaseName] [nvarchar](50) NULL, CONSTRAINT [PK_Servers] PRIMARY KEY CLUSTERED ([id] ASC) ) GO -- Now insert your target server and database details INSERT INTO dbo.Servers ( serverName , environment , databaseName) VALUES ( N'myserverinstance' , N'myenvironment1' , N'mydb1') INSERT INTO dbo.Servers ( serverName , environment , databaseName) VALUES ( N'myserverinstance' , N'myenvironment2' , N'mydb2') Here’s the PowerShell script you can adapt for yourself as well. # We're holding the server names and database names that we want to deploy to in a database table. # We need to connect to that server to read these details $serverName = "" $databaseName = "DeploymentTargets" $authentication = "Integrated Security=SSPI" #$authentication = "User Id=xxx;PWD=xxx" # If you are using database authentication instead of Windows authentication. # Path to the scripts folder we want to deploy to the databases $scriptsPath = "SimpleTalk" # Path to SQLCompare.exe $SQLComparePath = "C:\Program Files (x86)\Red Gate\SQL Compare 10\sqlcompare.exe" # Create SQL connection string, and connection $ServerConnectionString = "Data Source=$serverName;Initial Catalog=$databaseName;$authentication" $ServerConnection = new-object system.data.SqlClient.SqlConnection($ServerConnectionString); # Create a Dataset to hold the DataTable $dataSet = new-object "System.Data.DataSet" "ServerList" # Create a query $query = "SET NOCOUNT ON;" $query += "SELECT serverName, environment, databaseName " $query += "FROM dbo.Servers; " # Create a DataAdapter to populate the DataSet with the results $dataAdapter = new-object "System.Data.SqlClient.SqlDataAdapter" ($query, $ServerConnection) $dataAdapter.Fill($dataSet) | Out-Null # Close the connection $ServerConnection.Close() # Populate the DataTable $dataTable = new-object "System.Data.DataTable" "Servers" $dataTable = $dataSet.Tables[0] #For every row in the DataTable $dataTable | FOREACH-OBJECT { "Server Name: $($_.serverName)" "Database Name: $($_.databaseName)" "Environment: $($_.environment)" # Compare the scripts folder to the database and synchronize the database to match # NB. Have set SQL Compare to abort on medium level warnings. $arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/AbortOnWarnings:Medium") # + @("/sync" ) # Commented out the 'sync' parameter for safety, write-host $arguments & $SQLComparePath $arguments "Exit Code: $LASTEXITCODE" # Some interesting variations # Check that every database matches a folder. # For example this might be a pre-deployment step to validate everything is at the same baseline state. # Or a post deployment script to validate the deployment worked. # An exit code of 0 means the databases are identical. # # $arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/Assertidentical") # Generate a report of the difference between the folder and each database. Generate a SQL update script for each database. # For example use this after the above to generate upgrade scripts for each database # Examine the warnings and the HTML diff report to understand how the script will change objects # #$arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/ScriptFile:update_$($_.environment+"_"+$_.databaseName).sql", "/report:update_$($_.environment+"_"+$_.databaseName).html" , "/reportType:Interactive", "/showWarnings", "/include:Identical") } It’s worth noting that the above example generates the deployment scripts dynamically. This approach should be problem-free for the vast majority of changes, but it is still good practice to review and test a pre-generated deployment script prior to deployment. An alternative approach would be to pre-generate a single deployment script using SQL Compare, and run this en masse to multiple targets programmatically using sqlcmd, or using a tool like SQL Multi Script.  You can use the /ScriptFile, /report, and /showWarnings flags to generate change scripts, difference reports and any warnings.  See the commented out example in the PowerShell: #$arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/ScriptFile:update_$($_.environment+"_"+$_.databaseName).sql", "/report:update_$($_.environment+"_"+$_.databaseName).html" , "/reportType:Interactive", "/showWarnings", "/include:Identical") There is a drawback of running a pre-generated deployment script; it assumes that a given database target hasn’t drifted from its expected state. Often there are (rightly or wrongly) many individuals within an organization who have permissions to alter the production database, and changes can therefore be made outside of the prescribed development processes. The consequence is that at deployment time, the applied script has been validated against a target that no longer represents reality. The solution here would be to add a check for drift prior to running the deployment script. This is achieved by using sqlcompare.exe to compare the target against the expected schema snapshot using the /Assertidentical flag. Should this return any differences (sqlcompare.exe Exit Code 79), a drift report is outputted instead of executing the deployment script.  See the commented out example. # $arguments = @("/scripts1:$($scriptsPath)", "/server2:$($_.serverName)", "/database2:$($_.databaseName)", "/Assertidentical") Any checks and processes that should be undertaken prior to a manual deployment, should also be happen during an automated deployment. You might think about triggering backups prior to deployment – even better, automate the verification of the backup too.   You can use SQL Compare’s command line interface along with PowerShell to automate multiple actions and checks that you need in your deployment process. Automation is a practical solution where multiple targets and a higher release cadence come into play. As we know, with great power comes great responsibility – responsibility to ensure that the necessary checks are made so deployments remain trouble-free.  (The code sample supplied in this post automates the simple dynamic deployment case – if you are considering more advanced automation, e.g. the drift checks, script generation, deploying to large numbers of targets and backup/verification, please email me at [email protected] for further script samples or if you have further questions)

    Read the article

  • Retrieving a list of eBay categories using the .NET SDK and GetCategoriesCall

    - by Bill Osuch
    eBay offers a .Net SDK for its Trading API - this post will show you the basics of making an API call and retrieving a list of current categories. You'll need the category ID(s) for any apps that post or search eBay. To start, download the latest SDK from https://www.x.com/developers/ebay/documentation-tools/sdks/dotnet and create a new console app project. Add a reference to the eBay.Service DLL, and a few using statements: using eBay.Service.Call; using eBay.Service.Core.Sdk; using eBay.Service.Core.Soap; I'm assuming at this point you've already joined the eBay Developer Network and gotten your app IDs and user tokens. If not: Join the developer program Generate tokens Next, add an app.config file that looks like this: <?xml version="1.0"?> <configuration>   <appSettings>     <add key="Environment.ApiServerUrl" value="https://api.ebay.com/wsapi"/>     <add key="UserAccount.ApiToken" value="YourBigLongToken"/>   </appSettings> </configuration> And then add the code to get the xml list of categories: ApiContext apiContext = GetApiContext(); GetCategoriesCall apiCall = new GetCategoriesCall(apiContext); apiCall.CategorySiteID = "0"; //Leave this commented out to retrieve all category levels (all the way down): //apiCall.LevelLimit = 4; //Uncomment this to begin at a specific parent category: //StringCollection parentCategories = new StringCollection(); //parentCategories.Add("63"); //apiCall.CategoryParent = parentCategories; apiCall.DetailLevelList.Add(DetailLevelCodeType.ReturnAll); CategoryTypeCollection cats = apiCall.GetCategories(); using (StreamWriter outfile = new StreamWriter(@"C:\Temp\EbayCategories.xml")) {    outfile.Write(apiCall.SoapResponse); } GetApiContext() (provided in the sample apps in the SDK) is required for any call:         static ApiContext GetApiContext()         {             //apiContext is a singleton,             //to avoid duplicate configuration reading             if (apiContext != null)             {                 return apiContext;             }             else             {                 apiContext = new ApiContext();                 //set Api Server Url                 apiContext.SoapApiServerUrl = ConfigurationManager.AppSettings["Environment.ApiServerUrl"];                 //set Api Token to access eBay Api Server                 ApiCredential apiCredential = new ApiCredential();                 apiCredential.eBayToken = ConfigurationManager.AppSettings["UserAccount.ApiToken"];                 apiContext.ApiCredential = apiCredential;                 //set eBay Site target to US                 apiContext.Site = SiteCodeType.US;                 return apiContext;             }         } Running this will give you a large (4 or 5 megs) XML file that looks something like this: <soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">    <soapenv:Body>       <GetCategoriesResponse >          <Timestamp>2012-06-06T16:03:46.158Z</Timestamp>          <Ack>Success</Ack>          <CorrelationID>d02dd9e3-295a-4268-9ea5-554eeb2e0e18</CorrelationID>          <Version>775</Version>          <Build>E775_CORE_BUNDLED_14891042_R1</Build> -          <CategoryArray>             <Category>                <BestOfferEnabled>true</BestOfferEnabled>                <AutoPayEnabled>true</AutoPayEnabled>                <CategoryID>20081</CategoryID>                <CategoryLevel>1</CategoryLevel>                <CategoryName>Antiques</CategoryName>                <CategoryParentID>20081</CategoryParentID>             </Category>             <Category>                <BestOfferEnabled>true</BestOfferEnabled>                <AutoPayEnabled>true</AutoPayEnabled>                <CategoryID>37903</CategoryID>                <CategoryLevel>2</CategoryLevel>                <CategoryName>Antiquities</CategoryName>                <CategoryParentID>20081</CategoryParentID>             </Category> (etc.) You could work with this, but I wanted a nicely nested view, like this: <CategoryArray>    <Category Name='Antiques' ID='20081' Level='1'>       <Category Name='Antiquities' ID='37903' Level='2'/> </CategoryArray> ...so I transformed the xml: private void TransformXML(CategoryTypeCollection cats)         {             XmlElement topLevelElement = null;             XmlElement childLevelElement = null;             XmlNode parentNode = null;             string categoryString = "";             XmlDocument returnDoc = new XmlDocument();             XmlElement root = returnDoc.CreateElement("CategoryArray");             returnDoc.AppendChild(root);             XmlNode rootNode = returnDoc.SelectSingleNode("/CategoryArray");             //Loop through CategoryTypeCollection             foreach (CategoryType category in cats)             {                 if (category.CategoryLevel == 1)                 {                     //Top-level category, so we know we can just add it                     topLevelElement = returnDoc.CreateElement("Category");                     topLevelElement.SetAttribute("Name", category.CategoryName);                     topLevelElement.SetAttribute("ID", category.CategoryID);                     rootNode.AppendChild(topLevelElement);                 }                 else                 {                     // Level number will determine how many Category nodes we are deep                     categoryString = "";                     for (int x = 1; x < category.CategoryLevel; x++)                     {                         categoryString += "/Category";                     }                     parentNode = returnDoc.SelectSingleNode("/CategoryArray" + categoryString + "[@ID='" + category.CategoryParentID[0] + "']");                     childLevelElement = returnDoc.CreateElement("Category");                     childLevelElement.SetAttribute("Name", category.CategoryName);                     childLevelElement.SetAttribute("ID", category.CategoryID);                     parentNode.AppendChild(childLevelElement);                 }             }             returnDoc.Save(@"C:\Temp\EbayCategories-Modified.xml");         } Yes, there are probably much cleaner ways of dealing with it, but I'm not an xml expert… Keep in mind, eBay categories do not change on a regular basis, so you should be able to cache this data (either in a file or database) for some time. The xml returns a CategoryVersion node that you can use to determine if the category list has changed. Technorati Tags: Csharp, eBay

    Read the article

  • Real World Nuget

    - by JoshReuben
    Why Nuget A higher level of granularity for managing references When you have solutions of many projects that depend on solutions of many projects etc à escape from Solution Hell. Links · Using A GUI (Package Explorer) to build packages - http://docs.nuget.org/docs/creating-packages/using-a-gui-to-build-packages · Creating a Nuspec File - http://msdn.microsoft.com/en-us/vs2010trainingcourse_aspnetmvcnuget_topic2.aspx · consuming a Nuget Package - http://msdn.microsoft.com/en-us/vs2010trainingcourse_aspnetmvcnuget_topic3 · Nuspec reference - http://docs.nuget.org/docs/reference/nuspec-reference · updating packages - http://nuget.codeplex.com/wikipage?title=Updating%20All%20Packages · versioning - http://docs.nuget.org/docs/reference/versioning POC Folder Structure POC Setup Steps · Install package explorer · Source o Create a source solution – configure output directory for projects (Project > Properties > Build > Output Path) · Package o Add assemblies to package from output directory (D&D)- add net folder o File > Export – save .nuspec files and lib contents <?xml version="1.0" encoding="utf-16"?> <package > <metadata> <id>MyPackage</id> <version>1.0.0.3</version> <title /> <authors>josh-r</authors> <owners /> <requireLicenseAcceptance>false</requireLicenseAcceptance> <description>My package description.</description> <summary /> </metadata> </package> o File > Save – saves .nupkg file · Create Target Solution o In Tools > Options: Configure package source & Add package Select projects: Output from package manager (powershell console) ------- Installing...MyPackage 1.0.0 ------- Added file 'NugetSource.AssemblyA.dll' to folder 'MyPackage.1.0.0\lib'. Added file 'NugetSource.AssemblyA.pdb' to folder 'MyPackage.1.0.0\lib'. Added file 'NugetSource.AssemblyB.dll' to folder 'MyPackage.1.0.0\lib'. Added file 'NugetSource.AssemblyB.pdb' to folder 'MyPackage.1.0.0\lib'. Added file 'MyPackage.1.0.0.nupkg' to folder 'MyPackage.1.0.0'. Successfully installed 'MyPackage 1.0.0'. Added reference 'NugetSource.AssemblyA' to project 'AssemblyX' Added reference 'NugetSource.AssemblyB' to project 'AssemblyX' Added file 'packages.config'. Added file 'packages.config' to project 'AssemblyX' Added file 'repositories.config'. Successfully added 'MyPackage 1.0.0' to AssemblyX. ============================== o Packages folder created at solution level o Packages.config file generated in each project: <?xml version="1.0" encoding="utf-8"?> <packages>   <package id="MyPackage" version="1.0.0" targetFramework="net40" /> </packages> A local Packages folder is created for package versions installed: Each folder contains the downloaded .nupkg file and its unpacked contents – eg of dlls that the project references Note: this folder is not checked in UpdatePackages o Configure Package Manager to automatically check for updates o Browse packages - It automatically picked up the updates Update Procedure · Modify source · Change source version in assembly info · Build source · Open last package in package explorer · Increment package version number and re-add assemblies · Save package with new version number and export its definition · In target solution – Tools > Manage Nuget Packages – click on All to trigger refresh , then click on recent packages to see updates · If problematic, delete packages folder Versioning uninstall-package mypackage install-package mypackage –version 1.0.0.3 uninstall-package mypackage install-package mypackage –version 1.0.0.4 Dependencies · <?xml version="1.0" encoding="utf-16"?> <package xmlns="http://schemas.microsoft.com/packaging/2012/06/nuspec.xsd"> <metadata> <id>MyDependentPackage</id> <version>1.0.0</version> <title /> <authors>josh-r</authors> <owners /> <requireLicenseAcceptance>false</requireLicenseAcceptance> <description>My package description.</description> <dependencies> <group targetFramework=".NETFramework4.0"> <dependency id="MyPackage" version="1.0.0.4" /> </group> </dependencies> </metadata> </package> Using NuGet without committing packages to source control http://docs.nuget.org/docs/workflows/using-nuget-without-committing-packages Right click on the Solution node in Solution Explorer and select Enable NuGet Package Restore. — Recall that packages folder is not part of solution If you get downloading package ‘Nuget.build’ failed, config proxy to support certificate for https://nuget.org/api/v2/ & allow unrestricted access to packages.nuget.org To test connectivity: get-package –listavailable To test Nuget Package Restore – delete packages folder and open vs as admin. In nugget msbuild: <Import Project="$(SolutionDir)\.nuget\nuget.targets" /> TFSBuild Integration Modify Nuget.Targets file <RestorePackages Condition="  '$(RestorePackages)' == '' "> True </RestorePackages> … <PackageSource Include="\\IL-CV-004-W7D\Packages" /> Add System Environment variable EnableNuGetPackageRestore=true & restart the “visual studio team foundation build service host” service. Important: Ensure Network Service has access to Packages folder Nugetter TFS Build integration Add Nugetter build process templates to TFS source control For Build Controller - Specify location of custom assemblies Generate .nuspec file from Package Explorer: File > Export Edit the file elements – remove path info from src and target attributes <?xml version="1.0" encoding="utf-16"?> <package xmlns="http://schemas.microsoft.com/packaging/2012/06/nuspec.xsd">     <metadata>         <id>Common</id>         <version>1.0.0</version>         <title />         <authors>josh-r</authors>         <owners />         <requireLicenseAcceptance>false</requireLicenseAcceptance>         <description>My package description.</description>         <dependencies>             <group targetFramework=".NETFramework3.5" />         </dependencies>     </metadata>     <files>         <file src="CommonTypes.dll" target="CommonTypes.dll" />         <file src="CommonTypes.pdb" target="CommonTypes.pdb" /> … Add .nuspec file to solution so that it is available for build: Dev\NovaNuget\Common\NuSpec\common.1.0.0.nuspec Add a Build Process Definition based on the Nugetter build process template: Configure the build process – specify: · .sln to build · Base path (output directory) · Nuget.exe file path · .nuspec file path Copy DLLs to a binary folder 1) Set copy local for an assembly reference to false 2)  MSBuild Copy Task – modify .csproj file: http://msdn.microsoft.com/en-us/library/3e54c37h.aspx <ItemGroup>     <MySourceFiles Include="$(MSBuildProjectDirectory)\..\SourceAssemblies\**\*.*" />   </ItemGroup>     <Target Name="BeforeBuild">     <Copy SourceFiles="@(MySourceFiles)" DestinationFolder="bin\debug\SourceAssemblies" />   </Target> 3) Set Probing assembly search path from app.config - http://msdn.microsoft.com/en-us/library/823z9h8w(v=vs.80).aspx -                 <?xml version="1.0" encoding="utf-8" ?> <configuration>   <runtime>     <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">       <probing privatePath="SourceAssemblies"/>     </assemblyBinding>   </runtime> </configuration> Forcing 'copy local = false' The following generic powershell script was added to the packages install.ps1: param($installPath, $toolsPath, $package, $project) if( $project.Object.Project.Name -ne "CopyPackages") { $asms = $package.AssemblyReferences | %{$_.Name} foreach ($reference in $project.Object.References) { if ($asms -contains $reference.Name + ".dll") { $reference.CopyLocal = $false; } } } An empty project named "CopyPackages" was added to the solution - it references all the packages and is the only one set to CopyLocal="true". No MSBuild knowledge required.

    Read the article

  • How To: Using spatial data with Entity Framework and Connector/Net

    - by GABMARTINEZ
    One of the new features introduced in Entity Framework 5.0 is the incorporation of some new types of data within an Entity Data Model: the spatial data types. These types allow us to perform operations on coordinates values in an easier way. There's no need to add stored routines or functions for every operation among these geometry types, now the user can have the alternative to put this logic on his application or keep it in the database. In the new 6.7.4 version there's also this new feature incorporated to Connector/Net library so our users can start exploring it and could provide us some feedback or comments about this new functionality. Through this tutorial on how to create a Code First Entity Model with a geometry column, we'll show an example on using Geometry types and some common operations when using geometry types inside an application. Requirements: - Connector/Net 6.7.4 - Entity Framework 5.0 version - .NET Framework 4.5 version - Basic understanding on Entity Framework and C# language. - An installed and running instance of MySQL Server 5.5.x or 5.6.10 version- Visual Studio 2012. Step One: Create a new Console Application  Inside Visual Studio select File->New Project menu option and select the Console Application template. Also make sure the .Net 4.5 version is selected so the new features for EF 5.0 will work with the application. Step Two: Add the Entity Framework Package For adding the Entity Framework Package there is more than one option: the package manager console or the Manage Nuget Packages option dialog. If you want to open the Package Manager Console, go to the Tools Menu -> Library Package Manager -> Package Manager Console. On the Package Manager Console Type:Install-Package EntityFrameworkThis will add the reference to the project of the latest released No alpha version of Entity Framework. Step Three: Adding Entity class and DBContext We'll add a simple class that represents a table entity to save some places and its location using a DBGeometry column that will be mapped to a Geometry type in MySQL. After that some operations can be performed using this data. public class MyPlace { [Key] public int Id { get; set; } public string name { get; set; } public DbGeometry location { get; set; } } public class JourneyDb : DbContext { public DbSet<MyPlace> MyPlaces { get; set; } }  Also make sure to add the connection string to the App.Config file as in the example: <?xml version="1.0" encoding="utf-8"?> <configuration>   <configSections>     <!-- For more information on Entity Framework configuration, visit http://go.microsoft.com/fwlink/?LinkID=237468 -->     <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework, Version=5.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" requirePermission="false" />   </configSections>   <startup>     <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />   </startup>   <connectionStrings>     <add name="JourneyDb" connectionString="server=localhost;userid=root;pwd=;database=journeydb" providerName="MySql.Data.MySqlClient"/>   </connectionStrings>   <entityFramework>     </entityFramework> </configuration> Note also that the <entityFramework> section is empty.Step Four: Adding some new records.On the Program.cs file add the following code for the Main method so the Database gets created and also some new data can be added to the new table. This code adds some records containing some determinate locations. After being added a distance function will be used to know how much distance has each location in reference to the Queens Village Station in New York. static void Main(string[] args)    {     using (JourneyDb cxt = new JourneyDb())      {        cxt.Database.Delete();        cxt.Database.Create();         cxt.MyPlaces.Add(new MyPlace()        {          name = "JFK INTERNATIONAL AIRPORT OF NEW YORK",          location = DbGeometry.FromText("POINT(40.644047 -73.782291)"),        });         cxt.MyPlaces.Add(new MyPlace()        {          name = "ALLEY POND PARK",          location = DbGeometry.FromText("POINT(40.745696 -73.742638)"),        });       cxt.MyPlaces.Add(new MyPlace()        {          name = "CUNNINGHAM PARK",          location = DbGeometry.FromText("POINT(40.735031 -73.768387)"),        });         cxt.MyPlaces.Add(new MyPlace()        {          name = "QUEENS VILLAGE STATION",          location = DbGeometry.FromText("POINT(40.717957 -73.736501)"),        });         cxt.SaveChanges();         var points = (from p in cxt.MyPlaces                      select new { p.name, p.location });        foreach (var item in points)       {         Console.WriteLine("Location " + item.name + " has a distance in Km from Queens Village Station " + DbGeometry.FromText("POINT(40.717957 -73.736501)").Distance(item.location) * 100);       }       Console.ReadKey();      }  }}Output : Location JFK INTERNATIONAL AIRPORT OF NEW YORK has a distance from Queens Village Station 8.69448802402959 Km. Location ALLEY POND PARK has a distance from Queens Village Station 2.84097675104912 Km. Location CUNNINGHAM PARK has a distance from Queens Village Station 3.61695793727275 Km. Location QUEENS VILLAGE STATION has a distance from Queens Village Station 0 Km. Conclusion:Adding spatial data to a table is easier than before when having Entity Framework 5.0. This new Entity Framework feature that handles spatial data columns within the Data layer has a lot of integrated functions and methods toease this type of tasks.Notes:This version of Connector/Net is just released as GA so is preatty much stable to be used on a ProductionEnvironment. Please send us your comments or questions using this blog or at the Forums where we keep answering any questions you have about Connector/Net and MySQL Server.A copy of this sample project can be downloaded here. This application does not include any library so you will haveto add them before running it. Happly MySQL/.Net Coding.

    Read the article

  • MapReduce in DryadLINQ and PLINQ

    - by JoshReuben
    MapReduce See http://en.wikipedia.org/wiki/Mapreduce The MapReduce pattern aims to handle large-scale computations across a cluster of servers, often involving massive amounts of data. "The computation takes a set of input key/value pairs, and produces a set of output key/value pairs. The developer expresses the computation as two Func delegates: Map and Reduce. Map - takes a single input pair and produces a set of intermediate key/value pairs. The MapReduce function groups results by key and passes them to the Reduce function. Reduce - accepts an intermediate key I and a set of values for that key. It merges together these values to form a possibly smaller set of values. Typically just zero or one output value is produced per Reduce invocation. The intermediate values are supplied to the user's Reduce function via an iterator." the canonical MapReduce example: counting word frequency in a text file.     MapReduce using DryadLINQ see http://research.microsoft.com/en-us/projects/dryadlinq/ and http://connect.microsoft.com/Dryad DryadLINQ provides a simple and straightforward way to implement MapReduce operations. This The implementation has two primary components: A Pair structure, which serves as a data container. A MapReduce method, which counts word frequency and returns the top five words. The Pair Structure - Pair has two properties: Word is a string that holds a word or key. Count is an int that holds the word count. The structure also overrides ToString to simplify printing the results. The following example shows the Pair implementation. public struct Pair { private string word; private int count; public Pair(string w, int c) { word = w; count = c; } public int Count { get { return count; } } public string Word { get { return word; } } public override string ToString() { return word + ":" + count.ToString(); } } The MapReduce function  that gets the results. the input data could be partitioned and distributed across the cluster. 1. Creates a DryadTable<LineRecord> object, inputTable, to represent the lines of input text. For partitioned data, use GetPartitionedTable<T> instead of GetTable<T> and pass the method a metadata file. 2. Applies the SelectMany operator to inputTable to transform the collection of lines into collection of words. The String.Split method converts the line into a collection of words. SelectMany concatenates the collections created by Split into a single IQueryable<string> collection named words, which represents all the words in the file. 3. Performs the Map part of the operation by applying GroupBy to the words object. The GroupBy operation groups elements with the same key, which is defined by the selector delegate. This creates a higher order collection, whose elements are groups. In this case, the delegate is an identity function, so the key is the word itself and the operation creates a groups collection that consists of groups of identical words. 4. Performs the Reduce part of the operation by applying Select to groups. This operation reduces the groups of words from Step 3 to an IQueryable<Pair> collection named counts that represents the unique words in the file and how many instances there are of each word. Each key value in groups represents a unique word, so Select creates one Pair object for each unique word. IGrouping.Count returns the number of items in the group, so each Pair object's Count member is set to the number of instances of the word. 5. Applies OrderByDescending to counts. This operation sorts the input collection in descending order of frequency and creates an ordered collection named ordered. 6. Applies Take to ordered to create an IQueryable<Pair> collection named top, which contains the 100 most common words in the input file, and their frequency. Test then uses the Pair object's ToString implementation to print the top one hundred words, and their frequency.   public static IQueryable<Pair> MapReduce( string directory, string fileName, int k) { DryadDataContext ddc = new DryadDataContext("file://" + directory); DryadTable<LineRecord> inputTable = ddc.GetTable<LineRecord>(fileName); IQueryable<string> words = inputTable.SelectMany(x => x.line.Split(' ')); IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x); IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count())); IQueryable<Pair> ordered = counts.OrderByDescending(x => x.Count); IQueryable<Pair> top = ordered.Take(k);   return top; }   To Test: IQueryable<Pair> results = MapReduce(@"c:\DryadData\input", "TestFile.txt", 100); foreach (Pair words in results) Debug.Print(words.ToString());   Note: DryadLINQ applications can use a more compact way to represent the query: return inputTable         .SelectMany(x => x.line.Split(' '))         .GroupBy(x => x)         .Select(x => new Pair(x.Key, x.Count()))         .OrderByDescending(x => x.Count)         .Take(k);     MapReduce using PLINQ The pattern is relevant even for a single multi-core machine, however. We can write our own PLINQ MapReduce in a few lines. the Map function takes a single input value and returns a set of mapped values àLINQ's SelectMany operator. These are then grouped according to an intermediate key à LINQ GroupBy operator. The Reduce function takes each intermediate key and a set of values for that key, and produces any number of outputs per key à LINQ SelectMany again. We can put all of this together to implement MapReduce in PLINQ that returns a ParallelQuery<T> public static ParallelQuery<TResult> MapReduce<TSource, TMapped, TKey, TResult>( this ParallelQuery<TSource> source, Func<TSource, IEnumerable<TMapped>> map, Func<TMapped, TKey> keySelector, Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce) { return source .SelectMany(map) .GroupBy(keySelector) .SelectMany(reduce); } the map function takes in an input document and outputs all of the words in that document. The grouping phase groups all of the identical words together, such that the reduce phase can then count the words in each group and output a word/count pair for each grouping: var files = Directory.EnumerateFiles(dirPath, "*.txt").AsParallel(); var counts = files.MapReduce( path => File.ReadLines(path).SelectMany(line => line.Split(delimiters)), word => word, group => new[] { new KeyValuePair<string, int>(group.Key, group.Count()) });

    Read the article

  • Protecting Cookies: Once and For All

    - by Your DisplayName here!
    Every once in a while you run into a situation where you need to temporarily store data for a user in a web app. You typically have two options here – either store server-side or put the data into a cookie (if size permits). When you need web farm compatibility in addition – things become a little bit more complicated because the data needs to be available on all nodes. In my case I went for a cookie – but I had some requirements Cookie must be protected from eavesdropping (sent only over SSL) and client script Cookie must be encrypted and signed to be protected from tampering with Cookie might become bigger than 4KB – some sort of overflow mechanism would be nice I really didn’t want to implement another cookie protection mechanism – this feels wrong and btw can go wrong as well. WIF to the rescue. The session management feature already implements the above requirements but is built around de/serializing IClaimsPrincipals into cookies and back. But if you go one level deeper you will find the CookieHandler and CookieTransform classes which contain all the needed functionality. public class ProtectedCookie {     private List<CookieTransform> _transforms;     private ChunkedCookieHandler _handler = new ChunkedCookieHandler();     // DPAPI protection (single server)     public ProtectedCookie()     {         _transforms = new List<CookieTransform>             {                 new DeflateCookieTransform(),                 new ProtectedDataCookieTransform()             };     }     // RSA protection (load balanced)     public ProtectedCookie(X509Certificate2 protectionCertificate)     {         _transforms = new List<CookieTransform>             {                 new DeflateCookieTransform(),                 new RsaSignatureCookieTransform(protectionCertificate),                 new RsaEncryptionCookieTransform(protectionCertificate)             };     }     // custom transform pipeline     public ProtectedCookie(List<CookieTransform> transforms)     {         _transforms = transforms;     }     public void Write(string name, string value, DateTime expirationTime)     {         byte[] encodedBytes = EncodeCookieValue(value);         _handler.Write(encodedBytes, name, expirationTime);     }     public void Write(string name, string value, DateTime expirationTime, string domain, string path)     {         byte[] encodedBytes = EncodeCookieValue(value);         _handler.Write(encodedBytes, name, path, domain, expirationTime, true, true, HttpContext.Current);     }     public string Read(string name)     {         var bytes = _handler.Read(name);         if (bytes == null || bytes.Length == 0)         {             return null;         }         return DecodeCookieValue(bytes);     }     public void Delete(string name)     {         _handler.Delete(name);     }     protected virtual byte[] EncodeCookieValue(string value)     {         var bytes = Encoding.UTF8.GetBytes(value);         byte[] buffer = bytes;         foreach (var transform in _transforms)         {             buffer = transform.Encode(buffer);         }         return buffer;     }     protected virtual string DecodeCookieValue(byte[] bytes)     {         var buffer = bytes;         for (int i = _transforms.Count; i > 0; i—)         {             buffer = _transforms[i - 1].Decode(buffer);         }         return Encoding.UTF8.GetString(buffer);     } } HTH

    Read the article

< Previous Page | 244 245 246 247 248 249 250 251 252 253 254 255  | Next Page >