Search Results

Search found 611 results on 25 pages for 'bare'.

Page 25/25 | < Previous Page | 21 22 23 24 25 

  • Git apache : unable to push via http

    - by GlinesMome
    I have to setup a server which can allow http vcs management (such as git and svn). svn support works well, but I have some trouble with git. Actual configuration: CentOS 5 Apache 2.2.8 Git 1.7.4.1 The /etc/httpd/conf/httpd.conf content: ServerTokens OS ServerRoot "/etc/httpd" PidFile run/httpd.pid Timeout 120 KeepAlive On MaxKeepAliveRequests 100 KeepAliveTimeout 10 <IfModule prefork.c> StartServers 8 MinSpareServers 5 MaxSpareServers 20 ServerLimit 256 MaxClients 256 MaxRequestsPerChild 4000 </IfModule> <IfModule worker.c> StartServers 2 MaxClients 150 MinSpareThreads 25 MaxSpareThreads 75 ThreadsPerChild 25 MaxRequestsPerChild 0 </IfModule> Listen 80 LoadModule auth_basic_module modules/mod_auth_basic.so LoadModule auth_digest_module modules/mod_auth_digest.so LoadModule authn_file_module modules/mod_authn_file.so LoadModule authn_alias_module modules/mod_authn_alias.so LoadModule authn_anon_module modules/mod_authn_anon.so LoadModule authn_dbm_module modules/mod_authn_dbm.so LoadModule authn_default_module modules/mod_authn_default.so LoadModule authz_host_module modules/mod_authz_host.so LoadModule authz_user_module modules/mod_authz_user.so LoadModule authz_owner_module modules/mod_authz_owner.so LoadModule authz_groupfile_module modules/mod_authz_groupfile.so LoadModule authz_dbm_module modules/mod_authz_dbm.so LoadModule authz_default_module modules/mod_authz_default.so LoadModule ldap_module modules/mod_ldap.so LoadModule authnz_ldap_module modules/mod_authnz_ldap.so LoadModule include_module modules/mod_include.so LoadModule log_config_module modules/mod_log_config.so LoadModule logio_module modules/mod_logio.so LoadModule env_module modules/mod_env.so LoadModule ext_filter_module modules/mod_ext_filter.so LoadModule mime_magic_module modules/mod_mime_magic.so LoadModule expires_module modules/mod_expires.so LoadModule deflate_module modules/mod_deflate.so LoadModule headers_module modules/mod_headers.so LoadModule usertrack_module modules/mod_usertrack.so LoadModule setenvif_module modules/mod_setenvif.so LoadModule mime_module modules/mod_mime.so LoadModule dav_module modules/mod_dav.so LoadModule status_module modules/mod_status.so LoadModule autoindex_module modules/mod_autoindex.so LoadModule info_module modules/mod_info.so LoadModule dav_fs_module modules/mod_dav_fs.so LoadModule vhost_alias_module modules/mod_vhost_alias.so LoadModule negotiation_module modules/mod_negotiation.so LoadModule dir_module modules/mod_dir.so LoadModule actions_module modules/mod_actions.so LoadModule speling_module modules/mod_speling.so LoadModule userdir_module modules/mod_userdir.so LoadModule alias_module modules/mod_alias.so LoadModule rewrite_module modules/mod_rewrite.so LoadModule proxy_module modules/mod_proxy.so LoadModule proxy_balancer_module modules/mod_proxy_balancer.so LoadModule proxy_ftp_module modules/mod_proxy_ftp.so LoadModule proxy_http_module modules/mod_proxy_http.so LoadModule proxy_connect_module modules/mod_proxy_connect.so LoadModule cache_module modules/mod_cache.so LoadModule suexec_module modules/mod_suexec.so LoadModule disk_cache_module modules/mod_disk_cache.so LoadModule file_cache_module modules/mod_file_cache.so LoadModule mem_cache_module modules/mod_mem_cache.so LoadModule cgi_module modules/mod_cgi.so LoadModule mysql_auth_module modules/mod_auth_mysql.so LoadModule passenger_module /usr/lib/ruby/gems/1.8/gems/passenger-3.0.2/ext/apache2/mod_passenger.so PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-3.0.2 PassengerRuby /usr/bin/ruby Include conf.d/*.conf User apache Group apache ServerAdmin aedi.admin@domain ServerName s1.domain UseCanonicalName Off DocumentRoot "/data/www/" <Directory /> Options FollowSymLinks AllowOverride None </Directory> <Directory "/data/www/"> Options -Indexes FollowSymLinks AllowOverride All Order allow,deny Allow from all </Directory> <IfModule mod_userdir.c> UserDir disable </IfModule> DirectoryIndex index.html index.html.var AccessFileName .htaccess <Files ~ "^\.ht"> Order allow,deny Deny from all </Files> TypesConfig /etc/mime.types DefaultType text/plain <IfModule mod_mime_magic.c> MIMEMagicFile conf/magic </IfModule> HostnameLookups Off ErrorLog logs/error_log LogLevel warn LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined LogFormat "%h %l %u %t \"%r\" %>s %b" common LogFormat "%{Referer}i -> %U" referer LogFormat "%{User-agent}i" agent CustomLog logs/access_log combined ServerSignature On Alias /icons/ "/var/www/icons/" <Directory "/var/www/icons"> Options Indexes MultiViews AllowOverride None Order allow,deny Allow from all </IfModule> </Directory> <IfModule mod_dav_fs.c> DAVLockDB /var/lib/dav/lockdb ScriptAlias /cgi-bin/ "/var/www/cgi-bin/" <Directory "/var/www/cgi-bin"> AllowOverride None Options None Order allow,deny Allow from all </Directory> IndexOptions FancyIndexing VersionSort NameWidth=* HTMLTable AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip AddIconByType (TXT,/icons/text.gif) text/* AddIconByType (IMG,/icons/image2.gif) image/* AddIconByType (SND,/icons/sound2.gif) audio/* AddIconByType (VID,/icons/movie.gif) video/* AddIcon /icons/binary.gif .bin .exe AddIcon /icons/binhex.gif .hqx AddIcon /icons/tar.gif .tar AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip AddIcon /icons/a.gif .ps .ai .eps AddIcon /icons/layout.gif .html .shtml .htm .pdf AddIcon /icons/text.gif .txt AddIcon /icons/c.gif .c AddIcon /icons/p.gif .pl .py AddIcon /icons/f.gif .for AddIcon /icons/dvi.gif .dvi AddIcon /icons/uuencoded.gif .uu AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl AddIcon /icons/tex.gif .tex AddIcon /icons/bomb.gif core AddIcon /icons/back.gif .. AddIcon /icons/hand.right.gif README AddIcon /icons/folder.gif ^^DIRECTORY^^ AddIcon /icons/blank.gif ^^BLANKICON^^ DefaultIcon /icons/unknown.gif ReadmeName README.html HeaderName HEADER.html AddLanguage ca .ca AddLanguage cs .cz .cs AddLanguage da .dk AddLanguage de .de AddLanguage el .el AddLanguage en .en AddLanguage eo .eo AddLanguage es .es AddLanguage et .et AddLanguage fr .fr AddLanguage he .he AddLanguage hr .hr AddLanguage it .it AddLanguage ja .ja AddLanguage ko .ko AddLanguage ltz .ltz AddLanguage nl .nl AddLanguage nn .nn AddLanguage no .no AddLanguage pl .po AddLanguage pt .pt AddLanguage pt-BR .pt-br AddLanguage ru .ru AddLanguage sv .sv AddLanguage zh-CN .zh-cn AddLanguage zh-TW .zh-tw LanguagePriority en ca cs da de el eo es et fr he hr it ja ko ltz nl nn no pl pt pt-BR ru sv zh-CN zh-TW ForceLanguagePriority Prefer Fallback AddDefaultCharset UTF-8 AddType application/x-compress .Z AddType application/x-gzip .gz .tgz AddHandler type-map var AddType text/html .shtml AddOutputFilter INCLUDES .shtml Alias /error/ "/var/www/error/" <IfModule mod_negotiation.c> <IfModule mod_include.c> <Directory "/var/www/error"> AllowOverride None Options IncludesNoExec AddOutputFilter Includes html AddHandler type-map var Order allow,deny Allow from all LanguagePriority en es de fr ForceLanguagePriority Prefer Fallback </Directory> </IfModule> </IfModule> BrowserMatch "Mozilla/2" nokeepalive BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0 BrowserMatch "RealPlayer 4\.0" force-response-1.0 BrowserMatch "Java/1\.0" force-response-1.0 BrowserMatch "JDK/1\.0" force-response-1.0 BrowserMatch "Microsoft Data Access Internet Publishing Provider" redirect-carefully BrowserMatch "MS FrontPage" redirect-carefully BrowserMatch "^WebDrive" redirect-carefully BrowserMatch "^WebDAVFS/1.[0123]" redirect-carefully BrowserMatch "^gnome-vfs/1.0" redirect-carefully BrowserMatch "^XML Spy" redirect-carefully BrowserMatch "^Dreamweaver-WebDAV-SCM1" redirect-carefully NameVirtualHost *:80 NameVirtualHost *:443 <VirtualHost *:80> DocumentRoot /data/www/s1/html ServerName s1.asso.domain ErrorLog logs/s1.error.log </VirtualHost> <VirtualHost *:80> DocumentRoot /data/www/s2/old ServerName s2.domain ErrorLog logs/s2.error.log RailsBaseURI /blog <Directory /data/www/s2/html/blog> Options -MultiViews </Directory> </VirtualHost> <VirtualHost *:443> DocumentRoot /data/www/s2/html ServerName s2.domain ErrorLog logs/s2.error.log RailsBaseURI /blog <Directory /data/www/s2/html/blog> Options -MultiViews </Directory> </VirtualHost> The /etc/httpd/conf.d/git.conf content: Alias /git /data/www/s2/git <Directory /data/www/s2/git> Options +Indexes DAV on SSLRequireSSL </Directory> Fine, every repository are created by the same way: git --bare init "$1.git" && cd "$1.git" && git update-server-info && chmod -R 770 . && cd .. && git clone `pwd`/"$1.git" && cd "$1" && echo 42 > answer && git add . && git commit -m "Initial commit" && git push origin master && git rm answer && git commit -a -m "Clean repository" && git push && cd .. && rm -Rf "$1" Then, on the client side, I try: ~ $ git clone https://s2.domain/git/repo.git Cloning into 'repo'... warning: You appear to have cloned an empty repository. ~ $ cd repo repo $ echo 42 > answer && git add . && git commit -m "init" && git push origin master [master (root-commit) a2aadb1] init 1 file changed, 1 insertion(+) create mode 100644 answer Fetching remote heads... refs/ refs/heads/ refs/tags/ updating 'refs/heads/master' from 0000000000000000000000000000000000000000 to a2aadb1772e12104ce358f7ff9a11db5d93ead7d sending 3 objects MOVE d81cc0710eb6cf9efd5b920a8453e1e07157b6cd failed, aborting (22/502) MOVE 2c186ad49fa24695512df5e41cb5e6f2d33c119b failed, aborting (22/502) MOVE a2aadb1772e12104ce358f7ff9a11db5d93ead7d failed, aborting (22/502) Updating remote server info fatal: git-http-push failed The apache associated logs: my.ip - - [21/Sep/2012:16:19:19 +0200] "GET /git/repo.git/info/refs?service=git-upload-pack HTTP/1.1" 200 - "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:19 +0200] "GET /git/repo.git/HEAD HTTP/1.1" 200 23 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:48 +0200] "GET /git/repo.git/info/refs?service=git-receive-pack HTTP/1.1" 200 - "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "GET /git/repo.git/HEAD HTTP/1.1" 200 23 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/ HTTP/1.1" 207 569 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "HEAD /git/repo.git/info/refs HTTP/1.1" 200 - "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "HEAD /git/repo.git/objects/info/packs HTTP/1.1" 200 - "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "MKCOL /git/repo.git/info/ HTTP/1.1" 405 336 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "LOCK /git/repo.git/info/refs HTTP/1.1" 200 475 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "GET /git/repo.git/objects/info/packs HTTP/1.1" 200 1 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/refs/ HTTP/1.1" 207 2608 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/refs/heads/ HTTP/1.1" 207 941 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/refs/tags/ HTTP/1.1" 207 940 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "MKCOL /git/repo.git/refs/ HTTP/1.1" 405 336 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "MKCOL /git/repo.git/refs/heads/ HTTP/1.1" 405 342 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "LOCK /git/repo.git/refs/heads/master HTTP/1.1" 200 475 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/objects/a2/ HTTP/1.1" 404 317 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/objects/2c/ HTTP/1.1" 207 4565 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/objects/d8/ HTTP/1.1" 207 4565 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PUT /git/repo.git/objects/d8/1cc0710eb6cf9efd5b920a8453e1e07157b6cd_20ca3a58daa09e54112968cbd4e86580b6301074 HTTP/1.1" 201 373 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "MKCOL /git/repo.git/objects/a2/ HTTP/1.1" 201 296 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PUT /git/repo.git/objects/2c/186ad49fa24695512df5e41cb5e6f2d33c119b_20ca3a58daa09e54112968cbd4e86580b6301074 HTTP/1.1" 201 373 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "MOVE /git/repo.git/objects/d8/1cc0710eb6cf9efd5b920a8453e1e07157b6cd_20ca3a58daa09e54112968cbd4e86580b6301074 HTTP/1.1" 502 341 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "MOVE /git/repo.git/objects/2c/186ad49fa24695512df5e41cb5e6f2d33c119b_20ca3a58daa09e54112968cbd4e86580b6301074 HTTP/1.1" 502 341 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PUT /git/repo.git/objects/a2/aadb1772e12104ce358f7ff9a11db5d93ead7d_20ca3a58daa09e54112968cbd4e86580b6301074 HTTP/1.1" 201 373 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "MOVE /git/repo.git/objects/a2/aadb1772e12104ce358f7ff9a11db5d93ead7d_20ca3a58daa09e54112968cbd4e86580b6301074 HTTP/1.1" 502 341 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "UNLOCK /git/repo.git/refs/heads/master HTTP/1.1" 204 - "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/refs/ HTTP/1.1" 207 2608 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/refs/heads/ HTTP/1.1" 207 941 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "PROPFIND /git/repo.git/refs/tags/ HTTP/1.1" 207 940 "-" "git/1.7.11.4" my.ip - - [21/Sep/2012:16:19:49 +0200] "UNLOCK /git/repo.git/info/refs HTTP/1.1" 204 - "-" "git/1.7.11.4" I have tried many configurations (even smart http from progit), but a major part of them consider the fact that they have a dedicated domain, but I'm in a sub-directory, so I can't apply these examples. Have you got an idea of the problem? have you got solutions? have you got configuration example with non-root directory? For your help, In advance, Thanks.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Implementing an async "read all currently available data from stream" operation

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a console's standard output Stream. Console output streams are of type FileStream; the implementation can cast to that, if needed. There is also an associated StreamReader already present to leverage. There is only one thing I need to implement in this class to achieve my desired functionality: an async "read all the data available this moment" operation. Reading to the end of the stream is not viable because the stream will not end unless the process closes the console output handle, and it will not do that because it is interactive and expecting input before continuing. I will be using that hypothetical async operation to implement event-based notification, which will be more convenient for my callers. The public interface of the class is this: public class ConsoleAutomator { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Remember that the goal here is to read all of the chunk and call event subscribers exactly once for each chunk. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream. private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer (in which case we know that there was no more data to be read during the last read operation), all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Never more than one event for each time data is available to be read Is almost agnostic to the buffer size The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this. Update: I definitely did not communicate the scenario well in my initial writeup. I have since revised the writeup quite a bit, but to be extra sure: The question is about how to implement an async "read all the data available this moment" operation. My apologies to the people who took the time to read and answer without me making my intent clear enough.

    Read the article

  • jQuery DataTables is messing op my CSS grids in IE8, how to fix?

    - by Brendan Vogt
    I am using ASP.NET MVC3 with the jQuery Datatable plug in. I am having an issues with my CSS layout when the datatable is on a page. If there is no datatable then everything displays fine. When the datatable is on the screen then it overlaps the footer of my website. I can't seem to get this to display correctly. I have a grid layout using the YUI3, and this is what I all use from YUI3 (in this order): cssreset-min cssfonts-min cssgrids-min cssbase-min This works fine in the latest version of FireFox. I am only testing on IE8, this is a requirement and most of the people at my work uses IE8. I have minified my HTML so that only the bare minimum is available. This is my HTML: <!DOCTYPE html> <html> <head> <title>My Website</title> <meta charset="utf-8" /> <meta http-equiv="X-UA-Compatible" content="IE=Edge" /> <link href="/Assets/Stylesheets/hef2.css" rel="stylesheet" /> <link href="/Assets/Stylesheets/jQuery-DataTables/css/jquery.dataTables.css" rel="stylesheet" /> </head> <body> <div id="hd">Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</div> <div id="bd"> <div class="yui3-g"> <div class="yui3-u" id="nav"> <div id="nav-container"> <div class="content"> <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</p> </div> <div class="content"> <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</p> </div> <div class="content"> <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</p> </div> <div class="content"> <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</p> </div> </div> </div> <div class="yui3-u" id="main"> <div id="main-container"> <div class="content"> <h1>Banks Dashboard</h1> <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</p> </div> <div class="content"> <div id="banks-datatable-wrapper"> <div id="banks-datatable-container"></div> <div style="clear:both;"></div> </div> </div> <div class="content"> <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</p> </div> <div class="content"> <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</p> </div> <div class="content"> <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</p> </div> </div> </div> </div> </div> <div id="ft">Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas sit amet metus. Nunc quam elit, posuere nec, auctor in, rhoncus quis, dui. Aliquam erat volutpat. Ut dignissim, massa sit amet dignissim cursus, quam lacus feugiat.</div> <script src="/Assets/JavaScripts/jQuery/jquery-1.7.2.min.js"></script> <script src="/Assets/JavaScripts/jQuery-DataTables/jquery.dataTables.min.js"></script> <script type="text/javascript"> $(document).ready(function () { $('#banks-datatable-container').html('<table class="display" id="banks-datatable"></table>'); $('#banks-datatable').dataTable({ "aoColumns": [ { "sTitle": "Engine" }, { "sTitle": "Browser" }, { "sTitle": "Platform" }, { "sTitle": "Version", "sClass": "center" }, { "sTitle": "Grade" } ], "bAutoWidth": false, "bFilter": false, "bLengthChange": false, "bProcessing": true, //"bServerSide": true, "bSort": false, "iDisplayLength": 11, "sAjaxSource": '/Administration/Bank/List2' }); }); </script> </body> </html> This is the only CSS that I currently use together with the CSS of YUI3: body { margin: auto; width: 1025px; } #nav { width: 300px; } #main { width: 725px; } Can someone please help me get this sorted out? I have tried tried adding clear:both but it didn't work. Is the an online service like jsbin where I can paste/upload my HTML/CSS code/files? Code can viewed at: http://live.datatables.net/efosuj/3/edit. It displays correctly in the available viewer but when run separate in IE8 then it gives issues. UPDATE 2012-06-12 I managed to add the following and it works, but I would like to add it in a style, tried it but it didn't work: if (navigator.userAgent.toString().indexOf('MSIE') >= 0) { jQuery('#main-container').css('overflow', 'auto'); } This was added after the grid was loaded. Is this the only way to do this?

    Read the article

  • Block Hover Effect - Why doesn't it work correctly in FF3.6?

    - by Brian Ojeda
    Why doesn't following code work correctly in FireFox 3.6? I have tested in IE7, IE8, and Chrome with out any issues. Issue: The first block hover link (the table's 3rd row) doesn't apply the same style/effect as the following below it. Notes: I am trying to create my own table framework. This project is something I am doing to learn more about CSS. Before I started, I thought I knew a lot about CSS. However, to my surprise I was wrong. Who knew? Moving on... As side note, I do not want to take the time to support IE6. So, if you see a problem related IE6, please don't waste your time telling. One another side note, the following style script and HTML listed when this question is strip-down/bare-bone of the complete CSS/HTML. It should be enough to assist me. CSS: /* Main Properties */ .ojtable{display:block;clear:both; margin-left:auto;margin-right:auto; margin-top:0px; width:650px;} .ojtable-row, .ojtable-head {display:block;clear:both;position:relative; margin-left:0px;margin-right:0px;padding:0px;} .col-1, .col-2, .col-3, .col-4, .col-5, .col-6, .col-7, .col-8, .col-9, .col-10, .col-11, .col-12, .col-13, .col-1-b1, .col-2-b1, .col-3-b1, .col-4-b1, .col-5-b1, .col-6-b1, .col-7-b1, .col-8-b1, .col-9-b1, .col-10-b1, .col-11-b1, .col-12-b1, .col-13-b1 {display:block;float:left;position:relative; margin-left:0px;margin-right:0px;padding:0px 2px;} /* Border */ .border-b1{border:solid #000000; border-width:0 0 1px 0;} .border-ltr{border:solid #000000; border-width:1px 1px 0 1px;} /* Header */ .ojtable-row{width:100%;} .ojtable-head{width:100%;} /* No Border*/ .col-2{width:96px;} /* Border: 1px */ .col-2-b1{width:95px;} .col-7-b1{width:345px;} /*--- Clear Floated Elements ---*/ /* Credit: http://sonspring.com/journal/clearing-floats */ .clear { clear: both; display: block; overflow: hidden; visibility: hidden; width: 0; height: 0; } /* Credit: http://perishablepress.com/press/2008/02/05/ lessons-learned-concerning-the-clearfix-css-hack/ */ .clearfix:after { visibility: hidden; display: block; font-size: 0; content: " "; clear: both; height: 0; } .clearfix { display:inline-block; } /* start commented backslash hack \*/ * html .clearfix { height: 1%; } .clearfix { display: block; } /* close commented backslash hack */ /*--- Hover Effect for the Tables ---*/ a {text-decoration:none;} * .ojtable a .ojtable-row{width:650px; display:block; text-decoration:none;} * html .ojtable a .ojtable-row {width:650px;}/* Hover Fix for IE */ .ojtable a:hover .ojtable-row{background:#AAAAAA; cursor:pointer;} HTML: <div class="ojtable border-ltr clearfix"> <div class="ojtable-row border-b1 clearfix"> <div class="col-13">Newest Blogs</div> </div> <div class="ojtable-row border-b1 clearfix"> <div class="col-7-b1 border-r1">Name</div> <div class="col-4-b1 border-r1">Creater's Name</div> <div class="col-2">Dated Created</div> </div> <a href="#"><div class="ojtable-row border-b1 clearfix"> <div class="col-7-b1 border-r1">Why jQuery?</div> <div class="col-4-b1 border-r1">Gramcracker</div> <div class="col-2">Mar 11 2010</div> </div></a> <a href="#"><div class="ojtable-row border-b1 clearfix"> <div class="col-7-b1 border-r1">Thank You For Your Help</div> <div class="col-4-b1 border-r1">O'Hater</div> <div class="col-2">Nov 2 2009</div> </div></a> <a href="#"><div class="ojtable-row border-b1 clearfix"> <div class="col-7-b1 border-r1">Click Me! Hahaha!</div> <div class="col-4-b1 border-r1">Brian Ojeda</div> <div class="col-2">Nov 29 2008</div> </div></a> <a href="#"><div class="ojtable-row border-b1 clearfix"> <div class="col-7-b1 border-r1">Moment of Zen</div> <div class="col-4-b1 border-r1">Jedi</div> <div class="col-2">Mar 11 2010</div> </div></a> <a href="#"><div class="ojtable-row border-b1 clearfix"> <div class="col-7-b1 border-r1"></div> <div class="col-4-b1 border-r1">SGT OJ</div> <div class="col-2">Mar 11 2010</div> </div></a> </div> <!-- End of Table --> PS: Thank you for assistant, if you do choose to help.

    Read the article

  • PE Header Requirements

    - by Pindatjuh
    What are the requirements of a PE file (PE/COFF)? What fields should be set, which value, at a bare minimum for enabling it to "run" on Windows (i.e. executing "ret" instruction and then close, without error). The library I am building first is the linker: Now, the problem I have is the PE file (PE/COFF). I don't know what is "required" for a PE file before it can actually execute on my platform. My testing platform is Vista. I get an error message, saying "This is not a valid Win32 executable." when I execute it by double-clicking, and I get an "Access Denied." when executing it with CLI cmd. I have two sections, .text and .data. I've implemented the PE headers as provided by several online documents, i.e. MSDN and some other thirdparty documentation. If I use a hex-editor, it looks almost like a regular PE file. I don't use any imports, nor IAT, nor any directories in the PE header. Edit: I've added an import table, still not a valid .exe-file, says my Windows. I've tried to use values which are also mentioned at the smallest PE-file guide. No luck. Really the only thing I can't seem to figure out is what is required and what isn't. Some guides tell me everything is required, whilst others say about deprications: and it can be zero. I hope this is enough information. Thank you, in advance. Raw data (as requested) of current PE header: 4D 5A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 00 50 45 00 00 4C 01 02 00 C8 7A 55 4B 00 00 00 00 00 00 00 00 E0 00 82 01 0B 01 0D 25 00 10 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00 10 00 00 00 20 00 00 00 00 40 00 00 10 00 00 00 02 00 00 01 00 0B 00 00 00 00 00 03 00 0A 00 00 00 00 00 00 22 00 00 38 01 00 00 00 00 00 00 03 00 00 00 00 40 00 00 00 40 00 00 00 40 00 00 00 40 00 00 00 00 00 00 0E 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2E 74 65 78 74 00 00 00 00 00 00 00 00 10 00 00 00 02 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 60 2E 69 64 61 74 61 00 00 00 00 00 00 00 20 00 00 00 02 00 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3C 20 00 00 00 00 00 00 00 00 00 00 24 20 00 00 34 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4B 45 52 4E 45 4C 33 32 2E 64 6C 6C 00 00 00 00 01 00 00 80 00 00 00 00 01 00 00 80 00 00 00 00

    Read the article

  • Implementing a robust async stream reader

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a Stream in an event-based manner. The stream, in my scenario, is guaranteed to be a FileStream and there is also an associated StreamReader already present to leverage. The public interface of the class is this: public class MyStreamManager { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } Obviously this specific scenario has to do with a console's standard output, but that is a detail and does not play an important role. StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Since we are only handing off data from the stream to a consumer, and that consumer may well have inside knowledge about the size and/or format of these chunks, I want to call event subscribers exactly once for each chunk. Otherwise the abstraction breaks down and the subscribers have to buffer the incoming data and reconstruct the chunks themselves using said knowledge. This is much less convenient to the calling code, and detracts from the usefulness of my class. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream (thus preserving the chunks). private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer, all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Maintains the "chunkiness" of the data; this allows the calling code to use inside knowledge of the data without doing any extra work Is almost agnostic to the buffer size (it will work correctly with any size buffer irrespective of the data being read) The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this.

    Read the article

  • Implementing a robust async stream reader for a console

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a Stream in an event-based manner. The stream, in my scenario, is guaranteed to be a FileStream and there is also an associated StreamReader already present to leverage. The public interface of the class is this: public class MyStreamManager { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } Obviously this specific scenario has to do with a console's standard output. StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Since we are only handing off data from the stream to a consumer, and that consumer may well have inside knowledge about the size and/or format of these chunks, I want to call event subscribers exactly once for each chunk. Otherwise the abstraction breaks down and the subscribers have to buffer the incoming data and reconstruct the chunks themselves using said knowledge. This is much less convenient to the calling code, and detracts from the usefulness of my class. Edit: There are comments below correctly stating that since the data is coming from a stream, there is absolutely nothing that the receiver can infer about the structure of the data unless it is fully prepared to parse it. What I am trying to do here is leverage the "flush the output" "structure" that the owner of the console imparts while writing on it. I am prepared to assume (better: allow my caller to have the option to assume) that the OS will pass me the data written between two flushes of the stream in exactly one piece. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream (thus preserving the chunks). private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer, all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Maintains the "chunkiness" of the data; this allows the calling code to use inside knowledge of the data without doing any extra work Is almost agnostic to the buffer size (it will work correctly with any size buffer irrespective of the data being read) The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this.

    Read the article

  • Visualising a 'Smarties' lid using XAML (WPF/Silverlight, Visual Studio/Blend)

    - by Mr. Disappointment
    Hi folks, First off, to clarify something in the title which could well be ambiguous/misleading, I'd like to inform you of my definition of 'Smarties', as I know often products are available all over - only under a different alias. Smarties are a candy product in the UK, little chocolate drops covered in a crispy shell which are distributed in a card tube, this tube used to have a plastic lid/top with an individual letter on the underside (they've taken a more economical approach as of late), the lid/top of the old-style tube is the main element of this question. Familiarisation Link Lid View Link Okay, now with the seller-type pitch out of the way (no, I don't work for Nestlé ;)), hopefully the question is becoming rather clear. Essentially, I'd like to recreate one of these lids using XAML, ultimately to be utilised in a Silverlight web application. That is, I'd like to result in a reusable control, of which the following is true: It looks like a Smarties lid. The colour can be specified. The letter can be specified. The control can be rotated to display either side. The second two seem trivial, but we must bare in mind that the background colour specified will almost, if not always, be the same as the foreground, leaving a visibility issue where the character content is concerned; as for the rotation, I'm hoping this kind of functionality is reasonably available, and acceptable to implement. So, to put this out there, consider a control named SmartiesLid which derives from ToggleButton (appropriate?) and further plotted out using a style in a resource dictionary which applies to it, as follows: <Style TargetType="local:SmartiesLid"> <Setter Property="Background" Value="Red"/> <Setter Property="Foreground" Value="Red"/> <Setter Property="VerticalContentAlignment" Value="Center"/> <Setter Property="HorizontalContentAlignment" Value="Center"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="local:SmartiesLid"> <Grid x:Name="LayoutRoot"> <Grid.ColumnDefinitions> <ColumnDefinition Width=".05*"/> <ColumnDefinition/> <ColumnDefinition/> <ColumnDefinition Width=".05*"/> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition Height=".05*"/> <RowDefinition/> <RowDefinition/> <RowDefinition Height=".05*"/> <RowDefinition Height=".1*"/> </Grid.RowDefinitions> <Ellipse Grid.RowSpan="4" Grid.ColumnSpan="4" Fill="{TemplateBinding Background}" Stroke="Transparent"/> <Ellipse Grid.RowSpan="2" Grid.ColumnSpan="2" Grid.Column="1" Grid.Row="1" Fill="{TemplateBinding Background}" Stroke="Transparent"> <Ellipse.Effect> <DropShadowEffect Direction="280" ShadowDepth="6" BlurRadius="6"/> </Ellipse.Effect> </Ellipse> <TextBlock Grid.RowSpan="2" Grid.ColumnSpan="2" Grid.Column="1" Grid.Row="1" Name="LetterTextBlock" Text="{TemplateBinding Content}" Foreground="{TemplateBinding Foreground}" FontSize="190" HorizontalAlignment="Center" VerticalAlignment="Center"> </TextBlock> <!-- <Path Stretch="Fill" Grid.Row="3" Grid.RowSpan="2" Grid.Column="1" Grid.ColumnSpan="2" Fill="Black" Data="..."> How to craw the lid 'tab'? </Path> --> </Grid> <ControlTemplate.Resources> <TranslateTransform x:Key="IndentTransform" X="10" /> <RotateTransform x:Key="RotateTransform" Angle="0" /> <Storyboard x:Key="MouseOver"> </Storyboard> <Storyboard x:Key="MouseLeave"> </Storyboard> </ControlTemplate.Resources> <ControlTemplate.Triggers> <Trigger Property="IsMouseOver" Value="true"> <Trigger.EnterActions> <BeginStoryboard Storyboard="{StaticResource MouseOver}"/> </Trigger.EnterActions> <Trigger.ExitActions> <BeginStoryboard Storyboard="{StaticResource MouseLeave}"/> </Trigger.ExitActions> </Trigger> <Trigger Property="IsPressed" Value="true"> <Setter TargetName="LayoutRoot" Property="RenderTransform" Value="{StaticResource IndentTransform}"/> </Trigger> <Trigger Property="IsChecked" Value="true"> <Setter TargetName="LayoutRoot" Property="RenderTransform" Value="{StaticResource RotateTransform}"/> </Trigger> <Trigger Property="IsEnabled" Value="False"> <Setter Property="Foreground" Value="Gray"/> <Setter Property="Opacity" Value="0.5"/> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Style> With this in mind, can anyone give input on, in decreasing order of my incompetence in an area: Designing the overall look and feel of the damn thing (I'm no designer, and while I could hack away at this single control for days and potentially get something relatively useful, it's always a gamble). The particular barrier for me here is 'pathing' the tab of the lid, as you will see in the XAML as an element commented out. Should Path be used, or would it be more appropriate to transform a rectangle with rounded corners, or any specific suggestions? Bevelling the individually displayed letter; as detailed above, when the colour of both the foreground and background are the same then this will be invisible if no effects are applied, also for a decent level of realism I'd like to be able to apply such an effect/s. So far use of DropShadow and Balder3DEngine have fulfilled my requirements for graphics in XAML, how achievable is a bevel effect? Rotating the control on mouse-click, that is, showing the opposing face. Is this going to be possible using a style and XAML only for the design? Or is it that ugliness may rear it's head in the form of code-behind to show/hide embedded controls? Should the faces be separate controls and later somehow combined? Allowing the control to size dynamically. I'm supposing I will be able to convert a solid, absolute layout to a nice generic one when I actually have the former in place. Obviously this entails sizing the centralised letter and the lid 'tab', but that's it really, other than keeping the aspect ratio equal (since the ellipses grow nicely with the grid). Any suggestions to approaching this would be greatly appreciated, particularly with a dynamically growing font - I've done that before in a web-imaging scenario using code and System.Drawing, and wouldn't like to approach it in even a similar way. By the way, the reason I specify both WPF and Silverlight is that, from my current knowledge, the inputs being written targeting either of these will be fairly transferable for similar output by the other, albeit not without alterations in either scenario. The resulting application is in fact destined to be written in Silverlight, however, so I don't fancy inviting anything from WPF which will guarantee my only being able to convert 90% of it. I'll go give this little project a start, maybe in Blend(?), hopefully can catch up with some advice shortly. Thanks, Mr. D EDIT: Next question, ought this to be broken up into separate questions? :/

    Read the article

  • Replacing instructions in a method's MethodBody

    - by Alix
    Hi, (First of all, this is a very lengthy post, but don't worry: I've already implemented all of it, I'm just asking your opinion.) I'm having trouble implementing the following; I'd appreciate some help: I get a Type as parameter. I define a subclass using reflection. Notice that I don't intend to modify the original type, but create a new one. I create a property per field of the original class, like so: public class OriginalClass { private int x; } public class Subclass : OriginalClass { private int x; public int X { get { return x; } set { x = value; } } } For every method of the superclass, I create an analogous method in the subclass. The method's body must be the same except that I replace the instructions ldfld x with callvirt this.get_X, that is, instead of reading from the field directly I call the get accessor. I'm having trouble with step 4. I know you're not supposed to manipulate code like this, but I really need to. Here's what I've tried: Attempt #1: Use Mono.Cecil. This would allow me to parse the body of the method into human-readable Instructions, and easily replace instructions. However, the original type isn't in a .dll file, so I can't find a way to load it with Mono.Cecil. Writing the type to a .dll, then load it, then modify it and write the new type to disk (which I think is the way you create a type with Mono.Cecil), and then load it seems like a huge overhead. Attempt #2: Use Mono.Reflection. This would also allow me to parse the body into Instructions, but then I have no support for replacing instructions. I've implemented a very ugly and inefficient solution using Mono.Reflection, but it doesn't yet support methods that contain try-catch statements (although I guess I can implement this) and I'm concerned that there may be other scenarios in which it won't work, since I'm using the ILGenerator in a somewhat unusual way. Also, it's very ugly ;). Here's what I've done: private void TransformMethod(MethodInfo methodInfo) { // Create a method with the same signature. ParameterInfo[] paramList = methodInfo.GetParameters(); Type[] args = new Type[paramList.Length]; for (int i = 0; i < args.Length; i++) { args[i] = paramList[i].ParameterType; } MethodBuilder methodBuilder = typeBuilder.DefineMethod( methodInfo.Name, methodInfo.Attributes, methodInfo.ReturnType, args); ILGenerator ilGen = methodBuilder.GetILGenerator(); // Declare the same local variables as in the original method. IList<LocalVariableInfo> locals = methodInfo.GetMethodBody().LocalVariables; foreach (LocalVariableInfo local in locals) { ilGen.DeclareLocal(local.LocalType); } // Get readable instructions. IList<Instruction> instructions = methodInfo.GetInstructions(); // I first need to define labels for every instruction in case I // later find a jump to that instruction. Once the instruction has // been emitted I cannot label it, so I'll need to do it in advance. // Since I'm doing a first pass on the method's body anyway, I could // instead just create labels where they are truly needed, but for // now I'm using this quick fix. Dictionary<int, Label> labels = new Dictionary<int, Label>(); foreach (Instruction instr in instructions) { labels[instr.Offset] = ilGen.DefineLabel(); } foreach (Instruction instr in instructions) { // Mark this instruction with a label, in case there's a branch // instruction that jumps here. ilGen.MarkLabel(labels[instr.Offset]); // If this is the instruction that I want to replace (ldfld x)... if (instr.OpCode == OpCodes.Ldfld) { // ...get the get accessor for the accessed field (get_X()) // (I have the accessors in a dictionary; this isn't relevant), MethodInfo safeReadAccessor = dataMembersSafeAccessors[((FieldInfo) instr.Operand).Name][0]; // ...instead of emitting the original instruction (ldfld x), // emit a call to the get accessor, ilGen.Emit(OpCodes.Callvirt, safeReadAccessor); // Else (it's any other instruction), reemit the instruction, unaltered. } else { Reemit(instr, ilGen, labels); } } } And here comes the horrible, horrible Reemit method: private void Reemit(Instruction instr, ILGenerator ilGen, Dictionary<int, Label> labels) { // If the instruction doesn't have an operand, emit the opcode and return. if (instr.Operand == null) { ilGen.Emit(instr.OpCode); return; } // Else (it has an operand)... // If it's a branch instruction, retrieve the corresponding label (to // which we want to jump), emit the instruction and return. if (instr.OpCode.FlowControl == FlowControl.Branch) { ilGen.Emit(instr.OpCode, labels[Int32.Parse(instr.Operand.ToString())]); return; } // Otherwise, simply emit the instruction. I need to use the right // Emit call, so I need to cast the operand to its type. Type operandType = instr.Operand.GetType(); if (typeof(byte).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (byte) instr.Operand); else if (typeof(double).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (double) instr.Operand); else if (typeof(float).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (float) instr.Operand); else if (typeof(int).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (int) instr.Operand); ... // you get the idea. This is a pretty long method, all like this. } Branch instructions are a special case because instr.Operand is SByte, but Emit expects an operand of type Label. Hence the need for the Dictionary labels. As you can see, this is pretty horrible. What's more, it doesn't work in all cases, for instance with methods that contain try-catch statements, since I haven't emitted them using methods BeginExceptionBlock, BeginCatchBlock, etc, of ILGenerator. This is getting complicated. I guess I can do it: MethodBody has a list of ExceptionHandlingClause that should contain the necessary information to do this. But I don't like this solution anyway, so I'll save this as a last-resort solution. Attempt #3: Go bare-back and just copy the byte array returned by MethodBody.GetILAsByteArray(), since I only want to replace a single instruction for another single instruction of the same size that produces the exact same result: it loads the same type of object on the stack, etc. So there won't be any labels shifting and everything should work exactly the same. I've done this, replacing specific bytes of the array and then calling MethodBuilder.CreateMethodBody(byte[], int), but I still get the same error with exceptions, and I still need to declare the local variables or I'll get an error... even when I simply copy the method's body and don't change anything. So this is more efficient but I still have to take care of the exceptions, etc. Sigh. Here's the implementation of attempt #3, in case anyone is interested: private void TransformMethod(MethodInfo methodInfo, Dictionary<string, MethodInfo[]> dataMembersSafeAccessors, ModuleBuilder moduleBuilder) { ParameterInfo[] paramList = methodInfo.GetParameters(); Type[] args = new Type[paramList.Length]; for (int i = 0; i < args.Length; i++) { args[i] = paramList[i].ParameterType; } MethodBuilder methodBuilder = typeBuilder.DefineMethod( methodInfo.Name, methodInfo.Attributes, methodInfo.ReturnType, args); ILGenerator ilGen = methodBuilder.GetILGenerator(); IList<LocalVariableInfo> locals = methodInfo.GetMethodBody().LocalVariables; foreach (LocalVariableInfo local in locals) { ilGen.DeclareLocal(local.LocalType); } byte[] rawInstructions = methodInfo.GetMethodBody().GetILAsByteArray(); IList<Instruction> instructions = methodInfo.GetInstructions(); int k = 0; foreach (Instruction instr in instructions) { if (instr.OpCode == OpCodes.Ldfld) { MethodInfo safeReadAccessor = dataMembersSafeAccessors[((FieldInfo) instr.Operand).Name][0]; // Copy the opcode: Callvirt. byte[] bytes = toByteArray(OpCodes.Callvirt.Value); for (int m = 0; m < OpCodes.Callvirt.Size; m++) { rawInstructions[k++] = bytes[put.Length - 1 - m]; } // Copy the operand: the accessor's metadata token. bytes = toByteArray(moduleBuilder.GetMethodToken(safeReadAccessor).Token); for (int m = instr.Size - OpCodes.Ldfld.Size - 1; m >= 0; m--) { rawInstructions[k++] = bytes[m]; } // Skip this instruction (do not replace it). } else { k += instr.Size; } } methodBuilder.CreateMethodBody(rawInstructions, rawInstructions.Length); } private static byte[] toByteArray(int intValue) { byte[] intBytes = BitConverter.GetBytes(intValue); if (BitConverter.IsLittleEndian) Array.Reverse(intBytes); return intBytes; } private static byte[] toByteArray(short shortValue) { byte[] intBytes = BitConverter.GetBytes(shortValue); if (BitConverter.IsLittleEndian) Array.Reverse(intBytes); return intBytes; } (I know it isn't pretty. Sorry. I put it quickly together to see if it would work.) I don't have much hope, but can anyone suggest anything better than this? Sorry about the extremely lengthy post, and thanks.

    Read the article

  • Inserting instructions into method.

    - by Alix
    Hi, (First of all, this is a very lengthy post, but don't worry: I've already implemented all of it, I'm just asking your opinion.) I'm having trouble implementing the following; I'd appreciate some help: I get a Type as parameter. I define a subclass using reflection. Notice that I don't intend to modify the original type, but create a new one. I create a property per field of the original class, like so: [- ignore this text here; I had to add something or the formatting wouldn't work <-] public class OriginalClass { private int x; } public class Subclass : OriginalClass { private int x; public int X { get { return x; } set { x = value; } } } [This is number 4! Numbered lists don't work if you add code in between; sorry] For every method of the superclass, I create an analogous method in the subclass. The method's body must be the same except that I replace the instructions ldfld x with callvirt this.get_X, that is, instead of reading from the field directly I call the get accessor. I'm having trouble with step 4. I know you're not supposed to manipulate code like this, but I really need to. Here's what I've tried: Attempt #1: Use Mono.Cecil. This would allow me to parse the body of the method into human-readable Instructions, and easily replace instructions. However, the original type isn't in a .dll file, so I can't find a way to load it with Mono.Cecil. Writing the type to a .dll, then load it, then modify it and write the new type to disk (which I think is the way you create a type with Mono.Cecil), and then load it seems like a huge overhead. Attempt #2: Use Mono.Reflection. This would also allow me to parse the body into Instructions, but then I have no support for replacing instructions. I've implemented a very ugly and inefficient solution using Mono.Reflection, but it doesn't yet support methods that contain try-catch statements (although I guess I can implement this) and I'm concerned that there may be other scenarios in which it won't work, since I'm using the ILGenerator in a somewhat unusual way. Also, it's very ugly ;). Here's what I've done: private void TransformMethod(MethodInfo methodInfo) { // Create a method with the same signature. ParameterInfo[] paramList = methodInfo.GetParameters(); Type[] args = new Type[paramList.Length]; for (int i = 0; i < args.Length; i++) { args[i] = paramList[i].ParameterType; } MethodBuilder methodBuilder = typeBuilder.DefineMethod( methodInfo.Name, methodInfo.Attributes, methodInfo.ReturnType, args); ILGenerator ilGen = methodBuilder.GetILGenerator(); // Declare the same local variables as in the original method. IList<LocalVariableInfo> locals = methodInfo.GetMethodBody().LocalVariables; foreach (LocalVariableInfo local in locals) { ilGen.DeclareLocal(local.LocalType); } // Get readable instructions. IList<Instruction> instructions = methodInfo.GetInstructions(); // I first need to define labels for every instruction in case I // later find a jump to that instruction. Once the instruction has // been emitted I cannot label it, so I'll need to do it in advance. // Since I'm doing a first pass on the method's body anyway, I could // instead just create labels where they are truly needed, but for // now I'm using this quick fix. Dictionary<int, Label> labels = new Dictionary<int, Label>(); foreach (Instruction instr in instructions) { labels[instr.Offset] = ilGen.DefineLabel(); } foreach (Instruction instr in instructions) { // Mark this instruction with a label, in case there's a branch // instruction that jumps here. ilGen.MarkLabel(labels[instr.Offset]); // If this is the instruction that I want to replace (ldfld x)... if (instr.OpCode == OpCodes.Ldfld) { // ...get the get accessor for the accessed field (get_X()) // (I have the accessors in a dictionary; this isn't relevant), MethodInfo safeReadAccessor = dataMembersSafeAccessors[((FieldInfo) instr.Operand).Name][0]; // ...instead of emitting the original instruction (ldfld x), // emit a call to the get accessor, ilGen.Emit(OpCodes.Callvirt, safeReadAccessor); // Else (it's any other instruction), reemit the instruction, unaltered. } else { Reemit(instr, ilGen, labels); } } } And here comes the horrible, horrible Reemit method: private void Reemit(Instruction instr, ILGenerator ilGen, Dictionary<int, Label> labels) { // If the instruction doesn't have an operand, emit the opcode and return. if (instr.Operand == null) { ilGen.Emit(instr.OpCode); return; } // Else (it has an operand)... // If it's a branch instruction, retrieve the corresponding label (to // which we want to jump), emit the instruction and return. if (instr.OpCode.FlowControl == FlowControl.Branch) { ilGen.Emit(instr.OpCode, labels[Int32.Parse(instr.Operand.ToString())]); return; } // Otherwise, simply emit the instruction. I need to use the right // Emit call, so I need to cast the operand to its type. Type operandType = instr.Operand.GetType(); if (typeof(byte).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (byte) instr.Operand); else if (typeof(double).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (double) instr.Operand); else if (typeof(float).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (float) instr.Operand); else if (typeof(int).IsAssignableFrom(operandType)) ilGen.Emit(instr.OpCode, (int) instr.Operand); ... // you get the idea. This is a pretty long method, all like this. } Branch instructions are a special case because instr.Operand is SByte, but Emit expects an operand of type Label. Hence the need for the Dictionary labels. As you can see, this is pretty horrible. What's more, it doesn't work in all cases, for instance with methods that contain try-catch statements, since I haven't emitted them using methods BeginExceptionBlock, BeginCatchBlock, etc, of ILGenerator. This is getting complicated. I guess I can do it: MethodBody has a list of ExceptionHandlingClause that should contain the necessary information to do this. But I don't like this solution anyway, so I'll save this as a last-resort solution. Attempt #3: Go bare-back and just copy the byte array returned by MethodBody.GetILAsByteArray(), since I only want to replace a single instruction for another single instruction of the same size that produces the exact same result: it loads the same type of object on the stack, etc. So there won't be any labels shifting and everything should work exactly the same. I've done this, replacing specific bytes of the array and then calling MethodBuilder.CreateMethodBody(byte[], int), but I still get the same error with exceptions, and I still need to declare the local variables or I'll get an error... even when I simply copy the method's body and don't change anything. So this is more efficient but I still have to take care of the exceptions, etc. Sigh. Here's the implementation of attempt #3, in case anyone is interested: private void TransformMethod(MethodInfo methodInfo, Dictionary<string, MethodInfo[]> dataMembersSafeAccessors, ModuleBuilder moduleBuilder) { ParameterInfo[] paramList = methodInfo.GetParameters(); Type[] args = new Type[paramList.Length]; for (int i = 0; i < args.Length; i++) { args[i] = paramList[i].ParameterType; } MethodBuilder methodBuilder = typeBuilder.DefineMethod( methodInfo.Name, methodInfo.Attributes, methodInfo.ReturnType, args); ILGenerator ilGen = methodBuilder.GetILGenerator(); IList<LocalVariableInfo> locals = methodInfo.GetMethodBody().LocalVariables; foreach (LocalVariableInfo local in locals) { ilGen.DeclareLocal(local.LocalType); } byte[] rawInstructions = methodInfo.GetMethodBody().GetILAsByteArray(); IList<Instruction> instructions = methodInfo.GetInstructions(); int k = 0; foreach (Instruction instr in instructions) { if (instr.OpCode == OpCodes.Ldfld) { MethodInfo safeReadAccessor = dataMembersSafeAccessors[((FieldInfo) instr.Operand).Name][0]; byte[] bytes = toByteArray(OpCodes.Callvirt.Value); for (int m = 0; m < OpCodes.Callvirt.Size; m++) { rawInstructions[k++] = bytes[put.Length - 1 - m]; } bytes = toByteArray(moduleBuilder.GetMethodToken(safeReadAccessor).Token); for (int m = instr.Size - OpCodes.Ldfld.Size - 1; m >= 0; m--) { rawInstructions[k++] = bytes[m]; } } else { k += instr.Size; } } methodBuilder.CreateMethodBody(rawInstructions, rawInstructions.Length); } private static byte[] toByteArray(int intValue) { byte[] intBytes = BitConverter.GetBytes(intValue); if (BitConverter.IsLittleEndian) Array.Reverse(intBytes); return intBytes; } private static byte[] toByteArray(short shortValue) { byte[] intBytes = BitConverter.GetBytes(shortValue); if (BitConverter.IsLittleEndian) Array.Reverse(intBytes); return intBytes; } (I know it isn't pretty. Sorry. I put it quickly together to see if it would work.) I don't have much hope, but can anyone suggest anything better than this? Sorry about the extremely lengthy post, and thanks.

    Read the article

< Previous Page | 21 22 23 24 25